A GEOMETRIC PROOF OF A RESULT OF TAKEUCHI

PETER QUAST

(Received March 21, 2013, revised August 29, 2013)

Abstract. In 1984 Masaru Takeuchi showed that every real form of a hermitian symmetric space of compact type is a symmetric *R*-space and vice-versa. In this note we present a geometric proof of this result.

1. Introduction. Symmetric *R*-spaces can be described in several ways. An early definition of symmetric *R*-spaces by Takeuchi [19] has a slightly algebraic flavour: Symmetric *R*-spaces are compact Riemannian symmetric spaces that are also *R*-spaces (generalized flag manifolds), that is they can also be written as quotients of non-compact connected center-free semi-simple Lie groups by parabolic subgroups. Symmetric *R*-spaces are closely related to certain gradings of semi-simple Lie algebras of the form $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$, sometimes called *symmetric graded Lie algebras* (see [13, 19] and [20]). The (local) classification of indecomposable symmetric *R*-spaces is due to Kobayashi and Nagano [12, 13] (see also [1, p. 310f]).

There is also a more geometric description of symmetric *R*-spaces; they are *s*-orbits of extrinsically symmetric elements (see [18, 11, 14, 9, 10] and Section 2). In this realization symmetric *R*-spaces are extrinsically symmetric submanifolds (see [4] and [6, p. 82]). Ferus has shown that this property characterizes symmetric *R*-spaces (see [5, 6, 2]): Symmetric *R*-spaces are precisely the compact extrinsically symmetric submanifolds of Euclidean spaces.

The indecomposable symmetric *R*-spaces divide into two different types:

- (i) irreducible hermitian symmetric spaces of compact type;
- (ii) indecomposable symmetric R-spaces of non-hermitian type.

In this note we give a geometric proof of Takeuchi's result:

THEOREM 1.1 (Takeuchi [20]). Every symmetric R-space can be realized as a real form of a hermitian symmetric space of compact type. Vice-versa every real form of a hermitian symmetric space of compact type is a symmetric R-space.

While Takeuchi's proof in [20] uses the algebraic description of symmetric *R*-spaces in terms of symmetric graded Lie algebras, our proof is rather based on the geometric realization of symmetric *R*-spaces as *s*-orbits of extrinsically symmetric elements, or equivalently, as compact extrinsically symmetric spaces of Euclidean spaces. The main tool in our proof is a geometric property of standardly embedded hermitian symmetric spaces of compact type

²⁰¹⁰ Mathematics Subject Classification. Primary 32M15; Secondary 53C35, 53C40. Key words and phrases. Hermitian symmetric spaces, symmetric R-spaces, real forms.

proved in [3]. Every isometry of a standardly embedded hermitian symmetric space of compact type is the restriction of a linear isometry of the ambient space. We shall proof en passant (see Remark 3.1 and Proposition 3.2) a precised version of Takeuchi's theorem, namely:

THEOREM 1.2 (Specified version of Takeuchi's theorem). Every indecomposable non-hermitian symmetric R-space is a real form of an irreducible hermitian symmetric space of compact type and vice versa.

Theorem 1.2 can also be verified by comparing case-by-case Leung's classification of real forms of irreducible hermitian symmetric spaces in [15, Theorem 3.4] with the classification of indecomposable non-hermitian symmetric *R*-space (see e.g. [1, p. 311]).

We learned from the referee that yet another proof of the implication in Takeuchi's theorem we discuss in Paragraph 3.2 can be found in the recent article [21, proof of Theorem 4.3]. The proof given there uses a perspective on symmetric *R*-spaces rather similar to ours, but it is still slightly different.

2. Preliminaries.

2.1. Symmetric *R*-space as *s*-orbits. The classical facts about symmetric spaces used below can be found in the standard literature like Helgason's famous monograph [7] or Wolf's book [22, Part IV].

Every symmetric R-space arises in the following way (see [18, 11, 14, 9, 10, 4] and also [1, pp. 70–72]): Let S be a symmetric space of compact type (we always assume symmetric spaces to be connected) and let L be the identity component of the isometry group of S. The geodesic symmetry s_o of S at a chosen base point $o \in S$ gives rise to an involutive Lie group automorphism

$$\sigma: L \to L$$
, $l \mapsto s_o \circ l \circ s_o$.

The differential σ_* of σ at the identity is therefore an involutive automorphism of the Lie algebra \mathfrak{l} of L, called the *Cartan involution* of (S, o). We denote by \mathfrak{h} the fixed point set of σ_* and by \mathfrak{s} its (-1)-eigenspace. The decomposition

$$l = h \oplus s$$
,

called *Cartan decomposition* of l corresponding to (S, o), is orthogonal w.r.t. the Cartan-Killing form B_l of l. This decomposition satisfies the *Cartan relations*, namely

$$[\mathfrak{h},\mathfrak{h}]\subset\mathfrak{h}$$
, $[\mathfrak{h},\mathfrak{s}]\subset\mathfrak{s}$ and $[\mathfrak{s},\mathfrak{s}]\subset\mathfrak{h}$.

The Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$ is the Lie algebra of the identity component H of the isotropy group of o in G. Moreover, \mathfrak{s} can be identified with the tangent space T_oS by the restriction of the differential at the identity of the projection of the principal bundle $L \to S$, $l \mapsto l.o$. Here l.o denotes the action of the isometry l of S on the point $o \in S$. Using the above identification $\mathfrak{s} \cong T_oS$, the linear isotropy action of H on T_oS , also known as s-representation, becomes the restriction of the adjoint action:

$$H \times \mathfrak{s} \to \mathfrak{s}$$
, $(h, X) \mapsto \mathrm{Ad}_L(h)X$.

A non-zero element $\xi \in \mathfrak{s}$ is called *extrinsically symmetric* (or *minuscule coweight*), if

$$ad_{\mathfrak{l}}(\xi)^3 = -ad_{\mathfrak{l}}(\xi)$$
,

or equivalently, if the eigenvalue spectrum of $ad(\xi)$ equals $\{-i, 0, i\}$. We may assume w.r.g. that no projection of ξ onto a simple factor of \mathfrak{l} vanishes.

A symmetric R-space is an isotropy orbit (s-orbit)

$$M := Ad_L(H)\xi \subset \mathfrak{s}$$
,

of S where $\xi \in \mathfrak{s}$ is an extrinsically symmetric element. Ferus has shown that M is an extrinsically symmetric submanifold of the Euclidean space \mathfrak{s} (see [4] and [6, p. 82]). We call M indecomposable if S is an irreducible symmetric space of compact type. If S is an irreducible symmetric space of compact type, but not a compact simple Lie group, M is an indecomposable symmetric R-space of non-hermitian type (see e.g. [1, p. 310f.]). For a description of extrinsically symmetric elements in terms of roots we refer to [17, Lemma 2.1] and also to [12, Section 6].

2.2. Hermitian symmetric spaces of compact type as R-spaces. If S = G is a compact connected semi-simple center-free Lie group, then L is isomorphic to $G \times G$, and the linear isotropy representation on the tangent space T_eG is equivalent to the adjoint representation of G on \mathfrak{g} (see e.g. [7, §6 of Chapter IV]).

Let $\xi \in \mathfrak{g}$ be extrinsically symmetric. It is well-known that $P := \operatorname{Ad}(G)\xi \subset \mathfrak{g}$ endowed with the Riemannian metric induced by the scalar product $-B_{\mathfrak{g}}$ on \mathfrak{g} is a hermitian symmetric space of compact type (see [8]). Let $X \in P$, then $\operatorname{Ad}(\exp(\pi/2 \cdot X))$ and $\operatorname{ad}(X)$ coincide on $T_X P \subset \mathfrak{g}$ and they define a Kähler structure J_X of P at the point X, that is

(1)
$$J_X = \text{Ad} \left(\exp \left(\pi/2 \cdot X \right) \right) |_{T_X P} = \text{ad}(X) |_{T_X P},$$

which turns *P* into a hermitian symmetric space.

The geodesic symmetry s_X of P at the point X extends to the reflection ρ_X of \mathfrak{g} along the normal space $N_X P = \{Y \in \mathfrak{g}; \operatorname{ad}(X)Y = 0\}$ given by the involutive automorphism

(2)
$$\rho_X := \operatorname{Ad}(\exp(\pi X))$$

of \mathfrak{g} . Finally, if we assume that all projections of ξ onto simple factors of \mathfrak{g} are non-zero, G can be identified with the identity component of the isometry group of P.

Conversely every hermitian symmetric space *P* of compact type can be realized as such an orbit in the Lie algebra of its infinitesimal isometries (see [16, pp. 165 ff.] and [8]). If we endow this Lie algebra with a scalar product that coincides on each irreducible factor with the Cartan-Killing form up to a suitable negative constant, this embedding is isometric. We call this the *standard embedding* of a hermitian symmetric space of compact type.

2.3. Real forms of hermitian symmetric spaces. Following Takeuchi [20], a *real form* of a hermitian symmetric space P is a connected component of the fixed point set of some involutive and anti-holomorphic isometry f of P. Real forms are totally geodesic half-dimensional real submanifolds of P.

- **3. The proof.** In this section we present a geometric proof of Takeuchi's result, Theorem 1.1 (see [20]). We show both implications in Takeuchi's theorem separately.
- **3.1.** The proof of the first implication. The arguments given in this paragraph are classical and straightforward. They may also be adapted to more general situations.

Let S be a symmetric space of compact type, $o \in S$ a base point, σ_* the corresponding Cartan involution and $\mathfrak{l} = \mathfrak{h} \oplus \mathfrak{s}$ the induced Cartan decomposition of the semi-simple Lie algebra \mathfrak{l} of infinitesimal isometries of S. Let $\xi \in \mathfrak{s}$ be an extrinsically symmetric element and $M := \mathrm{Ad}_L(H)\xi$ a symmetric R-space. We may again assume that no projection of ξ onto a simple factor of \mathfrak{l} is zero. The inclusion $H \hookrightarrow L$ of the identity component H of the isotropy group of O into the identity component H of the full isometry group of H provides a natural inclusion

$$\mathfrak{s} \supset M = \mathrm{Ad}_L(H)\xi \longrightarrow \mathrm{Ad}_L(L)\xi =: P \subset \mathfrak{l}$$

of the symmetric R-space M into the hermitian symmetric space P.

The linear automorphism $F := -\sigma_*$ of \mathfrak{l} preserves the scalar product on \mathfrak{l} and maps adjoint orbits onto adjoint orbits. Since ξ lies in \mathfrak{s} , the (-1)-eigenspace of σ_* , ξ is a fixed point of F. Thus F leaves P invariant and $f := F|_P$ is an involutive isometry of P. Let f_* denote the differential of f at the fixed point ξ . To show that f is anti-holomorphic, it is sufficient to verify that $f_*(J_{\xi}X) = -J_{\xi}f_*(X)$ for all $X \in T_{\xi}P$, because the complex structure J of P is parallel. Equation (1) implies

$$f_*(J_{\xi}X) = F[\xi, X] = -\sigma_*[\xi, X] = -[\sigma_*\xi, \sigma_*X]$$
$$= [\xi, \sigma_*X] = -[\xi, FX] = -J_{\xi}f_*(X).$$

Since $T_{\xi}P \subset \mathfrak{l}$ is the (-1)-eigenspace of $(\operatorname{ad}(\xi))^2$ and since $(\operatorname{ad}(\xi))^2$ commutes with F, we see that of $T_{\xi}M = \{X \in \mathfrak{s}; (\operatorname{ad}(\xi))^2(X) = -X\} = T_{\xi}P \cap \mathfrak{s}$ (see also e.g. [1, p. 71]). Thus M is a connected component of the fixed point set of f. This shows that M is a real form of P.

REMARK 3.1. If M is an indecomposable symmetric R-space, that is, if S is an irreducible symmetric space of compact type, but not a compact Lie group, or equivalently, if $\mathfrak l$ is a simple compact Lie algebra, then P is an irreducible hermitian symmetric space of compact type.

3.2. The proof of the converse implication. We now show the converse implication in Takeuchi's theorem, namely that every real form of a hermitian symmetric space *P* of compact type is a symmetric *R*-space. As a major tool we use the results of Eschenburg, Tanaka and the author on the extension of isometries of standardly embedded hermitian symmetric spaces published in [3]. The referee kindly informed us that a proof of this implication in Takeuchi's theorem using slightly different arguments can be found in [21, proof of Theorem 4.3].

Since a hermitian symmetric space P of compact type is simply connected (see e.g. [7, Theorem 4.6 in Chapter VIII]), P is a product of its irreducible de Rham factors

$$P = P_1 \times \cdots \times P_k$$
,

where each factor is an irreducible hermitian symmetric space of compact type (see also [22, Corollary 8.7.11]). An involutive anti-holomorphic isometry f either preserves a de Rham factor or permutes isometric de Rham factors pairwise. Thus it is sufficient to only consider the following two cases:

- (I) P is the Riemannian product of two equal irreducible hermitian symmetric spaces Q of compact type, that is $P = Q \times Q$, and f permutes both factors.
- (II) P is irreducible.

We start by investigating the first case. Let τ denote the isometry of $P = Q \times Q$ that just interchanges both factors, that is $\tau(x, y) = (y, x)$ for all $x, y \in Q$. Then f has the form $f = (f_1 \times f_2) \circ \tau$, where f_1 and f_2 are anti-holomorphic isometries of Q. Since f is involutive, we get $f_2 = f_1^{-1}$, that is $f = (f_1 \times f_1^{-1}) \circ \tau$. The fixed point set of f,

$$\{(x,y)\in P;\ f(x,y)=(x,y)\}=\{(x,f_1^{-1}(x));\ x\in Q\}\,,$$

is isomorphic to Q and hence a symmetric R-space.

To treat the second case we prove the following statement:

PROPOSITION 3.2. Every real form of an irreducible hermitian symmetric space P of compact type is an indecomposable symmetric R-space of non-hermitian type.

If $P = \operatorname{Ad}(G)\xi \subset \mathfrak{g}$ is a standardly embedded irreducible hermitian symmetric space of compact type, then the Lie algebra \mathfrak{g} of its infinitesimal isometries is simple (see e.g. [7, $\S 6$ in Chapter VIII]). We consider \mathfrak{g} endowed with the scalar product that coincides with the Cartan-Killing form $B_{\mathfrak{g}}$ up to a negative factor. The Cartan involution corresponding to (P, ξ) is ρ_{ξ} given in Equation (2). The induced Cartan decomposition is $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, where \mathfrak{k} is the fixed point set of ρ_{ξ} .

Let f be an involutive anti-holomorphic isometry of P and let M be a non-empty connected component of the fixed point set of f. Then M is a real form of P and we must show that M is an indecomposable symmetric R-space of non-hermitian type. By the homogeneity of P we may assume w.r.g. that ξ is a point of M and therefore $f(\xi) = \xi$.

The differential f_* of f at ξ is an involutive linear automorphism of $\mathfrak{p} \cong T_{\xi} P$. The fixed point set \mathfrak{m} of f_* is canonically identified with the tangent space $T_{\xi} M$.

Following the reasoning in [3, Section 3] we consider the Lie group automorphism

$$\phi: G \to G$$
, $g \mapsto f \circ g \circ f$

of the identity component G of the full isometry group of P. Since ϕ leaves the stabilizer K of ξ in G invariant, its differential ϕ_* at the identity induces an automorphism of \mathfrak{k} . We conclude (see [3, Lemma 3.1]) that

$$\phi_*(\xi) \in \{\pm \xi\}$$
.

LEMMA 3.3. We have $\phi_*(\xi) = -\xi$.

PROOF. Assume by contradiction that $\phi_*(\xi) = \xi$. Then the derivative of the one-parameter family

$$\mathbf{R} \to G$$
, $s \mapsto \phi(\exp(s \cdot \xi)) = f \circ \exp(s \cdot \xi) \circ f$

at s = 0 is $\phi_*(\xi) = \xi$. Hence

$$\exp(s \cdot \xi) = f \circ \exp(s \cdot \xi) \circ f$$
 for all $s \in \mathbf{R}$.

Let γ be the geodesic in $M \subset \mathfrak{g}$ that satisfies $\gamma(0) = \xi$ and $\dot{\gamma}(0) =: X \in \mathfrak{m} \setminus \{0\}$. Taking $s = \frac{\pi}{2}$ we get

$$\exp\left(\frac{\pi}{2}\xi\right).\gamma(t) = \left(f \circ \exp\left(\frac{\pi}{2}\xi\right) \circ f\right).\gamma(t) = \left(f \circ \exp\left(\frac{\pi}{2}\xi\right)\right).\gamma(t) \ .$$

The derivative at t = 0 yields

$$\left(f_* \circ d\left(\exp\left(\frac{\pi}{2} \cdot \xi\right)\right)_{\xi}\right) X = f_*\left(\operatorname{Ad}\left(\exp\left(\frac{\pi}{2} \cdot \xi\right)\right) X\right)$$
$$= f_*(J_{\xi}X) = d\left(\exp\left(\frac{\pi}{2} \cdot \xi\right)\right)_{\xi} X = \operatorname{Ad}\left(\exp\left(\frac{\pi}{2} \cdot \xi\right)\right) X = J_{\xi}X$$

(see Equation (1)). But the equation $f_*(J_\xi X) = J_\xi X = J_\xi f_*(X)$ for a nonzero $X \in \mathfrak{m} \cong T_\xi M$ contradicts the fact that f is anti-holomorphic.

Notice that the fact $\phi_*(\xi) = -\xi$ also plays a role in [21, proof of Theorem 4.3].

The proof of the main result in [3] shows that in our case f is the restriction to P of the linear isometry

$$F := -\phi_* : \mathfrak{g} \to \mathfrak{g}$$
.

LEMMA 3.4. $\phi_* = -F$ is an involutive automorphism of \mathfrak{g} that commutes with ρ_{ξ} .

PROOF. Recall that ϕ_* preserves $\mathfrak k$ and therefore also $\mathfrak p$. Notice further that $\rho_{\xi} = \operatorname{Ad}(\exp(\pi\xi))$ is the identity on $\mathfrak k$ and $-\operatorname{Id}$ on $\mathfrak p$. This shows the claim.

Thus (\mathfrak{g}, ϕ_*) is an orthogonal involutive Lie algebra (see e.g. [22, Chapter 8]). Let \mathfrak{h} be the fixed point set of ϕ_* and \mathfrak{s} the fixed point set of $F = -\phi_*$. Then the orthogonal decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{s}$$

is the Cartan decomposition of some irreducible pointed symmetric space *S* of compact type (see e.g. [22, Section 8.3]), which is not a compact Lie group (see e.g. [7, p. 379]).

Moreover, since ϕ_* and ρ_{ξ} commute, we get a common eigenspace decomposition

$$\mathfrak{g} = \mathfrak{k}_+ \oplus \mathfrak{k}_- \oplus \mathfrak{p}_- \oplus \mathfrak{p}_+$$
,

where $\mathfrak{k} = \mathfrak{k}_+ \oplus \mathfrak{k}_-$, $\mathfrak{p} = \mathfrak{p}_- \oplus \mathfrak{p}_+$, $\mathfrak{h} = \mathfrak{k}_+ \oplus \mathfrak{p}_+$ and $\mathfrak{s} = \mathfrak{k}_- \oplus \mathfrak{p}_-$. Notice that $\xi \in \mathfrak{k}_- \subset \mathfrak{s}$ and that $\mathfrak{m} = \mathfrak{p} \cap \mathfrak{s} = \mathfrak{p}_-$.

We observe that M is the connected component of $P \cap \mathfrak{s}$ that contains ξ . Let H be the identity component of the closed subgroup of G formed by all elements $g \in G$ enjoying the property $\mathrm{Ad}_G(g)\mathfrak{s} = \mathfrak{s}$. Since the decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{s}$ is orthogonal, we get $\mathrm{Ad}_G(h)\mathfrak{h} = \mathfrak{h}$ for all $h \in H$. One easily checks that \mathfrak{h} is the Lie algebra of H.

Since the representation $Ad_G(H)|_{\mathfrak{s}}$ is the *s*-representation of the irreducible symmetric space G/H of compact type, which is not a compact Lie group, the following Lemma implies Proposition 3.2:

LEMMA 3.5. The real form M is the orbit $M = Ad_G(H)\xi$.

PROOF. The inclusion $Ad_G(H)\xi \subset M$ is evident. Since both M and $Ad_G(H)\xi$ are connected compact submanifolds of P without boundary, it now suffices to show that the dimensions of M and $Ad_G(H)\xi$ coincide.

The Lie algebra of the stabilizer of ξ in H is $\mathfrak{k}_+ = \{X \in \mathfrak{h}; \ \operatorname{ad}(X)\xi = 0\}$ and therefore $\dim(\operatorname{Ad}_G(H)\xi) = \dim(\mathfrak{p}_+)$. On the other hand we have $\dim(M) = \dim(\mathfrak{m}) = \dim(\mathfrak{p}_-)$. The automorphism $\operatorname{Ad}(\exp(\pi/2 \cdot \xi))$ of \mathfrak{g} , which coincides on \mathfrak{p} with J_{ξ} (see Equation (1)), exchanges \mathfrak{p}_- and \mathfrak{p}_+ . Indeed for $X \in \mathfrak{p}_+$ we get:

$$\phi_* \left(\operatorname{Ad} \left(\exp \left(\frac{\pi}{2} \cdot \xi \right) \right) X \right) = \operatorname{Ad} \left(\exp \left(\frac{\pi}{2} \cdot \phi_*(\xi) \right) \right) \phi_*(X)$$

$$= \pm \operatorname{Ad} \left(\exp \left(-\frac{\pi}{2} \cdot \xi \right) \right) X$$

$$= \pm \operatorname{Ad} \left(\exp \left(\frac{\pi}{2} \cdot \xi \right) \right) \left(\operatorname{Ad} (\exp(-\pi \cdot \xi)) X \right)$$

$$= \pm \operatorname{Ad} \left(\exp \left(\frac{\pi}{2} \cdot \xi \right) \right) \left(\operatorname{Ad} (\exp(\pi \cdot \xi)) X \right)$$

$$= \mp \operatorname{Ad} \left(\exp \left(\frac{\pi}{2} \cdot \xi \right) \right) X.$$

In the last equality we used Equation (2).

REFERENCES

- J. BERNDT, S. CONSOLE AND C. OLMOS, Submanifolds and holonomy, Chapman Hall/CRC Res. Notes in Math. 434, Chapman & Hall/CRC, Boca Raton, FL, 2003.
- [2] J.-H. ESCHENBURG AND E. HEINTZE, Extrinsic symmetric spaces and orbits of s-representations, Manuscripta Math. 88 (1995), 517–524.
- [3] J.-H. ESCHENBURG, P. QUAST AND M. S. TANAKA, Isometries of hermitian symmetric spaces, J. Lie Theory 23 (2013), 113–118.
- [4] D. FERUS, Immersionen mit paralleler zweiter Fundamentalform: Beispiele und Nicht-Beispiele., Manuscripta Math. 12 (1974), 153–162.
- [5] D. FERUS, Immersions with parallel second fundamental form, Math. Z. 140 (1974), 87–93.
- [6] D. FERUS, Symmetric submanifolds of euclidean space, Math. Ann. 247 (1980), 81–93.
- [7] S. HELGASON, Differential geometry, Lie groups and symmetric spaces, Pure Appl. Math. 80, Academic Press, New York, 1978.
- [8] U. HIRZEBRUCH, Über eine Realisierung der hermiteschen, symmetrischen Räume, Math. Z. 115 (1970), 371–382.
- [9] E. KELLY, Tight equivariant immersions of symmetric spaces, Bull. Amer. Math. Soc. 77 (1971), 580–583.
- [10] E. KELLY, Tight equivariant imbeddings of symmetric spaces, J. Differential Geom. 7 (1972), 535–548.
- [11] S. KOBAYASHI, Isometric imbeddings of compact symmetric spaces, Tohoku Math. J. (2) 20 (1968), 21–25.
- [12] S. KOBAYASHI AND T. NAGANO, On filtered Lie algebras and geometric structures I, J. Math. Mech. 13 (1964), 875–907.
- [13] S. KOBAYASHI AND T. NAGANO, On filtered Lie algebras und geometric structures II, J. Math. Mech. 14 (1965), 513–521.
- [14] S. KOBAYASHI AND M. TAKEUCHI, Minimal imbeddings of R-spaces, J. Differential Geom. 2 (1968), 203–215.

- [15] D. S. P. LEUNG, Reflective submanifolds. IV. Classification of real forms of hermitian symmetric spaces, J. Differential Geom. 14 (1979), 179–185.
- [16] A. LICHNÉROWICZ, Géométrie des groupes de transformations, Travaux et Recherches Mathématiques, III. Dunod, Paris, 1958.
- [17] A.-L. MARE, AND P. QUAST, On some spaces of minimal geodesics in Riemannian symmetric spaces, Q. J. Math. 63 (2012), 681–694.
- [18] T. NAGANO, Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc. 118 (1965), 428–453.
- [19] M. TAKEUCHI, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci., Univ. Tokyo, Sect. I 12 (1965), 81–191.
- [20] M. TAKEUCHI, Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tohoku Math. J. (2) Ser. 36 (1984), 293–314.
- [21] M. S. TANAKA AND H. TASAKI, Antipodal sets of symmetric R-spaces, Osaka J. Math. 50 (2013), 161-169.
- [22] J. A. WOLF, Spaces of constant curvature, 5th edition, Publish or Perish Inc., Houston, TX, 1984.

INSTITUT FÜR MATHEMATIK UNIVERSITÄT AUGSBURG 86135 AUGSBURG GERMANY

E-mail address: peter.quast@math.uni-augsburg.de