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Abstract. Let G be a finite group not of prime power order. Two real G-modules U

and V are P(G)-connectively Smith equivalent if there exists a homotopy sphere with smooth
G-action such that the fixed point set by P is connected for all Sylow subgroups P of G, it
has just two fixed points, and U and V are isomorphic to the tangential representations as real
G-modules respectively. We study the P(G)-connective Smith set for a finite Oliver group
G of the real representation ring consisting of all differences of P(G)-connectively Smith
equivalent G-modules, and determine this set for certain nonsolvable groups G.

Introduction. Let G be a finite group. The Smith problem given in the footnote on
[43, p. 406] is a fundamental problem in the theory of transformation groups. Let Σ be a
homotopy sphere with smooth G-action such that Σ has just two fixed points, say a and b.
The Smith problem asks whether tangential representations Ta(Σ) and Tb(Σ) are isomorphic
as real G-modules. Two real G-modules U and V are called Smith equivalent if there exists
a smooth action of G on the homotopy sphere Σ such that ΣG = {a, b}, Ta(Σ) ∼= U and
Tb(Σ) ∼= V as real G-modules. If the action is semi-free, that is, the isotropy subgroup of any
point different from a and b is the trivial group, Smith equivalent real modules are isomorphic
[24, 1]. On the other hand, it is well-known that there are infinitely many groups G possessing
nonisomorphic, Smith equivalent real G-modules (cf. [36, 37, 38, 39, 10, 12, 23, 45, 6, 7,
14, 13]). Let Sm(G) be the subset of RO(G), the real representation ring, consisting of the
differences [U ] − [V ] such that U and V are Smith equivalent. The representation sphere
S(V ⊕R) implies that 0 = [V ]− [V ] ∈ Sm(G). By Sanchez’s result [41, (1.11)] and Smith’s
theorem [3, III (5.1)], Smith equivalent real G-modules have isomorphic restrictions to any
cyclic subgroup with odd prime power order of G. Morimoto [25] showed that Sm(G) is a
subset of RO(G){∩2(G)}, the kernel of Fix : RO(G)→ RO(G/∩2(G)), where ∩2(G) denotes
the normal subgroup of G given as the intersection of all subgroups of G with index 2 or 1.

We consider a little bit stronger equivalence relation. Let P(G) be the set of all prime
power order subgroups of G. Two real G-modules U and V are called P(G)-connectively
Smith equivalent if there exists a smooth action of G on a homotopy sphere S such that
SG = {a, b}, Ta(S) ∼= U and Tb(S) ∼= V as real G-modules, and SP is connected for any
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subgroup P ∈ P(G). Let PSmc(G) be the subset of RO(G) consisting of the differences
[U ] − [V ] such that U and V are P(G)-connectively Smith equivalent. Note that PSmc(G)

is a subset of Sm(G) and that 0 ∈ PSmc(G) if and only if G is not of prime power order.
If G-modules U and V are P(G)-connectively Smith equivalent, then for any subgroup P

of G of prime power order, dim UP is positive, which implies that U contains an irreducible
G-module W with dim WP > 0. If any irreducible G-module W satisfies dim WP > 0 for
any subgroup P of G of prime power order, then Smith equivalent G-modules are P(G)-
connectively Smith equivalent and in particular, PSmc(G) = Sm(G).

An Oliver group is characterized as a finite group acting smoothly on a disk without
fixed points [32, Theorem 7] or one acting smoothly on a sphere with just one fixed point [19,
Theorem A]. In this article we study the P(G)-connective Smith sets PSmc(G) of various
Oliver groups G. By the slice theorem and the Smith theory, PSmc(G) is a subset of the
kernel RO(G)P(G) of the homomorphism⊕P∈P(G) ResG

P : RO(G)→ ⊕P∈P(G)RO(P ).
We remark that the Smith set Sm(G) is not a subset of RO(G)P(G) in general (cf. [5])

and the set Sm(G)�RO(G)P(G) is a finite set (cf. [2, 40, 29]). The set Sm(G)�RO(G)P(G)

is not empty for any group possessing a cyclic quotient group of order 8 (cf. [5]), while it
is empty if G has no element of order 8. Let Gnil be the smallest normal subgroup of G

such that G/Gnil is nilpotent. By definition, Gnil is a subgroup of ∩2(G). A real conju-
gacy class (g)± of g ∈ G denotes the union of the conjugacy classes of g and g−1, and
rG denotes the number of real conjugacy classes of elements not of prime power order. If
Sm(G)P(G) �= {0} then rG > 1, since Sm(G)P(G) is a subset of the free abelian group

RO(G)
{G}
P(G)

with rank rG − 1. Laitinen and Pawałowski [20, Theorem A] showed that for
a perfect group G, Sm(G)P(G) �= {0} if and only if rG > 1. Let PΣL2(27) be the exten-
sion of PSL2(27) by the group Aut(F27) of automorphisms of the field F27 of 27 elements.
Pawałowski and Solomon [33, Theorem B3] showed that for any nonsolvable gap group G

with rG > 1 and G �∼= PΣL2(27), there exist nonisomorphic P(G)-connectively Smith
equivalent, {Gnil}-free G-modules. Here a G-module U is called {Gnil}-free if UGnil = 0.
Subsequently, Pawałowski and the author [35] showed that for any nonsolvable group G with
rG > 1 and G �∼= PΣL2(27), Aut(A6), there exist nonisomorphic P(G)-connectively Smith
equivalent, {Gnil}-free G-modules, by further investigating group theoretic arguments in [33]
and by employing geometric arguments in [27]. The automorphism group Aut(A6) of the
alternating group A6 satisfies rAut(A6) = 2 and is not a gap group. Morimoto [26] showed
that Sm(G) ⊂ RO(G){∩2(G)} and that any Smith equivalent Aut(A6)-modules are isomor-
phic: Sm(Aut(A6)) = {0}. The group is the firstly found example of an Oliver group G such
that rG ≥ 2 but Sm(G) = {0}. We also found examples of solvable Oliver groups satisfy-
ing the same conditions, see [34, Proposition 5.3–5.6]. Furthermore, Morimoto [26, Theo-
rem 1.1] showed that there exist nonisomorphicP(PΣL2(27))-connectively Smith equivalent
PΣL2(27)-modules. One of these PΣL2(27)-modules is {Gnil}-free but another is not. Such
Smith equivalent modules are also found in [28, 29]. We studied PSmc(G) for nonsolvable
groups G such that G/Gnil is a cyclic group of order 1, 2, or 3 in [51].
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We have the implementation that

PSmc(G) ⊂ Sm(G)P(G) ⊂ RO(G){∩2(G)} ∩ RO(G)P(G) .

In this paper we will show that there are many nonsolvable groups G satisfying the equality

PSmc(G) = RO(G){∩2(G)} ∩ RO(G)P(G) .

For this purpose, we introduce a sufficient condition for a gap Oliver group satisfying the
above equality.

DEFINITION 0.1. A pair (U, V ) of real G-modules is called P(G)-matched if [U ] −
[V ] ∈ RO(G)P(G). For a family L of subgroups of G, a real G-module W is called L-free if
WL = 0 for any L ∈ L, and a pair (U, V ) of real G-modules is called a P(G)-matched pair
of type 1L if UL = UG ∼= R, V L = V G = 0 for any L ∈ L and [U ]−[V ] ∈ RO(G)P(G). We
say that G satisfies the Nil-P-condition if there are real G-modules of type 1{Gnil}. Let L(G)

be the set of all subgroups H of G such that H includes the smallest normal subgroup of G

with p-power index for some prime p and let MR (resp. LR) denote the family of all finite
groups G for which there exist P(G)-matched pairs of real G-modules of type 1{G} (resp.
1L(G)).

Clearly LR ⊂ MR and if G satisfies the Nil-P-condition then G ∈ LR. If a Sylow 2-
subgroup of G is a normal subgroup of G then G /∈MR and in particular G does not satisfy
the Nil-P-condition.

THEOREM 0.2. Let G be a finite group possessing a quotient group which is a gap
Oliver group satisfying the Nil-P-condition. Then

PSmc(G) = RO(G){∩2(G)} ∩ RO(G)P(G) .

Let G be the family of finite simple groups SL2(4) ∼= PSL2(5) ∼= A5, PSL2(7) ∼=
PSL3(2), SL2(8), PSL2(9) ∼= A6, PSL2(17), PSL3(4), SL3(8), SU3(3), SU3(4), PSU3(8),
Sz(8), and Sz(32). For a positive integer n, Cn denotes a cyclic group of order n and D2n

denotes a dihedral group of order 2n.

THEOREM 0.3. Let n be an integer and q a prime power > 1. If a finite group G has
a quotient group isomorphic to some nonsolvable group (1)–(6) listed below, then

PSmc(G) = RO(G){∩2(G)} ∩ RO(G)P(G) .

(1) A perfect group containing a nonabelian simple group H with H /∈ G.

(2) A perfect group containing a subgroup isomorphic to L× C2 with L ∈ G.

(3) A symmetric group Sn with n ≥ 7.

(4) A projective general linear group PGL2(q) with q �= 2, 3, 4, 5, 7, 8, 9, 17.

(5) A projective general linear group PGL3(q) with q �= 2, 4, 8.

(6) A projective general linear group PGLn(q) with n ≥ 4.

Acknowledgement. The author would like to thank the anonymous referee(s) for his/their careful
reading of this manuscript and the incisive comments.
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1. Nil-P-condition and the P(G)-connective Smith set. For a finite group G, P(G)

denotes the set of all subgroups of G of prime power order, possibly 1. Let N2(G) := {H 
G |
[G : H ] ≤ 2} and ∩2(G) := ∩H∈N2(G)H . Then G/∩2(G) is a (maximal) elementary abelian
2-group. We put

RO(G)P(G) =
⋂

P∈P(G)

ker(ResG
P : RO(G)→ RO(P )) ,

RO(G)N =
⋂

N∈N
ker(FixN : RO(G)→ RO(G/N)) ,

and
RO(G)NP(G) = RO(G)P(G) ∩ RO(G)N ,

for a family N of normal subgroups of G.
A finite group G is called a gap group (cf. [30, 46, 47, 49, 50, 52]) if there exists a real

G-module W such that

(1) W is L(G)-free and
(2) dim WP > 2 dim WH for any subgroups P , H of G with P ∈ P(G) and P < H .

Recall the following theorem.

THEOREM 1.1 ([26, Lemma 4.6]). Let G be a gap Oliver group. Let (U1, U2) and
(U3, U4) be P(G)-matched pairs of G-modules of type 1N2(G) such that UGnil

2 = 0 = UGnil

4 .
If (U1, U3) is a P(G)-matched pair, then [U1] − [U3] ∈ PSmc(G).

We obtain the following lemma by this theorem.

LEMMA 1.2. Let G be a gap Oliver group. Suppose that for any η ∈ RO(G/Gnil)

there is an element Xη ∈ RO(G){Gnil} such that η + Xη ∈ RO(G)P(G). Then PSmc(G) =
RO(G)

N2(G)

P(G)
.

PROOF. Since PSmc(G) ⊂ RO(G)
N2(G)

P(G)
, we show that any element of RO(G)

N2(G)

P(G)

lies in PSmc(G). Let (A1, A2) be a pair of {Gnil}-free real G-modules such that R⊕ A1 and
A2 are P(G)-matched. Let X ∈ RO(G)

N2(G)

P(G)
. Write X as [X1] − [X2] by using N2(G)-free

real G-modules X1 and X2. By the assumption, for j = 1, 2, there exist {Gnil}-free real
G-modules Yj+ and Yj− such that (XGnil

j ⊕ Yj+, Yj−) is an N2(G)-free P(G)-matched pair.

Since Xj = (Xj −XGnil

j )⊕XGnil

j , we see that

(R⊕ A1 ⊕Xj ⊕ Yj+, A2 ⊕ (Xj −XGnil

j )⊕ Yj−)

is a P(G)-matched pair of type 1{G}. Put

U1 =R⊕X1 ⊕ A1 ⊕ Y1+ ⊕ Y2+ ,

U2 = (X1 − XGnil

1 )⊕ A2 ⊕ Y1− ⊕ Y2+ ,

U3 =R⊕X2 ⊕ A1 ⊕ Y1+ ⊕ Y2+ , and

U4 = (X2 − XGnil

2 )⊕ A2 ⊕ Y1+ ⊕ Y2− .
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Then we see that U
∩2(G)
1 = R, U

∩2(G)
3 = R, UGnil

2 = 0 = UGnil

4 , and (U1, U2), (U3, U4) and
(U1, U3) are all P(G)-matched pairs. Therefore, we have X = [U1] − [U3] ∈ PSmc(G) by
Theorem 1.1. �

The following lemma connects with the Nil-P-condition.

LEMMA 1.3. If a group G satisfies the Nil-P-condition then for any η ∈ RO(G/Gnil),
there exists an element X ∈ RO(G){Gnil} such that η +X ∈ RO(G)P(G).

PROOF. Since G satisfies the Nil-P-condition, there is X ∈ RO(G){Gnil} such that [R]+
X ∈ RO(G)P(G). Put Y = η · ([R]+X) = η+η ·X. It is easy to see that η ·X ∈ RO(G){Gnil}
and Y ∈ RO(G)P(G). �

Putting Lemmas 1.2 and 1.3 together, we immediately see the following theorem.

THEOREM 1.4. For a gap Oliver group G satisfying the Nil-P-condition, it holds that

PSmc(G) = Sm(G)P(G) = RO(G)
N2(G)

P(G)
.

In particular, PSmc(G) is an additive group.

Two elements x and y of G are called real conjugate if x is conjugate to y or y−1, and
(x)± denotes the real conjugacy class of x. The set RO(G)P(G) is a free abelian group with
rank rG, where rG is the cardinality of the set NPP(G) consisting of real conjugacy classes of
elements of G not of prime power order.

COROLLARY 1.5. For a gap Oliver group G satisfying the Nil-P-condition, if there
are two elements x and y of G not of prime power order such that they are not real conjugate
and f (x) and f (y) are conjugate where f is a natural surjective homomorphism from G to
G/ ∩ 2(G), then PSmc(G) �= 0.

PROOF. By the assumption, the Second Rank Lemma [33, p. 856] yields

rank RO(G)
N2(G)

P(G)
= rG − rG,∩2(G) > 0 ,

since RO(G)
N2(G)

P(G)
= RO(G)

{∩2(G)}
P(G)

, where rG,∩2(G) is the cardinality of the set {(f (a))± |
(a)± ∈ NPP(G)}. Therefore the assertion follows from Theorem 1.4. �

2. Induced modules and the Nil-P-condition. If G satisfies the Nil-P-condition,
then G and Gnil lie in MR by definition. A perfect group G satisfies the Nil-P-condition if
and only if G ∈MR.

THEOREM 2.1. If there are a subgroup K of G and a surjective homomorphism
f : K → H such that f (K ∩ Gnil) = H , KGnil = G and H ∈ MR, then G satisfies
the Nil-P-condition.

PROOF. Let (W1,W2) be a P(H)-matched pair of real H -modules of type 1{H }. Put
U = IndG

K f ∗(W1) and V = IndG
K f ∗(W2). We show that they are required real G-modules.
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Clearly U and V are P(G)-matched and dim UG = dim(f ∗(W1))
K = dim WH

1 = 1. Fur-

thermore we have dim UGnil = 1 and dim V Gnil = 0, since

dim(IndG
K f ∗(W))G

nil =
∑

GnilgK∈Gnil\G/K

dim(f ∗(W))K∩g−1Gnilg

= dim(f ∗(W))K∩Gnil

= dim WH

for a real H -module W . Therefore G satisfies the Nil-P-condition. �

PROPOSITION 2.2. Let f : G → K be a surjective homomorphism. Let U and V be
{Knil}-free real K-modules. If R ⊕ U and V are P(K)-matched, then f ∗U and f ∗V are
{Gnil}-free real G-modules such that R⊕ f ∗U and f ∗V are P(G)-matched. In particular, if
K satisfies the Nil-P-condition then G satisfies the Nil-P-condition.

PROOF. The assertion follows from Theorem 2.1 because f (Gnil) = Knil. �

COROLLARY 2.3. Let G and K be finite groups. Let U and V be {Gnil}-free real G-
modules. If [R⊕U ]− [V ] ∈ RO(G)P(G), then (f ∗(R⊕U), f ∗(V )) is a P(G×K)-matched
pair of type 1Gnil , where f : G×K → G is a canonical surjective homomorphism.

PROPOSITION 2.4. Let G be a finite group satisfying the Nil-P-condition and K a
subgroup with K ≥ Gnil. If Gnil is a perfect group then K satisfies the Nil-P-condition.

PROOF. Let U and V be real G-modules such that UGnil = V Gnil = 0 and [R⊕ U ] −
[V ] ∈ RO(G)P(G). Since Gnil = Knil, real K-modules ResG

K U and ResG
K V satisfy the

required condition for the Nil-P-condition. �

3. Groups satisfying the Nil-P-condition. In this section we show a family of non-
solvable groups satisfying the Nil-P-condition. Note that if G satisfies the Nil-P-condition
then Gnil ∈MR and recall that G ∈MR if and only if G has a subquotient group isomorphic
to a dihedral group D2pq of order 2pq , where p and q are distinct primes [31, Lemma 3.1
(b)].

PROPOSITION 3.1. If K �∈MR then K × P /∈MR for a group P of odd order.

PROOF. Suppose that K×P ∈MR and then there are a subgroup H of K×P , distinct
primes p, q , and a surjective homomorphism f : H → D2pq . Let D2pq = 〈a, b | a2 = bpq =
(ab)2 = e〉. Take a 2-element x of f−1(a). Then x ∈ K since |P | is odd. For y ∈ f−1(〈b〉),
we see that f (x−1yx) = f (y)−1. In particular if the order of f (y) is an odd integer greater
than 1, then x−1yx �= y. Since x commutes any element of P , P ∩H is a subgroup of Ker f .
Hence, there is a surjective homomorphism HP/P ∼= H/(P ∩ H) → H/ Ker f ∼= D2pq .
Since K ∼= KP/P , K has a subquotient group isomorphic to D2pq . �

If P is of even order and K has a subquotient group isomorphic to a dihedral group D2p

for an odd prime p, then K × P ∈MR, since D4p
∼= D2p × C2.
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We consider perfect groups. For a nontrivial perfect group K , it holds that PSmc(K) =
RO(K)

{K}
P(K)

[20], however it is unknown whether PSmc(G) = RO(G)
N2(G)

P(G)
even for G =

K × C6 × C6.

PROPOSITION 3.2. K × C2 ∈MR for any K ∈ G.

PROOF. Let K ∈ G. For conjugacy classes c1, c2, c3 in K and z ∈ c3, the class algebra
constant of c1, c2, c3 is the number of pairs (x, y) with x ∈ c1, y ∈ c2 and xy = z. We take
c1, c2 and c3 as conjugacy classes of elements of order 2, r , 2, respectively, where r is an
integer. If the class algebra constant of c1, c2, c3 is positive, then K has a dihedral subgroup
of order 2r . Class algebra constants are computable by the character table. By using [8], we
see that if K is a Suzuki group then K has a dihedral subgroup of order 10 and otherwise K

has a dihedral subgroup of order 6. Therefore K × C2 has a dihedral subgroup of order 20 or
12. �

THEOREM 3.3. A nonabelian simple group G satisfies the Nil-P-condition if and only
if G /∈ G.

PROOF. For a perfect group G, G satisfies the Nil-P-condition if and only if G ∈MR.
It suffices to show that G contains D2pq for some distinct primes p, q . Every nonabelian
simple group is alternating, or in one of 16 families of groups of Lie type, or one of 26
sporadic groups. We check the assertion for each of these families.

Since the subgroup 〈(1, 2)(5, 6), (1, 2)(3, 4)(5, 6, 7)〉 is a dihedral group D12 of order
12, the alternating groups An for n ≥ 7 lies in MR.

Let G be a nonabelian simple group of Lie type. We use the notation as (twisted) Cheval-
ley groups (see [8, xiv–xvi]). First, we consider the case when G = An(q) ∼= PSLn+1(q).
The maximal dihedral subgroups of A1(q) are D2(q±1)/d , where d = gcd(n, q − 1) (cf. [16,
Theorem 6.5.1]). Then A1(q) �∈ MR implies q = 2, 3, 4, 5, 7, 9, 17. We directly see that
A2(q) for odd q and A3(2) contain D12. Note that A3(2a), a ≥ 2 contains a subgroup A3(2).
Therefore G ∈MR if G /∈ G.

Next we consider projective special unitary groups G = 2An(q, q2) = 2An(q) for n ≥ 2.
Since G contains 2A1(q) ∼= A1(q), G ∈MR if q �= 2, 3, 4, 5, 7, 8, 9, 17. For q = 5, 7, 17,
2A2(q) contains D12 and 2A2(9) contains D20 by using the character table [42, Table 2].
Since 2A3(2) contains D12, 2A3(q) for q = 2, 4, 8 lies in MR. Therefore if G /∈ G then
G ∈MR.

Now we consider orthogonal groups Dm(q) and 2Dm(q) for m ≥ 4, Bn(q) for n ≥ 2,
and projective symplectic groups Ck(q) for k ≥ 3. D3(q) ∼= A3(q) implies that Dm(q) ∈MR

and 2D3(q) ∼= 2A3(q) implies that 2Dm(q) ∈MR. Since B2(q) contains 2D2(q) ∼= A1(q
2),

if q �= 2, 3 then 2B2(q) ∈ MR. B2(2) is isomorphic to S6 and B2(3) contains D12 and S6

by [15]. Thus B2(q) ∈ MR for q = 2, 3, and consequently B2(q) ∈ MR for any q . Since
C2(q) ∼= B2(q), Ck(q) ∈MR holds.
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Simple groups E6(q), E7(q), E8(q), F4(q), 2E6(q) contains D5(q), D6(q), D8(q), B4(q),
2D5(q), respectively, by [21, Table 1], which lie in MR. G2(4) contains A1(13) by [9, The-
orem (2.2)] and thus G2(2a) for a ≥ 2 lies in MR (cf. [9, Theorem (2.3)]). Since G2(q) for
odd q ≥ 4 contains A2(q) by [17, Theorem A], it lies in MR. Noting that G2(2) and G2(3)

are not simple, the simple group G2(q) lies in MR. The Ree group 2G2(32n+1) for n ≥ 1
contains A1(32n+1) ∈MR by [17, Theorem C]. Therefore 2G2(32n+1) ∈MR for any n ≥ 1.

The Steinberg group 3D4(q) contains A1(q) × A1(q
3) if q = 2a and SL2(q

3) if q is
odd [18]. Therefore 3D4(q) ∈MR for any q . Similarly, 2F4(22n+1) contains 2A2(22n+1) for
n ≥ 1 [22] and then lies in MR. The Tits group 2F4(2)′ contains A1(25) [55, 54, Theorem
1], and then 2F4(2)′ lies in MR. For the Suzuki group 2B2(22n+1) ∼= Sz(22n+1), there is an
element x of Sz(22n+1) of order 22n+1 − 1 such that the normalizer of x is a dihedral group
of order 2(22n+1 − 1) [53, Theorem 9]. More precisely, by the character table [4, Table 8],
Sz(22n+1) contains dihedral groups D2(22n+1±2n+1+1). Thus Sz(22n+1) ∈MR for n ≥ 3.

For sporadic groups G, by the character table of G [8], we compute the class algebra
constants and show that G contains D12. Hence G ∈MR.

Therefore we conclude that every nonabelian simple group /∈ G lies in MR.
Finally let G ∈ G. If G �= SU3(3), SU3(4), SL3(8), PSU3(8), every element is of prime

power order and thus G has no cyclic subquotient group of order pq for any distinct primes
p, q , which implies G /∈ MR. For G = SU3(3), in GAP [15], we get the group G by
‘SU(3, 3)’ and all subgroups of G up to conjugacy by using the function ‘ConjugacyClasses-
Subgroups’. Since G is simple, G has no quotient dihedral group. If a proper subgroup H of
G has order divisible by 2pq for distinct primes p, q , then pq = 15 and H has no quotient
dihedral group of order 2pq . Therefore there is no dihedral subquotient group D2pq of G

for any distinct primes p, q , which implies G /∈ MR. For G = SU3(4), SL3(8), PSU3(8),
similarly we get G /∈MR. �

Next we consider symmetric groups and (projective) general linear groups. For a perfect
group G, G ∈ MR implies G ∈ LR. If [G : Gnil] is a prime power, then G satisfies the
Nil-P-condition if and only if G ∈ LR.

PROPOSITION 3.4 ([48, Proposition 2.14]). For n ≥ 7, the symmetric group Sn satisfy
the Nil-P-condition.

PROOF. Let K be a subgroup of Sn generated by three elements (1, 2)(4, 5), (1, 2, 3)

(4, 5) and (6, 7). Then K is isomorphic to D12 × C2. A canonical surjective homomorphism
f : K → D12 satisfies the condition of Theorem 2.1. �

Note that A5 × C2 ∈ MR, and A5 × C2 does not satisfy the Nil-P-condition while
PSmc(A5×C2) = RO(A5×C2)

{A5}
P(A5×C2)

holds. We consider projective general linear groups
PGLn(q). For n = 2, 3, 4, since [PGLn(q) : PSLn(q)] = gcd(n, q−1), the index [PGLn(q) :
PGLn(q)nil] is 1, 2, 3, or 22.

LEMMA 3.5. If q �= 2, 3, 4, 5, 7, 8, 9, 17, then the projective general linear group
PGL2(q) satisfies the Nil-P-condition.
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PROOF. If q is a power of 2, since PGL2(q) ∼= PSL2(q) the assertion follows from
Theorem 3.3. Suppose that q is odd. Since q �= 3, 5, 7, 9, 17, there exist integers ε, a, b such
that ε = ±1, q + ε = ab, a is even, a ≥ 4, b ≥ 2, and gcd(a, b) = 1. Let xq−1, xq, xq+1 be

elements of PGL2(q) of order q−1, q, q+1 respectively and let Vq , V (i)
q+1 (1 ≤ i < (q−1)/2),

and V
(j)

q−1 (1 ≤ j < (q + 1)/2) be irreducible real PGL2(q)-modules determined by the
following character values:

χVq (e) = 1 , χVq (xq) = 0, χVq (x
h
q−1) = 1 , χVq (x

k
q+1) = −1 ,

χ
V

(i)
q+1

(e) = q + 1 , χ
V

(i)
q+1

(xq) = 1 , χ
V

(i)
q+1

(xh
q−1) = ηih(q+1) + η−ih(q+1) ,

χ
V

(i)
q+1

(xk
q+1) = 0 , χ

V
(j)

q−1
(e) = q − 1 , χ

V
(j)

q−1
(xq) = −1 , χ

V
(j)

q−1
(xh

q−1) = 0 ,

χ
V

(j)

q−1
(xk

q+1) = −ηjk(q−1) − η−jk(q−1) ,

for 1 ≤ h ≤ (q − 1)/2 and 1 ≤ k ≤ (q + 1)/2, where e denotes the identity element and η =
exp(2π

√−1/(q2−1)) (cf. [44, Table III]). For s = min(a, q+ε−a), t = min(b, q+ε−b),
u = min(s + t, q + ε − s − t), we see that 1 ≤ s, t, u ≤ (q + ε)/2 and that the pair

(R⊕(1+ε)/2 ⊕ V
(s)
q+ε ⊕ V

(t)
q+ε,R

⊕(1−ε)/2 ⊕ Vq ⊕ V
(u)
q+ε)

of PGL2(q)-modules is a P(PGL2(q))-matched pair of type 1{PGL2(q)nil}. �

PROPOSITION 3.6 (cf. [48, Lemma 4.1.1]). Let m > n and suppose that PGLn(q) ∈
MR. Then PGLm(q) satisfies the Nil-P-condition.

PROOF. Let Fq be a field consisting of q elements and let E be the (m−n− 1)× (m−
n− 1) identity matrix. Put

L =
⎧
⎨

⎩

⎛

⎝
A O O

O x det(A)−1 0
O O E

⎞

⎠

∣∣∣∣∣∣
A ∈ GLn(q), x ∈ Fq � {0}

⎫
⎬

⎭

and

L′ =
⎧
⎨

⎩

⎛

⎝
A O O

O det(A)−1 O

O O Em−n−1

⎞

⎠

∣∣∣∣∣∣
A ∈ GLn(q)

⎫
⎬

⎭ .

The group L is a subgroup of GLm(q) isomorphic to GLn(q)×Cq−1 and L′ is a subgroup of
SLm(q) isomorphic to GLn(q).

Let g : GLm(q)→ PGLm(q) be a natural projection. Put K = g(L) and H = PGLn(q).
The commutative diagram

GLm(q)
⊃←−−−− L

∼=−−−−→ GLn(q)× Cq−1
�⏐⏐∪

�⏐⏐∪
⏐⏐�

SLm(q)
⊃←−−−− L′

∼=−−−−→ GLn(q)
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induces the following commutative diagram:

PGLm(q)
⊃←−−−− K −−−−→ H

�⏐⏐∪
�⏐⏐∪

∥∥∥

PSLm(q)
⊃←−−−− g(L′)

∼=−−−−→ H .

Since SLm(q)L = GLm(q) implies PSLm(q)K = PGLm(q), the group PGLm(q) satisfies the
Nil-P-condition by Theorem 2.1. �

THEOREM 3.7. Let q be a prime power > 1. The following groups G satisfy the Nil-
P-condition.

(1) Projective general linear groups PGL2(q), q �= 2, 3, 4, 5, 7, 8, 9, 17.

(2) Projective general linear groups PGL3(q), q �= 2, 4, 8.

(3) Projective general linear groups PGLn(q), n ≥ 4.

(4) General linear groups GL2(q), q �= 2, 3, 4, 5, 7, 8, 9, 17.

(5) General linear groups GL3(q), q �= 2, 4, 8.

(6) General linear groups GLn(q), n ≥ 4.

PROOF. The conclusion for the case (1) is implied by Lemma 3.5. Let n = 3. Note
that LR is a subfamily of MR. If q �= 2, 3, 4, 5, 7, 8, 9, 17 then PGL3(q) ∈ LR. For
q = 3, 5, 9, 17, since PGL3(q) is isomorphic to a nonabelian simple group PSL3(q), we
have PGL3(q) ∈ LR by Theorem 3.3. We see that PGL3(7) contains D12 by computing class
algebra constants [44]. Next, let n = 4. If G satisfies the Nil-P-condition, then by defi-
nition G lie in MR. If q �= 2, 4, 8, then PGL3(q) ∈ MR and thus PGL4(q) satisfies the
Nil-P-condition by Proposition 3.6, and otherwise, PGL4(q) satisfies the Nil-P-condition by
Lemma 3.5, since PGL4(q) = PSL4(q). Therefore PGL4(q) satisfies the Nil-P-condition for
q > 1. Again since PGL4(q) ∈MR, PGLn(q) for n ≥ 5, q > 1 satisfies the Nil-P-condition
by Proposition 3.6. The statements for (4), (5), and (6) follow from ones for (1), (2), and (3),
respectively by Proposition 2.2. �

4. Proof of Theorems 0.2 and 0.3. In this section we prove Theorems 0.2 and 0.3.

PROOF OF THEOREM 0.2. If G has a quotient group which is a gap Oliver group sat-
isfying the Nil-P-condition, then G is also a gap Oliver group satisfying the Nil-P-condition
by Proposition 2.2 and [46, Theorem 1.2]. Thus Theorem 1.4 implies the assertion. �

PROOF OF THEOREM 0.3. Let H be an arbitrary group (1)–(6) listed in Theorem 0.3.
Since H is a nonsolvable group, it is an Oliver group. The nontrivial perfect groups [19, 30]
and the symmetric groups Sn for n ≥ 6 [11, 30], the projective general linear groups PGLn(q)

[47, Corollary 3.5] are gap groups. Thus H is a gap Oliver group. Furthermore, H satisfies
the Nil-P-condition by Theorems 3.3, 3.7 and Proposition 3.4.

Since G has a gap Oliver quotient group H , G is also a gap Oliver group by [46, Theorem
1.2], and satisfies the Nil-P-condition by Proposition 2.2. Therefore, by Theorem 1.4, we have
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the equality

PSmc(G) = RO(G){∩2(G)} ∩ RO(G)P(G) .

�
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