
Tohoku Math. J.
66 (2014), 377–407

LAPLACIAN AND SPECTRAL GAP IN REGULAR HILBERT
GEOMETRIES

THOMAS BARTHELMÉ, BRUNO COLBOIS, MICKAËL CRAMPON∗
AND PATRICK VEROVIC

(Received November 29, 2012, revised July 2, 2013)

Abstract. We study the spectrum of the Finsler–Laplace operator for regular Hilbert
geometries, defined by convex sets with C2 boundaries. We show that for an n-dimensional
geometry, the spectral gap is bounded above by (n− 1)2/4, which we prove to be the infimum
of the essential spectrum. We also construct examples of convex sets with arbitrarily small
eigenvalues.
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1. Introduction. Hilbert geometries, introduced by David Hilbert to illustrate the
fourth of his 23 problems, are among the most simple and studied examples of Finsler ge-
ometries. They can be considered as a generalization of hyperbolic geometry in the context of
metric geometry, and a general and now well studied question is to understand if they inherit
the same geometric or analytic properties as the hyperbolic space; see for instance [6] for a
good overview.

In [3], the first author introduced and began to study a new generalization of the Laplace
operator to Finsler geometry. It thus gives another analytical tool to understand the differ-
ences between Hilbert geometries and the hyperbolic space. For the n-dimensional hyperbolic
space, the spectrum of the Laplace operator is known to be the interval [(n − 1)2/4,∞). In
particular, it consists only of its essential part, and there is no eigenvalue below (n − 1)2/4
(see for example [14]). In this article, we will see that the bottom of the essential spectrum of
a regular n-dimensional Hilbert geometry is also (n − 1)2/4, however that, in contrast with
hyperbolic geometry, a lot of arbitrarily small eigenvalues could appear under the essential
spectrum.

1.1. Finsler and Hilbert metrics.

DEFINITION 1.1. Let M be a manifold. A Finsler metric on M is a continuous func-
tion F : T M → R+ that is:

(1) C2, except on the zero section;
(2) positively homogeneous, that is, F(x, λv) = λF(x, v) for any λ � 0;
(3) positive-definite, that is, F(x, v) ≥ 0 with equality iff v = 0;
(4) strongly convex, that is,

(
∂2F 2/∂vi∂vj

)
i,j

is positive-definite.

A Hilbert geometry is a metric space (C, dC) where

• C is a properly convex open subset of the projective space RP n; properly convex
means that C contains no affine line; in other words, it appears as a relatively compact
open set in some affine chart.

• dC is a metric on C defined as follows (see Figure 1a): for x, y ∈ C, let a and b be the
intersection points of the line (xy) with ∂C; then

dC(x, y) = 1

2
| ln[a : b : x : y]| ,

where [a : b : x : y] is the cross-ratio of the four points; if we identify the line (xy)

with R ∪ {∞}, it is defined by [a : b : x : y] = |ax|/|bx|
|ay|/|by| .

When C is an ellipsoid, the Hilbert geometry of C gives the Klein–Beltrami model of hyper-
bolic space.

The Hilbert metric dC is generated by a field of norms FC on C, i.e., dC(x, y) =
inf
∫ 1

0 F(c(t), c′(t)) dt , where the infimum is taken over all C1 curves c : [0, 1] −→ C from
x to y. In an affine chart containing C as a relatively compact subset, the norm F(x, u) of a
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(A) dC(x, y) = |ln[a : x : y : b]| /2 (B) FC(x, u) = (1/|u−x| + 1/|xu+|) |u|/2

FIGURE 1.

tangent vector u ∈ TxC is given by the formula

FC(x, u) = |u|
2

(
1

|u−x| + 1

|xu+|
)

,

where | · | is an arbitrary Euclidean metric on the affine chart, and u+ and u− are the inter-
section points of the line x + R.u with the boundary ∂C (see Figure 1b).

In general, a Hilbert geometry fails to be a Finsler space owing to regularity issues: the
regularity of FC depends on the boundary of C, so FC does not necessarily satisfy the first and
fourth points of Definition 1.1. However, when C has a C2 boundary with positive definite
Hessian (see Section 3.1), FC is a Finsler metric. In this case, the Hilbert geometry is called
regular and we can prove that its flag-curvature is constant equal to −1 ([16]).

1.2. Main results. The definition of the Finsler–Laplace operator is recalled in Sec-
tion 2.2. As for the Riemannian one, it is an unbounded elliptic operator on a Sobolev space
contained in the L2 functions. As such, the Finsler Laplacian admits a spectrum which splits
into a discrete part, which, if non-empty, consists only of eigenvalues of finite multiplicity,
and the essential spectrum. In the case at hand, there will always be an essential spectrum as
we are considering non-compact manifolds.

In hyperbolic space, the spectrum of the Laplace–Beltrami operator is the interval[
(n − 1)2/4,+∞) and, therefore, has no discrete part. In the case of regular Hilbert ge-

ometries, we prove the following:

THEOREM A. Let λ1(C) be the bottom of the spectrum of the Finsler Laplacian of a
regular Hilbert geometry (C, dC). Then

0 < λ1(C) � (n − 1)2

4
.

Let us make some remarks about this theorem.

• A study of spectral gaps in (regular and non-regular) Hilbert geometries was already
launched by the second author and Vernicos [10, 21]. The spectral gap they were
considering turns out to be associated, in the regular case, to the non-linear Laplacian
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introduced by Shen [20], and their techniques and difficulties differ from ours. In
particular, in [21], Vernicos proves that the spectral gap he considers is also less than
(n−1)2/4, but the difficulties for his proof appear only when considering non-regular
Hilbert metrics, contrary to ours.

• For regular Hilbert metrics the volume entropy is always equal to n − 1 ([11]). So,
Theorem A in particular tells us that the inequality 4λ1 � h2, which is true for all
simply connected non-positively curved Riemannian manifolds, still holds for regular
Hilbert geometries.

• In [2] the first author proved that, for negatively curved Finsler manifolds, the in-
equality 4λ1 � nh2 holds, where n is the dimension of the manifold. For general
non-compact negatively curved Finsler manifolds, it is far from clear that the factor
n can be removed. In this article, we prove it for what we call asymptotically Rie-
mannian Finsler metrics of which Hilbert metrics are a nice set of examples. This
means that the Finsler metric gets arbitrarily close to Riemannian outside sufficiently
big compact sets (see Section 4).

Our second result shows that the difference between regular Hilbert geometry and hy-
perbolic geometry does not appear in the essential spectrum (or, at least, not in its infimum):

THEOREM B. The bottom of the essential spectrum inf σess(C) of the Finsler Laplacian
of a regular Hilbert geometry (C, dC) satisfies

inf σess(C) = (n − 1)2

4
.

Below (n − 1)2/4, the spectrum of the Laplace operator is thus entirely discrete. It is
then natural to ask if there is always an eigenvalue below (n − 1)2/4. We know that this does
not happen in the hyperbolic space and we make the following

CONJECTURE. Let (C, dC) be a regular Hilbert geometry. The equality λ1(C) = (n −
1)2/4 holds if and only if C is an ellipsoid.

We are not yet able to prove this conjecture, but we show the following:

THEOREM C. Let ε > 0 and N ∈ N . There exists a regular Hilbert geometry whose
first N eigenvalues are below ε.

In particular, we can find a regular Hilbert geometry with as many eigenvalues below the
essential spectrum as we wish. As the flag curvature of regular Hilbert metrics is always equal
to −1, this gives examples of Finsler metrics of constant negative curvature with eigenvalues
as small as we wish.

Structure of this paper. In the preliminaries, we recall the construction of the Finsler
Laplacian and its basic properties. We also introduce the Legendre transform that will be an
important tool all along the article. In Section 3, we prove that regular Hilbert geometries
are asymptotically Riemannian, which is an interesting result in itself. In Section 4, we prove
Theorem A by showing that the inequality λ1 � h2/4 holds for asymptotically Riemannian
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metrics. After recalling a few results about the essential spectrum of weighted Laplacians,
we prove Theorem B in Section 5. We finally construct Hilbert metrics with arbitrarily many,
arbitrarily small eigenvalues in Section 6.

2. Preliminaries.

2.1. Topology on the set of Finsler metrics on a manifold. In all the text, we will
use the topology of uniform convergence on compact sets for Finsler metrics. Let M be a
smooth manifold. We say that a sequence of Finsler metrics (Fn) on M converges to the
Finsler metric F if, for any compact subset K of M ,

lim
n→+∞ sup

(x,u)∈TM|K

∣∣∣∣ln F(x, u)

Fn(x, u)

∣∣∣∣ = 0 ,

where T M|K is the restriction of the tangent bundle to K . This induces a topology on the set
of Finsler metrics on M , which is metrizable: a distance between F and F ′ can be defined as

d(F, F ′) =
∑
n

1

2n
min

{
1, sup

(x,u)∈TM|Kn

∣∣∣∣ln F(x, u)

F ′(x, u)

∣∣∣∣
}

,

where (Kn) is an exhausting family of compact subsets of M .

2.2. Finsler Laplacian. In this section, we briefly recall the definition of the Finsler
Laplacian we consider, which uses the formalism introduced by Foulon [16]. All the proofs
and details can be found in [2, 3].

Let M be an n-dimensional smooth manifold. Let HM be the homogeneous bundle or
direction bundle, that is,

HM := (T M � {0}) /R+ .

A point of HM is a pair consisting in a point x ∈ M and a tangent direction ξ at x. We
denote by r : T M � {0} → HM and π : HM → M the canonical projections. The bundle
V HM = Ker dπ ⊂ T HM is called the vertical bundle.

Let F be a Finsler metric on M . As for a Riemannian space, the metric space (M,F)

is locally uniquely geodesic, the geodesics being defined through a second-order differential
equation. We assume in the sequel that the Finsler metric is complete. In this case, its geodesic
flow is well defined on the homogeneous bundle: given a point (x, ξ) in HM , there is a unique
unit-speed geodesic c : R −→ M passing at x with tangent direction ξ at time 0.

The Hilbert form of F is the 1-form A on HM defined, for (x, ξ) ∈ HM , Z ∈ T(x,ξ)HM ,
by

(1) A(x,ξ)(Z) := lim
ε→0

F (x, v + εdπ(Z)) − F (x, v)

ε
,

where v ∈ TxM is any vector such that r(x, v) = (x, ξ). This definition is independant
of v thanks to the fact that F is homogeneous. The Hilbert form contains all the necessary
information about the dynamics of the Finsler metric:
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THEOREM 2.1. The form A is a contact form: A ∧ dAn−1 is a volume form on HM .
Let X : HM → T HM be the Reeb field of A, that is, the only solution of

(2)

{
A(X) = 1

iXdA = 0 .

The vector field X generates the geodesic flow of F .

We can now define the Finsler Laplacian. First we split the canonical volume A∧dAn−1

into a volume form on the manifold M and an angle form:

PROPOSITION 2.2. There exists a unique volume form ΩF on M and an (n− 1)-form
αF on HM , never zero on V HM , such that

(3) αF ∧ π∗ΩF = A ∧ dAn−1 ,

and, for all x ∈ M ,

(4)
∫

HxM

αF = volEucl(S
n−1) .

REMARK 2.3. The volume form 1
(n−1)!Ω

F is the Holmes–Thompson volume form
(see for instance [8] or [1] for the definition). However, we will not need in this article any
specific knowledge about the Holmes–Thompson volume.

The Finsler Laplacian of a function is then obtained as an average with respect to αF of
the second derivative in every direction:

DEFINITION 2.4. For f ∈ C2(M), the Finsler–Laplace operator 
F is defined by


Ff (x) = n

volEucl
(
Sn−1

) ∫
HxM

L2
X(π∗f )αF , x ∈ M ,

where LX denotes the Lie derivative in the direction X.

This definition gives a second order elliptic differential operator, which is symmetric
with respect to the Holmes–Thompson volume ΩF . The constant in front of the operator is
there in order to get back the usual Laplace–Beltrami operator when F is Riemannian.

The symbol of a second-order differential operator 
 is a symmetric bilinear form on the
co-tangent bundle that can be defined in the following way: Let ξ ∈ T ∗

x M , then the symbol
of the operator 
 at (x, ξ) is

σx(ξ, ξ) = 
(ϕ2)(x) ,

where ϕ : M → R is a C2 function such that ϕ(x) = 0 and dϕx = ξ .
When the operator is elliptic, that is, when σx(ξ, ξ) > 0 for all non-zero ξ , the symbol

defines a dual Riemannian metric. Note that in local coordinates, the symbol is given by the
matrix of the coefficients in front of the second order derivatives.



LAPLACIAN AND SPECTRAL GAP IN REGULAR HILBERT GEOMETRIES 383

We denote by σF the symbol of 
F , as 
F is elliptic, σF is a dual Riemannian metric.
In our case, we can express σF using the form αF : For ξ1, ξ2 ∈ T ∗

x M , we have

σF
x (ξ1, ξ2) = n

volEucl
(
Sn−1

) ∫
HxM

LX(π∗ϕ1)LX(π∗ϕ2) αF
x ,

where ϕi ∈ C∞(M) such that ϕi(x) = 0 and dϕi x = ξi . Note that, if we identify HM with
SF M , the unit tangent bundle for F , and that we consider αF as a volume form on SF M

(instead of HM), we have this visually more agreeable formula:

σF
x (ξ1, ξ2) = n

volEucl
(
Sn−1

) ∫
v∈SF

x M

ξ1(v)ξ2(v) αF
x (v) .

Note that we can also see 
F as a weighted Laplacian (introduced in [9, 12]), with
symbol σF and weight given by the ratio between ΩF and the Riemannian volume associated
with σF . Indeed, we have that, if a ∈ C∞(M) is such that ΩF = a2ΩσF

, where ΩσF
is the

Riemannian volume associated with σF , then for ϕ ∈ C∞(M):


F ϕ = 
σF

ϕ − 1

a2
〈∇ϕ,∇a2〉 .

The description of 
F in terms of a weighted Laplacian will come very handy for the study
of the essential spectrum in Section 5.

2.3. Energy and bottom of the spectrum. The Finsler Laplacian has a naturally
associated energy functional defined by

(5) EF (f ) := n

volEucl
(
Sn−1

) ∫
HM

∣∣LX

(
π∗f

)∣∣2 A ∧ dAn−1 .

The Rayleigh quotient for F is then defined by

(6) RF (f ) := EF (f )∫
M f 2 ΩF

.

Let H 1(M) be the Sobolev space defined as the completion of C∞
0 (M), the space of

smooth functions with compact support, under the norm ‖f ‖2
1 = ∫M f 2 ΩF + EF (f ).

The bottom of the spectrum of −
F , considered as a symmetric unbounded operator on
H 1(M), is given by:

λ1 = inf
f ∈H 1(M)

RF (f ) .

Note that, as the manifolds we are interested in this article are not compact, the spectrum has
no reason to be discrete. However, if there is a discrete spectrum below the essential one, then
the eigenvalues can be obtained from the Rayleigh quotient via the Min-Max principle:

THEOREM 2.5 (Min-Max principle). Suppose that λ1, . . . , λk are the first k eigenval-
ues (counted with multiplicity) of −
F and are all below the essential spectrum, then

λi = inf
Vi

sup
{
RF (u); u ∈ Vi

}
,

where Vi runs over all the i-dimensional subspaces of H 1(M).
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2.4. Cotangent point of view. We finish this preliminaries with the cotangent point
of view for Finsler metrics. This is fairly well-known and we refer to [2] for a more detailed
presentation.

2.4.1. Dual metric.

DEFINITION 2.6. Let F be a Finsler metric on a manifold M . The dual Finsler
(co)metric F ∗ : T ∗M → R is defined, for (x, p) ∈ T ∗M , by

F ∗(x, p) = sup{p(v) ; v ∈ TxM such that F(x, v) = 1} .

2.4.2. Legendre transform. The tool that allows us to switch from the tangent bundle
to the cotangent bundle is the Legendre transform associated with F .

DEFINITION 2.7. The Legendre transform LF : T M → T ∗M associated with F is
defined by LF (x, 0) = (x, 0) and, for (x, v) ∈ T M � {0} and u ∈ TxM ,

LF (x, v)(u) := 1

2

d

dt
F 2(x, v + tu)

∣∣∣∣
t=0

.

As F 2 is positively 2-homogeneous, we have that LF is positively 1-homogeneous, that
is, LF (x, λv)(u) = λLF (x, v)(u) for λ � 0. So we can project LF to the homogeneous
bundle. Set H ∗M := T ∗M � {0}/R+∗ and write �F : HM → H ∗M for the projection.
Considering directly �F , instead of LF , can sometimes be quite helpful.

The Legendre transform LF links the Finsler metric F with its dual metric F ∗

F = F ∗ ◦ LF .

So, in particular LF maps the unit tangent bundle of F to the unit cotangent bundle of F ∗.
Moreover, the Legendre transform LF is a diffeomorphism and the following diagram

commutes (see for instance [2]):

T ∗M � {0} r̂ ��

p̂

�����
���

���
�

H ∗M
π̂

���
��

��
��

��

M M

T M � {0}

LF

��

r
��

p

������������
HM

�F

��

π

����������

For strongly convex smooth Finsler metrics, the Legendre transform can also be de-
scribed using convex geometry. The Legendre transform associated with a convex C ⊂ Rn

sends a point x of C to the hyperplane supporting C at x, or equivalently, to the linear map
p ∈ (Rn)∗ such that p(x) = 1 and ker p is parallel to the supporting hyperplane.
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2.4.3. Continuity of the Legendre transform. Let V be an n-dimensional real vector
space1, with a fixed Euclidean structure whose norm we denote by F0 and see as a translation-
invariant Finsler metric on V .

Let N denote the set of translation-invariant Finsler metrics on V . This is the same as
looking at the set of non-necessarily symmetric norms on V , whose unit sphere is C2 with
positive definite Hessian.

The topology defined in Section 2.1 induces a topology on N which can be metrized in
the following easy way: Let HV = V � {0}/R+ � Sn−1 be the set of rays from the origin. If
F,F ′ ∈ N , the ratio F

F ′ is a well defined function of HV : if ξ ∈ HV , we have F
F ′ (ξ) = F(u)

F ′(u)
,

where u is any vector of V that projects to ξ . Define a metric on N by

dN (F, F ′) = sup
ξ∈HV

∣∣∣∣ ln F

F ′ (ξ)

∣∣∣∣ .
We define a metric D on the set Homeo0(V ) of positively 1-homogeneous homeomorphisms
of V by:

D(H,H ′) = sup
u∈V, F0(u)=1

F0(H(u) − H ′(u)) .

Identifying HV with the unit Euclidean sphere Sn−1, we define a metric d on the set
Homeo(HV ) of homeomorphisms of HV :

d(h, h′) = sup
ξ∈HV

dSn−1(h(ξ), h′(ξ)) .

This distance is just the maximal Euclidean angle between the images.
For each F ∈ N , the Legendre transform LF is a positively 1-homogeneous homeo-

morphism of V and its “projection” �F a C1-diffeomorphism of HV . We thus have maps
L : F �−→ LF from N to Homeo0(V ) and � : F �−→ �F from N to Homeo(HV ). The fol-
lowing lemma is immediate if we use the geometrical interpretation of the Legendre transform
that we recalled at the end of the previous section.

LEMMA 2.8. The map L is a continuous bijection from (N , dN ) to (Homeo0(V ),D).
The map � is continuous from (N , dN ) to (Homeo(HV ), d) but is not injective: �F = �F ′ if
and only if F = λF ′ for some λ > 0.

PROOF. Let us explicit the continuity of � at F0 because this is all we need in this article;
the continuity elsewhere follows the exact same lines.

Let F ∈ N such that dN (F0, F ) � ln C for some C > 1. We can see that d(�−1
F ◦

�F0, Id) � arccos C−2.
Indeed, as dN (F0, F ) � ln C, the unit sphere SF (1) for F in V is in between the spheres

of radius C−1 and C for F0, that we denote by S0(C
−1) and S0(C). Let ξ ∈ HV . The map

�−1
F ◦ �F0 sends ξ to a point ξ ′, such that the tangent space of SF (1) at ξ ′ is parallel to the

tangent space of S0(C) at ξ . Figure 2 and simple trigonometry then yield the result. �

1In this section, we should think of a Finsler manifold (M, F) with a fixed point x ∈ M. We look at the tangent
space TxM as an n-dimensional real vector space, provided with a non-necessarily symmetric norm F(x, ·).
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FIGURE 2. Maximum angle between �−1
F ◦ �F0 (ξ) and ξ .

3. Behavior at infinity of regular Hilbert geometries. In what follows, (C, dC) will
be a regular Hilbert geometry. We will see here that (C, dC) is an asymptotically Riemannian
Finsler metric, that is, the space resembles a Riemannian manifold outside big compact sets:

DEFINITION 3.1. A Finsler metric F on a manifold M is called asymptotically Rie-
mannian if, for any C > 1, there exists a compact set K such that, for all x ∈ M � K , there
exists a scalar product gx on TxM satisfying, for every non-zero vector v ∈ TxM ,

C−1 � F(x, v)√
gx(v, v)

� C .

REMARK 3.2. Note that, for this definition to be of any interest, M should be non-
compact.

3.1. Hessian of a codimension-one submanifold of the projective space. Consider
a codimension-one C2 submanifold N of the projective space RP n (for instance the boundary
∂C of a convex set C), and pick a point x ∈ N . Choose an affine chart containing x and a
Euclidean metric on it. Let n be a unit normal vector to N at x for this metric, that is a unit
vector orthogonal to TxN . Now, around x, we consider N as the graph of the function, defined
on some neighborhood U of x in TxN :

Gx : u ∈ U �−→ Gx(u) ∈ R ,

such that a neighborhood of x in N is the submanifold {u + G(u).n, u ∈ U}. The Hessian
of Gx at x is a bilinear form on the tangent space TxN . If one chooses an orthonormal basis
(u1, . . . , un−1) of TxN , then the matrix of this bilinear form is the (n − 1) × (n − 1) matrix(
∂2G/∂ui∂uj

)
of the second-derivatives of G.

The definition of the Hessian obviously depends on the choice of the affine chart and of
the Euclidean metric. Nevertheless, there are two basic observations which we will use all
along this section.



LAPLACIAN AND SPECTRAL GAP IN REGULAR HILBERT GEOMETRIES 387

• The property of the Hessian of N at x to be positive, negative or definite, is indepen-
dent of the choice of the affine chart and the Euclidean metric. Hence, for example, it
is possible to talk about a convex subset of RP n whose boundary is C2 with positive
definite Hessian.

• Let N ′ be another codimension-one C2 submanifold of RP n, which is tangent to N

at x. It makes sense to say that N and N ′ have the same Hessian at x. Indeed, choose
an affine chart containing x, a Euclidean metric on it, a unit vector n normal to N

at x and an orthonormal basis (u1, . . . , un−1) of TxN = TxN
′. Call Hx and H ′

x the
Hessians of N and N ′ at x. The fact that they are the same bilinear form on TxN does
not depend on any of the previous choices.

3.2. Busemann functions, horospheres and horoballs. The Busemann function
based at x ∈ ∂C is defined by

bx(z, y) = lim
p→x

dC(z, p) − dC(y, p) ,

which, in some sense, measures the (signed) distance from z to y in C as seen from the point
x ∈ ∂C. A particular expression for b is given by

bx(z, y) = lim
t→+∞ dC(z, γ (t)) − t ,

where γ is the geodesic leaving y at t = 0 to x. When x is fixed, then bx is a surjective map
from C × C onto R. When z and y are fixed, then b.(z, y) : ∂C → R is bounded by a constant
C = C(z, y).

The horosphere passing through z ∈ C and based at x ∈ ∂C is the set

Hx(z) = {y ∈ C; bx(z, y) = 0} .

Hx(z) is also the limit when p tends to x of the metric spheres S(p, dC(p, z)) about p passing
through z. In some sense, the points on Hx(z) are those which are as far from x as z is.

The (open) horoball Hx(z) defined by z ∈ C and based at x ∈ ∂C is the “interior” of the
horosphere Hx(z), that is, the set

Hx(z) = {y ∈ C; bx(z, y) > 0} .

For example, if E is an ellipsoid, then the horoballs of (E, dE ) are also ellipsoids. We explain
this fact in the proof of the following lemma. This proof will introduce the main construction
which helps us in understanding the asymptotic behavior of Hilbert geometries.

LEMMA 3.3. Let (C, dC) be a regular Hilbert geometry.

• For any x ∈ ∂C, the Busemann function bx : C × C → R is a C2 function.
• Let x ∈ ∂C, z ∈ C. The set Hx(z) ∪ {x} is a C2 submanifold of RP n, whose Hessian

at x is the same as the Hessian of ∂C.

PROOF. The first point follows from the following description of the Busemann func-
tion bx(z, y), given by Benoist in [5]. Let z′ and y ′ be the intersection points of the lines (xz)
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and (xy) with ∂C, which are distinct from x. Let p be the intersection point of (y ′z′) with
Tx∂C. Then

bx(z, y) = 1

2
ln[(px) : (pz′) : (pz) : (py)] ,

where [(px) : (pz′) : (pz) : (py)] denotes the cross-ratio of the four lines (px), (pz′), (pz),

(py). All these constructions involve only the boundary of C, so the Busemann function has
the same regularity as ∂C. This first point implies that horospheres are C2 submanifolds of C.

To prove the second point, we first consider the case of an ellipsoid E . The Hilbert
geometry (E, dE ) is a model of the Riemannian hyperbolic space. We will exploit the fact
that, for any x ∈ ∂E , ∂E or any horosphere based at x is an orbit of a maximal parabolic
group of isometries fixing x. We have to prove that the Hessians are the same in all the
directions, so we can assume the dimension is 2.

Let then E be an ellipsoid in RP 2 and pick x ∈ ∂E . We can choose a projective basis
(e1, e2, e3) such that e1 = x, e2 ∈ Tx∂E and the maximal parabolic group of isometries fixing
x is given by P = {gt ∈ SL(3,R), t ∈ R} with⎛

⎝ 1 t
t (t−1)

2
0 1 t

0 0 1

⎞
⎠ .

The boundary ∂E , as well as any horosphere H based at x is the P-orbit of the point z =
e1 + se3 for some s ∈ R � {0}, that is, an ellipse parametrized by

t �−→ [1 + s
t (t − 1)

2
: st : s] .

In the affine chart given by the intersection with the plane {(x1, x2, x3) ∈ R3; x1 = 1}, with
origin x and the induced Euclidean metric of R3, this is the curve

t �−→
(

t

1
s

+ t (t−1)
2

,
1

1
s

+ t (t−1)
2

)
.

By making the transformation t �−→ 1/t , this becomes the curve

c : t �−→
(

t

t2

s
+ 1−t

2

,
t2

t2

s
+ 1−t

2

)
,

such that c(0) = x. But for t around 0, we have up to order 2:

c(t) ∼ (2t (1 + t), 2t2) .

This implies that the curvature of the curve c at 0 is independent of s, and hence, that, for
ellipsoids, the Hessian of the horospheres are all the same at x.

Now, let (C, dC) be a regular Hilbert geometry. Pick x ∈ ∂C, and z ∈ C. Fix an affine
chart centered at x, containing C, and fix a Euclidean metric |·| on it such that |zx| = 1 and the
Hessian Bx of ∂C at x is the restriction of the Euclidean scalar product to Tx∂C. Fix C > 1.
Consider the Euclidean spheres S+

x and S−
x , which are tangent to ∂C at x and Hessians B+

x and
B−

x at the point x, seen as elements of GL(n − 1,R), satisfy B−
x = CBx and B+

x = C−1Bx
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(this does not depend on the Euclidean metric we use to compute them). For C close enough
to 1, the balls E−

x and E+
x whose boundaries are S+

x and S−
x contain the point z.

Let h−
x and h+

x be the hyperbolic metrics defined by the balls E−
x and E+

x . There is some
neighborhood U of x in Rn, depending on C, such that, on U ∩ E−

x , we have

h+
x � FC � h−

x .

Denote by H−
x (z), H+

x (z) and Hx(z) the horoballs based at x passing through z for the Hilbert
geometries defined by E−

x , E+
x and C respectively. The previous inequality implies that

H−
x (z) ∩ U ⊂ Hx(z) ∩ U ⊂ H+

x (z) ∩ U .

Now, by the result for ellipsoids, the Hessians B+
x (z) and B−

x (z) at the point x of the bound-
aries of H+

x (z) and H−
x (z) also satisfy B−

x (z) = CBx and B+
x (z) = C−1Bx . This means the

horospheres H−
x (z) and H+

x (z) are “almost” osculating for Hx(z). Since C > 1 is arbitrary,
we see that the horosphere Hx(z) and ∂C have the same Hessians at x. �

3.3. Hilbert geometries are asymptotically Riemannian.

PROPOSITION 3.4. Let (C, dC) be a regular Hilbert geometry, fix a point o ∈ C and a
constant C > 1. To each x ∈ ∂C, we can associate a (non-complete) Riemannian hyperbolic
metric hx on C such that

(1) the map x �−→ hx is continuous;
(2) the metric hx has the same geodesics as FC on C;
(3) there is R = R(C) � 0 such that, for any x ∈ ∂C and z ∈ [ox)� B(o,R),

C−1 � FC(z, ·)
hx(z, ·) � C .

PROOF. We more or less repeat the construction used in Lemma 3.3. By choosing an
adapted affine chart, we look at C as a relatively compact subset of a Euclidean space Rn,
with norm | · |.

Let x ∈ ∂C. The Hessian of ∂C at x, computed with respect to the metric | · |, gives a
positive definite bilinear form Bx on Tx∂C, and the map x �−→ Bx is continuous. Define a
new Euclidean norm | · |x on Rn by setting:

• the vector ox has norm 1: |ox|x = 1;
• the restriction of the corresponding scalar product to Tx∂C is Bx ;
• Tx∂C and ox are orthogonal.

The map x �−→ | · |x is continuous. The sphere Sx of radius 1 for the norm | · |x , with center
o, is tangent to C at x; in fact, it is an osculating sphere.

Let ε > 0, and consider the spheres S+
x and S−

x of respective radius 1 + ε and 1 − ε

for | · |x , whose boundaries are tangent to ∂C at x. Their centers are on the line (ox). Their
Hessians B+

x and B−
x , seen as elements of GL(n − 1,R), at the point x satisfy B+

x = 1−ε
1+ε

B−
x

(and this does not depend on the Euclidean metric we use to compute them).
Now, let E+

x be the smallest ellipsoid which contains C, has x in its boundary, and such that
S+

x is a horosphere at x of the hyperbolic geometry defined by E+
x . In other words, it is
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the smallest ellipsoid which contains C, is tangent to ∂C at x, has its center on (ox) and the
Hessian of its boundary at x is the same as the Hessian of S+

x . Such an ellipsoid exists in
the projective space because locally around x, S+

x contains C. However, it might not be an
ellipsoid in the affine chart, but could for instance be a paraboloid or a hyperboloid.
In the same way, let E−

x be the largest horosphere at x of the Hilbert geometry defined by S−
x

which is contained in C. We also have that the Hessian of the boundary of E−
x at x is the same

as the Hessian of S−
x .

Let h−
x and h+

x be the hyperbolic metrics defined by the ellipsoids E−
x and E+

x . By definition,
we have that, on E−

x ,

h+
x � FC � h−

x .

We will prove that, for ε small enough, the map x �−→ h+
x satisfies the desired properties.

The property (2) is obvious. To prove (1), we show the following

LEMMA 3.5. The maps x �−→ E±
x are continuous.

PROOF. We show the continuity of x �−→ E−
x at a given point x0 ∈ ∂C, the same works

for x �−→ E+
x . Choose a point p in E−

x0
and let r ∈ R such that E−

x0
is the horoball

E−
x0

= {z ∈ C; bx0(o, z) > r}
in the hyperbolic geometry defined by S+

x0
. For any δ ∈ R, let E−

x (δ) be the (open) horoball

E−
x (δ) = {z ∈ C; bx(o, z) > r + δ}

in the hyperbolic geometry defined by S+
x . For any δ > 0, the maps x �−→ E−

x (δ) are
continuous, because of the continuity of the Busemann functions. Fix δ > 0. The horoball
E−

x0
(δ) is entirely contained in C while the horoball E−

x0
(−δ) has a nonempty intersection with

RP n
� C. By continuity of x �−→ E−

x (δ), the same is true for E−
x (δ) and E−

x (−δ) for x in
some neighborhood of x0. By definition of E−

x , this implies that E−
x (δ) ⊂ E−

x ⊂ E−
x (−δ) in

this neighborhood, hence the continuity of x �−→ E−
x at x0. �

To prove the third point, we consider, for x ∈ ∂C and u ∈ Rn
� {0}, the function

fx,u : r �−→ h−
x (or, u)

h+
x (or, u)

,

where or is the point of [ox) such that dC(or, o) = r . The function fx,u is defined as soon as
r is big enough for or to be in E−

x . Remark that fx,u = fx,λu for all u ∈ Rn
� {0}, λ �= 0.

LEMMA 3.6. For u ∈ R.ox � {0}, the function fx,u is decreasing and tends to 1. For

u ∈ Tx∂C � {0}, the function fx,u is decreasing and tends to
√

1+ε
1−ε

.

PROOF. We can choose another affine chart, with coordinates (t1, . . . , tn−1, s), so that
the boundary of E+

x is the parabola s = |t|2, where |t|2 = t2
1 + · · · + t2

n−1. In that chart, the
boundary of E−

x has to be an ellipsoid inside of E+
x , and the line (ox), which is an axis of
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FIGURE 3. The ellipsoids E+
x and E−

x in a well-chosen chart.

symmetry for both E+
x and E−

x , is sent to the y-axis. The equation of E−
x is then given by

s2

a2
− 2s

a
+ |t|2

b2
= 0 ,

for some a, b > 0.
Let s = s(r) = |orx|. If u ∈ R.ox � {0}, we have (see Figure 3)

h−
x (or , u) = a|u|

s(2a − s)
, and h+

x (or, u) = |u|
2s

.

Hence

fx,u(r) = 2a

2a − s(r)

which is decreasing and tends to 1.
If u ∈ Tx∂C, then (see Figure 3)

h−
x (or, u) = a|u|

b
√

s(2a − s)
, and h+

x (or , u) = |u|√
s

.

Hence
fx,u(r) = a

b
√

2a − s(r)
,

which is decreasing and tends to
√

a/(
√

2b). Now, direct computations shows that in this

chart, B−
x = a/b2 and B+

x = 2, hence, fx,u(r) converges to
√

B−
x (B+

x )−1 =
√

1+ε
1−ε

> 1. �

As a consequence of this lemma, we see that there exists R � 0, depending on x and ε,

such that for r � R, we have fx,u(r) �
√

1+ε
1−ε

+ ε for u ∈ Tx∂C� {0} or u ∈ R.ox � {0}. Let
us define R(ε, x) as the smallest R � 0 satisfying this property. Now, the continuity of the
functions x �→ h±

x (Lemma 3.5) implies that the function x �→ R(ε, x) is also continuous.
Hence, if we set

R(ε) := sup
x∈∂C

R(ε, x) ,
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we have that for any x ∈ ∂C and r � R(ε), fx,u(r) �
√

1+ε
1−ε

+ ε for u ∈ Tx∂C � {0} or

u ∈ R.ox � {0}. Now, each u ∈ Rn can be decomposed as u = u1 + u2 with u1 ∈ Tx∂C and
u2 ∈ R.ox. We remark that u1 and u2 are orthogonal for h+

x as well as for h−
x , so that

h±
x (or, u) =

√
h±

x (or , u1)2 + h±
x (or, u2)2 .

For r > R(ε), we have

fx,u(r) = h−
x (or, u)

h+
x (or, u)

=
√
h−

x (or , u1)2 + h−
x (or, u2)2

h+
x (or , u1)2 + h+

x (or, u2)2
�
√

1 + ε

1 − ε
+ ε, u ∈ Rn

� {0} .

That means that for any x ∈ ∂C and z ∈ [ox) such that dC(o, z) � R(ε), we have

1 � FC(z, ·)
h+

x (z, ·) � h−
x (z, ·)

h+
x (z, ·) �

√
1 + ε

1 − ε
+ ε .

This proves the property (3). �

So we get that Hilbert geometries are asymptotically Riemannian:

COROLLARY 3.7. Let (C, dC) be a regular Hilbert geometry and o ∈ C a base point.
For any C > 1, there exists R � 0 and a continuous Riemannian metric g on C � B(o,R)

such that C−1√g � FC � C
√
g .

PROOF. Take the metric g given for z ∈ C � B(o,R) by
√
gz = hz+ , where z+ =

[oz) ∩ ∂C, and hz+ is given by the last lemma. �

We will need the following version of Proposition 3.4 in Section 5:

COROLLARY 3.8. Let (C, dC) be a regular Hilbert geometry. To each x ∈ ∂C, we can
associate a (non-complete) Riemannian hyperbolic metric hx defined on an open neighbor-
hood Ox of [ox) which satisfies the following properties.

(1) The map x �−→ hx is continuous.
(2) We have

⋃
x∈∂C Ox = C.

(3) The metric hx has the same geodesics as FC on Ox .
(4) Let C > 1 and

Ux(C) =
{
z ∈ Ox; C−1 � FC(z, ·)

hx(z, ·) � C

}
.

There exists R = R(C) such that, for any x ∈ ∂C, the intersection of Ux(C) with
C�B(o,R) is an open neighborhood of [ox) in C�B(o,R). In particular, we have
C � B(o,R) ⊂⋃x∈∂C Ux(C).

PROOF. We use the objects introduced in the proof of Proposition 3.4. We let hx be
the metric defined by the osculating sphere Sx at x whose center is o. This is a metric on
Ox = Ex ∩ C, which is an open neighborhood of [ox). It is immediate that hx and Ox satisfy
the first three points. For the fourth one, pick ε > 0 and consider the ellipsoids E+

x and E−
x
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which depend on ε. Remark that, as E−
x ⊂ Sx ⊂ E+

x and E−
x ⊂ C ⊂ E+

x , we always have

h+
x (z, ·)

h−
x (z, ·) � FC(z, ·)

hx(z, ·) � h−
x (z, ·)

h+
x (z, ·) ,

for all z ∈ E−
x .

Now, we proved above that there is some R(ε) � 0 such that, for all z ∈ [ox) �

B(o,R(ε)),

h−
x (z, ·)

h+
x (z, ·) �

√
1 + ε

1 − ε
+ ε .

Hence the intersection of the set Ux

(√
1+ε
1−ε

+ 2ε
)

with C � B(o,R(ε)) is an open

neighborhood of [ox) in C � B(o,R(ε)). Since ε > 0 is arbitrary, this proves the fourth
point. �

REMARK 3.9. Note that the metric hx in this Corollary is different from the one in
Proposition 3.4. In particular, the metric hx of the Corollary is independent of C.

4. Bottom of the spectrum for asymptotically Riemannian metrics. Let F be a
C2 Finsler metric on a manifold M . Let ΩF be the Holmes–Thompson volume for F . The
volume entropy h of F is defined by

h := lim sup
R→+∞

1

R
ln
∫

BF (R)

ΩF .

In this section, we will show the following result about asymptotically Riemannian Finsler
manifolds (see Definition 3.1)

THEOREM 4.1. Let F be an asymptotically Riemannian C2 Finsler metric on an n-
manifold M . Let h be the volume entropy of F and λ1 be the bottom of the spectrum of the
Finsler Laplacian −
F . Then,

λ1 � h2/4 .

The idea of the proof of Theorem 4.1 follows the Riemannian one: we show that we can
choose s such that the function e−sd(O,x) has a Rayleigh quotient as close as we wish to h2/4.
The difficulty is in the control of the Rayleigh quotient. In Section 4.1 we show how we can
manage to control the Rayleigh quotient by controlling the symbol of the Finsler Laplacian.

As we proved that regular Hilbert geometries are asymptotically Riemannian (Corol-
lary 3.7), and we know that the volume entropy is n − 1 ([11]), we deduce the upper bound in
Theorem A:

COROLLARY 4.2. Let (C, dC) be a regular Hilbert geometry. Let λ1 be the bottom of
the spectrum of the Finsler Laplacian −
FC . Then

λ1 � (n − 1)2

4
.
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Note that, for generic asymptotically Riemannian Finsler metrics, we do not always have
λ1 > 0, even when the volume entropy is positive. Indeed, there exists examples of Riemann-
ian metrics on the universal cover of a manifold such that the volume entropy is positive and
λ1 = 0 (for instance the solvmanifold described in [7]). However, in the case of regular
Hilbert metrics, this is not possible as the next lemma asserts, which gives the lower bound of
Theorem A.

LEMMA 4.3. Let (C, dC) be a regular Hilbert geometry. Let λ1 be the bottom of the
spectrum of the Finsler Laplacian −
FC . Then λ1 > 0.

PROOF. By [11], we know that a regular Hilbert metric is bi-Lipschitz equivalent to the
hyperbolic space, so, by [4, Theorem 4] (that we recall below) and the Min-Max principle,
we deduce that the λ1 of FC is bounded below by C−1(n − 1), where C > 1 is a constant
depending on n and the bi-Lipschitz control. �

THEOREM 4.4 (Barthelmé–Colbois [4]). Let F and F0 be two Finsler metrics on an
n-manifold M . Suppose that there exists C > 1 such that, for any (x, v) ∈ T M � {0},

C−1 ≤ F(x, v)

F0(x, v)
≤ C .

Let C1 and C2 be the quasi-reversibility constants of F and F0 respectively. Then, there exists
a constant K ≥ 1, depending on C, C1, C2 and n, such that, for any f ∈ H 1(M),

C−K ≤ EF (f )

EF0(f )
≤ CK .

Note that in [4] this Theorem is stated for M compact, but stays true for non-compact
manifolds without any change to the proof.

4.1. Control of the symbol for pointwise bi-Lipschitz metrics. In this section we
prove that, given a bi-Lipschitz control of a Finsler metric by a Riemannian one, we can
control the symbol of the Finsler Laplacian by the dual Riemannian metric. Note that this
result is not as clear as in Riemannian geometry, as the symbol of the Finsler Laplacian a
priori depends on derivatives of the Finsler metric.

PROPOSITION 4.5. Let F be a Finsler metric on an n-manifold M , x ∈ M , and gx a
scalar product on TxM . Suppose that there exists C � 1 such that, for all v ∈ TxM � {0},

C−1 � F(x, v)√
gx(v, v)

� C .

Then there exists a constant C′ � 1, depending only on C and n, such that, for all p ∈ T ∗
x M ,

C′−1 � σF (p, p)

g∗
x (p, p)

� C′ .

Furthermore,

lim
C→1

C′(C, n) = 1 .
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In [4] the first two authors gave a proof of the existence of a C′ satisfying the inequality,
but not the limit condition. Hence, we reproduce the proof with an extra care to ensure this
second condition.

Let us fix a C2 Riemannian metric F0 on M such that F0(x, ·) = ‖·‖gx . Let X0 and X

be the geodesic vector fields associated with F0 and F respectively. There exists a function
m : HM → (0,+∞) and a vertical vector field Y : HM → V HM such that X = mX0 + Y

with m = F0/F .
Before going on to the proof, we start by stating some results that we will need (the

proofs are quite elementary and can be found in [4]):

LEMMA 4.6. Let F and F0 be two Finsler metrics on M , X and X0 the associated
geodesic vector fields. Let m : HM −→ R be the function m = F0/F and μ : M −→ R be
defined by

μ(x) := (volEucl
(
Sn−1))−1

∫
H ∗

x M

(
F ∗

0

F ∗

)n (
�−1
F0

)∗
αF0 , x ∈ M .

Then X = mX0 + Y for some vertical vector field Y ∈ V HM , ΩF = μΩF0 and

αF
(x,ξ) = 1

μ(x)

(
F ∗

0

F ∗ (�F (ξ))

)n (
�−1
F0

◦ �F

)∗
α

F0
(x,ξ) .

LEMMA 4.7. Let F and F0 be two Finsler metrics on an n-manifold M . Suppose that
for some x ∈ M , there exists C � 1 such that, for any v ∈ TxM � {0},

C−1 � F(x, v)

F0(x, v)
� C .

Then for any v ∈ TxM � {0}, ξ ∈ HxM , we have

C−1 � F ∗(x, v)

F ∗
0 (x, v)

� C ,(7)

C−n � μ(x) � Cn ,(8)

C−1 � m(x, ξ) � C.(9)

Note that the result was stated in [4] for a uniform bi-Lipschitz control (that is, C was
supposed not to depend on x ∈ M), but the proof stays exactly the same in this case of
pointwise bi-Lipschitz control.

PROOF OF PROPOSITION 4.5. Let p ∈ T ∗
x M � {0} be fixed. Let ‖·‖g∗

x
be the norm on

T ∗
x M dual to the scalar product gx . We suppose that ‖p‖g∗

x
= 1. Let φ : M → R be a smooth

function such that φ(x) = 0 and dφx = p. Then the norm of p for the symbol metric σF is

‖p‖2
σF = n

volEucl
(
Sn−1

) ∫
HxM

(
LXπ∗φ

)2
αF .

Let us write cn := n
(
volEucl

(
Sn−1

))−1
.

Let F0 be a C2 Riemannian metric such that F0(x, ·) = ‖·‖gx . Let X0 and X be the
geodesic vector fields associated with F0 and F respectively. There exists m : M → R and
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Y : HM → V HM such that X = mX0 + Y , so, using Lemma 4.6 and the change of variable
formula, we get

‖p‖2
σF = cn

∫
HxM

m2
(
LX0π

∗φ
)2(

�−1
F0

◦ �F

)∗ [
μ−1

(
F ∗

0

F ∗ ◦ �F0

)n

αF0

]

= cn

∫
HxM

(
m ◦ �−1

F ◦ �F0

)2(
LX0π

∗φ ◦ �−1
F ◦ �F0

)2
μ−1

(
F ∗

0

F ∗ ◦ �F0

)n

αF0 .

Now, using Lemma 4.7, we have that

‖p‖2
σF � cnC

2n+2
∫

HxM

(
LX0π

∗φ ◦ �−1
F ◦ �F0

)2
αF0 ,

‖p‖2
σF � cnC

−2n−2
∫

HxM

(
LX0π

∗φ ◦ �−1
F ◦ �F0

)2
αF0 .

That means we have

‖p‖2
σF

‖p‖2
σF0

� C2n+2

∫
S

F0
x M

p(L−1
F ◦ LF0(u))2αF0(u)∫

S
F0
x M

p(u)2αF0(u)

.

But, by continuity of L (Lemma 2.8), we haveL−1
F ◦LF0(u) = u+ε(u) with F0(ε(u)) � ε(C),

where C �−→ ε(C) is a continuous function such that ε(0) = 0. This gives

p(L−1
F ◦ LF0(u))2 = (p(u) + p(ε(u)))2 � p(u)2 + p(ε(u))2 + |2p(u)p(ε(u))|

and |p(ε(u))| � ε(C)‖p‖σF0 . So we get, using the Cauchy-Schwarz inequality,

‖p‖2
σF

‖p‖2
σF0

� C2n+2

‖p‖2
σF0

(
(1 + ε(C))‖p‖2

σF0
+ 2

(∫
S
F0
x M

p(u)2αF0(u)

)1/2
(∫

S
F0
x M

p(ε(u))2αF0(u)

)1/2 )

� C2n+2(1 + 2ε(C)) .

The same set of computations also gives the lower bound. �

4.2. λ1 and volume entropy. We prove here Theorem 4.1. Let o be a base point on
M . For any x ∈ M , define ρ(x) := d(o, x), with d the Finslerian distance.

CLAIM 4.8. For any s ∈ R such that 2s > h, we have e−sρ(·) ∈ L2
(
M,ΩF

)
.

PROOF. This fact is straightforward, just using the definition of the volume entropy. �

Choose C > 1. As F is asymptotically Riemannian, there exists a compact subset KC of
M and, for any x ∈ M � KC , a scalar product gx on TxM such that, for any v ∈ TxM � {0},

C−1 � F(x, v)√
gx(v, v)

� C .
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Now let R(C) > 0 such that the Finslerian metric ball BF (o,R(C)) ⊂ M , of center o

and radius R(C), contains KC . Set

fC(x) :=
{
e−sR(C) if x ∈ BF (o,R(C))

e−sρ(x) if x ∈ M � BF (o,R(C)) .

We will start by giving an upper bound on the energy of fC . Let ‖·‖σF be the norm given by
the symbol of F . We have

EF (fC) = n

volEucl(Sn−1)

∫
HM

(
LXπ∗f

)2
A ∧ dAn−1 =

∫
M

‖df ‖2
σF ΩF .

Hence, if we set UC := M � BF (o,R(C)),

EF (fC) =
∫

UC

s2‖dρx‖2
σF

x
e−2sρ(x)ΩF (x) .

Now, by Proposition 4.5, there exists C′ � 1 such that, for any x ∈ UC ,

‖dρx‖σF
x
� C′‖dρx‖g∗

x
� CC′‖dρx‖F ∗

x
,

where the last inequality holds because a C-bi-Lipschitz control of two Finsler metrics implies
a C-bi-Lipschitz control of their dual metrics (see for instance [4]).

By definition,

‖dρx‖F ∗,x = sup{dρx(v); v ∈ TxM,F(x, v) = 1} = 1 ,

because ρ is the distance function of F .
So we have obtained that

EF (fC) � s2C2C′2
∫

UC

e−2sρ(x)ΩF (x) .

We also have that∫
M

fC(x)2ΩF(x) =
∫

BF (o,R(C))

e−2sR(C)ΩF (x)

+
∫

UC

e−2sρ(x)ΩF (x) �
∫

UC

e−2sρ(x)ΩF (x) .

Therefore,

RF (fC) = EF (fC)∫
M fC(x)2ΩF(x)

�
s2C2C′2 ∫

UC
e−2sρ(x)ΩF (x)∫

UC
e−2sρ(x)ΩF (x)

= s2C2C′2 .

This is true for any s > h/2 and any C > 1. Since limC→1 C′ = 1, we get

λ1 = inf
f∈L2(M,ΩF )

RF (f ) � h2

4
.

This finishes the proof of Theorem 4.1.
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4.3. Dirichlet spectrum. By a slight modification of the above proof, we can show
that the same bound holds for the first Dirichlet eigenvalue of an asymptotically Riemannian
manifold M from which we removed a compact set K , provided that we know that the func-
tion e−hρ(x)/2 is not in L2(M). For a general (asymptotically) Riemannian manifold, this is
probably not true. But it is true for example on the universal cover of a compact negatively
curved Riemannian manifold: in this case, Margulis [17, 18] proved that, when R goes to
infinity, the area of the sphere of radius R is equivalent to CehR , for some constant C > 0,
which allows to conclude. We will see below that this argument also applies to regular Hilbert
geometries.

Recall that if K is a compact sub-manifold of M of the same dimension, the Dirichlet
spectrum on M � K is the spectrum of the operator −
F seen on the space obtained by
completion of C∞

0 (M � K), the space of smooth functions with compact support in M � K ,
under the norm given by the sum of the L2-norm and the energy. The first eigenvalue can still
be obtained via the infimum of the Rayleigh quotient.

COROLLARY 4.9. Let (M,F) be an asymptotically Riemannian manifold and K a
compact sub-manifold of M of the same dimension. Let λ1(M � K) be the bottom of the
Dirichlet spectrum of −
F on M � K . Let o ∈ M and ρ(x) := d(o, x). If the function
x �−→ e−hρ(x)/2 is not in L2(M), then

λ1(M � K) � h2

4
.

PROOF. We use the same notations as above: Let C > 1, and R(C) be such that, outside
of B(o,R(C)), F is C-bi-Lipschitz to a Riemannian metric. By choosing a larger R(C) if
necessary, we can assume that K ⊂ B(o,R(C)). Now, we just need to modify our previously
defined test function fC so that it is zero on ∂K , and show that the Rayleigh quotient is still
as close to h2/4 as we want.
Let fC be a function such that

fC(x) :=
{

0 if x ∈ ∂K

e−sρ(x) if x ∈ M � BF (o,R(C)) ,

and, furthermore, ∫
BF (o,R(C))�K

‖dfC‖2
σF ΩF � 1 .

Such a function exists if R(C) is large enough.
Hence, if we set again UC := M � BF (o,R(C)), we obtain as above that

EF (fC) � 1 + s2C2C′2
∫

UC

e−2sρ(x) ΩF (x) .

Thus,

RF (fC) � 1∫
M

e−2sρ(x) ΩF (x)
+ s2C2C′2 .
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Now, as x �−→ e−hρ(x)/2 is not in L2(M), 2s can be taken close enough to h, so that∫
M

e−2sρ(x)ΩF (x) becomes arbitrarily large. Finally, as C can be taken arbitrarily close to 1
and limC→1 C′(C) = 1, we obtain that

inf RF (fC) ≤ h2

4
,

which ends the proof. �

Using this, we can now prove the corresponding result about regular Hilbert geometries,
which will be useful to compute the bottom of the essential spectrum in the next section.

COROLLARY 4.10. Let (C, dC) be a regular Hilbert geometry and K be a compact
subset of C with smooth boundary. Let λ1(C � K) be the bottom of the Dirichlet spectrum of
−
FC on C � K . Then

λ1(C � K) � (n − 1)2

4
.

PROOF. Let o ∈ C and ρ(x) := dC(o, x). Thanks to Corollary 4.9, we only have to
show that the function x �−→ e−(n−1)ρ(x)/2 is not in L2(C,ΩFC).
In [11], the second and fourth authors gave a precise evaluation of the volume form of a regular
Hilbert geometry. Their computations imply in particular that there exists some constant C >

0 such that, for any measurable function f : [0,+∞) −→ R,∫
f ◦ ρ ΩFC � C

∫ +∞

0
f (r)e(n−1)Rdr .

(See the proof of Theorem 3.1 in [11]. The computations are done for the Busemann–Haus-
dorff volume, but the ratio between Busemann–Hausdorff and Holmes–Thompson volumes is
uniformly bounded, with bounds depending only on the dimension (see for instance [8]), so
their result applies.)

The conclusion is immediate:∫
e−(n−1)ρ(x)ΩFC (x) � C

∫ +∞

0
dr = +∞ .

�

5. Bottom of the essential spectrum. Coming back to regular Hilbert geometries,
we will now study the essential spectrum and prove Theorem B.

THEOREM 5.1. Let (C, dC) be a regular Hilbert geometry. Let σess(FC) be the essen-
tial spectrum of −
FC . Then

inf σess(FC) = (n − 1)2

4
.

So, if the λ1 of a regular Hilbert geometry is strictly less than (n− 1)2/4, then it is a true
eigenvalue, contrary to the hyperbolic case where the λ1 is just the infimum of the spectrum.
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Note that, in the next section, we will construct examples of Hilbert geometries with an
eigenvalue strictly smaller than (n−1)2/4. Indeed, we will construct examples with arbitrarily
many, arbitrarily small eigenvalues.

To prove our result on the essential spectrum, we will use the Cheeger inequality for
weighted Laplacians and control the Cheeger constant in regular Hilbert geometries using
Corollaries 3.7 and 3.8.

5.1. Cheeger constant, weighted Laplacians and essential spectrum. If F is a
Finsler metric on a manifold M , then 
F is a weighted Laplacian with symbol σF and sym-
metric with respect to the volume ΩF (see [3]). Hence, we have the following lower bound
for the first eigenvalue of −
F :

PROPOSITION 5.2 (Cheeger Inequality). Let M be a non-compact manifold and F a
Finsler metric on M . Let d volσ

F
be the volume form of the Riemannian metric dual to σF ,

dAreaσF
the associated area element and μ : M → R the function such that ΩF = μdVolσ

F
.

Set

h
σ,Ω
Cheeger(M) := inf

D

{∫
∂D μ(x)dAreaσF

∫
D

dVolσ
F

}
,

where the infimum is taken over all compact domains D with smooth boundary.
If λ1 is the bottom of the spectrum of −
F on M , then

4λ1 � h
σ,Ω
Cheeger(M)2 .

We do not provide the proof as it is the exact same as for the traditional Cheeger inequal-
ity (see for instance [19]). To study the essential spectrum, we also need the decomposition
principle of Donnelly and Li, which states that the essential spectrum is independent of the
behavior of the operator on any compact subset. This principle is usually stated for weighted
Laplacians, but we rephrase it in the Finsler setting:

PROPOSITION 5.3 (Decomposition principle of Donnelly and Li [15]). Let M be a
non-compact manifold and F a Finsler metric on M . Let M ′ be a compact sub-manifold
of M of the same dimension. Then

σess(M,F) = σess(M � M ′, F ) .

In particular,

h
σ,Ω
Cheeger(M � M ′)2 � 4 inf σess(F ) .

We also have the following known result. As we did not find any reference, we provide
a proof.

LEMMA 5.4. Let {M ′
i} be an increasing family of compact sub-manifolds of M of the

same dimension, such that ∪iM
′
i = M . Then

inf σess(M,F) = lim
i→∞ λ1(M � M ′

i , F ) ,

where λ1(M � M ′
i , F ) denotes the Dirichlet spectrum of M � M ′

i .
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PROOF. Let us write λi
1 := λ1(M �M ′

i , F ). By the Decomposition principle, we have
that, for all i, λi

1 � inf σess(M,F). We suppose that λi
1 < inf σess(M,F), otherwise we are

done. Let λ = limi→∞ λi
1, which exists because, as {M ′

i} is increasing, the sequence {λi
1} is

nondecreasing. To prove that λ is in the essential spectrum, we are going to show that, for any
ε > 0, there exists a family of functions fi ∈ L2(M), with disjoint supports, such that

‖−
Ffi − λfi‖ � ε‖fi‖ ,

where ‖·‖ denotes the L2-norm with respect to ΩF .
Let ε > 0. As λi

1 is an eigenvalue with finite multiplicity of −
F on M � M ′
i , we can

find a function fi ∈ L2(M � M ′
i ) with compact support such that

‖−
F fi − λi
1fi‖ � ε‖fi‖ .

Up to taking a subsequence, we can suppose that suppfi ⊂ M ′
i+1, so that suppfi ⊂ M ′

i+1 �

M ′
i . Hence, for any i �= j , we have suppfi ∩ suppfj = ∅. So, for i large enough,

‖−
F fi − λfi‖ � ‖−
F fi − λi
1fi‖ + |λ − λi

1|‖fi‖ � 2ε‖fi‖ . �

This gives a part of Theorem 5.1.

COROLLARY 5.5. Let (C, dC) be a regular Hilbert geometry. Then

inf σess(FC) � (n − 1)2/4 .

PROOF. Pick o ∈ C. Then Corollary 4.10 gives that, for any i � 1, λ1(C � B(o, i)) �
(n − 1)2/4. The previous lemma allows us to conclude the proof. �

5.2. Essential spectrum of regular Hilbert geometries. The next few lemmas will
allow us to prove the inequality inf σess(FC) � (n − 1)2/4 and thus conclude the proof of
Theorem 5.1. Denote by σ the symbol of −
FC , by h

σ,Ω
Cheeger the weighted Cheeger constant

associated with σ and ΩFC and by hCheeger the traditional Cheeger constant for the Riemann-
ian metric dual to σ .

Let o ∈ C be fixed and K a relatively compact open subset of C.

LEMMA 5.6. For any C > 1, there exists a constant R = R(C) > 0 and a constant
C1 = C1(C) � 1 such that, on C � B(o,R), we have:

C−1
1 � σ ∗

F 2 � C1 .

Furthermore, C1 tends to 1 as C tends to 1.

PROOF. Let C > 1. According to Corollary 3.7, there exists R = R(C) > 0 and a
Riemannian metric g on C � B(o,R) such that C−1g � F 2

C � Cg . By Proposition 4.5,
there exists a constant C′ = C′(C, n) > 1 such that (C′C)−1F 2

C � σ ∗ � C′CF 2
C on all of

C � B(o,R). Finally, still according to Proposition 4.5, C′C tends to 1 when C tends to 1, so
we can set C1 = C′C. �
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LEMMA 5.7. For any C > 1, there exists a constant R = R(C) > 0 and a constant
C2 = C2(C) > 1 such that

h
σ,Ω
Cheeger (C � B(o,R)) � C−1

2 hCheeger (C � B(o,R)) .

Furthermore, C2 tends to 1 as C tends to 1.

PROOF. Let C > 1. By Lemma 5.6, there exist constants R = R(C) > 0 and C1 �
1 such that, on C � B(o,R), we have C−1

1 F 2
C � σ ∗ � C1F

2
C . Let μ : M → R be the

function such that ΩF = μd volσ
F

. By Lemma 4.7, we have C−n
1 � μ(x) � Cn

1 for any
x ∈ C � B(o,R). So we get that, for any compact domain D in C � B(o,R) with smooth
boundary,

C−n
1

∫
∂D

dAreaσ �
∫

∂D

μ(x)dAreaσF � Cn
1

∫
∂D

μ(x)dAreaσF

C−n
1

∫
D

dVolσ �
∫

D

ΩFC � Cn
1

∫
D

dVolσ .

Therefore, setting C2 = C2n
1 gives the claim. �

LEMMA 5.8. For any C > 1, there exists a constant R = R(C) > 0 and a constant
C3 = C3(C) � 1 such that

hCheeger (C � B(o,R)) � C−1
3 (n − 1).

Furthermore, C3 tends to 1 as C tends to 1.

PROOF. Let C > 1. Let R = R(C) � 0, Ux(C) and hx , x ∈ ∂C, be given by Corol-
lary 3.8. Let D be a compact domain in C � B(o,R) with smooth boundary.

For each x ∈ ∂C, let Kx be a family of open cones with vertex o such that, for any
x ∈ ∂C, Kx ∩ D ⊂ Ux(C) and ∪x∈∂CKx covers D. Such a family exists because ∪x∈∂CUx

openly covers C � B(o,R). Remark that the boundary of Kx is a union of geodesics of FC ,
which are also geodesics of hx .

Now, by compactness of D, there exist x1, . . . , xk ∈ ∂C such that ∪iKxi openly covers
D. By choosing the cones Kxi to be smaller if necessary, we can assume that the domain D

is partitioned into ∪1�i�k(Kxi ∩ D).

CLAIM 5.9. For any 1 � i � k, we have

Areahxi

(
Kxi ∩ ∂D

)
Volhxi

(
Kxi ∩ D

) � (n − 1) .

PROOF OF CLAIM 5.9. Since we are in the hyperbolic setting, we can prove the claim
by a direct computation. We fix polar coordinates (r, p), where r is given by the (hyper-
bolic) distance to o, the vertex of Kxi . In this coordinates, we have div (∂/∂r) = (n −
1) cosh r/ sinh r � (n − 1). Hence,

(n − 1)Volhxi

(
Kxi ∩ D

)
�
∫

Kxi
∩D

div

(
∂

∂r

)
dVolhxi =

∫
∂
(
Kxi

∩D
)hxi

(
∂

∂r
, �n
)

dAreahxi ,



LAPLACIAN AND SPECTRAL GAP IN REGULAR HILBERT GEOMETRIES 403

where the last equality is given by the divergence formula, writing �n for the normal vector.
Now, as the boundary of Kxi ∩ D are made of geodesics of hxi outside of ∂D, we have that
hxi (∂/∂r, �n) = 0 on ∂Kxi � ∂D. So, we obtain

(n − 1)Volhxi

(
Kxi ∩ D

)
�
∫

∂
(
Kxi

∩D
)hxi

(
∂

∂r
, �n
)

dAreahxi

=
∫

Kxi
∩∂D

hxi

(
∂

∂r
, �n
)

dAreahxi

�
∫

Kxi
∩∂D

dAreahxi = Areahxi

(
Kxi ∩ ∂D

)
,

which proves the claim. �

For all 1 � i � k holds C−1hxi � F 2
C � Chxi on Uxi (C). As in Lemma 5.6, there exists

a constant C′
1 := C′

1(C) such that, on Uxi (C),

C′−1
1 hxi � σ ∗ � C′

1hxi , 1 � i � k ,

and, furthermore, limC→1 C′
1(C) = 1.

Hence, for any domain U in Uxi (C), and in particular for Kxi ∩ D, we have

C
′−(n−1)
1

∫
∂U

dAreahxi �
∫

∂U

dAreaσ � C′n−1
1

∫
∂U

dAreahxi ,

C′−n
1

∫
U

dVolhxi �
∫

U

dVolσ � C′n
1

∫
U

dVolhxi .

So, thanks to Claim 5.9, we get

Areaσ
(
Kxi ∩ ∂D

)
Volσ

(
Kxi ∩ D

) � C′−2n−1
1 (n − 1) .

Setting C3 := C′2n+1
1 , we have

Areaσ (∂D) =
k∑

i=1

Areaσ (Kxi ∩∂D) � C−1
3 (n−1)

k∑
i=1

Volσ (Kxi ∩D) = C−1
3 (n−1)Volσ (D) .

Finally, C3 tends to 1 when C tends to 1, because it is the case for C′
1. �

We can complete the

PROOF OF THEOREM 5.1. It remains to show that the infimum of the essential spec-
trum is greater than (n − 1)2/4. Let C > 1. Combining Proposition 5.3 with Lemmas 5.7
and 5.8, we see that

4 inf σess(F ) � (C2(C)C3(C))−2(n − 1)2

for some C2(C), C3(C) � 1. When C goes to 1, C2(C) and C3(C) also tend to 1, hence

4 inf σess(F ) � (n − 1)2 . �
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6. Small eigenvalues. The Hilbert geometries of simplices is a very simple one:

PROPOSITION 6.1 ([13]). The Hilbert geometry defined by a simplex of RP n is iso-
metric to a normed vector space of dimension n.

In this section, we construct, by taking C2-approximations of simplices, properly convex
sets with arbitrarily many, arbitrarily small eigenvalues.

THEOREM 6.2. Let ε > 0 and N ∈ N . There exists a regular Hilbert geometry (C, dC)

such that the N first eigenvalues of −
FC are below ε.

Let Sm be a family of simplices in Rn converging in the Hausdorff distance to a simplex
S∞ and such that, for all m, S∞ ⊂ Sm. Let Cm be a family of convex subsets of Rn defining
regular Hilbert geometries such that, for all m, S∞ ⊂ Cm ⊂ Sm. For simplicity, we write Fm

instead of FCm
and F∞ instead of FS∞ . We write ΩF∞ for the Holmes–Thompson volume of

F∞.

LEMMA 6.3. Let K be a compact set in S∞. Let μm : S∞ → R+ be the function such
that ΩFm = μmΩF∞ . For any η > 1, there exists M = M(K, η) ∈ N such that, for any
x, y ∈ K and m � M , we have

η−1dS∞(x, y) � dCm
(x, y) � dS∞(x, y)

and

η−1 � μm(x) � η .

PROOF. As S∞ ⊂ Cm ⊂ Sm, we have, for any x ∈ S∞ and m ∈ N ,

FSm(x, ·) � FCm
(x, ·) � FS∞(x, ·) .

As Sm converges to S∞ when m tends to infinity, the ratio FSm/FS∞ , defined on HS∞, con-
verges uniformly on compact subsets of HS∞ to 1. This is enough to conclude the proof.

�

Denote by Bm(x,R) the open metric ball of radius R > 0 centered at x for Cm, 0 � m �
∞. For given R > 0, m ∈ N and x ∈ S∞, we define the function fR,m,x : Cm → R by

fR,m,x(y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if y ∈ Bm(x,R)

(R + 1) − dCm
(x, y) if y ∈ Bm(x,R + 1) � Bm(x,R)

0 if y ∈ Cm � Bm(x,R + 1) .

LEMMA 6.4. Let ε > 0. Let R > 0 be chosen so that ((R + 1)n − Rn) /Rn < ε/(8n).
Let x ∈ S∞ and K be a compact set in S∞ containing Bm(x,R + 1) for all m big enough.
There exists M ∈ N , depending on K and ε, such that, for all m � M ,

RFm(fR,m,x) � ε/2 .
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PROOF. We write Xm for the generator of the geodesic flow of Fm on HCm. Let us start
by giving a first bound on RFm(fR,m,x ):

RFm(fR,m,x) = n

volEucl(Sn−1)

∫
HCm

(
LXmπ∗fR,m,x

)2
AFm ∧ (dAFm

)n−1∫
Cm

f 2ΩFm

= n

volEucl(Sn−1)

∫
H
(
Bm(x,R+1)�Bm(x,R)

) (LXmπ∗fR,m,x

)2
AFm ∧ (dAFm

)n−1

∫
Bm(x,R+1)

f 2ΩFm

� n

∫
Bm(x,R+1)�Bm(x,R)

ΩFm∫
Bm(x,R)

ΩFm
.

So all we have to do now is give an upper bound of
∫
Bm(x,R+1)�Bm(x,R) ΩFm and a lower

bound of
∫
Bm(x,R) ΩFm so that their ratio is as small as we wish for large values of R and m.

Let η > 1 be such that

nηn+2(1 − ηn)� ε/4 ,

ηn+2 � 2 .

By Lemma 6.3, there exists M ∈ N , depending on K and ε, such that, for all m � M ,

η−1dS∞(x, y) � dCm
(x, y) � dS∞(x, y) .

Hence, for m � M , we have B∞(x, R) ⊂ Bm(x,R) ⊂ B∞(x, ηR), and

Bm(x,R + 1) � Bm(x,R) ⊂ B∞(x, η(R + 1))� B∞(x, R) .

The second part of Lemma 6.3 gives then∫
Bm(x,R+1)�Bm(x,R)

ΩFm � η

∫
B∞(x,η(R+1))�B∞(x,R)

ΩF∞,∫
Bm(x,R)

ΩFm � η−1
∫

B∞(x,R)

ΩF∞ .

Now, since the Hilbert geometry (S∞, dS∞) is isometric to a normed vector space (Proposi-
tion 6.1), it is easy to compute volumes: there is some C > 0 such that∫

B∞(x,η(R+1))�B∞(x,R)

ΩF∞ = C volEucl(S
n−1)

(
ηn(R + 1)n − Rn

)
,∫

B∞(x,R)

ΩF∞ = C volEucl(S
n−1)Rn .

Finally, we get

RFm(fR,m,x) � nη2 ηn(R + 1)n − Rn

Rn
= nηn+2

(
(1 − η−n) + (R + 1)n − Rn

Rn

)
� ε/2 ,

where the last inequality is obtained thanks to our assumptions on R and η. �

We can now finish the
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PROOF OF THEOREM 6.2. Let ε > 0 and N ∈ N . Choose R > 0 as in Lemma 6.4
and points x1, . . . , xN in S∞ so that the dS∞-distance between each pair of points is at least
2R + 3. Then pick a compact set K ⊂ S∞ containing all the balls Bm(xi, R + 1) for m big
enough. Such a compact set exists: for instance, take a compact set which contains the balls
B∞(xi, R + 3); then, for m big enough, we have Bm(xi, R + 1) ⊂ B∞(xi, R + 3).

By Lemma 6.4, there exists M ∈ N , such that for m � M , the functions fR,m,xi ,
1 � i � N , are such that

RFm(fR,m,xi ) � ε/2 .

Furthermore, the xi are sufficiently apart so that the functions fR,m,xi have disjoint support.
The Min-Max principle (Theorem 2.5) allows us to conclude that there are at least N eigen-
values below ε. �
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