
Journal of the Mathematical Society of Japan Vol. 1, No. 1, Sept., 1948.

On linearly ordered groups.
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A group $G$ is called a l.nearly orcleretl group ( $=1.0$ . group), when in
$G$ is defined a linea.r order $a>b$ , preserved under the group multiplication:

$a>b$ implies $ac>bc$ and $ca>cl$ for all $c$ in $G$ .

A.typical example is the additive group $R$ of all real numbers with
respect to the usual $order|$ Subgroups of $R$ are also linearly ordered and
they are, as is well known, characterized among other 1. $0$ . groups by the
condition that their linear orders are archimedean, that is to say, that for
any positive elementsl) $a,$

$b$ there is a positive integer $n$ , so that it holds

$a^{n}>\delta,$ $\delta^{n}>a$ .
Everett and Ulam have proved that we can define a linear order in a

free group with two generators, so that it becomes a 1. $0$ . group2). In the
following we shall generalize this theorem in the form that any 1. $0$ . group
can be obtained by an order honiomorphism from a proper 1. $0$ . free group,
and then study the general character of group- and order-structure of these
groups. Finally we shall add some examples whuich will illustrate our
theorems.

We prove $\cdot frs^{\prime}t$ some lemmas.
Lemma I. Let $G\delta e$ a $l$. $0$ . group and $Pl/e$ set of all $p\ell zsitipe$ elements

in G. $P$ has then $f\mathscr{U}owingpropert\ell es$ :
i) $e\not\in P$, and if $\chi\neq e$ either $x\epsilon P$ or $x^{-1_{k}}P$.

ii) $x\epsilon P$ and $y\epsilon Pimp^{;_{f}}esxy\epsilon P$.
iii) if $xeP$, then $axa^{-1}\epsilon P$ for all $a$ in $G$ .

Conversely, if a group $Gconta\prime ns$ a $S^{\phi}i[\nearrow setP,,/zav,ngtf_{l}epropert\dot{f}esi$), $ii$), $iii$),
we $car\iota t1_{l\prime^{\prime}}n$ introduce a linear order in $G\delta yM^{ing}$ ,

$a>b$ , if $ a\delta^{-1}\epsilon$ P.. (1)

Proof The former part is almost obviovs. We have only to $1lote$ that
iii) follows from $axa^{-1}>a^{0}a^{-1}=e$ for $x>e$ . We prove the latter part Ac-
cording to i) and $\delta a^{1}\underline{\backslash }=(a\delta^{-1})^{-1}$ it can be seen that one and only one of
the relations
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$a=b,$ $a>b,$ $b>a$

holds for any $a,$
$b$ in $G$ . The transitivity follows then from ii). More-

over $a>lb$ ilnplies $(ac)(\delta c)^{-1}=a\delta^{-1}\epsilon P,$ $ieac>bc$ and also from iii) $(ca)(c\delta)^{-1}$

$=c(a\delta^{-1})c^{-j}\epsilon P$, namely $ca>c\delta,$ $v_{\backslash }’ hich$ completes the proof.
$L\ell mmct2$ . Let } $G_{\alpha}$ } be a set $of$ /. $0$ . $\wedge^{0}rouys$ and $Glke$ (restricted or

complete) direct product of $G_{\alpha}$ . $T/\iota en$ one can introduce a linear order $mG$
so that it $b$ecomes a $l$. $0$ . group.

Proof. We may consider that the groups $G_{\alpha}$ are well-ordered, where
$a$ runs over all $transfinite|n$umbers $ tX<\Omega$ . Elements of $G$ are then given
by their components:

$x=\{x_{\alpha}\},$ $x_{\alpha}\epsilon G_{\alpha}$ .
Now let $P$ be the set of all such $x=\{x.\}$ , that

$x_{\alpha}=\ell_{\alpha^{\$)}}$ for all $ a<\beta$ and $x_{\beta}>e_{q}$ in $G_{\beta}$

for some transfinite number $\beta$( $<(2)$ We see readily that $P$ satisfies i), ii),
iii) of Lemma 1 and thus we can introduce $a$ . linear order in $G^{t)}$ .

We now consider abelian groups and prove
$|Lem\prime na7$ . A linear order can be defned in an abelian group $A$ , if $\dot{an}_{\backslash }d$

only if A contaius no elcment of finite order $\ell xcepttke$ unit5).

Prdof. The condition is necessary; if $x>e$ and $x^{n}=e$ with some in-
teger $n>1$ , then it would’ be $x^{-1}=’\iota^{\prime}n-J>e$ , what is a contradiction. Now
let $A$ be an abelian group with $1\mathfrak{j}O$ element of finite order. We can then
imbed $A$ in a direct product $G$ of groups $G_{\alpha}$ , which are isomorphic to the
additive group of all rational numbers. But as the latter is obviously a 1.
$0$ . group, so is $G$ according to Lemma 2. The subgroup $A$ af $G$ can be
therefore also linearly ordered, $q$ e.d.

We now return to the general case and study the order homomorphism.
We mean here by an order $lhomomwp/\iota ism$ (isomorpkism) a homomorphic
(isomorphic) mapping $a\rightarrow a^{\prime}$ between two 1. $0$ . groups $G,$ $G^{\prime}$ , so that $a>b$

in $G$ implies $a^{\prime}>b^{\prime}=^{t}$ in $G^{\prime}$ . We can then easi $y$ prove the following two
lemmas $\cdot$

Lemma 4. Let $a\rightarrow a^{\prime}$ be an $ar_{4}ierJ\iota omomorphism$ between $G,$ $G^{\prime}$ and
let $c_{=}^{\prime-}c/N$, where $N$ is a normal $subgr^{r}oup$ of G. $T/zcn$

$a\geqq b>e=$ and $ a\epsilon$ Al implies $b\epsilon_{1}V$ (2)
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antl the set $P$ of posilive elemmnts in $G$ consists of positive $\mathcal{E}lemfnts$ in $\Lambda^{\Gamma}$ and
$t/lpel\ell^{\prime}me;;tsw1_{l0S6}$ lzomo $\prime\prime torp,l_{l}ic\prime n\iota ps$ in $G^{\prime}$ are positive. $Convetsel^{}y\iota f$ a
iiorrnal subgroup $iV$ of $a$ 1 $ ogro/\prime pG/mst/\iota\ell$ above properly $(\succ 2),$

$t/\iota e\prime l$

elements of any coset $a\Lambda^{\Gamma}(\neq\Lambda^{\gamma})$ of $G/\Lambda^{\tau}$ are all positive or all negative.
Defining positive or $nega’\dot{i}^{l}7^{\prime}6$ accordingly, $G/\Lambda^{\Gamma}$ becomes $a$ 1. $\theta.$ granp and the
natural $\prime a_{\mathscr{P}^{ing}}a\rightarrow a\Lambda^{\gamma}$ the $n$ gives an $0\prime\prime\rho/lomo\prime noJ^{\prime}pk\iota\grave{s}m$ between $G$ and
$G/\Lambda^{\Gamma}$.

Lemma 5. Let $G$ be a group and $\Lambda^{\gamma}$ a no’ $mal$ subgroup of G. $We$

suppose $tl_{l}at\Lambda^{\gamma}$ and $G/N$ are $ bot/\iota$ linearly ordered, and the order in 1V is
$inz\prime ariant$

. under.. the inner transformations of $G,$ $n$amely

$a\epsilon 1V,$ $ a\geqq e\dot{\sigma}mpliesbab^{-1}\geqq\ell$ for all $ b\epsilon$ G. (3)

Then, $/f$ we tale as positive elements of $G$ politive elemen $\prime_{S}$ in $\Lambda^{\gamma}$ and $t1_{l}e$

$el\iota’ me\prime zts$ belonging positive $cos_{\vee}^{\rho}ts$ in $ G/\wedge\Gamma$ we can &Jine a linear $_{order}$ in $G$ .
The natural mapping $G\rightarrow G/1V$ gives $t/len$ an order $h\theta momorp\nearrow_{l}ism$ .

It is to be noted here particularly that the condition (3) is necessary
in order that G. becomes a 1 $\cdot$ $0.$ group, when 1V and $G/lV$ are so. But if
$1V$ is contained in $th\grave{e}$ centre of $G,-(3)$ is trivially fulfiled, so that by a
central extension we always obtain a 1. $0$ . $gro\iota\iota p^{\backslash }G$ . This remark will be
useful soon afterwards.

Now we prove the following
Theerem I. For a given linearly ordered group $G$ there is a linearly

ordered free group $F$, so lhat $G$ is $t/ze$ image of an order $1/omomorphic$ map-
ping from $f$’ to $G$.

Proof. We take a free group $F$ and a normal subgroup $\wedge\Gamma$ of $F$, so
that $G=\sim F/N$. By transferring the $1\dot{i}near$ order in $G$ , we can make $F/lV$

a 1. $0$ . group Now let $F_{1}^{\rightarrow}=F,$ $F_{2},$ $ F_{t},\ldots\ldots$ be the descending central chain
of $F^{6)}$ and put $\Lambda^{\Gamma_{i}}=F_{i}\cap\Lambda^{\Gamma}$. These groups are. then all normal in $F$ and
we have

$1v_{1}=A\geqq\Lambda^{\Gamma_{2}}\geqq 1V_{3}\geq\ldots\ldots$ , $\bigcap_{i^{\infty}=1^{1}}V_{i}=e$,

as $\bigcap_{=J}^{\infty}F_{i}=e^{7)}$ . From

$[F, PV_{i-1}]^{8)}=[F_{\backslash }F_{i-1}q\Lambda^{7}\rceil\leqq\lfloor F,$ $F_{i-1^{\backslash }}\rfloor\cap[F, N]<F_{i}\cap N=\Lambda^{\gamma_{i}}=$
’

$\Lambda^{\Gamma_{i-;}}/1v_{i}=(F_{i\cdot 1}\cap\Lambda^{7})/(\cap\Lambda^{\Gamma})=(\forall\bigcap_{1}V)/(F_{i}\cap(F_{i-1}\bigcap_{1}V))_{=}^{-}(F_{i}(F_{i-1}\cap N))/F_{i}$ ,
we see that $\Lambda^{7_{i-1}}/\Lambda^{\gamma_{i}}$ is contained in the centre of $F/\Lambda f_{i}$ and has no element



4 K. IWASAWA.

of finite order, because $F_{i}(F_{i-1}\cap\Lambda^{\gamma})/\Gamma_{i}^{\prime}$ is a subgroup of $F_{i-J}/F_{i}$ , which is
known to be free abelian9). We can therefore define a linear order in
$\wedge^{\gamma_{i-1}}/1V_{i}$ according to Lemma 3. By making use bf the remark stated just
before the theorem, a linear order can be defined, starting from $F/-/V_{1}=F/1V$,

step by step to all factor groups $F/1V_{i}$ , so that

$F/N_{i}\rightarrow F/N_{i-J}$ (4)

gives always an order homomorphism. Now take an element $x\neq e$ in $F$.
According to $\bigcap_{=1}^{\infty}\Lambda^{\acute{\gamma}_{i}}=e$ there is an $N_{i}$ , which does not contain $\chi$. We
then call $\chi$ positive (or negative), if the coset of $\chi$ in $F/N_{i}$ is positive (or

negative) in the sense of above defined linear order in $F/1V_{i}^{\backslash }$ . By the
successive order homomorphism (4), such a definition is uniquely determined
independently of the choice of $1V_{i}$ , which does not contain $\chi$ . It is then
easy to see that $F$ thus becomes a 1. $0$ . group and $F\rightarrow F/\Lambda^{\gamma}$ gives $a\iota l$

order honlomorphism, (Lemma 4).

The above theorem shows at the same time that a free group $F$ admits
various linear orders. If we take as $G$ the unit group in. the above proof,
we shall have a particular linear order in $F$, perhaps the simplest one.
Positive elements in $F$ are then defined as follows. We first define $\cdot$ an
arbitrary linear order in. each central factor group $F_{\ell-J}/F_{i}$ . For an element
$\chi\neq e$ in $Fth\dot{e}re$ is an index $i$ such that $x$ is contained in $F_{i-I}$ but not in
$F_{i}$ . We call then $x$ positive, if $\chi$ is in a positive coset in $F_{i- 1}/F_{i}$ . Now,

,when $F$ is thus ordered, we can define a topology in $F$ taking the subsets
$\{x;a>x>b\}$ as neighbourhoods (order topology), and $F$ becomes then a
topological group (every 1. $0$ . group can be thus considered as a topological
group). It is note-worthy that this topology in $F$ just coincides with the
one, which was defined by G. Birkhoff by $n$ ) $aking$ use of congruences with
respect to $F_{i}^{10)}$ .

$J$

Now let $G$ be an arbitrary 1. $0$ . group. We define the absolute $|x|$

of $\chi$ in $G$ by

$|x|=x$, if $x\geqq e$

$=x^{-1}$ , if $\chi<e$.
It is then $easily|$ seen that

$|x|=|x^{-1}|$ , $|x||y|\geqq$ I $xy|$ .
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We denote by $G(x)$ the set of all $y$ in $G$ , for which we have $|x|^{n}=>|y|$

with some positive integer $n$ . From (5) $it\backslash $ follows immediately’ that $G(x)$

forms a subgroup of $G$ and if $y\epsilon G(x)$ and $|z|\leqq|\parallel|,$ $z$ is also contained in.
$G(x)$ On the other hand we call $x$ and $y$

’ equivalent: $x\sim y$, when it
holds $|x|^{m}\geqq|y|,$ $|y|^{n}\geqq|x|$ with some $i_{11}^{\prime}tegersm,$ $n$ and define a linear
order in the set of these equivalent classes $\lambda,$

$\mu,\ldots\ldots$ by putting

$\lambda>\mu$ , if $\chi>\parallel$ for all $x^{\prime}c\lambda,$
$y(\backslash \cdot/z$ .

From the $definition\backslash $ it follows immediateiy that the unit of $G$ forms a class
with only one element We denote by $L$ the set of all equivalent classes,
which are diferdnt from this unit class.

It is clear that $ G(x\rangle$$=.G(y)$ if and only if $x\sim y$ and we may there-
fore write

$G(x)=G_{\lambda}$ , if $ x\epsilon\lambda$ .

Now let $G_{\lambda}$ * be the composite of all groups $G_{\mu}$ with $\mu<\lambda$ (if $\lambda$ is
the first ele ent in 1, we take the unit $group$ as $G_{\lambda^{*}}$ ). We can prove
easily that $i^{\backslash }fG_{\lambda}=G(x),$ $G_{j_{\iota}}^{*}$ is the set of all elements in $G_{\lambda}$ , which are
not equivalent to $\chi$ and consequently tliat G\lambda * is normal in $G_{\lambda}$ . Moreover
as $G_{\lambda}$ and $G_{\lambda^{*}}$ satisfy (3) in Lemma 5, we can induce the linear order of
$G$ into $G_{\lambda}/G_{\lambda^{*}}$ . But this order in $G_{\lambda}/G_{\lambda^{*}}$ is archimedean, for all elements
in $G_{\lambda}$ , not contained in $G_{\lambda}^{*}$ , are mutually equivalent. There is accordingly
an order isomorj hism $I_{\lambda}$ between $G_{\lambda}/G_{\lambda}^{*}$ and a subgroup $R_{\lambda}of^{\prime}$ the group
of all real numbers $\Gamma\backslash $ .

Next $t^{\gamma}$.ke an element $\chi$ and consider the inner automorphi $mJ_{x}$ of $G$

by $x$ . If $G_{\lambda}=G(y\backslash )$ , then $xG_{\lambda}x^{-J}=G(xyx^{-1})=G_{\lambda},$ , so that $)_{\iota}\rightarrow\dot{\lambda}^{\prime}$ gives a
one-to-one order preserving correspondence in $L$ . As G\lambda * is.transformed
into $G_{2\backslash }$ ,* by the same automorphism, I. induces an order isomgrphism
between $G_{\lambda}/G_{\lambda^{*}}$ and $G_{\lambda},/G_{\lambda}^{*}$ , which we denote by $I_{x,\lambda}$ . $I_{\lambda},I_{x,\lambda}I_{\lambda}^{-1}then_{-}$

gives an order isomorphism between $R_{\lambda}$ and $R_{\lambda}$ , so that

$r^{\prime}=I_{\lambda},I_{x,\lambda}I_{\lambda}^{-\prec}(r)=r_{x,\lambda}r$ , for $\prime^{\prime}\epsilon R_{\lambda},$
$r^{\prime_{\sim}}\epsilon R_{\lambda},$ ,

with some positive real nutnber $r_{x.\lambda}>0$ .
We have thus obtained the following
Tkeorem 2. For any linearly $ord_{t^{\sim}}rcd$ gronp $G$ , th $re$ is a lineat $\prime ly$ ordered ,

set $L=\{\lambda, \mu, \ldots..\}$ and a $corresp_{0/l}dingsequ\ell^{?}7Cd$ of sultgroups $\{G_{\lambda} ; \lambda\epsilon L\}$ of
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4
$G$ , whicli $/\iota avefol[\ell\ell/ing$ properties:

x) $G_{\lambda}>G_{\mu},$ $\iota f\grave{\prime\cdot}>\mu$ ( $ G_{\lambda}\neq p\iota f\lambda$ is the frst element $\iota^{\prime}nL$),$\cdot$

2) $ for\backslash am\iota y\chi$ in $G,\acute{r}1\iota ere$ $is\backslash _{\theta n}$ element $\lambda$ in $L,$ $s\iota tch$ that $\chi$ is contained
in $G_{\lambda}$ , but not in $G_{lA}$ for all $\mu<\lambda_{3}$

.
3) let $ G_{\lambda^{*}}\delta et/\iota\ell$ composite of all $G_{\mu}$, with $\mu<\lambda(G_{\lambda^{*}}=e$ , if $\lambda$ is the

frst element in $L$). $G_{\lambda}^{*}$ is tlien no’ $\prime mc\iota l$ in $G_{\lambda}$ and $t^{r_{l}}ere$ is an isomorphism
$I_{\lambda}betwe\ell nG_{\lambda}/G_{\lambda^{*}}$ and a $su_{tJ_{6^{f}}^{(}}^{\prime}roupR_{\lambda}$ of the group of all real n\‘umbers $R$ ;

4) if.we $d_{1^{\eta}}note$ by $I_{x}$ the inner $automorp/l\dot{i}sm$ of $G$ by the element $\chi$

$eac/\iota G_{\lambda}$ goes tio somd $ot/\iota erG_{\lambda}$ umier $I_{x}$ . $\lambda\rightarrow$ ’tfien $gi_{L^{\prime}}^{r}es$ an ordc” pre-
serving $0;\iota^{f}- i\theta$-one $correspond\ell nce$ in L. $G_{\lambda}^{*}\iota s$ transformed consequenl’y to
$c_{\lambda},*$ and $I_{x}$. induces an isomorphisrn $t_{x,\lambda}$ \’oetwlen $G_{\lambda}/G_{\lambda}^{*}$ and $G_{\lambda},fG_{\lambda}^{*}$ .
$f^{i}\grave{u}r\prime f_{l}ert_{J^{\prime}}/e$ isomorpliism $I_{\lambda},l_{9}.,I^{-1}$ beitvecn $R_{\lambda}$ and $R_{\lambda}$ , is $giv_{c^{\prime\prime}/\iota}\delta y^{1}$

$r^{\prime}=I_{\lambda},I_{x,\lambda}I_{\lambda^{-1}}(r)=r_{x,\lambda}\dot{r},$ $fo,$
$r\epsilon\dot{R}_{\lambda},$

$r^{\prime}\epsilon R_{\lambda},$ ,

$w/ler^{J}r_{x,\lambda}$ is a certain positive number:
$5)^{\backslash }$ $l_{L’}J^{}x\epsilon G_{\lambda},$ $X_{1\not\in}G_{\mu}$ for $\mu<\lambda$ (cf. 2). $\chi$ is $t/ltn$ positive $\iota f$ and only if

$t/le$ coset of $x$ in $G_{\lambda},/G_{\lambda^{*}}$ is $mapp_{\vee}d$ by $I_{\lambda}$ into a positivl number in $1e_{\lambda}$ .
For a given linearly ordered $g_{7^{Olf}}\cdot pG$ , such $L$ and $G_{\lambda}$ are uniquely deter-
min$ed$ by the relations $t$) $-\not\in$) (up to an isoznorplaiSm)

$Converse\iota y$ if $G$ is a group and there. exists a sequence of $su\delta grou\ell sG_{\lambda}$

of $G,$ $corr_{C}’ sponding$ to a lmearly ordered set $L$ , and $satlsf\parallel ihg$ above condi-
lions $I$)$-4$) $and.if’\iota ve$ defne positive elements by 5), then G. becomes a
linearly $\theta rdertd$ group.

As $L$ and the corresponding $R_{\lambda}$ are uniquely determined for a given

1. $0$ group, we may classify the set of all 1. $0$ . groups by grouping to-

gether those groups into a class, which have the same $L$ and $R_{\lambda}$ in the
sense of above theorem. We note here some remarks on this classification.

4

First there is no restriction upon $L$ and $R_{\lambda}$ . Namely, if a linearly ordered
set $L$ and corresponding subgroups $R_{\lambda}$ of $R$ are arbitrarily given, there is
always a 1. $0$ group $G$ , to which $L$ and $R$ belong in the above sense: to

obtain such $G$ , we have only to construct the’restricted direct product of
all $R_{\lambda}(i\epsilon L)$ and take as $G_{\lambda}tl\downarrow e$ restricted direct product of all $ R_{\mathfrak{l}^{L}}\mu_{=}<\lambda$ .
We have thus proved in the same time that every such class contains an
abelian group.

Next let us suppose that $L$ is such a linearly ordered set that it admits

’
no ( order pre.$9crving$ one-to-one correspondence except the identity. This

is particnlarly the case, when $L$ is well-ordered or has an order inverse
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to a well-ordered set. Then we have from 4) in Therem 2 that each $G_{\lambda}$

must be normal in. $G$ and that $r\rightarrow z^{\prime}=r_{\lambda,x}\cdot r(r_{\lambda,x}>0)$ gives an automor-
phism of $R_{\lambda}$ $G$ is thus a solvable group in a generalized $sen\dot{s}e^{11)}$ . If,

further. $R_{\lambda}$ admits no automorphism of that type except the identity,
$\sim G_{\lambda}/G_{\lambda^{*}}$ is contained in the centre of $G/G_{\lambda}^{*}$ . For example if L. is well;

ordered (or has an order inverse to it)’ and all $R_{\lambda}$ are the group of rational
integers (nanlely free cyclic groups), every group of type $\{L, R_{\lambda}\}$ is
nilpotent in a generalized sense’2). I may be possible to determine in this
manner the group-theoretical $st_{1}uctu_{1}e$ of 1. $0.$ groupS of various types
more explicitely. Here we do not enter in this $problem^{13)}$ .

We give finally some examples of 1. $0$ . $gro\iota lps$ of various types.
Fxample $I$ . Let $G^{(1)}$ be the restricted direct product of denumerable

number of. free cyclic groups $C_{1},$ $ C_{2}\ldots\ldots$ and let $G_{n}$ be the direct product
of $C_{1},$ $C_{2}$ , ......, $C_{n}$ . By theorem 2 we can define a linear order in $G^{(1)}$

$L$ is then of $t^{1}ypec\iota!=1,2,3,$
$\ldots\ldots$ and $R_{\lambda}$ are the group of all rational

integers $I$.
Example 2. Again, let $G^{(_{\sim^{)}})}$ be the (complete or restricted) direct

product of $C_{1},$ $C_{2}$ , ...... Now take as $G_{n}$ the direct product of $C_{n},$ $C_{n+1}$ ,
...... $L$ is here of type $\omega^{*}=.\backslash \ldots..,$ $3,2,$ ] and $R_{\lambda}$ are again $I$. The linear
order considered here coincides with the one stated in the proof $6f$ Lemma
2.

$Exar\mathscr{U}^{[}e3$ . Let $G^{(3)}$ be generated $b_{J}$ three elements $a,$ $b,$ $c$ with
rdlations

$aI?=\delta a,$ $ca/\vee^{-l}=a,$ $ c\delta c^{-}=a\delta$ .
1

An element in $G$ can be written uniquely in the normal form $a^{\chi}\delta^{y}c^{t}(x,$
$\parallel,$ $z$

$=0,$ $\pm 1,$ $\pm 2$ , ......). If we put $G_{1}=\{a\},$ $G_{2}=\{a, b\},$ $G_{3}=\{a, b, c\}$ , $G^{(S)}$

becomes a 1. $0$ . group. Here $L=\{1,2,3\},$ $R_{1}=R_{\underline{\tau}}=R_{3}=I$. $G^{(3)}$ may be
perhaps one of the simplest non-abelian 1. $0$ . group.

Exampfe $\neq$ . As a generalization of $G^{(:)}$ let us consider $G^{(4)}=\{z,$ $a_{1},$ $a_{2}$ ,
...... } with relations

$\sim\vee a_{i}=a_{l}s,$ $a_{i}a_{j}=a_{j}a_{i}$ , for $|f-i|\neq 1,$ $a_{i}a_{i+1}=a_{i+1}a_{i}^{\sim}$ .

Putting $G_{n}=\{z,$ $a_{1}$ , ... ..., $a_{n-1}\}$ we have a non-abelian 1. $0$ . $\cdot$ group $G^{(4)}$ of
the same type with $G^{(l)}$ .

$L^{\prec^{-}}xampli5$ . A free group $F$ with a finite number of generators has
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the same type with $G^{\underline{(})}$ , if we define the $0$rder by making use of $F_{i}$ .
$A^{\backslash }xampl.e6$ . Let $G^{(6)}$ be the set of all linear functions $ f(x)=ax+\delta$ ,

where $a>0,$ $-\infty<b<\infty$ . Defining the group composition $h=f\times g$ by
$\oint(x)=f(.>\circ\cdot(x))$ and the order $f>g$ by the value of these functions for suffi-
ciently large $\chi G^{(6)}$ becomes a 1. $0$ . group. Here $G_{1}=\{f(x)=x+b;,$ $-\infty$

$<\ell^{\prime}/<\infty\},$ $G_{2}=G^{(0)},$ $L=\{1,2\}$ and $R_{1}=R_{\sim},=R$ . Moreover we have

$ r_{f.1}=\ell\iota$, for $f(x)=ax+b$ ,

whereas $r_{j,2}\underline{\leftarrow}1$ for all $f$

$Exa$inple 7. Take the additive group $G^{()}$ of all such real functions
$f(x)$ which are defined on the interval $[0,1]$ and are represented in the
x-y plane by a broken line through the origin $(0,0)$ . We define $f(x)$

$>g(x)$ , if there is such $a(0\leqq\alpha<1)$ , so that $j(x)=g(x)$ for $0\leqq x\leqq a$ and
$f(a+\epsilon)>\dot{g}(c/.+\epsilon)$ for sufficiently small $\epsilon>0$ . Putting

$G_{\lambda}=$ { $f(x)$ ; $f(x)=0$ for $ 0\leqq x\leqq 1-\lambda$ }, $0<\lambda\leqq 1$ ,

we see that $L$ coincides with the interval $(0,1$ ] and $R_{\lambda}=R$ for all $\lambda$ .
Examplc 8. Let $G^{(8)}$ be the subset of all- those functions $consi\tilde{d}ered$ in

Example 7, which are moreover monotone increasing (in the, strict sense)

and go through the point $(1, 1)$ . We define the group composition $h=fxg$

by $k(x)=f(g(x))$ . By the same order as in Example 7, $G^{(8)}$ becomes a
non-abelian 1. $0$ . group. Here $G_{\lambda}$ is given by

$G_{\lambda}=\{f(x);f(x^{I}=x\backslash for.0=<x\leq 1-\lambda\},$ $0<\lambda\leqq 1$ ,

and again $L=(O, 1$ ]. $R=I\iota_{\lambda}^{J}$ for all $\lambda$ . But in this case no $G_{\lambda}$ except $G_{1}$

$=G^{\langle 8)}$ is normal in $G^{(8)}$ . In fact we have

$fG_{\lambda}f^{-3}=G_{t(\lambda),\backslash }$ .

On the other hand $r_{f,\lambda}$ are herc all 1. If we want to obtain an example
in which $r_{f,\lambda}$ is not constant, $\backslash we$ have only to extendi4) the group $G^{(7)}$ by
$G^{(8)}$ , putting

$\ovalbox{\tt\small REJECT}^{-1}=f(g^{-l}(x))$ , for $f\epsilon G^{(7)},$ $g\epsilon G^{(8)}$ .
’
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