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Abstract. In this paper we study matrix valued orthogonal polynomials of one vari-
able associated with a compact connected Gelfand pair (G,K) of rank one, as a generalization
of earlier work by Koornwinder [30] and subsequently by Koelink, van Pruijssen and Roman
[28], [29] for the pair (SU(2)×SU(2), SU(2)), and by Grünbaum, Pacharoni and Tirao [13] for
the pair (SU(3), U(2)). Our method is based on representation theory using an explicit deter-
mination of the relevant branching rules. Our matrix valued orthogonal polynomials have the
Sturm–Liouville property of being eigenfunctions of a second order matrix valued linear dif-
ferential operator coming from the Casimir operator, and in fact are eigenfunctions of a com-
mutative algebra of matrix valued linear differential operators coming from the K-invariant
elements in the universal enveloping algebra of the Lie algebra of G.

1. Introduction. The emphasis in this paper lies on the explicit description of spectra
of multiplicity free induced representations of compact spherical pairs of rank one. Certain
properties of these spectra allow us to define a matrix valued version of the Jacobi polynomials
in one variable (with geometric parameters). This is precisely our motivation: to provide a
general framework in which we link the theory of matrix valued orthogonal polynomials with
a Sturm Liouville property to the multiplicity free induced representations of Lie groups.

Multiplicity freeness often implies nice properties because it gives a unique decompo-
sition into irreducible representations and the multiplicity freeness may be reflected in the
commutativity of certain algebras. A part of the machinery to study multiplicity free rep-
resentations is the theory of visible actions in the sense of Kobayashi and the propagation
properties of multiplicity freeness, see e.g. [26, 27, 40]. However, in this paper we use other
techniques. The explicit determination of spectra of induced representations is in general a
difficult problem. In special cases, such as the Cartan-Helgason theorem, nice descriptions
are obtained. The determination of the multiplicity free spectra may be thought of as a gener-
alization of this theorem.

We restrict to spherical pairs of rank one that admit multiplicity free induced representa-
tions. Meanwhile the spherical pairs that admit multiplicity free induction have been classified
[20, 39]. We start with a discussion on matrix valued orthogonal polynomials.

For N = 1, 2, 3, . . . a fixed positive integer let M denote the associative algebra of
square matrices of size N × N with complex entries. Denote by M[x] the associative algebra
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of matrix valued polynomials. A matrix valued weight function W on some open interval
(a, b), with −∞ ≤ a < b ≤ ∞, assigns to each x ∈ (a, b) a selfadjoint matrix W(x) ∈ M

(so W(x)† = W(x)), which is positive definite (denoted W(x) > 0) almost everywhere on
(a, b), such that the matrix valued moments∫ b

a

xnW(x)dx

are finite (and selfadjoint) for all n ∈ N. Such a weight function defines a sesquilinear matrix
valued form

〈P,Q〉 =
∫ b

a

P †(x)W(x)Q(x)dx

on the polynomial algebra M[x]. Sesquilinear in the convention of this paper amounts to
antilinear in the first and linear in the second argument. The additional properties

〈PA,Q〉 = A†〈P,Q〉 , 〈P,QA〉 = 〈P,Q〉A , 〈P,Q〉† = 〈Q,P 〉
for all A ∈ M and P,Q ∈ M[x] are trivially checked, while

〈P,P 〉 ≥ 0 and 〈P,P 〉 = 0 ⇔ P = 0

holds for all P ∈ M[x], since {A ∈ M; A† = A,A ≥ 0} is a convex cone, and for A in this
cone A = 0 ⇔ trA = 0. Observe that 〈P,P 〉 > 0 as soon as det P(x) 	= 0 at some point
x ∈ (a, b).

We can apply the Gram–Schmidt orthogonalization process to the (right module for M)
basis {xn; n ∈ N} of M[x]. By induction on n we can define monic matrix valued polynomials
Mn(x) of degree n by

Mn(x) = xn +
n−1∑
m=0

Mm(x)Cn,m , 〈Mm(x), xn〉 + 〈Mm(x),Mm(x)〉Cn,m = 0

for all m < n. Indeed, the matrix Cn,m can be solved, because 〈Mm,Mm〉 > 0 and hence is
invertible. Since 〈Mm,Mn〉 = 0 for m 	= n by construction any matrix valued polynomial
P(x) has a unique expansion

P(x) =
∑
n

Mn(x)Cn , 〈Mn,P 〉 = 〈Mn,Mn〉Cn

in terms of the basis {Mn; n ∈ N} of the monic orthogonal matrix valued polynomials. The
theory of matrix valued orthogonal polynomials was initiated by Krein [33], [34], and further
developped by Geronimo [12], Durán [9], Grünbaum and Tirao [15] and others.

In the scalar case N = 1 with a non negative weight function w(x) on the interval
(a, b) the system of monic orthogonal polynomials pn(x) has been the subject of an extensive
study in mathematical analysis over the past two centuries [41]. The classical orthogonal
polynomials with weight functions

w(x) = e−x2/2 , w(x) = xαe−x , w(x) = (1 − x)α(1 + x)β
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on the intervals (−∞,∞), (0,∞), (−1, 1) for α, β > −1 give rise to the Hermite, Laguerre
and Jacobi polynomials respectively. These three classes of orthogonal polynomials pn(x)

are also eigenfunctions with eigenvalue λn of a second order differential operator. Orthogonal
polynomials with this additional Sturm–Liouville property were characterized by Bochner [2],
who found besides the classical examples certain polynomials related to the Bessel function
J

n+ 1
2
(x).

In the matrix setting N ≥ 1 the question studied by Bochner was taken up by Durán [9]
and further studied by Durán and Grünbaum [10], and Grünbaum and Tirao [15], but a full
list of matrix valued weight functions W(x) with the Sturm–Liouville property seems to be
out of reach until now. Examples of matrix valued orthogonal polynomials with the Sturm–
Liouville property have been found using harmonic analysis for compact Gelfand pairs, no-
tably for the example (SU(2) × SU(2), SU(2)) (diagonally embedded) by Koornwinder [30]
and by Koelink, van Pruijssen and Román [28], [29], and for the example (SU(3), U(2)) by
Grünbaum, Pacheroni and Tirao [13], [14].

The main goal of this paper is a uniform construction of a class of matrix valued orthog-
onal polynomials with the Sturm–Liouville property, obtained using harmonic analysis for
compact Lie groups. More specifically, let G be a compact connected Lie group, K a closed
connected subgroup and F a non empty face of the cone P+

K of dominant weights of K . We
say that (G,K,F) is a multiplicity free system if for each irreducible representation πK

μ of

K with highest weight μ ∈ F the induced representation IndG
K(πK

μ ) decomposes into a direct

sum of irreducible representations πG
λ of G with highest weight λ, with multiplicities

m
G,K
λ (μ) = [πG

λ : πK
μ ] ≤ 1

for all λ ∈ P+
G . A necessary condition for (G,K,F) to be a multiplicity free system is that

the triple (G,K, {0}) is multiplicity free, which is equivalent to (G,K) being a Gelfand pair.
Henceforth, in this paper we shall assume that (G,K) is a Gelfand pair of rank one. The

classification of such pairs is known from the work of Krämer [32] and Brion [4]. The space
G/K is either a sphere Sn or a projective space Pn(F) with n ≥ 2 for F = R,C,H and n = 2
for F = O. If G is the maximal connected group of isometries, then (G,K) is a symmetric
pair of rank one. In addition there are two exceptional spheres S7 = Spin(7)/G2 and S6 =
G2/SU(3), which are acted upon in a distance transitive way, and so the corresponding pairs
(G,K) are still Gelfand pairs of rank one. The homogeneous spaces G/K are precisely the
distance regular spaces as found by Wang [46]. For (G,K) a rank one Gelfand pair the
classification of multiplicity free triples (G,K,F) is given by the following theorem.

THEOREM 1.1. The full list of multiplicity free rank one triples (G,K,F) is given
by the Table 1. In the third column we have given the highest weight λsph ∈ P+

G of the
fundamental zonal spherical representation in the notation for root systems of Knapp [25],
except for case (G,K) = (SO(4), SO(3)), where G is not simple and λsph = �1 + �2 ∈
P+

G = N�1 + N�2. Observe that λsph is a primitive vector in P+
G .
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G K λsph faces F

SU(n + 1) S(U(n) × U(1)) �1 + �n any
SO(n) SO(n − 1) �1 any
USp(2n) USp(2n − 2) × USp(2) �2 rk F ≤ 2
F4 Spin(9) �1 rk F ≤ 1 or

F = Nω1 + Nω2

Spin(7) G2 �3 rk F ≤ 1
G2 SU(3) �1 rk F ≤ 1

TABLE 1. Multiplicity free systems.

The first two cases are well known through work of Weyl and Murnaghan [25]. In this
paper we prove this theorem only in one direction, namely that all cases in the table give
multiplicity free systems by working out the explicit branching rules in §§3, 4, 5 and 6. To
exclude the case of the symplectic group with rk(F ) ≥ 3 we refer to [37, Lem. 2.2.15], based
on a result of Brion [4, Prop. 3.1] or to [20, Thm. 8.3].

The group G for the two-point-homogeneous space G/K admits a Cartan decomposition
G = KT K with T ⊂ G a one dimensional torus with Lie algebra t ⊂ k⊥. Denote M =
ZK(T ), the centralizer of T in K . A triple (G,K,F) is a multiplicity free system if and only
if the restriction of πK

μ to M decomposes multiplicity free for all μ ∈ F , which is proved in
[37, Prop. 2.2.9] using the theory of spherical varieties. In the symmetric space examples this
result goes back to Kostant and Camporesi [31, 5].

For each of these triples (G,K,F) we determine for all μ ∈ F the induced spectrum

P+
G (μ) = {λ ∈ P+

G ; m
G,K
λ (μ) = 1}

explicitly through a case by case analysis. We claim that if λ ∈ P+
G (μ) then also λ + λsph ∈

P+
G (μ). This can be derived from the Borel–Weil theorem. Indeed, if V G

λ = H 0(Gc/Bc, Lλ)

denotes the Borel–Weil realization of the finite dimensional representation of G with highest
weight λ ∈ P+

G then the intertwining projection

V G
λ ⊗ V G

λsph
→ V G

λ+λsph

onto the Cartan component of the tensor product is just realized by the pointwise multiplica-
tion of holomorphic sections.

A spherical function of type μ ∈ F is a smooth map Φ : G → End(V K
μ ) with the

transformation rule

Φ(kgk′) = πK
μ (k)Φ(g)πK

μ (k′)(1)

for all g ∈ G and k, k′ ∈ K . The vector space H(G,K,μ) of (say finite for G on the left and
the right) spherical functions of type μ has a natural scalar valued Hermitian inner product

〈Φ,Φ ′〉 =
∫

G

tr(Φ(g)†Φ ′(g))dg
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with the dagger coming from the (unique up to positive scalar) unitary structure on V K
μ , and

dg the normalized Haar measure on G. Because (G,K,F) is a multiplicity free system the
elementary spherical functions Φ

μ
λ indexed by λ ∈ P+

G (μ) form a basis for H(G,K,μ),
which is orthogonal,

〈Φμ
λ ,Φ

μ

λ′ 〉 = (dim μ)2

dim λ
δλ,λ′ ,

as a consequence of the Schur orthogonality relations.
With φ = φsph the fundamental zonal spherical function of (G,K), the product φΦ

μ
λ is

again a spherical function of type μ, and therefore has an expansion

φΦ
μ
λ =

∑
λ′

cλ,λ′Φμ

λ′(2)

with λ′ ∈ P+
G (μ). For λ, λ′ ∈ P+

G (μ) the coefficient cλ,λ′ = 0 unless

λ − λsph � λ′ � λ + λsph ,(3)

where � is the usual partial ordering on P+
G , and the leading coefficient cλ,λ+λsph is non-zero.

This allows one to define a degree d : P+
G (μ) → N by

d(λ + λsph) = d(λ) + 1 , min{d(P+
G (μ) ∩ {λ + Zλsph})} = 0

for all λ ∈ P+
G (μ).

The bottom B(μ) of the induced spectrum P+
G (μ) is defined as

B(μ) = {λ ∈ P+
G (μ); d(λ) = 0}

giving P+
G (μ) = B(μ) + Nλsph the structure of a well. We have determined explicitly the

structure of the bottom B(μ) with μ ∈ F for all multiplicity free triples (G,K,F) in the above
table. Every element λ ∈ P+

G (μ) is of the form λ = bμ(λ) + dλsph for unique bμ(λ) ∈ B(μ)

and d = d(λ) ∈ N. The first two lines of this table follow from a straightforward application
of branching rules going back to Weyl for the unitary group and Murnaghan for the orthogonal
groups [25]. The case of the symplectic group follows using the branching rule of Lepowsky
[25, 35], which under the restriction rk F ≤ 2 we are able to make completely explicit in
§5. The remaining last two lines with the exceptional group of type G2 appearing turn out
to be manageable as well and are treated in §§3, 4. The appropriate branching rules for the
symmetric case (F4, Spin(9)) are calculated in §6, using computer algebra.

Behind all these explicit calculations is a general multiplicity formula for branching rules
going back to Kostant [35, 43] and rediscovered by Heckman [21]. On the basis of our explicit
knowledge of the bottom B(μ) for μ ∈ F we are able to verify case by case the following
degree inequality in §§3, 4, 5 and 6.

THEOREM 1.2. The degree d : P+
G (μ) → N satisfies the inequality

d(λ) − 1 ≤ d(λ′) ≤ d(λ) + 1

for all λ′ ∈ P+
G (μ) with cλ,λ′ 	= 0.
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As stated before, in all cases of our table the restriction of πK
μ for μ ∈ F to the centralizer

M of a Cartan circle T in G is multiplicity free. Moreover, the irreducible constituents are
indexed in a natural way by the bottom B(μ), as we shall explain in §2. The restriction of
the elementary spherical function Φ

μ
λ to the Cartan circle T takes values in EndM(V K

μ ), and
so is block diagonal by Schur’s Lemma: EndM(V K

μ ) ∼= CNμ with Nμ the cardinality of the
bottom B(μ). Operators on the left become vectors on the right. In view of this isomorphism,
Φ

μ
λ (t) for t ∈ T is identified with the function Ψ

μ
λ (t) taking values in CNμ . We define for

n ∈ N the matrix valued spherical functions Ψ
μ
n (t), whose columns are the vector valued

functions Ψ
μ
λ (t) with λ ∈ P+

G (μ) of degree d(λ) = n. Observe that both rows and columns
of the matrix Ψ

μ
n (t) are indexed by the bottom B(μ). Finally we can define our matrix valued

polynomials P
μ
n (x) ∈ M[x] of size Nμ × Nμ as functions of a real variable x by

Ψ μ
n (t) = Ψ

μ
0 (t)Pμ

n (x)

with t �→ x a new variable, defined by x = cφ + (1 − c) for some c > 0 (with φ the
fundamental zonal spherical function as before) in order to make the orthogonality interval
x(T ) equal to [−1, 1].

The crucial fact that P
μ
n (x) is a matrix valued polynomial in x of degree n with invertible

leading coefficient D
μ
n (inductively given by D

μ
n = D

μ
n+1A

μ
n ) follows from a three term

recurrence relation

xPμ
n (x) = P

μ
n+1(x)Aμ

n + Pμ
n (x)Bμ

n + P
μ
n−1(x)Cμ

n

which is obtained using the expansion (2). Theorem 1.2 together with the ordering relation
(3) and cλ,λ+λsph 	= 0 imply that the matrices A

μ
n are triangular with non-zero diagonal, and

hence are invertible. The matrix valued weight function is given by

Wμ(x) = (Ψ
μ
0 (t))†DμΨ

μ
0 (t)w(x)

with w(x) = (1 − x)α(1 + x)β the usual scalar weight function for the Cartan decomposition
G = KT K and suitable α, β ∈ N/2 given in terms of root multiplicities. The matrix Dμ is
diagonal with entries the dimensions of the irreducible constituents of the restriction of πK

μ to
M , which as a set was indexed by the bottom B(μ) as should. The diagonal matrix Dμ arises
from the identification EndM(V K

μ ) ∼= CNμ with the trace form of the left operator side and
the standard Hermitian form on the right vector side.

The matrix valued polynomials P
μ
n (x) are orthogonal with respect to the weight function

Wμ(x) and have diagonal square norms, since

〈Pμ
n , P

μ

n′ 〉ν,ν ′ = 〈Φμ
λ ,Φ

μ

λ′ 〉
with λ = ν+nλsph, λ

′ = ν′+n′λsph ∈ P+
G (μ) = B(μ)+Nλsph. Finally, the monic orthogonal

polynomials M
μ
n (x) = xn + · · · and the orthogonal polynomials P

μ
n (x) = M

μ
n (x)D

μ
n are

related by eliminating the invertible leading coefficient D
μ
n .

By Lie algebraic methods the polynomials P
μ
n (x) are shown to be eigenfunctions of a

commutative algebra Dμ ⊂ M[x, ∂x] of matrix valued differential operators

DPμ
n = Pμ

n Λμ
n (D)
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with Λ
μ
n (D) a diagonal eigenvalue matrix for all D ∈ Dμ. The desired second order operator

for the orthogonal polynomials with the Sturm–Liouville property comes from the quadratic
Casimir operator. The dimension of the affine variety underlying the commutative algebra Dμ

is equal to the affine rank of the well P+
G (μ).

Our explicit results on branching rules provide examples of the convexity theorem for
Hamiltonian actions of connected compact Lie groups on connected symplectic manifolds
with a proper moment map [17], [18], [19], [21], [23]. The multiplicities occur at the integral
points in the moment polytopes in accordance with the [Q,R] = 0 principle of geometric
quantization [16].

Acknowledgement. We thank Noud Aldenhoven for his help in programming certain branching
rules, which gave us a good idea about the multiplicity freeness in the symplectic case. Furthermore,
we thank Erik Koelink and Pablo Román for fruitful discussions concerning matrix valued orthogonal
polynomials.

2. Multiplicity free systems. Connected compact irreducible Gelfand pairs (G,K)

have been classified by Krämer for G a simple Lie group and by Brion for G a semisimple
Lie group [32], [4]. We shall assume that G and K are connected, and that the connected
space G/K is also simply connected. The pair (G,K) is called rank one if the Hecke algebra
H(G,K) of zonal spherical (so bi-G-finite and bi-K-invariant) functions is a polynomial
algebra C[φ] with one generator, the fundamental elementary zonal spherical function φ =
φsph. We shall assume throughout this paper that (G,K) is a rank one Gelfand pair, with G/K

simply connected. The corresponding spaces G/K are just the distance regular spaces found
by Wang [46].

Indeed, for K < G compact connected Lie groups the homogeneous space G/K equip-
ped with an invariant Riemannian metric is distance transitive for the action of G on G/K

if and only if the action of K on the tangent space TeKG/K is transitive on the unit sphere.
This is equivalent with the algebra P(TeKG/K)K of polynomial invariants being a polyno-
mial algebra in a single generator (the quadratic norm), which in turn is equivalent with the
Hecke algebra H(G,K) being a polynomial algebra C[φ] in the single generator φ = φsph. If
H(G,K) = C[φ] has a single generator then it is commutative as convolution algebra, which
is equivalent with (G,K) being a Gelfand pair.

Let k < g be the Lie algebras of K < G. By definition the infinitesimal Cartan decom-
position g = k⊕ p is the orthogonal decomposition with respect to minus the Killing form on
g. Since (G,K) has rank one the adjoint homomorphism K → SO(p) is a surjection. Fix a
(maximal Abelian) one dimensional subspace t in p. Any two such are clearly conjugated by
K , and let T < G be the corresponding Cartan circle group. Let M < N be the centralizer
and normalizer of T in K with Lie algebra m. The Weyl group W = N/M has order 2 and
acts on T by t �→ t±1.

The subgroup MT has maximal rank in G, and choosing a maximal torus in MT for G

defines a natural restriction map from the weight lattice PG of G to the weight lattice of the
circle T . The next result for symmetric pairs is just the Cartan–Helgason theorem.
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PROPOSITION 2.1. Suppose G is simply connected and K is connected, so that G/K

is simply connected. Then T ∩K has order 2, except for the Gelfand pair (G,K) = (Spin(7),

G2) where it has order 3.

PROOF. The crucial remark is that the highest weight λsph ∈ P+
G of the fundamental

zonal spherical representation of (G,K) after restriction to T becomes a generator for the
weight lattice of T/(T ∩ K). For a symmetric pair (G,K) with Chevalley-Weyl involution
θ : G → G we have K = Gθ and θ(t) = t−1 for t ∈ T . Hence T ∩ K has order 2 for (G,K)

a symmetric pair. In the remaining two cases we use the notation of Bourbaki [3].
For (G,K) = (Spin(7), G2) the weight lattice of G is naturally identified with Z3 with

basis εi , and likewise the dual coroot lattice becomes Z3 with basis ei . The character lattice
of T/(T ∩ K) has generator �3 = (ε1 + ε2 + ε3)/2, which takes the value 3 on the generator
2(e1 + e2 + e3) of the coroot lattice of T .

For (G,K) = (G2, SU(3)) the weight lattice of G is naturally identified with {ξ ∈
Z3; ξ1+ξ2+ξ3 = 0}, and likewise the dual coroot lattice becomes {x ∈ Z3; x1+x2+x3 = 0}.
The character lattice of T/(T ∩ K) has generator �1 = 2α1 + α2 = −ε2 + ε3, which takes
the value 2 on the generator −e2 + e3 of the coroot lattice of T . �

In the next definition we explain the well shape of the induced spectrum P+
G (μ) =

B(μ) + Nλsph with bottom B(μ). This idea goes back to Kostant and Camporesi [31], [5].

DEFINITION 2.2. For μ ∈ P+
K the highest weight of an irreducible representation

πK
μ of K the induced representation IndG

K(πK
μ ) decomposes as a direct sum of irreducible

representations πG
λ of G with branching multiplicities

m
G,K
λ (μ) = [πG

λ : πK
μ ]

for all λ ∈ P+
G by Frobenius reciprocity. We denote

P+
G (μ) = {λ ∈ P+

G ; m
G,K
λ (μ) ≥ 1}

for the induced spectrum. In the introduction we have explained using the Borel–Weil theorem
that λ ∈ P+

G (μ) implies λ + λsph ∈ P+
G (μ). In turn we see that P+

G (μ) = B(μ) + Nλsph has
the shape of a well with

B(μ) = {λ ∈ P+
G (μ); λ − λsph /∈ P+

G (μ)}
the bottom of the induced spectrum P+

G (μ).

To arrive at a good theory of matrix valued orthogonal polynomials we have to restrict
ourselves to multiplicity free triples (G,K,μ) and (G,K,F) for μ ∈ P+

K a suitable dominant
weight for K and F a suitable facet of the dominant cone P+

K for K .

DEFINITION 2.3. The triple (G,K,μ) with μ ∈ P+
K a highest weight for K is called

multiplicity free if the branching multiplicity mλ(μ) ≤ 1 for all λ ∈ P+
G , so if the induced

representation IndG
K(πK

μ ) decomposes multiplicity free as a representation of G. Likewise,
(G,K,F) is called a multiplicity free system with F a facet of the dominant integral cone
P+

K if (G,K,μ) is multiplicity free for all μ ∈ F .
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Camporesi calculated the bottoms B(μ) of the well P+
G (μ) explicitly in the first two ex-

amples of the table in Theorem 1.1 using the classical branching laws of Weyl for the unitary
group and Murnaghan for the orthogonal groups [6], [25]. In the fourth example of the sym-
plectic group he obtained partial results, because of the complexity of the branching law of
Lepowsky (from G to K) [35] and of Baldoni Silva (from K to M) [1] in that case. However,
in this symplectic case the restriction on a multiplicity free system (G,K,F) is just strong
enough to find a completely explicit description of the bottom.

PROPOSITION 2.4. Let F be a facet of the dominant integral cone P+
K . Then the

branching multiplicity m
G,K
λ (μ) ≤ 1 for all μ ∈ F and all dominant weights λ ∈ P+

G if
and only if the branching multiplicity mK,M

μ (ν) ≤ 1 for all μ ∈ F and all dominant weights

ν ∈ P+
M .

PROOF. Let us complexify all our compact Lie groups G,K,M, T to complex reduc-
tive algebraic groups Gc,Kc,Mc, Tc. The statement of the proposition translates into the
following geometric statement. For Pc the parabolic subgroup of Kc whose Levi component
is the stabilizer of F , the variety Gc/Pc is spherical for Kc if and only if Kc/Pc is spheri-
cal for Mc. Here we say that a variety with an action of a reductive group is spherical if the
Borel subgroup has an open orbit. Observe that (also for the non-symmetric pairs) we have
an infinitesimal decomposition

gc = kc ⊕ tc ⊕ nc

with nc the direct sum of those root spaces gα
c for which the restriction of α to tc is a pos-

itive multiple of the restriction of λsph to tc. Taking the Borel subgroup of Gc of the form
BMcTcNc with BMc a Borel subgroup for Mc the equivalence of Gc/Pc having an open orbit
for BMcTcNc is equivalent to Kc/Pc having an open orbit for BMc follows, since the orbit of
TcNc through Kc is open in Gc/Kc. �

Let us take the Cartan subalgebra of gc a direct sum of tc and a Cartan subalgebra of
mc, and extend a set of positive roots for mc to a set of positive roots for gc. Let V G

λ be an
irreducible representation of G with highest weight λ ∈ P+

G . Because McTcNc is a standard
parabolic subgroup of Gc the vector space

(V G
λ )nc = {v ∈ V G

λ ; Xv = 0 ∀X ∈ nc}
is an irreducible representation of Mc with highest weight ν ∈ P+

M . Clearly ν = p(λ) with
p : P+

G → P+
M the natural projection along the spherical direction Nλsph. The Iwasawa

decomposition gc = kc ⊕ tc ⊕ nc of the above proof gives the Poincaré–Birkhoff-Witt factor-
ization U(gc) = U(kc)U(tc)U(nc) and we conclude that U(kc)(V

G
λ )nc = V G

λ .

PROPOSITION 2.5. Let (G,K,F) be a multiplicity free system and let μ ∈ F . Then
the natural projection p : P+

G → P+
M is a surjection from the induced spectrum P+

G (μ) for G

onto the restricted spectrum

P+
M(μ) = {ν ∈ P+

M ; mK,M
μ (ν) ≥ 1}
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for M , and therefore p : B(μ) → P+
M(μ) is a bijection. Note that mK,M

μ (ν) ≤ 1 for all

ν ∈ P+
M by the previous proposition.

PROOF. Let 〈·, ·〉 be a unitary structure on V G
λ for G. Suppose V is an irreducible

subrepresentation of K in the restriction of V G
λ to K . If u is a nonzero vector in (V G

λ )nc then
〈u, v〉 	= 0 for some v ∈ V . Indeed 〈u, v〉 = 0 for all v ∈ V contradicts U(kc)(V

G
λ )nc = V G

λ .
Hence the restriction of V to M contains a copy of V M

p(λ) by Schur’s Lemma. One of the

subspaces V is a copy of V K
μ , and so mμ(p(λ)) ≥ 1. This proves that the natural projection

p maps the induced spectrum P+
G (μ) of G inside the restricted spectrum P+

M(μ) of M .
It remains to show that

p : P+
G (μ) → P+

M(μ)

is onto for all μ ∈ F . This follows from Proposition 2.6. �

PROPOSITION 2.6. Let λ ∈ P+
G , μ ∈ P+

K and let p : P+
G → P+

M be the natural
projection. Then

• m
G,K
λ+kλsph

(μ) ≤ m
G,K
λ+sλsph

(μ) if k ≤ s and

• limn→∞ m
G,K
λ+nλsph

(μ) = mK,M
μ (p(λ)).

PROOF. Every irreducible K-representation that occurs in the K-module Vλ also occurs
in the K-module Vλ+λsph . Indeed, let vK ∈ Vλsph be a non-zero K-fixed vector and consider
the composition of Vλ → Vλ ⊗Vλsph : v �→ v ⊗ vK and the projection Vλ ⊗Vλsph → Vλ+λsph .
Both maps intertwine the K-action and the first statement follows.

For (G,K) a symmetric pair (even of arbitrary rank) the second statement is a result of
Kostant [31, Thm. 3.5] and Wallach [44, Cor. 8.5.15]. For spherical pairs (G,K) a similar
stability result is shown by Kitagawa [24, Thm. 2.1]. However, since we have control over the
branching rules of the remaining non-symmetric pairs, we present our own proof in Remarks
3.1 and 4.6. �

3. The pair (G,K) = (G2, SU(3)). In this section we take G of type G2 and K =
SU(3) the subgroup of type A2. Having the same rank the root systems RG of G and RK of
K can be drawn in one picture, and RK consists of the 6 long roots. The simple roots {α1, α2}
in R+

G and {β1, β2} in R+
K are indicated in Figure 1 and P+

G = N�1 + N�2 is contained in
P+

K = Nω1 + Nω2.
The branching rule from G to K is well known, see for example [21]. In the picture

below s1 ∈ WG is the orthogonal reflection in the mirror R�2. For λ ∈ P+
G the multiplicities

mλ(μ) for μ ∈ P+
K are supported in the gray region in the left picture. They have the familiar

pattern of the weight multiplicities for SU(3) as discussed in the various text books [22], [11].
They are one on the outer hexagon, and increase by one on each inner shell hexagon, untill the
hexagon becomes a triangle, and from that moment on they stabilize. Hence the restriction to
K of any irreducible representation of G with highest weight λ ∈ P+

G is multiplicity free on
the two rank one faces Nω1 and Nω2 of the dominant cone P+

K . In other words, the triples
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FIGURE 1. Roots for G2.

(G2, A2, Fi = Nωi) are multiplicity free for i = 1, 2, which proves the last line of the table
in Theorem 1.1.

The irreducible spherical representations of G containing the trivial representation of
K have highest weight in N�1, and λsph = �1 is the fundamental spherical weight. Given
μ = nω1 ∈ F1 (and likewise μ = nω2 ∈ F2) the corresponding induced spectrum of
G is multiplicity free by Frobenius reciprocity, and by inversion of the branching rule has
multiplicity one on the well shaped region

P+
G (μ) = B(μ) + N�1 , B(μ) = {k�1 + l�2; k + l = n}

with bottom B(μ). The bottom is given by a single linear relation.
If we take M the SU(2) group corresponding to the roots {±α2} and denote by p : P+

G →
P+

M = N( 1
2α2) the natural projection along the spherical direction �1, then p is a bijection

from the bottom B(μ) onto the image p(B(μ)), which is just the restricted spectrum P+
M(μ)

for M of the irreducible representation of K with highest weight μ.
There is warning about the choice of the various Cartan subalgebras. In order to compute

branching rules it is natural and convenient (as we did above) to choose the Cartan subalgebra
of K contained in the Cartan subalgebra of G. The other choice is that we start with a rank
one Gelfand pair (G,K), and choose the Cartan circle group T in G perpendicular to K . If
M is the centralizer of T in K , then MT is a subgroup in G of full rank. A maximal torus in
MT is then a maximal torus for G as well. But this maximal torus need not contain a maximal
torus for K , as is clear from the present example. It will only do so if the rank of K is equal
to the rank of M , which is equal to the rank of G minus 1, and a maximal torus of M is a
maximal torus of K as well.

REMARK 3.1. Concerning the proof of Proposition 2.6, let λ = n1�1 + n2�2 ∈ P+
G

with n1 relatively large, μ = m1ω1 +m2ω2 ∈ P+
K and ν = n2p(�2) ∈ P+

M . On the one hand,
we find

m
G,K
λ (μ) = min{m1 + 1,m2 + 1,m1 + m2 − n2 + 1, n2 + 1}
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FIGURE 2. Branching from G2 to SU(3) on the left and the μ-well on the right.

as in clear from the left side of Figure 2. Indeed m1 + 1 comes from the disctance of μ to the
face Nω2, and similarly m2 + 1 for the face Nω1. The expression m1 + m2 − n2 + 1 comes
from the middle linear constraint, while n2 + 1 comes from the middle truncation. The other
three constraints disappear as n1 gets large. On the other hand we get

mK,M
μ (ν) = min{n2 + 1, min{m1,m2} + 1,m1 + m2 − n2 + 1}

as easily checked from the familiar branching from SU(3) to SU(2). It follows that
m

G,K
λ (μ) = mK,M

μ (ν) for large n1.

4. The pair (G,K) = (Spin(7), G2). In this section we take G = Spin(7) with
complexified Lie algebra g of type B3. Let tG ∼= C3 be a Cartan subalgebra with positive
roots R+

G given by

ei − ej , ei + ej , ei

for 1 ≤ i < j ≤ 3, and basis of simple roots α1 = e1 − e2, α2 = e2 − e3, α3 = e3. The
fundamental weights �1 = e1,�2 = e1 + e2,�3 = (e1 + e2 + e3)/2 are a basis over N for
the cone P+

G of dominant weights.
As the Cartan subalgebra tK for K = G2 we shall take the orthogonal complement of

h = (−e1 + e2 + e3). The elements e1 + e3, e1 + e2, e2 − e3 are the long positive roots in R+
K ,

while

ε1 = (2e1 + e2 + e3)/3, ε2 = (e1 + 2e2 − e3)/3, ε3 = (e1 − e2 + 2e3)/3

are the short positive roots in R+
K . The natural projection q : R+

G → R+
K is a bijection onto

the long roots and two to one onto the short roots in R+
K . Note that εi = q(ei) for i = 1, 2, 3.

The simple roots in R+
K are {β1 = ε3, β2 = ε2 − ε3} with corresponding fundamental weights

{ω1 = ε1, ω2 = ε1 + ε2}. Observe that ω1 = q(�1) = q(�3) and ω2 = q(�2), and hence
q : P+

G → P+
K is a surjection. Note that the natural projection q : PG → PK is equivariant

for the action of the Weyl group WM
∼= S3 of the centralizer M = SU(3) in K of h. The
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FIGURE 3. Fundamental weights for Spin(7) and G2.

Weyl group WG is the semidirect product of C2 ×C2 ×C2 acting by sign changes on the three
coordinates and the permutation group S3.

As a set with multiplicities we have

A = q(R+
G) − R+

K = {ε1, ε2, ε3}
whose partition function pA enters in the formula for the branching from B3 to G2. Note that
pA(kε1 + lε2) = pA(kε1 + mε3) = k + 1 for k, l,m ∈ N and pA(μ) = 0 otherwise.

LEMMA 4.1. For λ ∈ P+
G and μ ∈ P+

K the multiplicity m
G,K
λ (μ) ∈ N with which

an irreducible representation of K with highest weight μ occurs in the restriction to K of an
irreducible representation of G with highest weight λ is given by

m
G,K
λ (μ) =

∑
w∈WG

det(w)pA(q(w(λ + ρG) − ρG) − μ)

and if we extend m
G,K
λ (μ) ∈ Z by this formula for all λ ∈ PG and μ ∈ PK then

m
G,K
w(λ+ρG)−ρG

(v(μ + ρK) − ρK) = det(w) det(v)m
G,K
λ (μ)

for all w ∈ WG and v ∈ WK . Here ρG and ρK are the Weyl vectors of R+
G and R+

K respec-
tively.

Lemma 4.1, valid for any pair K < G of connected compact Lie groups, was obtained in
[21] as a direct application of the Weyl character formula. The formula might be cumbersome
for practical computations of the multiplicities, because of the (possibly large) alternating
sum over a Weyl group WG and the piecewise polynomial behaviour of the partition function.
However in the present (fairly small) example one can proceed as follows.

If λ = k�1 + l�2 + m�3 = klm = (x, y, z) with

x = k + l + m/2 , y = l + m/2 , z = m/2 ⇔ k = x − y , l = y − z , m = 2z

then λ is dominant if k, l,m ≥ 0 or equivalently x ≥ y ≥ z ≥ 0. We tabulate the 8 elements
w1, . . . , w8 ∈ WG such that the projection q(wiλ) ∈ Nε1 +Nε2 is dominant for R+

M for all λ

which are dominant for R+
G. Clearly the projection of (x, y, z) is given by

q(x, y, z) = xε1 + yε2 + zε3 = (x + z)ε1 + (y − z)ε2
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i det(wi) wiλ q(wiλ) q(wiλ) q(wiρG − ρG)

1 + (x, y, z) (x + z)ε1 + (y − z)ε2 (k + l + m)ε1 + lε2 0
2 − (x, y,−z) (x − z)ε1 + (y + z)ε2 (k + l)ε1 + (l + m)ε2 −ε3

3 + (x, z,−y) (x − y)ε1 + (y + z)ε2 kε1 + (l + m)ε2 −ε1 − ε3

4 − (x,−z,−y) (x − y)ε1 + (y − z)ε2 kε1 + lε2 −ε1 − ε2 − ε3

5 − (y, x, z) (y + z)ε1 + (x − z)ε2 (l + m)ε1 + (k + l)ε2 −ε3

6 + (y, x,−z) (y − z)ε1 + (x + z)ε2 lε1 + (k + l + m)ε2 −2ε3

7 + (z, x, y) (y + z)ε1 + (x − y)ε2 (l + m)ε1 + kε2 −ε3 − ε2

8 − (−z, x, y) (y − z)ε1 + (x − y)ε2 lε1 + kε2 −ε3 − ε1 − ε2

TABLE 2. Projection of wλ in P+
M

.

FIGURE 4. Projection of WGλ onto P+
M .

and ρG = �1 + �2 + �3 = (2 1
2 , 1 1

2 , 1
2 ) is the Weyl vector for R+

G.
In the picture below the location of the points q(wiλ) ∈ P+

M , indicated by the number i,
with the sign of det(wi) attached, is drawn. Observe that q(w1λ) = (k + m)ω1 + lω2 ∈ P+

K

for all λ = klm ∈ P+
G .

Let us denote a = (k + l +m)ε1 and b = (k + l)ε1, and so these two points together with
the four points q(wiλ) for i = 1, 2, 3, 4 form the vertices of a hexagon with three pairs of
parallel sides. In the picture we have drawn all six vertices in P+

K , which happens if and only
if q(w3λ) = kε1 + (l +m)ε2 ∈ P+

K , or equivalently if k ≥ (l +m). But in general some of the
q(wiλ) ∈ P+

M for i = 2, 3, 4 might lie outside P+
K . Indeed q(w2λ) = (k + l)ε1 + (l + m)ε2

lies outside P+
K if k < m, and q(w4λ) = kε1 + lε2 lies outside P+

K if k < l.
For fixed λ ∈ P+

G the sum mλ(μ) of the following six partition functions as a function of
μ ∈ PK

4∑
1

det(w)pA(q(wi(λ + ρG) − ρG) − μ) − pA(a − ε2 − μ) + pA(b − ε1 − ε2 − μ)
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is just the familiar multiplicity function for the weight multiplicities of the root system A2. It
vanishes outside the hexagon with vertices a, b and q(wiλ) for i = 1, 2, 3, 4. On the outer
shell hexagon it is equal to 1, and it steadily increases by 1 for each inner shell hexagon, untill
the hexagon becomes a triangle, and from that moment on it stabilizes on the inner triangle.
The two partition functions we have added corresponding to the points a and b are invariant
as a function of μ for the action μ �→ s2(μ+ρK)−ρK of the simple reflection s2 ∈ WK with
mirror Rω1, because s2(A) = A. In order to obtain the final multiplicity function

μ �→ m
G,K
λ (μ) =

∑
v∈WK

det(v)mλ(v(μ + ρK) − ρK)

for the branching from G to K we have to antisymmetrize for the shifted by ρK action of
WK . Note that the two additional partition functions and their transforms under WK all cancel
because of their symmetry and the antisymmetrization. For μ ∈ P+

K the only terms in the sum
over v ∈ WK that have a nonzero contribution are those for v = e the identity element and
v = s1 the reflection with mirror Rω2, and we arrive at the following result.

THEOREM 4.2. For λ ∈ P+
G and μ ∈ P+

K the branching multiplicity from G =
Spin(7) to K = G2 is given by

m
G,K
λ (μ) = mλ(μ) − mλ(s1μ − ε3)(4)

with mλ the weight multiplicty function of type A2 as given by the above alternating sum of
the six partition functions.

Indeed, we have s1(μ + ρK) − ρK = s1μ − ε3. As before, we denote klm = k�1 +
l�2 + m�3 and kl = kω1 + lω2 with k, l,m ∈ N for the highest weight of irreducible
representations of G and K respectively. For μ ∈ Nω1 the multiplicities m

G,K
λ (μ) are only

governed by the first term on the right hand side of (4) with v = e, because s1μ − ε3 is not
in P+

M and thus mλ(s1μ − ε3) = 0. Hence the multiplicities are equal to 1 for μ = n0 with
n = (k + l), . . . , (k + l + m) and 0 elsewhere. Indeed, μ = n0 has multiplicity one if and
only if it is contained in the segment from b = (k + l)ε1 to a = (k + l + m)ε1. This proves
to following statement.

COROLLARY 4.3. The fundamental representation of G with highest weight λ = 001
is the spin representation of dimension 8 with K-types μ = 10 and μ = 00. It is the fun-
damental spherical representation for the Gelfand pair (G,K). The irreducible spherical
representations of G have highest weights 00m with K-spectrum the set {n0; 0 ≤ n ≤ m}.

COROLLARY 4.4. For any irreducible representation of G with highest weight λ =
klm all K-types with highest weight μ ∈ F1 = Nω1 are multiplicity free, and the K-type with
highest weight μ = n0 has multiplicity one if and only if (k + l) ≤ n ≤ (k + l + m). The
domain of those λ = klm for which the K-type μ = n0 occurs has a well shape P+

G (n0) =
B(n0) + N001 with bottom

B(n0) = {klm ∈ P+
G ; k + l + m = n}
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given by a single linear relation.

PROOF. The multiplicity freeness and the bounds for n follow from Theorem 4.2 and
in turn these inequalities n ≤ k + l + m imply the formulae for B(n0) and P+

G (n0). �

This ends our discussion that (G,K,F1 = Nω1) is a multiplicity free system. In order
to show that (G,K,F2 = Nω2) is also a multiplicity free triple we shall carry out a similar
analysis.

COROLLARY 4.5. For an irreducible representation of G with highest weight λ = klm

all K-types with highest weight μ ∈ F2 = Nω2 are multiplicity free, and the K-type with
highest weight μ = 0n has multiplicity one if and only if max(k, l) ≤ n ≤ min(k + l, l +
m). The domain of those λ = klm for which the K-type μ = 0n occurs has a well shape
P+

G (0n) = B(0n) + N001 with bottom

B(0n) = {klm ∈ P+
G ; m ≤ k ≤ n, l + m = n}

given by a single linear relation and inequalities.

PROOF. Under the assumption of the first part of this proposition klm ∈ P+
G (0n) im-

plies that kl(m + 1) ∈ P+
G (0n), and the bottom B(0n) of those klm ∈ P+

G (0n) for which
kl(m − 1) /∈ P+

G (0n) contains klm if and only if n = l + m and k ≥ m. It remains to show
the first part of the proposition.

In order to determine the K-spectrum associated to the highest weight λ = klm ∈ N3

for G observe that
q(w3λ) = kε1 + (l + m)ε2

and so the K-spectrum on Nω2 is empty for k > (l+m), while for k = (l+m) the K-spectrum
has a unique point kω2 on Nω2. If k < (l + m) the point q(w3λ) moves out of the dominant
cone P+

K into P+
M − P+

K , and the support of the function P+
K � μ �→ m

G,K
λ (μ) consists of

(the integral points of) a heptagon with an additional side on Nω2 from e to f as in the picture
above. On the outer shell heptagon the multiplicity is one, and the multiplicities increase by

FIGURE 5. Support of the multiplicity function μ �→ m
G,K
λ (μ).
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FIGURE 6. Projections of the bottoms Bn0 and B0n.

one for each inner shell heptagon, untill the heptagon becomes a triangle or quadrangle, and
it stabilizes. This follows from Theorem 4.2 in a straightforward way.

Depending on whether the vertex

q(w2λ) = (k + l)ε1 + (l + m)ε2

lies in P+
K (for k ≥ m) or in P+

M − P+
K (for k < m) we get e = (l + m)ω2 or e = (k + l)ω2

respectively. Hence we find

e = min(k + l, l + m)ω2 , f = max(k, l)ω2

by a similar consideration for

q(w4λ) = kε1 + lε2

as before (f = k for k ≥ l and f = l for k < l). This finishes the proof of Corollary 4.5. �

Our choice of positive roots for G = B3 and K = G2 was made in such a way that the
dominant cone P+

K for K was contained in the dominant cone P+
G for G. In turn this implies

that the set

A = q(R+
G) − R+

K = {ε1, ε1, ε3}
lies in an open half plane, which was required for the application of the branching rule of
Lemma 4.1.

However, we now switch to a different positive system in RG, or rather we keep R+
G

fixed as before, but take the Lie algebra k of G2 to be perpendicular to the spherical direction
�3 = (e1 + e2 + e3)/2 instead. Under this assumption the positive roots R+

M form a parabolic
subsystem in R+

G, and so the simple roots {α1 = e1 − e2, α2 = e2 − e3} of R+
M are also simple

roots in R+
G.

Let p : PG → PM = PK be the orthogonal projection along the spherical direction. By
abuse of notation we denote (with p(�3) = 0)

ε1 = p(�1) = (2,−1,−1)/3 , ε2 = p(�2) = (1, 1,−2)/3
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for the fundamental weights for P+
M = p(P+

G ). It is now easy to check that this projection

p : B(n0) → p(B(n0)) , p : B(0n) → p(B(0n))

is a bijection from the bottom onto its image in P+
M . In the Figure 6 we have drawn the

projections

p(B(n0)) = {kε1 + lε2; k + l ≤ n} , p(B(0n)) = {kε1 + lε2; k, l ≤ n, k + l ≥ n}
on the left and the right side respectively.

REMARK 4.6. Let us now prove the remaining case of Proposition 2.6. Consider λ =
klm ∈ P+

G . We take x = k + l + m/2, y = l + m/2, z = m/2 with m relatively large. The
projections of the elements wλ that land in P+

M are given in Table 2.
As m gets large the points q(wiλ) run to infinity except for i = 4 and i = 8. This

means that we should take for ν = p(λ) = q(w4λ) if we pick i = 4. The multiplicity
behavior m

G,K
λ (μ) in Picture 5 for m → ∞ goes as a function of μ ∈ P+

K = Nω1 + Nω2

to the function that gives the multiplicity of μ induced representation IndK
M(V M

ν ) from M =
SU(3) to K = G2, and therefore by Frobenius reciprocity equals mK,M

μ (ν). This shows that

limm→∞ m
G,K
λ (μ) = mK,M

μ (ν).
The weights of the fundamental spherical representation with highest weight λsph = �3

are 1
2 (±e1 ± e2 ± e3). Expressed in terms of fundamental weights these become

001, (−1)01, 1(−1)1, 01(−1)

and their negatives. It follows from Corollaries 4.4 and 4.5 that Theorem 1.2 holds true for
this case.

5. The pair (G,K) = (USp(2n), USp(2n − 2) × USp(2)). Let G = USp(2n) and
K = USp(2n − 2) × USp(2) with n ≥ 3. The weight lattices of G and K are equal, P = Zn,
and we denote by εi the i-th basis vector. The set of dominant weights for G is P+

G =
{(a1, . . . , an) ∈ P : a1 ≥ · · · ≥ an ≥ 0}. The set of dominant weights for K is P+

K =
{(b1, . . . , bn) ∈ P : b1 ≥ · · · ≥ bn−1 ≥ 0, bn ≥ 0}. The branching rule from G to K is due
to Lepowsky [35], [25, Thm. 9.50].

THEOREM 5.1 (Lepowsky). Let λ = (a1, . . . , an) ∈ P+
G and μ = (b1, . . . , bn) ∈

P+
K . Define A1 = a1 − max(a2, b1), Ak = min(ak, bk−1) − max(ak+1, bk) for 2 ≤ k ≤ n − 1

and An = min(an, bn−1). The multiplicity m
G,K
λ (μ) = 0 unless the condition Ai ≥ 0 holds

for all i = 1, . . . , n − 1 and bn + ∑n
i=1 Ai ∈ 2Z. In this case the multiplicity is given by

(5) m
G,K
λ (μ) = pΣ(A1ε1 + A2ε2 + · · · + (An − bn)εn)

− pΣ(A1ε1 + A2ε2 + · · · + (An + bn + 2)εn)

where pΣ is the multiplicity function for the set Σ = {εi ± εn : 1 ≤ i ≤ n − 1}.
THEOREM 5.2. Let μ = xωi +yωj ∈ P+

K with i < j and write μ = (b1, . . . , bn). Let

λ = (a1, . . . , an) ∈ P+
G . Let A1, . . . , An be defined as in Theorem 5.1. Then m

G,K
λ (μ) ≤ 1
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with equality precisely when (1) Ak ≥ 0 for k = 1, . . . , n − 1, (2) bn + ∑n
k=1 Ak ∈ 2Z and

(3) maxk=1,...,n(Ak, bn) ≤ 1
2 (bn + ∑n

k=1 Ak).

PROOF. Suppose that m
G,K
λ (μ) ≥ 1. Then (1) and (2) follow from Theorem 5.1. In

fact, Ak = 0 unless k ∈ {1, i + 1, j + 1}∩ [1, n], because of the hypothesis on μ. We evaluate
(5) below, showing that m

G,K
λ (μ) ≤ 1 with equality precisely when (3) holds.

We distinguish 4 cases: (i) j < n − 1, (ii) j = n − 1, (iii) j = n, i = n − 1, (iv)
j = n, i < n − 1. In all cases, at most three of the four values Ai+1, Aj+1, An, bn are non-
zero. Hence we can reduce to n = 4 and we find the following four expressions for m

G,K
λ (μ):

(i) pΣ(A1ε1 + A2ε2 + A3ε3) − pΣ(A1ε1 + A2ε2 + A3ε3 + 2ε4),
(ii) pΣ(A1ε1 + A2ε2 + A4ε4) − pΣ(A1ε1 + A2ε2 + (A4 + 2)ε4),

(iii) pΣ(A1ε1 + (A4 − b4)ε4) − pΣ(A1ε1 + (A4 + b4 + 2)ε4),
(iv) pΣ(A1ε1 + A2ε2 − b4ε4) − pΣ(A1ε1 + A2ε2 + (b4 + 2)ε4).

In case (iii) we have pΣ(A1ε1 + (A4 −b4)ε4) ≤ 1 with equality if and only if A1 +A4 −
b4 ∈ 2N and A1 − A4 + b4 ∈ 2N. Similarly pΣ(A1ε1 + (A4 + b4 + 2)ε4) ≤ 1 with equality
if and only if A1 + A4 + b4 + 2 ∈ 2N and A1 − A4 − b4 − 2 ∈ 2N.

In case (i) we have

3∑
k=1

Akεk =
3∑

k=1

Bk(εk + ε4) +
3∑

k=1

(Ak − Bk)(εk − ε4)

if and only if
∑3

i=1 Bk = A, where A = 1
2

∑n
k=1 Ak . It follows that

pΣ(A1ε1 + A2ε2 + A3ε3) = #

{
(B1, B2, B3) ∈ N

3 :
3∑

k=1

Bk = A and Bk ≤ Ak

}

and similarly

(6) pΣ(A1ε1 + A2ε2 + A3ε3 + 2ε4)

= #

{
(B1, B2, B3) ∈ N

3 :
3∑

k=1

Bk = A + 1 and Bk ≤ Ak

}
.

Assume that A1 ≥ A2 ≥ A3. We distinguish two possibilities: (1) A1 ≤ A and (2) A1 > A.
In case (1) we have

pΣ

( 3∑
i=1

Aiεi

)
= #{lattice points in hexagon indicated in Figure 7}

which is given by

pΣ

( 3∑
i=1

Aiεi

)
= (A + 1)(A + 2)/2 −

3∑
i=1

(A − Ai)(A − Ai + 1)/2 .
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FIGURE 7. Counting integral points.

Similarly

pΣ

( 3∑
i=1

Aiεi + 2ε4

)
= (A + 2)(A + 3)/2 −

3∑
i=1

(A + 1 − Ai)(A − Ai + 2)/2

and the difference is one, as was to be shown.
In case (2) where A1 > A we have

pΣ

( 3∑
i=1

Aiεi

)
= #{lattice points in parallelogram in Figure 7}

which is given by A2A3. Similarly pΣ(
∑3

i=1 Aiεi + 2ε4) = A2A3 and hence the difference
is zero.

In cases (ii) and (iv) we can perform a similar but easier analysis, but now we have to
count points on a line segment that intersects a rectangle. We refer to [38, Prop. 5.1] for the
details. �

The bottom B(μ) of the μ-well P+
G (μ) is parametrized by P+

M(μ), where M ∼= USp(2)×
USp(2n − 4) × USp(2). In [1] the branching rules for K to M are described. The dominant
integral weights for M are parametrized by P+

M = {(c1, c2, . . . , cn−1, c1) : 2c1 ∈ N, c2 ≥
· · · ≥ cn−1} ⊂ P . The map p : P+

G → P+
M from Proposition 2.5 is given as follows. Write

λ = (a1, . . . , an) ∈ P+
G as

λ =
(

λ − a1 + a2

2
λsph

)
+ a1 + a2

2
λsph ,(7)

with λsph = �2 = ε1 + ε2. Then p(λ) = ( 1
2 (a1 + a2), a3, . . . , an,

1
2 (a1 + a2)) ∈ P+

M . The
map q : P → P : λ �→ λ − (a1 + a2)λsph/2 projects onto the orthocomplement of λsph and
the maps p and q differ by a Weyl group element in WG. To determine the bottom B(μ) we
have to find for each λ ∈ P+

G (μ) the minimal d ∈ 1
2N for which q(λ) + dλsph ∈ P+

G (μ). We
distinguish two cases for the K-type μ = xωi + yωj = (b1, . . . , bn), i < j : (1) i = 1, (2)
i > 1. Assume (1). Then the relevant inequalities are A1 ≥ 0, A2 ≥ 0 and A1 + A2 ≥ B,
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with B equal to Aj+1 or y, depending on j < n or j = n respectively. Plugging in λ =
q(λ) + dλsph and minimizing for d yields

d = max

(
b1 − c1, b2 + c1,

1

2
(b1 + B + max(a3, b2))

)
,

where c1 = (a1 − a2)/2. The branching rules for K to M specialized to the specific choice of
μ implies that d = 1

2 (b1 + B + max(a3, b2)) (see [38]). Assume (2). The relevant inequality
is A1 ≥ 0. Since i > 1 we have b1 = b2 so A1 = a1 − a2, which is invariant for adding
multiples of λsph. We plug in q(λ)+ dλsph and write c1 = (a1 − a2)/2 . Minimizing d so that
Ak ≥ 0 yields d = c1 + b1.

The weights of the fundamental spherical representation of highest weight λsph = ε1+ε2

are {±εi ± εj : i < j } ∪ {0}. One easily checks that Theorem 1.2 holds true for this case.

6. The pair (G,K) = (F4, Spin(9)). In this section we take G of type F4 and K =
Spin(9) the subgroup of type B4. Let H ⊂ K ⊂ G be the standard maximal torus and let
g, k, h denote the corresponding Lie algebras. We fix the sets of positive roots of the root
systems �(g, h) and �(k, h),

R+
K = {εi ± εj |1 ≤ i < j ≤ 4} ∪ {εi |1 ≤ i ≤ 4} ,

R+
G = R+

K ∪
{

1

2
(ε1 ± ε2 ± ε3 ± ε4)

}
.

The corresponding systems of simple roots are

ΠG =
{
α1 = 1

2
(ε1 − ε2 − ε3 − ε4) , α2 = ε4, α3 = ε3 − ε4, α4 = ε2 − ε3

}
,

ΠK = {β1 = ε1 − ε2, β2 = ε2 − ε3, β3 = ε3 − ε4, β4 = ε4} ,

see also the Dynkin diagram in Figure 8.

FIGURE 8. The Dynkin diagrams of F4 and B4.

The fundamental weights corresponding to ΠG are given by

�1 = ε1 , �2 = 1

2
(3ε1 + ε2 + ε3 + ε4) , �3 = 2ε1 + ε2 + ε3,�4 = ε1 + ε2

and those corresponding to ΠK by

ω1 = ε1 , ω2 = ε1 + ε2 , ω3 = ε1 + ε2 + ε3 , ω4 = 1

2
(ε1 + ε2 + ε3 + ε4) .

The lattices of integral weights of G and K are the same and equal to P = Z
4 ∪

((1/2, 1/2, 1/2, 1/2) + Z
4) and the sets of dominant integral weights are denoted by P+

G

and P+
K .
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THEOREM 6.1. There are three faces F of K such that m
G,K
λ (μ) ≤ 1 for all λ ∈ P+

G

and all μ ∈ F : the two dimensional face spanned by {ω1, ω2} and two one dimensional faces,
spanned by ω3 and ω4 respectively.

This result has been obtained in [20] as part of a classification. Another proof is given in
[37, Lem. 2.2.10].

The pair (G,K) is a symmetric pair and choosing the maximal anisotropic torus T ⊂ G

(a circle group) as in [1] we have ZK(T ) = M ∼= Spin(7), where the embedding Spin(7) →
Spin(8) is twisted:

so(7,C) ⊂ so(8,C)
τ→ so(8,C) ⊂ so(9,C) ,(8)

with τ the automorphism that interchanges the roots ε1 − ε2 and ε3 − ε4, see [1]. We fix the
maximal torus hM = m∩h and choose the positive roots �(m, hM) such that the set of simple
roots equals

ΠM =
{
δ1 = ε3 − ε4, δ2 = ε2 − ε3, δ3 = 1

2
(ε1 − ε2 + ε3 + ε4)

}
.

The corresponding fundamental weights are given by

η1 = 1

2
(ε1 + ε2 + ε3 − ε4) , η2 = ε1 + ε2 , η3 = 1

4
(3ε1 + ε2 + ε3 + ε4) .

The spherical weight is λsph = �1. We want to calculate the map P+
G → P+

M , but λsph is
not perpendicular to P+

M . Hence we pass to another Weyl chamber, and project along the new
spherical direction, which is perpendicular to P+

M . Choose a Weyl group element wM ∈ WG

such that the Weyl chamber wMP+
G has the following properties: (1) wMλsph ⊥ PM and (2)

the projection along wMλsph induces a map wMP+
G → P+

M . We ask Mathematica [47] to go
through the list of Weyl group elements and test for these properties. We find two Weyl group
elements, wM and s1wM , where

wM =

⎛
⎜⎜⎜⎜⎝

1
2

1
2

1
2

1
2

− 1
2

1
2

1
2 − 1

2

− 1
2

1
2 − 1

2
1
2

− 1
2 − 1

2
1
2

1
2

⎞
⎟⎟⎟⎟⎠(9)

with respect to the basis {ε1, ε2, ε3, ε4} and where s1 is the reflection in α⊥
1 .

LEMMA 6.2. Let q : P+
G → P+

M be given by q(λ) = wM(λ)|hM
, where wM is given

by (9). Then q(P+
G (μ)) = P+

M(μ) and q(
∑4

i=1 λi�i) = λ4η1 + λ3η2 + λ2η3.

PROOF. The surjectivity is implied by Proposition 2.6. The calculation involves a base
change for wM with basis {η1, η2, η3, α1} and follows readily. �

It follows that λ = λ1�1 + λ2�2 + λ3�3 + λ4�4 ∈ P+
G (μ) implies that λ4η1 + λ3η2 +

λ2η3 ∈ P+
M(μ). The branching rule Spin(9) → Spin(7) is described in [1, Thm. 6.3] and we

recall it for our special choices of μ. It is basically the same as branching B4 ↓ D4 ↓ B3
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via interlacing, see e.g. [25, Thm. 9.16], but on the D4-level we have to interchange the
coefficients of the first and the third fundamental weight.

PROPOSITION 6.3. The spectrum P+
M(μ) is given by the following inequalities.

• Let μ = μ1ω1 + μ2ω2. Then λ4η1 + λ3η2 + λ2η3 ∈ P+
M(μ) if and only if

λ3 + λ4 ≤ μ2 ≤ λ2 + λ3 + λ4 ≤ μ1 + μ2 .

• Let μ = μ3ω3. Then λ4η1 + λ3η2 + λ2η3 ∈ P+
M(μ) if and only if

λ2 + λ3 ≤ μ3 ,

λ3 + λ4 ≤ μ3 ≤ λ2 + λ3 + λ4 .

• Let μ = μ4ω4. Then λ4η1 + λ3η2 + λ2η3 ∈ P+
M(μ) if and only if

λ3 = 0 ,

λ2 + λ4 ≤ μ4 .

Given an element μ ∈ P+
K we can determine the M-types ν = ν1η1 + ν2η2 + ν3η3 ∈

P+
M(μ) and we know from Proposition 2.6 that for λ1 large enough,

λ = λ1�1 + ν3�2 + ν2�3 + ν1�4 ∈ P+
G (μ) .(10)

We proceed to determine the minimal λ1 such that (10) holds, in the case that μ satisfies the
multiplicity free condition of Theorem 6.1.

THEOREM 6.4. Let μ ∈ (Nω1 ⊕ Nω2) ∪ (Nω3) ∪ (Nω4). Then λ = λ1�1 + λ2�2 +
λ3�3 + λ4�4 ∈ B(μ) if and only if (i) q(λ) ∈ P+

M(μ) and (ii)

μ1 + μ2 = λ1 + λ2 + λ3 + λ4 if μ = μ1ω1 + μ2ω2 ,(11)

μ3 = λ1 + λ2 + λ3 if μ = μ3ω3 ,(12)

μ4 = λ1 + λ2 + λ4 if μ = μ4ω4 .(13)

Hence the bottom B(μ) is given by a singular equation and the inequalities of P+
M(μ) in

all cases, except for (G,K) = (SU(n + 1), S(U(n) × U(1))). We have found the inequalities
of Theorem 6.4 using an implementation of the branching rule from F4 to Spin(9) in Math-
ematica and looking at some examples. Before we prove Theorem 6.4 we settle the proof of
the final case of Theorem 1.2.

COROLLARY 6.5. Let λ ∈ P+
G (μ) and let λ′ ∈ P be a weight of the spherical repre-

sentation. Then |d(λ + λ′) − d(λ)| ≤ 1 with d : P+
G (μ) → N the degree function of Theorem

1.2.

PROOF. The weights of the spherical representation are the short roots and zero (with
multiplicity two). After expressing these weights as linear combinations of fundamental
weights, one easily checks the assertion. �

PROOF OF THEOREM 6.4. The proof of Theorem 6.4 is devided into two parts, cor-
responding to the dimension of the face. The strategy in both cases is the same. Fix μ ∈
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(Nω1 ⊕ Nω2) ∪ (Nω3) ∪ (Nω4) and choose a suitable system R+
G of positive roots of G. Let

A = R+
G\R+

K and let pA denote the corresponding partition function. Let λ ∈ P+
G have the

property that q(λ) ∈ P+
M(μ). This gives restrictions on λ2, λ3, λ4, according to Proposition

6.3. Let λ1 satisfy the appropriate linear equation from the theorem.
For w ∈ WG define Λw(λ,μ) = w(λ+ρ)−(μ+ρ), where ρ = 1

2 (11ε1+5ε2+3ε3+ε4)

is the Weyl vector of G. Explicit knowledge of the partition function pA allows us, using
Mathematica, to determine for which w ∈ WG the quantity pA(Λw(λ,μ)) is zero. We end up
with two elements in case μ ∈ Nω1 ⊕ Nω2 and twelve elements in the other cases, for which
pA(Λw(λ,μ)) is possibly not zero. This allows us to calculate m

G,K
λ (μ) using Lemma 4.1.

One checks that the multiplicity is one for this choice of λ ∈ P+
G (μ).

Moreover, if μ ∈ Nω1 ⊕ Nω2 then p(Λw(λ − λsph)) = 0 for all Weyl group elements.
In the other cases for μ we find the same twelve Weyl group elements for which pA(Λw(λ −
λsph, μ)) possibly does not vanish. One checks that the multiplicity is zero in this case.

We conclude the proof by indicating the the positive system that we chose in the various
cases, a description of the partition function and lists of the Weyl group elements that may
contribute in the Kostant multiplicity formula.

THE CASE μ = μ1ω1 + μ2ω2. Here we take the standard positive system R+
G and we

have A = R+
G\R+

K = { 1
2 (ε1 ± ε2 ± ε3 ± ε4)}. Let Λ = (Λ1,Λ2,Λ3,Λ4) ∈ P . We claim that

pA(Λ) > 0 if and only if |Λj | ≤ Λ1 for j = 2, 3, 4.
Let us denote A = {a000, . . . , a111} where the binary index indicates where to put the +

or the − sign on positions 2, 3, 4, e.g. a100 = 1
2 (ε1 − ε2 + ε3 + ε4). Let

Λ =
111∑

i=000

niai .(14)

We are going to count the number of tuples (n000, . . . , n111) ∈ N
8 for which (14) holds. First

of all, it follows from (14) that

011∑
i=000

ni = Λ1 + Λ2 ,

111∑
i=100

ni = Λ1 − Λ2 .

In other words, any linear combination (14) uses Λ1 + Λ2 elements from the set
{a000, . . . , a011} and Λ1−Λ2 elements from the set {a100, . . . , a111}. Let us write (Λ3,Λ4) =
(v1, v2)+ (Λ3 − v1,Λ4 − v2). For each such decomposition we need to count (1) the number
of tuples (n000, . . . , n011) ∈ N4 for which

∑011
i=000 niai = ((Λ1+Λ2)/2, (Λ1+Λ2)/2, v1, v2)

and (2) the number of tuples (n100, . . . , n111) ∈ N4 for which
∑111

i=100 niai = ((Λ1 −
Λ2)/2,−(Λ1 − Λ2)/2,Λ3 − v1,Λ4 − v2). For each (v1, v2) we take the product of these
quantities, and summing these for the possible vectors (v1, v2) yields the desired formula for
pA.

This reduces the calculation of pA to the following counting problem. Let L = Z2 ∪
(( 1

2 , 1
2 ) + Z2), let A′ = {(± 1

2 ,± 1
2 )} and let p ∈ N. Let us denote A′ = {a′

00, . . . , a
′
11}, where

the binary number indicates where to put the + and the − signs, e.g. a′
10 = (−1/2, 1/2).
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Given a vector v = (v1, v2) we want to calculate the number of tuples (n00, . . . , n11) ∈ N4

such that
∑11

i=00 nia
′
i = v and

∑11
i=00 ni = p. It is necessary that |v1|, |v2| ≤ p/2. In this

case, the number of tuples is 1 + p
2 − max(|v1|, |v2|).

Returning to our original problem, we have

pA(Λ) =
∑
v1,v2

(
1 + Λ1 + Λ2

2
− max(|v1|, |v2|)

)

×
(

1 + Λ1 − Λ2

2
− max(|Λ3 − v1|, |Λ4 − v2|)

)
,

where (v1, v2) satisfies the restrictions |v1|, |v2| ≤ (Λ1 + Λ2)/2 and simultaneously |Λ3 −
v1|, |Λ4 − v2| ≤ (Λ1 − Λ2)/2. As a result, the ranges for the summations are

v1 = max

(
−Λ1 + Λ2

2
,Λ3 − Λ1 − Λ2

2

)
, . . . , min

(
Λ1 + Λ2

2
,Λ3 + Λ1 − Λ2

2

)
,

v2 = max

(
−Λ1 + Λ2

2
,Λ4 − Λ1 − Λ2

2

)
, . . . , min

(
Λ1 + Λ2

2
,Λ4 + Λ1 − Λ2

2

)
.

In particular, pA(Λ) > 0 if and only if the ranges for v1 and v2 are both non-empty,
which is equivalent to

|Λ2| ≤ Λ1 ,(15)

|Λ3| ≤ Λ1 ,(16)

|Λ4| ≤ Λ1 .(17)

The only two Weyl group elements for which pA(Λw(λ,μ)) contributes to the multiplicity
m

G,K
λ (μ), under the assumptions (11) and q(λ) ∈ P+

M(μ) are e and s2, the reflection in α⊥
2 .

In this case m
G,K
λ (μ) = 1. Also, m

G,K
λ−λsph

(μ) = 0 under the same conditions, as there are no
Weyl group elements for which pA(Λw(λ − λsph, μ)) is non-zero.

THE CASE μ = μ3ω3 AND μ = μ4ω4. Let μ = μ3ω3 or μ = μ4ω4 and λ ∈ B(μ)

and consider Λw(λ,μ) = w(λ + ρ) − (μ + ρ) for w ∈ WG. Using Mathematica to check
the inequalities (15), (16), (17) under the condition (12) or (13) we find a number of 16
Weyl group elements for which Λw(λ,μ) is possibly in the support of pA. However, the
formulas for the elements Λw(λ,μ) that possibly contribute do not look tempting to perform
calculations with.

Instead we pass to another Weyl chamber for F4 while remaining in the same Weyl
chamber for Spin(9). The Weyl chamber that we choose contains ω3 and ω4. The element
w̃ = s2s1 ∈ W translates the standard Weyl chamber to one that we are looking for. The set
of positive roots that corresponds to the system of simple roots is w̃ΠG = R+

K ∪ B, where

B =
{

1

2
(−ε1 + ε2 + ε3 ± ε4),

1

2
(ε1 − ε2 + ε3 ± ε4),

1

2
(ε1 + ε2 − ε3 ± ε4),

1

2
(ε1 + ε2 + ε3 ± ε4)

}
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is the new set of positive roots of G that are not roots of K . The Kostant multiplicity formula
reads

m
G,K
λ (μ) =

∑
w∈WG

det(w)pB(w(λ + ρ̃) − (μ + ρ̃)) ,

where ρ̃ = 1
2 (9ε1 + 7ε2 + 5ε3 + ε4) is the Weyl vector for the new system of positive roots.

Our aim is to calculate the partition pB(Λ) for Λ = (Λ1,Λ2,Λ3,Λ4) ∈ P . To begin
with we focus on the first three coordinates. Let π : P → Z3 ∪ (( 1

2 , 1
2 , 1

2 ) + Z3) denote the
projection on the first three coordinates. Let C = {c1, c2, c3, c4} with

c1 = 1

2
(−ε1 + ε2 + ε3) , c2 = 1

2
(ε1 − ε2 + ε3) ,

c3 = 1

2
(ε1 + ε2 − ε3) , c4 = 1

2
(ε1 + ε2 + ε3) .

The number of linear combinations π(Λ) = n1c1 + n2c2 + n3c3 + n4c4 with ni ∈ N is
non-zero if and only if

0 ≤ Λ1 + Λ2 ,(18)

0 ≤ Λ1 + Λ3 ,(19)

0 ≤ Λ2 + Λ3 .(20)

We assume Λ1 ≥ Λ2 ≥ Λ3. We have

(Λ1,Λ2,Λ3) = (Λ1 − Λ2)c1 + (Λ1 − Λ3)c2 + (Λ2 + Λ3)c4

= (Λ1 − Λ2 + 1)c1 + (Λ1 − Λ3 + 1)c2 + c3 + (Λ2 + Λ3 − 1)c4

...

= (Λ1 + Λ3)c1 + (Λ1 + Λ2)c2 + (Λ2 + Λ3)c3 ,

from which we see that there are Λ2 + Λ3 + 1 ways to write (Λ1,Λ2,Λ3) as a linear combi-
nation of elements in C with coefficients in N. Every such combination uses a unique number
of vectors: 2Λ1 + 2r , where r = 0, . . . ,Λ2 + Λ3.

Let bi,± = ci ± 1
2ε4 denote the elements in B that project onto ci ∈ C. Let Λ =∑

si,±bi,± be a positive integral linear combination of elements in B and define mi = si,+ +
si,−. Then π(Λ) = ∑

mici is a linear combination of elements in C with coefficients in N

and hence there is an r ∈ {0, . . . ,Λ2 + Λ3} such that m1 = Λ1 − Λ3 + r,m2 = Λ1 −
Λ2 + r,m3 = r and m4 = Λ2 + Λ3 − r . We find that

∑4
i=1 si,+ − ∑4

i=1 si,− = 2Λ4

and
∑4

i=1 si,+ + ∑4
i=1 si,− = 2Λ1 + 2r . It follows that the number of ways in which we

can write Λ as a linear combination of 2Λ1 + 2r elements in B with coefficients in N is
equal to the number of tuples (s1,+, s2,+, s3,+, s4,+) ∈ N4 with

∑4
i=1 si,+ = Λ1 +Λ4 + r and

0 ≤ si,+ ≤ mi . This is the number of integral points in the intersection of the hyperrectangular
{0 ≤ si,+ ≤ mi} and the affine hyperplane {s1,+ + s2,+ + s3,+ + s4,+ = Λ1 + Λ4 + r} and
we denote this quantity with L((m1,m2,m3,m4),Λ1 + Λ4 + r). Whenever

|Λ4| ≤ Λ1 + Λ2 + Λ3 ,(21)
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L((m1,m2,m3,m4),Λ1 + Λ4 + r) > 0. Hence

pB(Λ) =
Λ2+Λ3∑

r=0

L((Λ1 − Λ3 + r,Λ1 − Λ2 + r, r,Λ2 + Λ3 − r),Λ1 + Λ4 + r)

if Λ1 ≥ Λ2 ≥ Λ3. The quantity pB(Λ) is positive if and only if the inequalities (18), (19),
(20) and (21) hold. Note that these inequalities are invariant for permuting the first three
coordinates of Λ.

Let μ = μ3ω3 or μ = μ4ω4 and let λ ∈ P+
G satisfy q(λ) ∈ P+

M(μ) and (12) or (13)
respectively. Define Γw(λ,μ) = w(w̃λ + ρ̃) − (μ + ρ̃). For the elements Γw(λ,μ) and
Γw(λ − λsph, μ) we check the inequalities (18), (19), (20) and (21). We get 12 Weyl group
elements for which pB(Γw(λ,μ)) and pB(Γw(λ−λsph, μ)) are possibly non-zero. Moreover,
the twelve elements are the same for μ = μ3ω3 and μ = μ4ω4 and we have listed them in
Table 3.

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

e s1 s2 s3 s4 s1s2 s1s3 s1s4 s2s1 s2s3 s2s4 s3s2

TABLE 3. The Weyl group elements w for which Γw(w̃λ, μ) is possibly in the support of pB .

Using the explicit description of pB one verifies m
G,K
λ (μ) = 1 and m

G,K
λ−λsph

(μ) = 0. �

7. The differential equations. Our goal is to define a non-trivial commutative alge-
bra of differential operators for the matrix valued orthogonal polynomials defined in Section
1. Let (G,K,F) be a multiplicity free system from Table 1 and let μ ∈ F . Let gc, kc denote
the complexifications, let U(gc) denote the universal enveloping algebra of gc and let U(gc)

kc

denote the commutant of kc in U(gc). Let πK
μ be an irreducible representation of K in Vμ

and let π̇K
μ denote the corresponding representation of U(kc). Let I (μ) ⊂ U(kc) denote the

kernel of π̇K
μ and consider the left ideal U(gc)I (μ) ⊂ U(gc). As in [8, Ch. 9] we define

D(μ) = U(gc)
kc /(U(gc)

kc ∩ U(gc)I (μ)) ,

which is an associative algebra. In fact, D(μ) is commutative because it can be embedded, us-
ing an anti homomorphism, into the commutative algebra U(ac)⊗EndM(Vμ) (see [8, 9.2.10]),
which is commutative by Proposition 2.4. The irreducible representations of D(μ) are in a 1–
1 correspondence with the irreducible representations of gc that contain π̇K

μ upon restriction,
see [8, Thm. 9.2.12].

Let D ∈ U(gc). The μ-radial part R(μ,D) is a differential operator that satisfies

R(μ,D)(Φ|T ) = D(Φ)|T(22)

for all functions Φ : G → End(Vμ) satisfying (1). Following Casselman and Miličić [7,
Thm. 3.1] we find a homomorphism

R(μ) : U(gc)
kc → C(T ) ⊗ U(tc) ⊗ End(EndM(Vμ))
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such that (22) holds for all D ∈ U(gc)
kc and all Φ ∈ C∞(G, End(Vμ)) satisfying (1). For

the two non-symmetric multiplicity free triples we have an Iwasawa-like decomposition gc =
kc ⊕ tc ⊕ n+ and a map n+ → kc onto the orthocomplement of mc in kc. This map replaces
I + θ in the symmetric case and is essential in the construction of R(μ), see [7, Lem. 2.2].
The homomorphism R(μ) factors through the projection U(gc)

kc → D(μ) and we obtain
an injective algebra homomorphism that we denote by the same symbol, R(μ) : Dμ →
C(T )⊗U(tc)⊗End(EndM(Vμ)). We identify EndM(Vμ) = CNμ by Schur’s Lemma, with Nμ

the cardinality of the bottom B(μ), and we write Mμ = End(CNμ). The elementary spherical
functions Φ

μ
λ are simultaneous eigenfunctions for the algebraD(μ). The differential operators

R(μ,D) become differential operators for the functions Ψ
μ
d : T → M

μ and, according to the
construction, the functions Ψ

μ
n are simultaneous eigenfunctions for the operators R(μ,D)

with D ∈ D(μ). The eigenvalues are diagonal matrices Λn(D) ∈ Mμ acting on the right,
i.e. we have R(μ,D)Ψ

μ
n = Ψ

μ
n Λn(D).

In the forthcoming paper [38] it is shown that the function Ψ
μ
0 : T → Mμ is point wise

invertible on Treg, the open subset of T on which the restriction of the minimal spherical func-
tion, φ|T , is regular. The proof relies on the bispectral property that is present for the family
of matrix valued functions {Ψ μ

n ; n ∈ N}. More precisely, the interplay between the differen-
tial operators and the three term recurrence relation imply that the function Ψ

μ
0 satisfies an

ODE whose coefficients are regular on Treg. If we conjugate R(μ,D) with Ψ
μ
0 and perform

the change of variables x = cφ(t) + (1 − c), such that x runs in [−1, 1], then we obtain
a differential operator acting on the space of matrix valued orthogonal polynomials Mμ[x].
The algebra of differential operators that is obtained in this way is denoted by Dμ. The family
of matrix valued orthogonal polynomials (P

μ
n (x); n ∈ N) that we obtain from the functions

(Ψ
μ
n ; n ∈ N), is a family of simultaneous eigenfunctions for the algebra D

μ. The algebra of
differential operators Mμ[x, ∂x] acts on M

μ[x], where the matrices act by left multiplication.
Note that Dμ ⊂ Mμ[x, ∂x].

The description of the map R(μ) in [7] allows one to calculate explicitly the radial part
of the (order two) Casimir operator Ω ∈ U(gc)

kc . An explicit expression can be found in [45,
Prop. 9.1.2.11] for the case where (G,K) is symmetric. The image of Ω in the algebra Dμ

is denoted by Ωμ and is of order two. Its eigenvalues can be calculated explicitly in terms
of highest weights and they are real, which implies that Ωμ is symmetric with respect to the
matrix valued inner product 〈·, ·〉Wμ . These are examples of matrix valued hypergeometric
differential operators [42].

8. Conclusions. Several questions remain. We have shown the existence of families
of matrix valued orthogonal polynomials, together with a commutative algebra of differential
operators for which the polynomials are simultaneous eigenfunctions, mainly by working
out the branching rules. The key result is that the bottom of the μ-well is well behaved
with respect to the weights of the fundamental spherical representation, so that the degree
function has the right properties. It would be interesting to see whether one can draw the same
conclusions by investigating of the differential equations for the matrix valued orthogonal
polynomials. This would require more precise knowledge of the algebra D(μ).
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On the other hand, it would be interesting to investigate whether the good properties
of the degree function follow from convexity arguments that come about if we formulate
matters concerning the representation theory, such as induction and restriction, in terms of
symplectic or algebraic geometry. For example, in this light, it is interesting to learn more
about the (spherical) spaces Gc/Q and their Gc-equivariant line bundles, where Q ⊂ Kc is
the parabolic subgroup associated to F , for a multiplicity free system (G,K,F).

The existence of multiplicity free systems (G,K,F) with (G,K) a Gelfand pair of rank
> 1, raises the question whether the spectra of the induced representations have a similar
structure as in the rank one case. If the answer is affirmative we expect that we can asso-
ciate families of matrix valued orthogonal polynomials in several variables to these spectra,
together with commutative algebras of differential operators that have these polynomials as
simultaneous eigenfunctions. For the examples (Spin(9), Spin(7),Nω1) and (SU(n + 1) ×
SU(n + 1), diag(SU(n + 1)), F ), where F = ω1N or F = ωnN, this seems to be the case.
In general the branching rules will not be of great help in understanding the bottom of the
μ-well, as they soon become too complicated in the higher rank situations.
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