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Abstract. We introduce the notion of (G, Γ )-crossed action on a tensor category,
where (G, Γ ) is a matched pair of finite groups. A tensor category is called a (G, Γ )-crossed
tensor category if it is endowed with a (G,Γ )-crossed action. We show that every (G,Γ )-
crossed tensor category C gives rise to a tensor category C(G,Γ ) that fits into an exact sequence
of tensor categories RepG −→ C(G,Γ ) −→ C. We also define the notion of a (G, Γ )-braiding
in a (G, Γ )-crossed tensor category, which is connected with certain set-theoretical solutions
of the QYBE. This extends the notion ofG-crossed braided tensor category due to Turaev. We
show that if C is a (G, Γ )-crossed tensor category equipped with a (G, Γ )-braiding, then the
tensor category C(G,Γ ) is a braided tensor category in a canonical way.

1. Introduction. Besides from their inherent algebraic appeal, monoidal and tensor
categories are relevant structures in many areas of mathematics and mathematical physics.
The endeavour around the far-reaching problem of their classification has seen a considerable
outgrowth in the last decades. Widespread examples of tensor categories are provided by Hopf
algebras and its generalizations by means of its representation theory.

The main goal of this paper is to present a construction of a class of tensor categories
that generalizes and puts into a unified perspective certain renowned classes of examples.

The input for this construction consists of a matched pair of finite groups (G, Γ ) plus a
tensor category C endowed with a Γ -grading and an action of G by autoequivalences (which
are not necessarily tensor functors):

C =
⊕

s∈Γ
Cs , ρ : Gop → Aut(C) ,

that are related to each other in an appropriate sense. For reasons that might well become
apparent in the sequel, we call such a data a (G, Γ )-crossed action on C. We say that C is a
(G, Γ )-crossed tensor category, if it is endowed with a (G, Γ )-crossed action. See Defini-
tion 4.1.

Recall that a matched pair of groups is a collection (G, Γ ), where G and Γ are groups
endowed with mutual actions by permutations

Γ
�←− Γ ×G �−→ G
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satisfying the following conditions:

(1.1) s � gh = (s � g)((s � g) � h) , st � g = (s � (t � g))(t � g) ,

for all s, t ∈ Γ , g, h ∈ G.

The requirements in our definition of a (G, Γ )-crossed tensor category are that, for all
g ∈ G, s ∈ Γ ,

ρg (Cs ) = Cs�g ,

and the existence of natural isomorphisms

γ
g
X,Y : ρg (X ⊗ Y )→ ρs�g (X)⊗ ρg (Y ) , X ∈ C, Y ∈ Cs ,

subject to certain rather natural compatibility conditions.
From a (G, Γ )-crossed tensor category C we produce a new tensor category that we

denote C(G,Γ ). The tensor product in C(G,Γ ) is built from the tensor product of C and the
natural isomorphisms γ . This is done in Theorem 5.1.

The main tool in the proof of Theorem 5.1 is the notion of a Hopf monad, introduced
in [2], [3]. This notion and some of its main features are recalled in Subsection 2.3. It turns
out that the data underlying a (G, Γ )-crossed tensor category C give rise to a monad T on C
in such a way that the category CT of T -modules in C identifies with C(G,Γ ). We show that,
with respect to a suitable comonoidal structure arising from the (G, Γ )-crossed action on C,
T is in fact a Hopf monad, which allows to conclude that C(G,Γ ) is a tensor category.

We have that C(G,Γ ) is a finite tensor category if and only if the neutral homogeneous
component D = Ce of the associated Γ -grading is a finite tensor category. On the other side,
C(G,Γ ) is a fusion category if and only if D is a fusion category and the characteristic of k
does not divide the order ofG (Proposition 6.2).

We show that, like in the case of an equivariantization under a group action by tensor
autoequivalences, the category C(G,Γ ) fits into an exact sequence

RepG −→ C(G,Γ ) −→ C ,
in the sense of the definition given in [4]. See Theorem 6.1. However, this is not an equivari-
antization exact sequence, unless the action � : Γ ×G −→ G is (essentially) trivial. Dually,
the category C(G,Γ ) is not a Γ -graded tensor category, unless the action � : Γ ×G −→ Γ is
(essentially) trivial. See Propositions 6.3 and 6.8.

LetG be a group. Motivated by his developements in Homotopy Quantum Field Theory,
Turaev introduced the notion of G-crossed braided categories [22], which serve as a tool
in the construction of invariants of 3-dimensional G-manifolds. Müger showed in [19] (see
also [13]) that G-crossed braided categories arise from the so-called Galois extensions of
braided tensor categories.

As it turns out, the G-crossed categories underlying G-crossed braided categories of
Turaev yield examples of crossed actions of a matched pair. Indeed, the right adjoint action
� : G×G −→ G and the trivial action � : G×G −→ G make (G,G) into a matched pair
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of groups. The conditions in Definition 4.1 of a (G,G)-crossed action on a tensor category C
boil down in this case to the conditions defining a G-crossed tensor category C.

Let C be a (G, Γ )-crossed tensor category. We define in this paper a (G, Γ )-braiding in
C as a triple (c, ϕ,ψ), where ϕ,ψ : Γ → G are group homomorphisms and c is a collection
of natural isomorphisms

cX,Y : X ⊗ Y → ρt
−1�ϕ(s−1)(Y )⊗ ρψ(t)(X) , X ∈ Cs, Y ∈ Ct ,

satisfying certain compatibility conditions. See Definition 7.1.
Recall that a set-theoretical solution of the Quantum Yang-Baxter Equation is an invert-

ible map r : X×X→ X×X, whereX is a set, satisfying the condition r12r13r23 = r23r13r12,
as mapsX×X×X→ X×X×X. A theory of set-theoretical solutions of the QYBE was de-
veloped in [11], [14], [23]. Our definition of a (G, Γ )-braiding is related to the set-theoretical
solutions of the QYBE equation on the set Γ studied in [14], corresponding to appropriate
actions of the group Γ on itself. We discuss this relation in Subsection 7.1.

We show that a (G, Γ )-braiding in C gives rise to a braiding in C(G,Γ ), thus providing
examples of braided tensor categories. See Theorem 7.5.

In the case where C is a G-graded tensor category, regarded as before as (G,G)-crossed
tensor category, a G-braiding c in C is the same thing as a (G,G)-braiding (c, ϕ,ψ), where
ψ = idG : G→ G is the identity group homomorphism and ϕ is the trivial group homomor-
phism (Proposition 8.2).

Matched pairs of groups are the main ingredients in the origin of one of the first classes
of examples of non-commutative and non-cocommutative Hopf algebras discovered by G. I.
Kac in the late 60’s [12] (see also [16], [17], [21]). These Hopf algebras are most commonly
called abelian bicrossed products or abelian extensions; they are characterized by the attribute
of fitting into an exact sequence of Hopf algebras

(1.2) k −→ kΓ −→ H −→ kG −→ k ,

where G and Γ are finite groups which, a fortiori, form a matched pair (G, Γ ). This class of
Hopf algebras, as well as its generalizations in different contexts, has been intensively studied
in the literature.

We show that the representation category of an abelian extension of finite dimensional
Hopf algebras fits into our construction. More precisely, we use the cohomological data de-
termining an abelian exact sequence as in (1.2) to provide the tensor category C(Γ ) of finite
dimensional Γ -graded vector spaces with a (G, Γ )-crossed action, such that the outcoming
tensor category C(G,Γ ) is strictly equivalent to the tensor category of finite dimensional repre-
sentations of H .

Along this paper k will be an algebraically closed field. Our discussion focuses on the
framework of tensor categories over k. Several pertinent definitions and facts about tensor cat-
egories are recalled in Subsection 2.2. We refer the reader to [1], [6], for a detailed treatment
of the subject.
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The contents of the paper are organized as follows. In Section 2 we overview the distinct
concepts and basic facts on the main structures entering into the picture: matched pairs of
groups, tensor categories and their module categories, Hopf monads on tensor categories and
their relation with the notion of exact sequences of tensor categories. In Section 3 we discuss
the main ingredients in our construction, namely, group actions on k-linear abelian categories
and the related equivariantization process on one side, and group gradings on tensor categories
on the other side. In Section 4 we define crossed actions of matched pairs on tensor categories.
In Section 5 we present the main construction of the paper, that is, we prove here that every
crossed action gives rise to a tensor category. The main general properties of this tensor
category are studied in Section 6. In Section 7 we introduce (G, Γ )-crossed braidings and
prove that a (G, Γ )-crossed tensor category equipped with a (G, Γ )-crossed braiding gives
rise to a braided tensor category. In Section 8 we give examples of the main constructions
from G-crossed categories and abelian extensions of Hopf algebras.

Acknowledgement. This paper was partly written during a research stay in the University of Ham-
burg. The author thanks the Humboldt Foundation, C. Schweigert and the Mathematics Department of
U. Hamburg for the kind hospitality.

2. Preliminaries.
2.1. Matched pairs of groups. A matched pair of groups is characterized by the

existence of a group H endowed with an exact factorization into subgroups isomorphic to G
and Γ , respectively. That is, H is a group containing subgroups G̃ ∼= G and Γ̃ ∼= Γ , such
that

H = G̃ Γ̃ , Γ̃ ∩ G̃ = {e} .
In fact, if (G, Γ ) is a matched pair, then there is a group structure, denotedG � Γ in the

cartesian productG× Γ , defined by

(g, s)(h, t) = (g(s � h) , (s � h)t) ,
for all g, h ∈ G, s, t ∈ Γ . Conversely, given such a group H , we may identify G and Γ
with subgroups of H . In this way the actions � : Γ × G → Γ and � : Γ × G → G are
determined by the relations

sg = (s � g)(s � g) ,

for all g ∈ G, s ∈ Γ .
Let (G, Γ ) be a matched pair of groups. Relations (1.1) imply that s � e = e and

e � g = e, for all s ∈ Γ , g ∈ G.
Using relations (1.1) it is also not difficult to show that the following conditions are

equivalent:

(i) The action �: Γ ×G −→ Γ is trivial.
(ii) The action �: Γ ×G −→ G is by group automorphisms.

If these conditions hold, then the groupG � Γ coincides with the semidirect productG�Γ .
Similarly, the conditions

(i’) The action �: Γ ×G −→ G is trivial.
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(ii’) The action �: Γ ×G −→ Γ is by group automorphisms.

are equivalent and, if they hold, then the groupG � Γ coincides with the semidirect product
G� Γ .

2.2. Tensor categories. Let C be a monoidal category. Recall that a right dual of an
object Y ∈ C is an object, denoted Y ∗, endowed with morphisms eY : Y ∗ ⊗ Y → 1 and
cY : 1→ Y ⊗ Y ∗ such that the compositions

Y
cY⊗id−→ Y ⊗ Y ∗ ⊗ Y id⊗eY−→ Y , Y ∗ id⊗cY−→ Y ∗ ⊗ Y ⊗ Y ∗ eY⊗id−→ Y ∗

coincide, respectively, with idY and idY ∗ . A left dual ∗Y of Y is an object of C endowed
with morphisms e′Y : Y ⊗ ∗Y → 1 and c′Y : 1 → ∗Y ⊗ Y subject to similar conditions.
Provided it exists, a right (respectively, left) dual of an object Y ∈ C is unique up to a unique
isomorphism. The category C is called rigid if every object of C has right and left duals.
See [1, Subsection 2.1].

A tensor category over k is a k-linear abelian rigid monoidal category C such that the
tensor product⊗ : C × C → C is k-bilinear and the following conditions are satisfied:

• C is locally finite, that is, every object of C has finite length and Hom spaces are finite
dimensional.
• The unit object 1 ∈ C is simple.

Note that since k is algebraically closed, then an object X of C is simple if and only if it is
scalar, that is, if and only if End(X) ∼= k.

If C is a tensor category over k, then the functor⊗ : C×C→ C is exact in both variables.
A tensor subcategory of a tensor category C is a full subcategory D of C which is closed

under the operations of taking tensor products, subobjects and dual objects (so in particular
1 ∈ D). A tensor subcategory is itself a tensor category with tensor product inherited from
that of C.

A finite tensor category over k is a tensor category C over k which satisfies either of the
following equivalent conditions:

• C has enough projective objects and finitely many simple objects.
• C has a projective generator, that is, an object P ∈ C such that the functor

HomC(P,−) is faithful exact.
• C is equivalent as a k-linear category to the category of finite dimensional represen-

tations of a finite dimensional k-algebra.

A fusion category over k is a semisimple finite tensor category over k.
Let G be a finite group. The category of finite dimensional representations of G over k

will be denoted by RepG. This is a finite tensor category over k; it is a fusion category if and
only if the characteristic of k does not divide the order of G.

All tensor categories in this paper will be assumed to be strict.
Let C,D be tensor categories over k. A k-linear exact strong monoidal functor F : C →

D will be called a tensor functor. Such functor is automatically faithful.
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A braided tensor category over k is a tensor category C endowed with a braiding, that is,
a natural isomorphism σ : ⊗ → ⊗op satisfying the following hexagon conditions:

σX,Y⊗Z = (idY ⊗σX,Z) (σX,Y ⊗ idZ) , σX⊗Y,Z = (σX,Z ⊗ idY ) (idX ⊗σY,Z) ,
for all X,Y,Z ∈ C.

A (left) module category over a tensor category C is a locally finite k-linear abelian
category M endowed with a bifunctor⊗ : C ×M→M, which is k-bilinear and exact, and
satisfies natural associativity and unit conditions.

A module category M is called indecomposable if it is not equivalent to a direct sum of
two nonzero module categories. It is called exact if for every projective object P ∈ C and for
every object M ∈M, P⊗M is a projective object of M. See [10].

It follows from [10, Proposition 2.1] that every tensor category C is an exact indecom-
posable module category over any tensor subcategory D with respect to the action D×C → C
given by the tensor product of C.

As a consequence of this fact, we obtain that a finite tensor category C is a fusion category
if and only if its unit object 1 is projective.

2.3. Hopf monads on tensor categories. Let C be a tensor category over k. Recall
that a monad on C is an endofunctorT of C endowed with natural transformationsμ : T 2 → T

and η : idC → T called, respectively, the multiplication and unit of T such that

(2.1) μXT (μX) = μXμT (X) , μXηT (X) = idT (X) = μXT (ηX) ,
for all objects X ∈ C.

The monad T is a bimonad if it is a comonoidal endofunctor of C such that the product
μ and the unit η are comonoidal transformations. That is, if the comonoidal structure of T is
given by natural transformations

T2(X, Y ) : T (X ⊗ Y )→ T (X)⊗ T (Y ) ,
X, Y ∈ C and T0 : T (1)→ 1, then, for all objectsX,Y ∈ C, we have

(2.2) T2(X, Y )μX⊗Y = (μX ⊗ μY )T2(T (X), T (Y ))T (T2(X, Y )) ,

(2.3) T0μ1 = T0T (T0) , T2(X, Y )ηX⊗Y = ηX ⊗ ηY , T0η1 = id1 .

A bimonad T is called a Hopf monad provided that the fusion operators
Hl : T (idC ⊗T )→ T ⊗ T and Hr : T (T ⊗ idC)→ T ⊗ T defined, for every X,Y ∈ C, by

Hl
X,Y := (idT (X)⊗μY ) T2(X, T (Y )) : T (X ⊗ T (Y ))→ T (X)⊗ T (Y ) ,

H r
X,Y := (μX ⊗ idT (Y )) T2(T (X), Y ) : T (T (X)⊗ Y )→ T (X)⊗ T (Y ) ,

are isomorphisms.
Let T be a k-linear right exact Hopf monad on C. Then the category CT of T -modules in

C is a tensor category over k.
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Recall that the objects of CT are pairs (X, r), where X is an object of C and r : T (X)→
X is a morphism in C, such that

rT (r) = rμX , rηX = idX .

If (X, r), (X′, r ′) ∈ CT , a morphism f : (X, r)→ (X′, r ′) is a morphism f : X → X′ in C
such that f r = r ′T (f ).

The tensor product of two objects (X, r), (X′, r ′) ∈ CT is defined by

(2.4) (X, r)⊗ (X′, r ′) = (X ⊗X′, (r ⊗ r ′)T2(X,X
′)) ,

and the unit object of CT is (1, T0). See [2], [3], [4, Proposition 2.3].
Moreover, in this situation, the forgetful functor F : CT → C, F(X, r) = X, is a strict

tensor functor. The functor F is dominant if and only if the Hopf monad T is faithful.
A quasitriangular Hopf monad on a tensor category C is a Hopf monad T equipped with

an R-matrix R, that is, R is a ∗-invertible natural transformation

RX,Y : X ⊗ Y → T (Y )⊗ T (X) , X, Y ∈ C ,
satisfying the following conditions, for all objects X,Y,Z ∈ C:

(2.5) (μX ⊗ μY )RTX,T Y T2(X, Y ) = (μX ⊗ μY )T2(T Y, T X)T (RX,Y ) ,

(2.6) (idT Z ⊗T2(X, Y ))RX⊗Y,Z = (μZ ⊗ idTX⊗T Y )(RX,T Z ⊗ idT Y )(idX⊗RY,Z) ,
(2.7) (T2(Y,Z) ⊗ idTX)RX,Y⊗Z = (idT Y⊗T Z ⊗μX)(idT Y ⊗RTX,Z)(RX,Y ⊗ idZ) .

The ∗-invertibility of R means that the natural morphisms

R#
(X,r),(Y,s) = (s ⊗ r)RX,Y : X ⊗ Y → Y ⊗X ,

are isomorphisms, for all objects (X, r), (Y, s) ∈ CT . See [2, Subsection 8.2].
In view of [2, Theorem 8.5], if T is a quasitriangular Hopf monad on C, then CT is a

braided tensor category with braiding σ(X,r),(Y,s) : (X, r)⊗ (Y, s)→ (Y, s)⊗ (X, r), defined
in the form σ(X,r),(Y,s) = (s ⊗ r)RX,Y .

2.4. Exact sequences of tensor categories. Let C, C ′′ be tensor categories over k. A
tensor functor F : C → C ′′ is called normal if every object X of C, there exists a subobject
X0 ⊂ X such that F(X0) is the largest trivial subobject of F(X).

If the functor F has a right adjoint R, then F is normal if and only if R(1) is a trivial
object of C [4, Proposition 3.5].

For a tensor functor F : C → C ′′, let KerF denote the tensor subcategory F−1(〈1〉) ⊆ C
of objects X of C such that F(X) is a trivial object of C ′′.

Let C ′, C, C ′′ be tensor categories over k. An exact sequence of tensor categories is a
sequence of tensor functors

(2.8) C ′ f �� C F �� C ′′
such that the tensor functor F is dominant and normal and the tensor functor f is a full
embedding whose essential image is KerF . See [4].
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The induced Hopf algebra H of the exact sequence (2.8) is defined as the coend of the
fiber functor ωF = HomC′′(1, Ff ) : C ′ → Veck . There is an equivalence of tensor categories
C ′ � comod-H . See [4, Subsection 3.3].

By [4, Theorem 5.8] exact sequences (2.8) with finite dimensional induced Hopf algebra
H are classified by normal faithful right exact k-linear Hopf monads T on C ′′, such that the
Hopf monad of the restriction of T to the trivial subcategory of C ′′ is isomorphic to H . Recall
that a k-linear right exact Hopf monad T on a tensor category C ′′ is called normal if T (1) is a
trivial object of C ′′.

3. Group actions and group gradings on k-linear and tensor categories. In this
section we discuss some facts on group actions and group gradings on k-linear and tensor
categories that will be used later on.

3.1. Group actions on k-linear abelian categories. Let G be a group and let C be a
k-linear abelian category.

Let G be the strict monoidal category whose objects are the elements of G and mor-
phisms are identities, with tensor product defined as the multiplication in G and unit object
e ∈ G. Let also AutC be the strict monoidal category whose objects are k-linear autoequiva-
lences of C, morphisms are natural transformations, with tensor product defined by composi-
tion of endofunctors and natural transformations and unit object idC .

Consider the strict monoidal categoryGop obtained fromG by reversing the tensor prod-
uct. That is, the underlying category of Gop is G, while the tensor product in Gop is defined
by g ⊗ h = hg , g, h ∈ G.

By a right action ofG on C by k-linear autoequivalences we shall understand a monoidal
functor ρ : Gop → AutC. That is, for every g ∈ G, we have a k-linear functor ρg : C → C
and natural isomorphisms

ρ
g,h
2 : ρgρh→ ρhg , g, h ∈ G,

and ρ0 : idC → ρe, satisfying

(3.1) (ρ
ba,c
2 )X (ρ

a,b
2 )ρc(X) = (ρa,cb2 )X ρ

a((ρ
b,c
2 )X) ,

(3.2) (ρ
a,e
2 )Xρ

a(ρ0X) = idρa(X) = (ρe,a2 )X(ρ0)ρa(X) ,

for all X ∈ C, a, b, c ∈ G.

3.2. Equivariantization. Let ρ : Gop → AutC be a right action of G on C by k-
linear autoequivalences. A G-equivariant object is a pair (X, r), where X is an object of C
and r = (rg )g∈G is a collection of isomorphisms rg : ρgX→ X, g ∈ G, satisfying

(3.3) rgρg (rh) = rhg (ρg,h2 )X , ∀g, h ∈ G, reρ0X = idX .

A G-equivariant morphism f : (X, r) → (Y, r ′) is a morphism f : X → Y in C such that
f rg = r ′gρg (f ), for all g ∈ G.
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The category of G-equivariant objects and morphisms is a k-linear abelian category,
denoted CG, called the equivariantization of C under the action ρ.

Suppose that G is a finite group. Let T ρ : C → C be the endofunctor of C defined
by T ρ = ⊕

g∈G ρg . Then T ρ is a k-linear exact monad on C with multiplication μ :
T ρ2 = ⊕

g,h∈G ρgρh →
⊕

g∈G ρg = T ρ , given componentwise by the isomorphisms

ρ
g,h
2 : ρgρh → ρhg , and unit η = ρ0 : idC → ρe → T ρ .

Since the unit η of T ρ is a monomorphism, then T ρ is a faithful endofunctor of C [4,
Lemma 2.1].

Extending the terminology of [4], we shall call T ρ the monad of the group action ρ.
(Note however, that the group actions considered loc. cit. are by tensor autoequivalences on
tensor categories.)

The canonical isomorphisms

HomC(
⊕

g∈G
ρg (X),X) ∼=

∏

g∈G
HomC(ρg (X),X) ,

X ∈ C, induce an equivalence of categories over C between the category CT ρ of T ρ -modules
in C and the equivariantization CG. See [4, Subsection 5.3].

REMARK 3.1. Suppose that C is a tensor category. Assume in addition that the action
of G is given by tensor autoequivalences of C, that is, the endofunctor ρg is a tensor functor,
for all g ∈ G, and ρg,h2 : ρgρh → ρhg , ρ0 : idC → ρe are natural isomorphisms of monoidal
functors.

Then T ρ is Hopf monad on C with comonoidal structure

T2(X, Y ) :
⊕

g∈G
ρg (X ⊗ Y )→

⊕

g,g ′∈G
ρg (X)⊗ ρg (Y ) ,

and T0 :⊕g∈G ρg (1)→ 1, given componentwise by the monoidal structure ρg2 : ρg ◦ ⊗ →
ρg ⊗ ρg and ρg0 : ρg (1)→ 1 of the functors ρg , g ∈ G.

Thus the equivariantization CG is a tensor category with tensor product defined by the
formula

(3.4) (X, r)⊗ (X′, r ′) = (X ⊗X′, (r ⊗ r ′)(ρ2)X,X′) .

In addition, if C is a finite tensor category, then so is CG. If C is a fusion category and the
characteristic of k does not divide the order of G, then CG is also a fusion category.

Furthermore, T ρ is a normal cocommutative Hopf monad on C and the forgetful functor
F : CG→ C gives rise to a central exact sequence of tensor categories

(3.5) RepG −→ CG −→ C .

See [4, Corollary 2.22], [5, Example 2.5].
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3.3. Group gradings on tensor categories. Let G be a group and let C be a tensor
category over k. Let

(3.6) C =
⊕

g∈G
Cg ,

be aG-grading on C. That is, for every g ∈ G, Cg is a full subcategory of C and the following
conditions hold:

• For every object X of C we have a decomposition X ∼=⊕
g∈G Xg , where Xg ∈ Cg ,

for all g ∈ G.
• For all X ∈ Cg , Y ∈ Ch, g �= h ∈ G, we have HomC(X, Y ) = 0.
• Cg ⊗ Ch ⊆ Cgh, for all g, h ∈ G.

The subcategories Cg , g ∈ G, are called the homogeneous components of the grading. A
G-grading (3.6) is called faithful if Cg �= 0, for all g ∈ G.

Let C = ⊕
g∈G Cg and D = ⊕

g∈GDg be G-graded k-linear abelian categories. A
functor F : C → D will be called a G-graded functor if F(Cg) ⊆ Dg , for all g ∈ G.

LEMMA 3.2. Let F : C → D be a G-graded functor between G-graded k-linear
abelian categories categories C, D. Suppose F is dominant. Then, for all g ∈ G, F induces
by restriction a dominant functor F : Cg → Dg .

PROOF. Let g ∈ G and let Y be any object of Dg . Since F is dominant, there existsX ∈
C such that Y is a subobject of F(X). LetX ∼=⊕

h∈G Xh be decomposition ofX into a direct
sum of homogeneous objectsXh ∈ Ch. Since F is aG-graded functor,F(X) ∼=⊕

h∈G F(Xh)
is a decomposition of F(X) into a direct sum of homogeneous objects F(Xh) ∈ Dh. Then Y
must be a subobject of F(Xg ), because HomD(Y, F (Xh)) = 0, for all h �= g . This proves the
lemma. �

REMARK 3.3. Let C be a G-graded tensor category. Since the unit object 1 is simple,
then it is isomorphic to an object of Ce. Without loss of generality, we shall assume that 1
belongs to Ce.

Suppose Y ∈ Cg is a nonzero homogeneous object. Let Y ∗ and ∗Y be, respectively, a
right and a left dual of Y (see Subsection 2.2). Then Y ∗ and ∗Y are isomorphic to objects of
Cg−1 . In fact, suppose that h �= g−1 ∈ G and let X ∈ Ch. We have an isomorphism

HomC(X, Y ∗) = HomC(X,1⊗ Y ∗) ∼= HomC(X ⊗ Y,1) ,
by [1, Lemma 2.1.6]. Hence HomC(X, Y ∗) = 0 because X⊗ Y ∈ Chg and hg �= e. Similarly
one can see that HomC(X,∗ Y ) = 0. Therefore we shall also assume without loss of generality
that the duals of an object of Cg have been chosen so that they belong to Cg−1.

PROPOSITION 3.4. Let C be a G-graded tensor category. Then the neutral homoge-
neous component D = Ce is a tensor subcategory of C. Besides, every homogeneous compo-
nent Cg , g ∈ G, is an indecomposable exact left (and right) module category with the action
given by the tensor product of C.
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PROOF. In view of Remark 3.3, D contains the unit object and is closed under the
operations of taking duals. This implies that D is a tensor subcategory of C.

Let now g ∈ G. By the definition of aG-grading we haveD⊗Cg ⊆ Cg , and Cg⊗D ⊆ Cg .
Therefore Cg is both a left and right module subcategory of C over the tensor subcategory D.
Since C is an exact module category over D, then so is Cg .

It remains to prove the indecomposability of Cg . We may assume that Cg �= 0. Let X,Y
be any nonzero objects of Cg . Again in view of Remark 3.3, we get that Z = Y ∗ ⊗X ∈ D.

Observe that the functor − ⊗ X : C → C is faithful exact. Then, since by rigidity
HomC(1, Y ⊗Y ∗) �= 0, we obtain that HomC(X, Y ⊗Z) = HomC(X, Y ⊗Y ∗ ⊗X) �= 0. This
implies that Cg is indecomposable as a right module category over D. Indecomposability as a
left module category is shown similarly. This finishes the proof of the proposition. �

COROLLARY 3.5. Suppose G is a finite group. Let C be a G-graded tensor category
with neutral homogeneous component D. Then C is a finite tensor category (respectively, a
fusion category) if and only if so is D.

PROOF. Any tensor subcategory of a finite tensor category (respectively, of a fusion
category) is itself a finite tensor category (respectively, a fusion category). Then we only need
to show the ‘if’ direction.

Suppose first that D is a finite tensor category. Let P ∈ D be a projective generator, that
is P is an object of D such that the functor HomD(P,−) is faithful exact. Since the group
G is finite, it will be enough to show that every homogeneous component is a finite k-linear
abelian category.

Let g ∈ G such that Cg �= 0. Note that since C is a tensor category, then Cg is locally finite
(that is, it has finite dimensional hom spaces and every object has finite length). Therefore it
will be enough to show that Cg has a projective generator. LetX0 ∈ Cg be any nonzero object.

By exactness of the left D-module category Cg , P ⊗ X0 is a projective object of Cg .
Hence the functor HomCg (P ⊗ X0,−) = HomC(P ⊗X0,X) is exact. In addition, using the
rigidity of C, we get for all X ∈ Cg a natural isomorphism

HomC(P ⊗X0,X) ∼= HomC(P,X ⊗X∗0) = HomD(P,X ⊗X∗0) .

Since both functors HomD(P,−) and−⊗X∗0 are faithful, then HomCg (P⊗X0,−) is faithful.
Hence P ⊗X0 is a projective generator of Cg . Thus we obtain that C is a finite tensor category.

Suppose next that D is a fusion category. In particular it is a finite tensor category and
hence so is C, by the previous part. Since C is an exact module category over D, then C is
semisimple (see [10, Example 3.3]). Hence C is also a fusion category, as claimed. �

REMARK 3.6. Suppose k is of characteristic zero. Let C be a fusion category over k.
Group gradings on C were classified in [9].

By [8, Proposition 2.9], C admits a faithful G-grading if and only if its Drinfeld center
Z(C) contains a Tannakian subcategory E such that E ∼= RepG as symmetric categories and
E is contained in the kernel of the forgetful functor U : Z(C)→ C.
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Observe that endowing C with aG-grading is equivalent to providing a map ∂ : Irr(C)→
G such that ∂(Z) = ∂(X)∂(Y ), for all simple objectsX, Y andZ of C such that HomC(Z,X⊗
Y ) �= 0.

The grading corresponding to a Tannakian subcategory E ∼= RepG of the center of C
is defined as follows. Let X be an object of C and let (V , σ ) ∈ E . Then U(V, σ) = V is a
trivial object of C and thus it is equipped with a trivial half-brading τX,V : X⊗ V → V ⊗X.
Composing with the braiding σ this gives an isomorphism τX,V σV,X : V ⊗X→ V ⊗X.

Let X be a simple object of C. Using that σ is a braiding, we obtain in this way a natural
automorphism of tensor functors U |E → U |E . This is the same as an element g ∈ G, since
U |E is a fiber functor on E . This defines a map ∂ : Irr(C)→ G, which is seen to beG-grading
using the hexagon axiom for the braiding of the center.

It follows from [7, Proposition 8.20] that if C is a fusion category endowed with a faithful
G-grading, then FPdim C = |G| FPdimD.

4. (G, Γ )-crossed actions on tensor categories. Let C be a tensor category over k
and let (G, Γ ) be a matched pair of groups.

DEFINITION 4.1. A (G, Γ )-crossed action on the tensor category C consists of the
following data:

• A Γ -grading on C: C =⊕
s∈Γ Cs .

• A right action of G on C by k-linear autoequivalences ρ : Gop→ Aut(C) such that

(4.1) ρg (Cs) = Cs�g , ∀g ∈ G, s ∈ Γ .
• A collection of natural isomorphisms γ = (γ g )g∈G:

(4.2) γ
g
X,Y : ρg (X ⊗ Y )→ ρt�g (X)⊗ ρg (Y ) , X ∈ C, t ∈ Γ, Y ∈ Ct .

• A collection of isomorphisms γ g0 : ρg (1)→ 1, g ∈ G.

These data are subject to the commutativity of the following diagrams:

(a) For all g ∈ G, X ∈ C, s, t ∈ Γ , Y ∈ Cs , Z ∈ Ct ,

ρg(X ⊗ Y ⊗ Z) γ
g
X⊗Y,Z ��

γ
g
X,Y⊗Z

��

ρt�g(X ⊗ Y )⊗ ρg (Z)

γ
t�g
X,Y ⊗idρg (Z)

��
ρst�g(X)⊗ ρg (Y ⊗ Z)

idρst�g (X)⊗γ gY,Z
�� ρs�(t�g)(X)⊗ ρt�g(Y )⊗ ρg (Z)

(b) For all g ∈ G, X ∈ C,

ρg (X)⊗ ρg (1)

idρg (X)⊗γ g0 ����
���

���
���

���
� ρg (X)

γ
g
X,1��

=
��

γ
g
1,X �� ρg (1)⊗ ρg (X)

γ
g
0 ⊗idρg (X)�����

���
���

���
���

ρg (X)
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(c) For all g, h ∈ G, X ∈ C, s ∈ Γ , Y ∈ Cs ,

ρgρh(X ⊗ Y )

ρg (γ hX,Y )

��

ρ2
g,h
X⊗Y �� ρhg (X ⊗ Y )

γ
hg
X,Y

��
ρs�hg(X)⊗ ρhg (Y )

ρg (ρs�h(X)⊗ ρh(Y ))
γ
g

ρs�h(X),ρh(Y )

�� ρ(s�h)�gρs�h(X)⊗ ρgρh(Y )

ρ2
(s�h)�g,s�h
X ⊗ρ2

g,h
Y

��

(d) For all g, h ∈ G,

ρgρh(1)

ρg (γ h0 )

��

(ρ
g,h
2 )1 �� ρhg (1)

γ
hg
0

��
ρg (1)

γ
g
0

�� 1

(e) For all X ∈ C, s ∈ Γ , Y ∈ Cs ,

X ⊗ Y

ρ0X⊗ρ0Y
����

���
���

���
���

�
ρ0X⊗Y �� ρe(X ⊗ Y )

γ eX,Y

��
ρe(X)⊗ ρe(Y )

1

=
����

��
���

���
��

���
ρ01 �� ρe(X ⊗ Y )

γ e0

��
1

We shall say that C is a (G, Γ )-crossed tensor category if it is endowed with a (G, Γ )-
crossed action.

REMARK 4.2. Recall that s � e = e, for all s ∈ Γ . Thus conditions (a) and (b) in the
definition of a (G, Γ )-crossed tensor category imply that ρe : C → C is a monoidal functor
with monoidal structure γ eX,Y : ρe(X⊗Y )→ ρe(X)⊗ρe(Y ),X,Y ∈ C, and γ e0 : ρe(1)→ 1.

Commutativity of the diagrams in condition (e) amounts to the requirement that the nat-
ural isomorphism ρ0 : idC → ρe is a monoidal isomorphism.

REMARK 4.3. Suppose that G and Γ are groups endowed with mutual actions by

permutations Γ
�←− Γ × G �−→ G. Let C = ⊕

s∈Γ Cs be a Γ -graded tensor category
over k and let ρ : Gop → Aut(C) be a right action of G on C by k-linear autoequivalences
satisfying (4.1), and such that there exists a collection of natural isomorphisms γ = (γ g )g∈G
as in (4.2), satisfying condition (c).
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LEMMA 4.4. Assume that the Γ -grading on C is faithful and that the action ρ :
Gop → Aut(C) is faithful, that is, ρg ∼= ρe if and only if g = e. Then the actions �, �
make (G, Γ ) into a matched pair of groups.

Note that the faithfulness of ρ holds for instance if the action � : Γ × G −→ Γ is
faithful: in fact, if g ∈ G is such that ρg ∼= ρe then, since the Γ -grading is faithful, we get
from (4.1) that s � g = s, for all s ∈ Γ . Hence g = e.

PROOF. Let s, t ∈ Γ , g ∈ G. For all objects X ∈ Ct , Y ∈ Cs , we have X ⊗ Y ∈ Ct s .
Then, by (4.1), ρg (X ⊗ Y ) ∈ Ct s�g . On the other hand, under the isomorphism γ g ,

ρg (X ⊗ Y ) ∼= ρs�g(X)⊗ ρg (Y ) ∈ Ct�(s�g) ⊗ Cs�g ⊆ C(t�(s�g))(s�g) .

Since, by assumption, the Γ -grading on C is faithful, we may take X and Y to be nonzero
objects. Hence we obtain

ts � g = (t � (s � g))(s � g) , for all s, t ∈ Γ, g ∈ G .
Let now g, h ∈ G, s ∈ Γ , and let X,Y be objects of C such that Y ∈ Cs and Y �= 0. The

right hand side of (c) defines a natural isomorphism ρgρh(X ⊗ Y )→ ρs�hg(X) ⊗ ρhg (Y ).
On the other hand, the left hand side of (c) defines a natural isomorphism

ρgρh(X ⊗ Y )→ ρ(s�h)((s�h)�g)(X)⊗ ρhg (Y ) .
Since the tensor product of C is a faithful functor in each variable, we get a natural isomor-
phism ρs�hg ∼= ρ(s�h)((s�h)�g). Because of faithfulness of the action ρ, we obtain

s � hg = (s � h)((s � h)� g) ,

for all s ∈ Γ , g, h ∈ G. Therefore (G, Γ ) is matched pair of groups, as claimed. �

5. The category C(G,Γ ). Let C be a (G, Γ )-crossed tensor category. Since the group
G acts on C by k-linear autoequivalences, we may consider the equivariantization CG, which
is a k-linear abelian category.

Let (X, r) be an equivariant object. That is, rg : ρg (X)→ X are isomorphisms, for all
g ∈ G, satisfying the relations (3.3). Let X ∼=⊕

s∈Γ Xs be a decomposition of X as a direct
sum of homogeneous objects Xs ∈ Cs , s ∈ Γ .

Condition (4.1) implies that, for all g ∈ G, s ∈ Γ , rg induces by restriction an isomor-
phism r

g
s : ρg (Xs)→ Xs�g .

THEOREM 5.1. Let C be a (G, Γ )-crossed tensor category. Then the equivariantiza-
tion of C under the action ρ is a tensor category over k with tensor product defined as follows:

(5.1) (X, r)⊗ (Y, r ′) = (X ⊗ Y, r̃),
and unit object (1, (ρg1)g∈G), where, for all g ∈ G, r̃g is defined as the composition

⊕

s∈Γ
ρg (X ⊗ Ys)

⊕sγ gX,Ys−→
⊕

s∈Γ
ρs�g (X)⊗ ρg (Ys) ⊕s r

s�g⊗r ′gs−→
⊕

s∈Γ
X ⊗ Ys�g = X ⊗ Y ,

for Y = ⊕s∈Γ Ys , Ys ∈ Cs .
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Observe that the action of G on C is not necessarily by tensor autoequivalences. There-
fore the equivariantization CG is not a tensor category with the tensor product defined by
formula (3.4). The tensor category in Theorem 5.1 will be indicated by C(G,Γ ) to emphasize
this distinction.

PROOF. Consider the endofunctor T = ⊕
g∈G ρg of C defined by the action of G.

Then T is a k-linear exact faithful endofunctor of C. Moreover, T is a monad on C with
multiplication μ : T 2 → T and unit η : idC → T induced, respectively, by the morphisms
ρ
g,h
2 , g, h ∈ G, and ρe. See Subsection 3.2.

The natural isomorphisms

γ
g
X,Y : ρg (X ⊗ Y )→ ρs�g (X)⊗ ρg (Y ) , g ∈ G, X ∈ C, Y ∈ Cs ,

induce canonically a natural transformation

T2(X, Y ) : T (X ⊗ Y ) =
⊕

g∈G
ρg (X ⊗ Y )→

⊕

g,h∈G
ρg (X)⊗ ρh(Y ) = T (X)⊗ T (Y ) ,

X, Y ∈ C. Similarly, the morphisms γ g0 : ρg(1)→ 1 induce a morphism

T0 : T (1) =
⊕

g∈G
ρg (1)→ 1 .

Conditions (a) and (b) in Definition 4.1 imply that T is a comonoidal endofunctor of C with
comonoidal structure given by T2 and T0. Conditions (c), (d) and (e) imply that μ : T 2 → T

and η : idC → T are comonoidal transformations, that is, they satisfy the relations (2.2)
and (2.3). Hence T is a bimonad on C.

We claim that T is a Hopf monad on C. This will entail that C(G,Γ ) is a tensor category
with the prescribed structure since, by the definition of the tensor product of C(G,Γ ) given
in (5.1), it coincides with the one given by formula (2.4) for the tensor product in the category
CT of T -modules in C.

According to the results in [3, Section 2], to establish the claim it will be enough to
show that the fusion operatorsHl and Hr of T are isomorphisms. Recall that Hl and Hr are
defined, respectively, by

Hl
X,Y = (idT (X)⊗μY ) T2(X, T (Y )) : T (X ⊗ T (Y ))→ T (X)⊗ T (Y ) ,

H r
X,Y = (μX ⊗ idT (Y )) T2(T (X), Y ) : T (T (X)⊗ Y )→ T (X)⊗ T (Y ) .

Let X be any object of C. For every homogenous object Y ∈ Cs , s ∈ Γ , the operator

Hr
X,Y :

⊕

g,h∈G
ρg (ρh(X)⊗ Y )→

⊕

g,h∈G
ρg (X)⊗ ρh(Y ) ,

is given componentwise by the composition of isomorphisms

(ρ
s�g,h
2 ⊗ idρg (Y )) γ

g
ρh(X),Y

: ρg (ρh(X)⊗ Y )→ ρh(s�g)(X)⊗ ρg (Y ) .
Since the map G × G → G × G, (g, h) �→ (h(s � g), g), is bijective for any s ∈ Γ , then
Hr
X,Y is an isomorphism. ThereforeHr

X,Y is an isomorphism for all Y ∈ C.
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Similarly, if X is any object of C and Y ∈ Cs is a homogeneous object, s ∈ Γ , then

Hl
X,Y :

⊕

g,h∈G
ρg (X ⊗ ρh(Y ))→

⊕

g,h∈G
ρg (X)⊗ ρh(Y ) ,

is given componentwise by the composition of isomorphisms

(idρ(s�h)�g (X)⊗ρg,h2 ) γ
g
X,ρh(Y )

: ρg (X ⊗ ρh(Y ))→ ρ(s�h)�g(X)⊗ ρhg (Y ) .

We conclude as before thatHl
X,Y is an isomorphism for all Y ∈ C. Indeed, to see that for each

s ∈ Γ the mapG×G→ G×G, (g, h) �→ ((s�h)�g, hg), is bijective, we argue as follows:
the composition of this map with the bijection idG×(s � −) : G × G → G × G gives the
map (g, h) �→ ((s � h)� g, s � hg). Using the compatibility condition in (1.1), the last map
is bijective with inverse (u, v) �→ ((s � (s−1 � vu−1))−1 � u, s−1 � vu−1). Therefore T is a
Hopf monad, and thus C(G,Γ ) = CT is a tensor category, as claimed. �

6. Main properties. In this section we study the structure of the tensor category
C(G,Γ ) arising from a (G, Γ )-crossed tensor category for a general matched pair of finite
groups (G, Γ ).

THEOREM 6.1. Let C be a (G, Γ )-crossed tensor category and let C(G,Γ ) be the cate-
gory defined by Theorem 5.1. Then the forgetful functor F : C(G,Γ ) → C, F(X, r) = X, gives
rise to a perfect exact sequence of tensor categories

(6.1) RepG −→ C(G,Γ ) F−→ C ,
with induced Hopf algebra H ∼= kG.

PROOF. By construction, C(G,Γ ) = CT , where T = ⊕
g∈G ρg is the Hopf monad as-

sociated to the (G, Γ )-crossed tensor category structure on C. Moreover, the functor F :
C(G,Γ ) → C coincides with the forgetful functor CT → C. Since T is a faithful exact endo-
functor of C, then the functor F : C(G,Γ ) → C is a dominant tensor functor [4, Lemma 2.1 and
Proposition 2.2]. The left exactness of T implies that the functor F has an exact left adjoint;
then F is a perfect tensor functor.

Furthermore, the isomorphisms γ
g
0 , g ∈ G, induce an isomorphism T (1) =⊕

g∈G ρg (1) ∼= 1G. Hence T (1) is a trivial object of C, and therefore T is a normal Hopf
monad on C. In view of [4, Theorem 4.8], the functor F induces an exact sequence of tensor
categories

comod-H −→ C(G,Γ ) F−→ C ,
where H is the induced Hopf algebra of T , that is, H is the induced Hopf algebra of the
restriction of T to the trivial subcategory of C [4, Remark 5.5]. As in the proof of [4, Theorem
5.21], the restriction of T to the trivial subcategory 〈1〉 of C is isomorphic to the Hopf monad
of the trivial action of G on 〈1〉 and therefore H ∼= kG. Thus we obtain the perfect exact
sequence (6.1). This finishes the proof of the theorem. �
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We shall denote Supp C ⊆ Γ the support of C, that is,

Supp C = {s ∈ Γ | Cs �= 0} .
Since the functor ⊗ is faithful in each variable, Supp C is a subgroup of Γ . Moreover, rela-
tion (4.1) implies that SuppC is stable under the action � of G on Γ .

PROPOSITION 6.2. Let C be a (G, Γ )-crossed fusion category and let D = Ce be the
neutral component of C with respect to the associated Γ -grading. Then we have:

(i) The category C(G,Γ ) is a finite tensor category if and only if D is a finite tensor
category.

(ii) The category C(G,Γ ) is a fusion category if and only if D is a fusion category and the
characteristic of k does not divide the order of G. If this is the case, then we have

FPdim C(G,Γ ) = |G|| SuppC| FPdimD .
PROOF. (i) Assume that C(G,Γ ) is a finite tensor category. Since the forgetful functor

C(G,Γ )→ C is a dominant tensor functor, then C is a finite tensor category and therefore so is
D.

Assume, on the other direction, that D is a finite tensor category. By Corollary 3.5, C is a
finite tensor category. By construction C(G,Γ ) ∼= CT , where T is a faithful exact k-linear Hopf
monad on C. Then it follows from [18, Lemma 3.5] that C(G,Γ ) is a finite tensor category as
well.

(ii) Assume that D is a fusion category and the characteristic of k does not divide the
order of G. By Corollary 3.5, C is also a fusion category. In addition kG is a cosemisimple
Hopf algebra and therefore RepG = comod-kG is a fusion category too. It follows from [4,
Corollary 4.16] that C(G,Γ ) is a fusion category.

Conversely, assume that C(G,Γ ) is a fusion category. Then, by part (i), C is a finite tensor
category. Consider the forgetful functor F : C(G,Γ ) → C. Since F is a dominant tensor
functor, then it maps projective objects of C(G,Γ ) to projective objects of C, by [10, Theorem
2.5]. Since F(1) ∼= 1, and 1 is a projective object of C(G,Γ ), then 1 is a projective object of C
and hence C is a fusion category. Therefore so is its tensor subcategory D.

In this case, it follows from [4, Proposition 4.10] that

FPdim C(G,Γ ) = FPdim(RepG) FPdim C = |G|| SuppC| FPdimD ,
the last equality because C is faithfully graded by Supp C with neutral component D; see [7,
Proposition 8.20]. �

PROPOSITION 6.3. Let C be a (G, Γ )-crossed tensor category. Then the following
statements are equivalent:

(i) The exact sequence (6.1) is an equivariantization exact sequence.
(ii) The action � : SuppC ×G −→ G is trivial.

(iii) The action � : SuppC ×G −→ Supp C is by group automorphisms.
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In Subsection 8.1 we shall further discuss (G, Γ )-crossed tensor categories satisfying
the equivalent conditions in this proposition.

PROOF. Since SuppC is a G-stable subgroup of Γ , then (SuppC,G) is a matched pair
by restriction. As pointed out in Subsection 2.1, the action � is trivial if and only if � is an
action by group automorphisms. Then (ii) and (iii) are equivalent.

Suppose that the action � : Γ ×G −→ G is trivial. Conditions (a) and (b) imply that, for
all g ∈ G, ρg is a tensor functor with tensor structure determined by γ g0 and the isomorphisms
γ g in (4.2). Moreover, condition (c) becomes in this case

(6.2) ((ρ
g,h
2 )X ⊗ (ρg,h2 )Y ) γ

g
ρh(X),ρh(Y )

ρg (γ hX,Y ) = γ hgX,Y (ρg,h2 )X⊗Y ,

for all g, h ∈ G and for all Y ∈ C. Combining this with condition (d), we obtain that
ρ
g,h
2 : ρgρh → ρhg are isomorphisms of tensor functors. Therefore ρ is an action by tensor

autoequivalences. Furthermore, the definition of tensor product in Theorem 5.1 reduces in
this case to the usual tensor product (3.4) in the equivariantization CG. Hence (ii) implies (i).

Suppose that the exact sequence RepG −→ C(G,Γ ) −→ C is an equivariantization
exact sequence. Then, by [4, Theorem 5.21], the normal Hopf monad T = ⊕

g∈G ρg is
cocommutative, that is, for every morphism f : T (1) → 1 and for every object X ∈ C, we
have

(6.3) (idT (X)⊗f ) T2(X,1) = (f ⊗ idT (X)) T2(1,X) : T (X)→ T (X) .

Let s ∈ Γ , g ∈ G. Restricting both morphisms of (6.3) to ρg (X) ⊆ T (X), X ∈ Cs , we get
the commutativity of the following diagram:

ρg (X)

γ
g
1,X

��

γ
g
X,1 �� ρg (X)⊗ ρg (1)

id⊗f |ρg (1)
��

ρs�g(1)⊗ ρg (X)
f |ρs�g (1)⊗id

�� ρg (X) ,

for all g ∈ G and for all morphisms f : T (1)→ 1.
We may apply this to the morphism f = γ

g
0 πg , where πg is the canonical projection

πg : T (1) =⊕
h∈G ρh(1)→ ρg (1). If s � g �= g , then f |ρs�g (1) = 0.

On the other hand, (id⊗f ) γ gX,1 = idρg (X) : ρg (X)→ ρg (X), by condition (b).
Hence, if s ∈ SuppC, we may choose 0 �= X ∈ Cs , and thus we obtain s � g = g . This

shows that (i) implies (ii) and finishes the proof of the proposition. �

Observe that if (G, Γ ) is any matched pair, where Γ = Z2 is the cyclic group of order
2, then the action � : Γ ×G→ Γ is necessarily trivial. As a consequence of Proposition 6.3
we obtain the following:

COROLLARY 6.4. Let C be a (G, Γ )-crossed tensor category, where Γ ∼= Z2. Then
the exact sequence RepG −→ C(G,Γ ) −→ C is an equivariantization exact sequence. �
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Suppose that Γ̃ is a subgroup of Γ . Then the subcategory CΓ̃ =
⊕

s∈Γ̃ Cs is a tensor
subcategory of C.

PROPOSITION 6.5. Let Γ̃ be a subgroup of Γ stable under the action� ofG. Then the
actions � and � induce by restriction a matched pair (G, Γ̃ ). The category CΓ̃ is a (G, Γ̃ )-
crossed tensor category by restriction and there is a strict embedding of tensor categories

C(G,Γ̃ )
Γ̃

→ C(G,Γ ).
PROOF. Since Γ̃ is stable under the action �, it is clear that (G, Γ̃ ) is a matched pair.

Condition (4.1) implies that CΓ̃ is stable under the action ρ. It is immediate that the natural
Γ̃ -grading and the restriction of ρ make C

Γ̃
into a (G, Γ̃ )-crossed tensor category. Finally,

the embedding CΓ̃ → C induces a strict embedding of tensor categories C(G,Γ̃ )
Γ̃

→ C(G,Γ ). �
REMARK 6.6. It follows from Definition 4.1 that the neutral homogeneous compo-

nent Ce of C is a G-stable tensor subcategory. Furthermore, the action of G on C restricts
to an action of G on Ce by tensor autoequivalences. Therefore F−1(Ce) ⊆ C(G,Γ ) is a ten-
sor subcategory containing RepG, and in fact F−1(Ce) ∼= CGe is an equivariantization tensor
category.

More generally, let Γ ⊆ Γ be the subgroup defined as

Γ = {s ∈ Γ | s � g = g, ∀g ∈ G} .
Let CΓ be the tensor subcategory of C corresponding to the subgroup Γ , that is, CΓ =⊕

s∈Γ Cs .
It follows from the relations (1.1) that Γ is a G-stable subgroup of Γ . Let C(G,Γ )

Γ
be the

tensor subcategory in Proposition 6.5. Since Γ acts trivially onG, Proposition 6.3 gives us:

COROLLARY 6.7. Then the induced exact sequence RepG −→ C(G,Γ )
Γ

−→ CΓ is an
equivariantization exact sequence. �

The following proposition and its corollary are dual to Proposition 6.3 and Corollary 6.7.

PROPOSITION 6.8. Let C be a (G, Γ )-crossed tensor category. Then the following
statements are equivalent:

(i) The category C(G,Γ ) admits a Γ -grading such that the forgetful functorF : C(G,Γ ) →
C is a Γ -graded tensor functor.

(ii) The action � : SuppC ×G −→ Supp C is trivial.
(iii) The action � : SuppC ×G −→ G is by group automorphisms.

PROOF. The equivalence of (ii) and (iii) follows from relations (1.1). We shall show
that (i) is equivalent to (ii).

Assume (ii). For every s ∈ Γ , let C(G,Γ )s denote the full subcategory of C(G,Γ ) of all
objects (X, r) ∈ C(G,Γ ) such that X ∈ Cs . If (X, r) ∈ C(G,Γ )s and (X′, r ′) ∈ C(G,Γ )t , s, t ∈ Γ ,
then (X, r)⊗(X′, r ′) = (X⊗X′, r ′′) is an object of C(G,Γ )st , because Cs⊗Ct ⊆ Cst . In addition,
if s �= t , then HomC(X,X′) = 0 and therefore we obtain HomC(G,Γ ) ((X, r), (X′, r ′)) = 0.
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Let now (X, r) be any object of C(G,Γ ). Then, for all g ∈ G, rg : ρg (X) → X is an
isomorphism in C. We have a decomposition X ∼=⊕

s∈Γ Xs , where Xs ∈ Cs , for all s ∈ Γ .
In view of condition (4.1), rg induces by restriction an isomorphism r

g
s : ρg (Xs)→ Xs , for

all g ∈ G, s ∈ Γ , because the action � of G on SuppC is trivial by assumption. Moreover,
(Xs, rs) is an object of C(G,Γ ), where rs = {rgs }g∈G is the restriction of r to Xs , and thus
(X, r) ∼= ⊕

s∈Γ (Xs, rs) is a decomposition of (X, r) into a direct sum of objects (Xs, rs) ∈
C(G,Γ )s . This shows that C(G,Γ ) = ⊕

s∈Γ C(G,Γ )s is a Γ -grading in C(G,Γ ). Moreover, for all

(X, r) ∈ C(G,Γ )s , s ∈ Γ , we have F(X, r) = X ∈ Cs , that is, the functor F is a Γ -graded
tensor functor. Then we get (i).

Conversely, assume that (i) holds. Let s ∈ SuppC and let 0 �= Y ∈ Cs . Since F is a
dominant Γ -graded tensor functor, there exists (X, r) ∈ C(G,Γ )s such that Y ⊆ F(X, r) = X
and X ∈ Cs (see Lemma 3.2). In particular, X �= 0 and for all g ∈ G, rg : ρg (X) → X is
an isomorphism in C. It follows from condition (4.1) that s � g = s, for all g ∈ G. Since
s ∈ Supp C was arbitrary, we get (ii). This shows that (i) and (ii) are equivalent and finishes
the proof of the proposition. �

REMARK 6.9. The proof of (i)⇒ (ii) in Proposition 6.8 shows that in fact, if (X, r) is
an object of C(G,Γ ) such that X is a nonzero homogeneous object of C, then the homogeneous
degree of X is a fixed point of Γ under the action of G.

REMARK 6.10. Suppose that the action � : Supp C ×G −→ SuppC is trivial. Con-
sider the Γ -grading of CG,Γ given by Proposition 6.8. Observe that the neutral component
CG,Γe of this grading is the category F−1(Ce). Therefore CG,Γe

∼= DG is an equivariantiza-
tion tensor category with respect to the restriction of the action ρ to the tensor subcategory
D = Ce. See Remark 6.6.

Consider the trivial Γ -grading on RepG. Let us also quote that, in this context, the
induced exact sequence RepG −→ C(G,Γ ) −→ C is a Γ -graded exact sequence, that is, both
tensor functors involved are Γ -graded tensor functors.

Let Γ ⊆ Γ be the set of fixed points of Γ under the action of G. Then Γ is a G-stable
subgroup of Γ . Let CG,ΓΓ be the tensor subcategory of CG,Γ given by Proposition 6.5. Since
G acts trivially on the subgroup Γ , Proposition 6.8 implies the following (c.f. Remark 6.10):

COROLLARY 6.11. The tensor subcategory CG,ΓΓ is a Γ -graded tensor category with

neutral component DG, and with respect to the trivial Γ -grading on RepG, the induced exact

sequence RepG −→ C(G,Γ )Γ −→ CΓ is a Γ -graded exact sequence.

REMARK 6.12. Suppose that the neutral component D = Ce of C is a fusion category.
Then C(G,Γ ) is also a fusion category, by Proposition 6.2. Corollaries 6.7 and 6.11 imply

that the fusion subcategories C(G,Γ )
Γ

and C(G,Γ )Γ are, respectively, a G-equivariantization of a
group extension of D and a group extension of a G-equivariantization of D. In particular, it
follows from [8, Proposition 4.1] that if D is weakly group-theoretical, then so are the fusion

subcategories C(G,Γ )
Γ

and C(G,Γ )Γ .
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7. (G, Γ )-crossed braidings. Let (G, Γ ) be a matched pair of finite groups and let
C be (G, Γ )-crossed tensor category. We keep the notation in Section 4.

DEFINITION 7.1. A (G, Γ )-crossed braiding in C is a triple (c, ϕ,ψ), where

• ϕ,ψ : Γ → G are group homomorphisms, satisfying the following conditions, for
all s, t ∈ Γ , g ∈ G:

(7.1) (t−1 � ϕ(s−1))st = s � ψ(t) ,

(7.2) (t � ψ(s))−1 = ψ(s−1� ϕ(t−1)) ,

(7.3) (t−1 � ϕ(s−1)))−1 = ϕ(s � ψ(t)) ,

(7.4) ψ(t)g = (t � g)ψ(t � g) ,

(7.5) gϕ(s � g)−1 = ϕ(s−1)(s � g) .

• c is a collection of natural isomorphisms

(7.6) cX,Y : X ⊗ Y → ρt
−1�ϕ(s−1)(Y )⊗ ρψ(t)(X) , X ∈ Cs , Y ∈ Ct .

For every s, t ∈ Γ , let s ≺ t and t � s be the elements of Γ defined, respectively, by

s ≺ t = t−1 � ϕ(s−1) , t � s = s−1 � ϕ(t−1) .

The isomorphisms cX,Y are subject to the commutativity of the following diagrams
(when there is no ambiguity, we omit subscripts to denote morphisms):
(1) For all g ∈ G, s, t ∈ Γ , X ∈ Cs , Y ∈ Ct ,

ρg (X ⊗ Y )
ρg (c)

��

γ g �� ρt�g(X)⊗ ρg (Y )
c

��
ρg(ρs≺t(Y )⊗ ρψ(t)(X))

γ g

��

ρ(s�(t�g))≺(t�g)ρg(Y)⊗ ρψ(t�g)ρt�g(X)

ρ2⊗ρ2
��

ρ(s�ψ(t))�gρs≺t (Y )⊗ ρgρψ(t)(X)
ρ2⊗ρ2

�� ρ(s≺t )((s�ψ(t))�g)(Y )⊗ ρψ(t)g(X)

(2) For all s, t, u ∈ Γ , X ∈ Cs , Y ∈ Ct , Z ∈ Cu,
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X ⊗ Y ⊗ Z

id⊗c

��

cX⊗Y,Z �� ρst≺u(Z)⊗ ρψ(u)(X ⊗ Y )
id⊗γ ψ(u)
��

ρst≺u(Z)⊗ ρt�ψ(u)(X)⊗ ρψ(u)(Y )

X ⊗ ρt≺u(Z)⊗ ρψ(u)(Y )
c⊗id

�� ρs≺(t�u)−1
ρt≺u(Z)⊗ ρψ(t�u)−1

(X)⊗ ρψ(u)(Y )
ρ2⊗id⊗ id

��

(3) For all s, t, u ∈ Γ , X ∈ Cs , Y ∈ Ct , Z ∈ Cu,

X ⊗ Y ⊗ Z

c⊗id

��

cX,Y⊗Z �� ρs≺tu(Y ⊗ Z)⊗ ρψ(tu)(X)
γ (tu)

−1�s⊗id
��

ρs≺t (Y )⊗ ρs≺tu(Z)⊗ ρψ(tu)(X)

ρs≺t (Y )⊗ ρψ(t)(X)⊗ Z
id⊗c

�� ρs≺t (Y )⊗ ρ(s�ψ(t))≺u(Z)⊗ ρψ(u)ρψ(t)(X)
id⊗ id⊗ρ2

��

REMARK 7.2. Let C be a (G, Γ )-crossed tensor category and let ϕ and ψ : Γ → G

be maps. Assume in addition that the Γ -grading on C is faithful and the G-action is faithful.
Conditions (1), (2) and (3) in Definition 7.1 on the natural isomorphism c imply that the maps
ϕ and ψ are group homomorphisms and that they satisfy the relations (7.1)– (7.5). This can
be shown with an argument similar to that in Remark 4.3.

For instance, the relations (1.1) imply that (t−1 � g)−1 = (t � (t−1 � g)), for all t ∈ Γ ,
g ∈ G. The existence of an isomorphism like in (7.6) makes it necessary that condition (7.1)
in Definition 7.1 holds, when the Γ -grading on C is faithful.

REMARK 7.3. Let C be (G, Γ )-crossed tensor category and suppose (c, ϕ,ψ) is a
(G, Γ )-braiding in C. Conditions (2) and (3) in Definition 7.1 imply that the neutral homo-
geneous component D = Ce of C is a braided tensor category with braiding induced by the
restriction of the natural isomorphism c.

7.1. Crossed braidings and the set-theoretical QYBE. Let (G, Γ ) be a matched
pair of groups and let G � Γ be the associated group (see Subsection 2.1). We shall identify
G and Γ with subgroups of G � Γ = G × Γ in the natural way. Thus G � Γ is endowed
with an exact factorization into its subgroupsG and Γ .

The exact factorization inG � Γ induces actions ofG and Γ on each other, denoted sg ,
sg , gs, gs , s ∈ Γ , g ∈ G, which are uniquely determined by the relations

(7.7) sg = sg sg , gs = gs gs ,
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in G � Γ . See [15, Section 2].
From the definition of the groupG � Γ , we obtain the following relations:

sg = s � g , sg = s � g , gs = (s−1 � g−1)−1 , gs = (s−1 � g−1)−1 ,

for all g ∈ G, s ∈ Γ .
Let ϕ,ψ : Γ → G be group homomorphisms. The conditions (7.1)– (7.5) in Defini-

tion 7.1 are equivalent, respectively, to the following conditions:

(7.8) st = ψ(s)t sϕ(t) ,

(7.9) ψ(s)t = ψ(sϕ(t)) ,

(7.10) sϕ(t) = ϕ(ψ(s)t) ,

(7.11) ψ(g t)g t = ψ(t)g ,

(7.12) ϕ(g s)gs = gϕ(s) ,

for all s, t ∈ Γ , g ∈ G. Compare with [15, Proposition 1].
An alternative formulation for the conditions on the data (G, Γ, ϕ,ψ), in terms of group

actions by automorphisms and 1-cocycles, is explained in [15, Theorem 2].

REMARK 7.4. Consider the map bϕ,ψ : Γ × Γ → Γ × Γ , given by

bϕ,ψ(s, t) = ((t−1 � ϕ(s−1))−1, s � ψ(t)) , s, t ∈ Γ .
In terms of the actions (7.7), this map has the following expression:

bϕ,ψ (s, t) = (ϕ(s)t, sψ(t)) , s, t ∈ Γ .
It turns out that bϕ,ψ (s, t) coincides with the map R−1(t, s), where R : Γ × Γ → Γ × Γ is
the (invertible) set-theoretical solution of the QYBE on the set Γ given in [14], corresponding
to the actions ϕ(s)t and sψ(t) of Γ on itself. The relevant condition for the result of [14] is (7.8)
or, equivalently, (7.1). In particular the map bϕ,ψ is bijective.

7.2. Braiding in the category C(G,Γ ). We next show that a (G, Γ )-crossed braiding
in C induces a braiding in the associated tensor category C(G,Γ ).

THEOREM 7.5. Let C be (G, Γ )-crossed tensor category and let (c, ϕ,ψ) be a (G, Γ )-
braiding in C. Then C(G,Γ ) is a braided tensor category with brading

c(X,r),(Y,l) : (X, r)⊗ (Y, l)→ (Y, l) ⊗ (X, r) ,
defined componentwise by the isomorphisms

(7.13) (lt
−1�ϕ(s−1) ⊗ rψ(t)) cXs,Yt : Xs ⊗ Yt → Yt�(t−1�ϕ(s−1)) ⊗Xs�ψ(t) ,

where X =⊕
s∈Γ Xs and Y =⊕

t∈Γ Yt .
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PROOF. Recall that C(G,Γ ) = CT , where T = ⊕
g∈G ρg is the Hopf monad in Theo-

rem 5.1. The natural isomorphisms cX,Y : X ⊗ Y → ρt
−1�ϕ(s−1)(Y ) ⊗ ρψ(t)(X), X ∈ Cs ,

Y ∈ Ct , induce canonically a natural transformation

RX,Y : X ⊗ Y →
⊕

g,h∈G
ρg (Y )⊗ ρh(X) .

The commutativity of the diagrams (1), (2) and (3) in Definition 7.5 imply, respectively, that
the natural transformation R satisfies conditions (2.5), (2.6) and (2.7).

Let (X, r), (Y, l) ∈ C(G,Γ ). Then the natural transformation

R#
(X,r),(Y,l) = (l ⊗ r)RX,Y : X ⊗ Y → Y ⊗X,

is given componentwise by isomorphisms

(lt
−1�ϕ(s−1) ⊗ rψ(t)) cXs ,Yt : Xs ⊗ Yt → Yt�(t−1�ϕ(s−1)) ⊗Xs�ψ(t) ,

whereX =⊕
s∈Γ Xs and Y =⊕

t∈Γ Yt . Recall that t� (t−1�ϕ(s−1)) = (t−1 �ϕ(s−1))−1,
for all s, t ∈ Γ . It was observed in Remark 7.4 that the map bϕ,ψ : Γ × Γ → Γ × Γ ,
defined by bϕ,ψ (s, t) = ((t−1 � ϕ(s−1))−1, s �ψ(t)), is bijective. This implies that R# is an
isomorphism.

We have thus shown that T is a quasitriangular Hopf monad on C. Therefore C(G,Γ ) is a
braided tensor category with the braiding induced by the R-matrix R, which is easily seen to
coincide with (7.13). This finishes the proof of the theorem. �

8. Some families of examples.
8.1. G-crossed categories. Let G be a finite group. Then there is a matched pair

(G, Γ ), where Γ = G, � : G × Γ → G is the trivial action and � : G × Γ → Γ is the
adjoint action.

A (G,G)-crossed tensor category is the same as a G-graded tensor category
C = ⊕

g∈G Cg , endowed with a G-action by tensor autoequivalences ρ : Gop → Aut⊗(C)
such that ρg (Ch) = Cg−1hg , for all g, h ∈ G.

Thus, as a monoidal category, a (G,G)-crossed tensor category is a G-crossed category
as defined in [24, Section 3.2]. See also [22, Chapter VI].

In this case the exact sequence of tensor categories given by Theorem 6.1,

RepG→ C(G,G)→ C ,
is an equivariantization exact sequence; see Proposition 6.3.

REMARK 8.1. Consider a matched pair (G, Γ ) such that the action � is trivial or,
equivalently, such that the action � is by group automorphisms. In this context, the notion
of (G, Γ )-crossed fusion category is not new. In fact, any (G, Γ )-crossed fusion category
associated to such a matched pair can be recovered from the G-crossed categories of [24].

This is due to the well-known fact that any action by group automorphisms can be re-
covered from an adjoint action, and can be formulated as follows.
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Suppose that the action � : Γ ×G→ Γ is by group automorphisms. Let S = Γ � G

be the semidirect product associated to this action, so that the following relations hold in S:

(8.1) g−1sg = s � g ,

for all s ∈ Γ , g ∈ G.
Consider an S-crossed (tensor) category C =⊕

s∈S Cs . Since Γ is a normal subgroup of
S then the tensor subcategory CΓ = ⊕

s∈Γ Cs is stable under the adjoint action of S. Hence
it is also stable under the adjoint action of G. Relation (8.1), together with the conditions
defining a G-crossed category in [24, Subsection 3.2], imply that CΓ is a (G, Γ )-crossed
tensor category.

Conversely, suppose that C = ⊕
s∈Γ Cs is a (G, Γ )-crossed tensor category. Condi-

tion (4.1) in Definition 4.1 implies that

ρg (Cs) = Cg−1sg ,

for all s ∈ Γ , g ∈ G, in view of (8.1).
The Γ -grading on C induces an S-grading C =⊕

s∈S Cs , letting Cs := 0, for all s ∈ S\Γ .
Similarly, the action ρ : Gop → Aut(C) which, by Proposition 6.3, is in this case an

action by tensor autoequivalences, induces an action by tensor autoequivalences ρ̃ : Sop →
Aut(C) in the form ρ̃s = ρs , for all s ∈ S, where s ∈ G denotes the image of s under the
canonical projection S → G.

The remaining conditions in Definition 4.1 imply that C becomes in this way an S-crossed
category.

Recall that a G-braiding in a G-crossed category C is a collection of natural isomor-
phisms αX,Y : X ⊗ Y → Y ⊗ ρt (X), Y ∈ Ct , called a G-braiding, satisfying appropriate
compatibility conditions. See [22], [24, Subsection 3.3].

PROPOSITION 8.2. Let C be aG-crossed tensor category. Then the following data are
equivalent:

(i) A G-braiding c in C .
(ii) A (G,G)-crossed braiding (c, ϕ,ψ) in C, where ψ = idG : G→ G and ϕ : G→ G

is the trivial group homomorphism.

Note that the trivial homomorphism ϕ and the identity homomorphism ψ satisfy condi-
tions (7.1)–(7.5) in Definition 7.1. The map bϕ,ψ is given in this case by

bϕ,ψ (s, t) = (t, t−1st), s, t ∈ G .
PROOF. It is enough to observe that the commutativity of the diagrams (1)–(3) in Def-

inition 7.1 in the case where ψ is the identity homomorphism and ϕ : G → G is the trivial
group homomorphism, is equivalent to the commutativity of the diagrams in [24, Subsection
3.3]. �
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REMARK 8.3. Let C be a G-braided tensor category regarded as a (G,G)-crossed
tensor category. Suppose (c, ϕ,ψ) is any (G,G)-braiding in C where ψ = idG. It follows
from conditions (7.1)–(7.5) that ϕ is a group homomorphism ϕ : G→ Z(G).

8.2. Abelian exact sequences of Hopf algebras. Consider a matched pair of finite
groups (G, Γ ). Let also σ : G × G → (k∗)Γ and τ : Γ × Γ → (k∗)G be normalized 2-
cocycles, that is, using the notation σs(g, h) = σ(g, h)(s) and τg (s, t) = τ (s, t)(g), s, t ∈ Γ ,
g, h ∈ G, the following relations hold:

(8.2) σs�g (h, l)σs (g, hl) = σs(g, h)σs(gh, l) ,

(8.3) σs(e, g) = σs(g, e) = 1 ,

(8.4) τg (st, u)τu�g (s, t) = τg (t, u)τg(s, tu) ,

(8.5) τg(e, s) = τg (s, e) = 1 ,

for all g, h, l ∈ G, s, t, u ∈ Γ .
Assume in addition that σ and τ satisfy the following compatibility conditions:

(8.6) σst (g, h)τgh(s, t) = σs(t�g , (t�g)�h)σt (g, h)τg (s, t)τh(s� (t �g), t�g) ,

(8.7) σe(g, h) = τe(s, t) = 1,

for all s, t ∈ Γ , g, h ∈ G.

Then the vector space H = kΓ ⊗ kG becomes a Hopf algebra with the crossed product
algebra structure and crossed coproduct coalgebra structure, denoted H = kΓ τ#σ kG. The
multiplication and comultiplication of H are defined, for all g, h ∈ Γ , g, h ∈ G, in the form

(es#g)(et#h) = δs�g,h σs(g, h)es#gh ,(8.8)

Δ(es#g) =
∑

tu=s
τg (t, u) et#(u � g)⊗ eu#g .(8.9)

It is well-known thatH is a semisimple Hopf algebra if and only if the characteristic of k does
not divide the order of G.

Let i = id⊗u : kΓ → H and p = ε ⊗ id : H → kG be the canonical Hopf algebra
maps. Then we have an exact sequence of Hopf algebras

(8.10) k −→ kΓ
i−→ H

p−→ kG −→ k .

By [4, Proposition 3.9] this exact sequence gives rise to an exact sequence of tensor
categories

(8.11) RepG
p∗−→ RepH

i∗−→ C(Γ ) ,
where C(Γ ) = Rep kΓ is the category of finite dimensional Γ -graded vector spaces.
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The category C(Γ ) is a (G, Γ )-crossed fusion category with respect to the following
data:

(a) The Γ -grading C(Γ ) =⊕
s∈Γ C(Γ )s , where, for all s ∈ Γ , C(Γ )s is the category of

finite dimensional vector spaces of degree s .
(b) The action ρ : Gop → Aut(C(Γ )) is given by ρg (V ) = V withG-grading ρg (V )s =

Vs�g .

The monoidal structure of ρ is given by ρ0 = id : ρe → idC(Γ ), and ρg,h2 =
σ(h, g)−1 : ρgρh(V )→ ρhg (V ), that is,

ρ
g,h
2 (v) = σ|v|(h, g)−1v ,

for every homogeneous element v ∈ V of degree |v|.
(c) For all U ∈ C(Γ ), V ∈ C(Γ )s , the natural isomorphisms γ gU,V : ρg (U ⊗ V ) →

ρs�g (U)⊗ ρg (V ), are given by

γ
g
U,V (u⊗ v) = τg(|u|, s) u⊗ v ,

on homogeneous elements u ∈ U of degree |u|.
(d) The isomorphisms γ g0 : ρg (k) = k→ k are identities, for all g ∈ G.

The next theorem relates the tensor category associated to the (G, Γ )-crossed tensor
category C(Γ ) with the Hopf algebraH .

THEOREM 8.4. There is a strict equivalence of tensor categories

C(Γ )(G,Γ ) ∼= RepH .

PROOF. Since H = kΓ #σ kG is a crossed product as an algebra, it follows from [20,
Proposition 3.2] that ρ is an action by k-linear autoequivalences and there is an equivalence
of k-linear categories K : RepH ∼= C(Γ )G = C(Γ )(G,Γ ), where for all H -module W ,
K(W) = (W |kΓ , g−1|W). The inverse equivalence maps an object (V , r) of C(Γ )(G,Γ ) to the
vector space V endowed with the H -action (es#g).v = (rg )−1(vs), v ∈ V .

It is straightforward to verify that K is a strict equivalence of tensor categories. This
proves the theorem. �

REMARK 8.5. Consider the case where the exact sequence (8.10) is a split exact se-
quence. This corresponds to the situation where σ and τ are the trivial 2-cocycles.

Regard the category C(Γ ) as a (G, Γ )-crossed tensor category as above.
Suppose (c, ϕ,ψ) is a (G, Γ )-braiding in C(Γ ). It follows from [15, Theorem 1] that the
compatibility conditions between ϕ and ψ given in Definition 7.1 imply that pairs (ϕ,ψ),
satisfying the compatibility conditions in Definition 7.1, are in bijective correspondence with
positive quasitriangular structures in the Hopf algebra H . In fact, the conditions in [15, The-
orem 1] are equivalent to the conditions (7.1)–(7.5), in view of [15, Proposition 1]. See Sub-
section 7.1.
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