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SOME EXAMPLES OF
SELF-SIMILAR SOLUTIONS AND TRANSLATING SOLITONS

FOR LAGRANGIAN MEAN CURVATURE FLOW
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Abstract. We construct examples of self-similar solutions and translating solitons for
Lagrangian mean curvature flow by extending the method of Joyce, Lee and Tsui. Those
examples include examples in which the Lagrangian angle is arbitrarily small as the examples
of Joyce, Lee and Tsui. The examples are non-smooth zero-Maslov class Lagrangian self-
expanders which are asymptotic to a pair of planes intersecting transversely.

1. Introduction. In recent years the Lagrangian mean curvature flow has been ex-
tensively studied, as it is a key ingredient in the Strominger-Yau-Zaslow Conjecture [9] and
Thomas-Yau Conjecture [10]. Strominger-Yau-Zaslow Conjecture explains Mirror Symmetry
of Calabi-Yau 3-folds. In [3], Joyce, Lee and Tsui constructed many examples of self-similar
solutions and translating solitons for Lagrangian mean curvature flow. Those Lagrangian sub-
manifolds L are the total space of a 1-parameter family of quadrics Qs, s ∈ I, where I is an
open interval in R. In this paper, we construct examples of those Lagrangian submanifolds
that associate with the examples of Lagrangian submanifolds given in [2], [3], [4], [5] and so
on. To do so we improve theorems in [3] by describing Lagrangian submanifolds of the forms
of [3, Ansatz 3.1 and Ansatz 3.3].

Our ambient space is always the complex Euclidean space Cn with coordinates zj =
xj + iyj and the standard symplectic form ω = ∑n

j=1 dxj ∧ dyj . A Lagrangian submanifold
L is a real n-dimensional submanifold in Cn on which the symplectic form ω vanishes. On
L, we can define Lagrangian angle θ : L → R or θ : L → R/2πZ by the relation

dz1 ∧ · · · ∧ dzn|L ≡ eiθvolL ,

and the mean curvature vectorH by

(1) H = J∇θ ,
where ∇ is the gradient on L and J is the standard complex structure in Cn. Equation (1)
implies that a Lagrangian submanifold remains Lagrangian under the mean curvature flow, as
in Smoczyk [8]. The Maslov class on L is defined by the cohomology class of dθ. Hence L is
zero-Maslov class when θ is a single-valued function. A Lagrangian submanifold L is called
Hamiltonian stationary if the Lagrangian angle θ is harmonic, that is, if �θ = 0, and L is
called a special Lagrangian submanifold if θ is a constant function. A Hamiltonian stationary
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Lagrangian submanifold is a critical point of the volume functional among all Hamiltonian
deformations, and a special Lagrangian is a volume minimizer in its homology class.

DEFINITION 1.1. Let L ⊂ RN be a submanifold in RN . L is called self-similar solu-
tion if H ≡ αF⊥ on L for some constant α ∈ R, where F⊥ is the orthogonal projection of
the position vector F in RN to the normal bundle of L, and H is the mean curvature vector
of L in RN . It is called a self-shrinker if α < 0 and a self-expander if α > 0. On the other
hand L ⊂ RN is called a translating soliton if there exists a constant vector T in RN such
that H ≡ T ⊥, where T ⊥ is the orthogonal projection of the constant vector T in RN to the
normal bundle of L, and we call T a translating vector.

It is well known that if F is a self-similar solution then Ft = √
2αtF is moved by the

mean curvature flow, and if F is a translating soliton then Ft = F + tT is moved by the mean
curvature flow. By Huisken [1], any central blow-up of a finite-time singularity of the mean
curvature flow is a self-similar solution.

First we consider self-similar solutions.

THEOREM 1.2. Let C, λ1, . . . , λn ∈ R \ {0}, α,ψ1, . . . , ψn ∈ R, a1, . . . , an > 0,
and E > 1 be constants. Let I ⊂ R be a connected open neighborhood of 0 ∈ R such that
infs∈I (E{∏n

k=1(1 + akλks)}eαs − 1) and infs∈I (1/aj + λj s) are positive for any 1 ≤ j ≤ n.

Define r1, . . . , rn : I → R by

(2) rj (s) =
√

1

aj
+ λj s, j = 1, . . . , n,

and φ1, . . . , φn : I → R by

(3) φj (s) = ψj + λj

2

∫ s

0

dt

(1/aj + λj t)

√
E
{∏n

k=1(1 + akλkt)
}
eαt − 1

,

j = 1, . . . , n. Then the submanifold L in Cn given by

L =
{
(x1r1(s)e

iφ1(s), . . . , xnrn(s)e
iφn(s));

n∑
j=1

λj x
2
j = C, xj ∈ R, s ∈ I

}

is an immersed Lagrangian submanifold diffeomorphic to Sm−1 × Rn−m+1, where m is the
number of positive λj /C, 1 ≤ j ≤ n, and the mean curvature vectorH satisfiesCH ≡ αF⊥
for the position vector F. That is, L is a self-expander when α/C > 0 and a self-shrinker when
α/C < 0. When α = 0 the Lagrangian angle θ is constant, so that L is special Lagrangian.

The following Theorem 1.3 is slightly generalized from [3, Theorem C].

THEOREM 1.3. Let a1, . . . , an > 0 ,ψ1, . . . , ψn ∈ R,E ≥ 1, and α ≥ 0 be constants.
Define r1, . . . , rn : R → R by

(4) rj (s) =
√

1

aj
+ s2 ,
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and φ1, . . . , φn : R → R by

(5) φj (s) = ψj +
∫ s

0

|t|dt
(1/aj + t2)

√
E
{∏n

k=1(1 + akt2)
}
eαt

2 − 1
.

Then the submanifold L in Cn given by

(6) L =
{
(x1r1(s)e

iφ1(s), . . . , xnrn(s)e
iφn(s));

n∑
j=1

x2
j = 1, xj ∈ R, s ∈ R, s �= 0

}

is an embedded Lagrangian diffeomorphic to (R\{0})×Sn−1, and the mean curvature vector
H satisfies H ≡ αF⊥, where F is the position vector of L. If α > 0, it is a self-expander,
and if α = 0 it is special Lagrangian. When E = 1 the construction reduces to that of Joyce,
Lee and Tsui [3, Theorem C]. So the condition s �= 0 on the definition of L is not necessary if
E = 1.

REMARK 1.3.1. In the situation of Theorem 1.3, define φ̄1, . . . , φ̄n > 0 by

φ̄j =
∫ ∞

0

|t|dt
(1/aj + t2)

√
E
{∏n

k=1(1 + akt2)
}
eαt

2 − 1
.

We put α > 0 and E > 0. From (14), the third equation of (13) and the proof of Theorem 1.3,
the Lagrangian angle θ satisfies

θ(s) =
∑
j

φj (s)+ arg

(
s + i

|s|√
E
{∏n

k=1(1 + aks2)
}
eαs

2 − 1

)
and

θ̇ (s) = −α|s|√
E
{∏n

k=1(1 + aks2)
}
eαs

2 − 1
.

(7)

It follows that θ is strictly decreasing. We define the submanifolds L1 and L2 of L so that
s > 0 on L1, and s < 0 on L2, respectively. Therefore we have L = L1 ∪ L2. We rewrite
θ1, θ2 as the Lagrangian angle of L1, L2, respectively. Then lims→+∞ θ1(s) < θ1(s) <

lims→+0 θ1(s) and lims→−0 θ2(s) < θ2(s) < lims→−∞ θ2(s) hold. So from the first
equation of (7) we have∑

j

ψj +
∑
j

φ̄j < θ1(s) <
∑
j

ψj + tan−1 1√
E − 1

and

∑
j

ψj + π − tan−1 1√
E − 1

< θ2(s) <
∑
j

ψj + π −
∑
j

φ̄j .

(8)

Therefore we can make the oscillations of the Lagrangian angles of L1 and L2 arbitrarily
small by taking E close to ∞ and hence tan−1(1/

√
E − 1) close to 0. Furthermore, we can

prove that the map

Φ : (0,∞)n →
{
(y1, . . . , yn) ∈

(
0, tan−1 1√

E − 1

)n
; 0 <

n∑
j=1

yj < tan−1 1√
E − 1

}
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defined by Φ(a1, . . . , an) = (φ̄1, . . . , φ̄n) gives a diffeomorphism similarly to the proof of in
[3, Theorem D]. Therefore we also can make the oscillations of the Lagrangian angles of L1

and L2 arbitrarily small by taking
∑
j φ̄j close to tan−1(1/

√
E − 1).

For understanding Theorem 1.3, we compute

dF

ds
= (x1(ṙ1 + ir1φ̇1)e

iφ1 , . . . , xn(ṙn + irnφ̇n)e
iφn)

=
(
x1e

iφ1

(
s√

1/a1 + s2
+ i

|s|√
(1/a1 + s2)E

{∏n
k=1(1 + aks2)

}
eαs

2 − 1}

)
, . . . ,

xne
iφn

(
s√

1/an + s2
+ i

|s|√
(1/an + s2)E

{∏n
k=1(1 + aks2)

}
eαs

2 − 1}

))

=
(
s + i

|s|√
E
{∏n

k=1(1 + aks2)
}
eαs

2 − 1}

)
·
(

x1e
iφ1√

1/a1 + s2
, . . . ,

xne
iφn√

1/an + s2

)
.

Then we have

∣∣∣dF
ds

∣∣∣ = |s|
√√√√(

1 + 1

E
{∏n

k=1(1 + aks2)
}
eαs

2 − 1

)
·
∑
j

x2
j

1/aj + s2 .

So we obtain

lim
s→+0

1

|dF/ds| · dF
ds

=
(

1√
1 + 1/(E − 1)

+ i
1/

√
E − 1√

1 + 1/(E − 1)

)
1√∑
j aj x

2
j

· (x1e
iψ1

√
a1, . . . , xne

iψn
√
an)

and

lim
s→−0

1

|dF/ds| · dF
ds

=
( −1√

1 + 1/(E − 1)
+ i

1/
√
E − 1√

1 + 1/(E − 1)

)
1√∑
j aj x

2
j

· (x1e
iψ1

√
a1, . . . , xne

iψn
√
an) .

Thus we get

lim
s→+0

1

|dF/ds| · dF
ds

�= lim
s→−0

1

|dF/ds| · dF
ds

.

Therefore, if we remove the condition s �= 0 from the definition of L, it is not smooth at any
point s = 0. In [6], Lotay and Neves proved that smooth zero-Maslov class Lagrangian self-
expanders in Cn which are asymptotic to a pair of planes intersecting transversely are locally
unique if n > 2 and unique if n = 2. It is easy to check that L is zero-Maslov class and
asymptotic to a pair of planes intersecting transversely. By [3, Theorem C], we can construct
a smooth Lagrangian self-expander asymptotic to any pair of Lagrangian planes in Cn which
intersect transversely at the origin and have sum of characteristic angles less than π, where
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the characteristic angle is defined in Lawlor [7]. So Theorem 1.3 shows that, without the
smoothness assumption, the uniqueness statement does not hold.

REMARK 1.3.2. In the situation of Theorem 1.3, if we put E = 1 and α = 0, then
changing 0 �→ −∞ in the integral of (5) gives Joyce’s example [2, Example 6.11].

REMARK 1.3.3. In the situation of Theorem 1.2, if we take C = λ1 = · · · = λn = 1
and α ≥ 0, then the construction of L reduces to that of Theorem 1.3 where s > 0.

Next we turn to translating solitons.

THEOREM 1.4. Fix n ≥ 2. Let λ1, . . . , λn−1 ∈ R \ {0}, E > 1, a1, . . . , an−1 > 0,
and α, ψ1, . . . , ψn−1 ∈ R be constants. Let I ⊂ R be a connected open neighborhood of
0 ∈ R such that infs∈I (E{∏n−1

k=1(1 + akλks)}eαs − 1) and infs∈I (1/aj + λj s) are positive for
any 1 ≤ j ≤ n. Define r1, . . . , rn−1 : I → R by

rj (s) =
√

1

aj
+ λj s , j = 1, . . . , n− 1,(9)

and φ1, . . . , φn−1 : I → R by

φj (s) = ψj + λj

2

∫ s

0

dt

(1/aj + λj t)

√
E
{∏n−1

k=1(1 + akλkt)
}
eαt − 1

,(10)

j = 1, . . . , n− 1. Then the submanifold L in Cn given by

L=
{(
x1r1(s)e

iφ1(s), . . . , xn−1rn−1(s)e
iφn−1(s),−1

2

n−1∑
j=1

λj x
2
j + s

2

+ i

2

∫ s

0

dt√
E
{∏n−1

k=1(1 + akλkt)
}
eαt − 1

)
; x1, . . . , xn−1 ∈ R, s ∈ I

}

is an immersed Lagrangian submanifold diffeomorphic to Rn, and the mean curvature vector
H satisfies H ≡ T ⊥, where T = (0, . . . , 0, α) ∈ Cn. When α = 0 it is special Lagrangian.

The following Theorem 1.5 is slightly generalized from [3, Corollary I].

THEOREM 1.5. Fix n ≥ 2. Let a1, . . . , an−1 > 0, ψ1, . . . , ψn−1 ∈ R, E ≥ 1, and
α ≥ 0 be constants. Define r1, . . . , rn−1 : R → R by

rj (s) =
√

1

aj
+ s2 , j = 1, . . . , n− 1 ,(11)

and φ1, . . . , φn−1 : R → R by

φj (s) = ψj +
∫ s

0

|t|dt
(1/aj + t2)

√
E
{∏n−1

k=1(1 + akt2)
}
eαt

2 − 1
,(12)
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j = 1, . . . , n− 1. Then the submanifold L in Cn given by

L=
{(
x1r1(s)e

iφ1(s), . . . , xn−1rn−1(s)e
iφn−1(s),−1

2

n−1∑
j=1

x2
j + s2

2

+ i
∫ s

0

|t|dt√
E{∏n−1

k=1(1 + akt2)}eαt2 − 1

)
; x1, . . . , xn−1 ∈ R, s ∈ R, s �= 0

}

is an embedded Lagrangian submanifold diffeomorphic to (R \ {0}) × Rn−1, and the mean
curvature vector H satisfies H ≡ T ⊥, where T = (0, . . . , 0, α) ∈ Cn. When α = 0 it is
special Lagrangian. When E = 1 and ψ1 = · · · = ψn−1 = 0, the construction reduces to
that of Joyce, Lee and Tsui [3, Corollary I]. So the condition s �= 0 on the definition of L is
not necessary if E = 1.

REMARK 1.5.1. In the situation of Theorem 1.5, we define the submanifolds L1 and
L2 of L so that s > 0 on L1, and s < 0 on L2, respectively. Similarly to Remark 1.3.1 if we
fix α > 0, then we can make the oscillations of the Lagrangian angles ofL1 and L2 arbitrarily
small.

REMARK 1.5.2. In the situation of Theorem 1.4, if we put λ1 = · · · = λn−1 = 1 and
α ≥ 0, then the construction of L reduces to that of Theorem 1.5 where s > 0.

Acknowledgments. The author would like to thank the supervisor Akito Futaki. He also wishes to
thank Masataka Shibata, Yuji Terashima, Mitutaka Murayama and Kota Hattori for useful conversations.
Kota Hattori gives him helpful comments concerning Lemmas 2.1 and 3.1.

2. Proofs for self-similar solutions. In order to prove Theorems 1.2 and 1.3, we
use the following Lemma 2.1 that is generalized from [3, Theorem B]. The submanifolds in
the following Lemma 2.1 are immersed Lagrangian self-similar solutions diffeomorphic to
Sm−1 × Rn−m+1, where 1 ≤ m ≤ n.

LEMMA 2.1. Let I be an open interval in R and D a domain in Rn+2. Let α ∈
R, λ1, . . . , λn, C ∈ R \ {0} and a1, . . . , an > 0 be constants, and f : I × D → C \ {0} a
smooth function. Let u, φ1, . . . , φn, θ : I → R be smooth functions such that
{(s, u(s), φ1(s), . . . , φn(s), θ(s)); s ∈ I } ⊂ I ×D. Suppose that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

du

ds
= 2 Re(f (s, u, φ1, . . . , φn, θ)) ,

dφj

ds
= λj Im (f (s, u, φ1, . . . , φn, θ))

1/aj + λju(s)
, j = 1, . . . , n ,

dθ

ds
= −α Im(f (s, u, φ1, . . . , φn, θ)) ,

(13)

hold in I. We also suppose that

inf
s∈I(1/aj + λju(s)) > 0 , j = 1, . . . , n ,
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and

(14) θ(s) =
n∑
j=1

φj (s)+ arg(f (s, u(s), φ1(s), . . . , φn(s), θ(s)))

hold in I. Then the submanifold L in Cn given by

(15)

L =
{(
x1
√

1/a1 + λ1u(s)e
iφ1(s), . . . , xn

√
1/an + λnu(s)e

iφn(s)
);

n∑
j=1

λj x
2
j = C, xj ∈ R, s ∈ I

}

is an immersed Lagrangian submanifold diffeomorphic to Sm−1 × Rn−m+1, where m is the
number of positive λj /C, 1 ≤ j ≤ n, with Lagrangian angle θ(s) at

(x1
√

1/a1 + λ1u(s)e
iφ1(s), . . . , xn

√
1/an + λnu(s)e

iφn(s)) ∈ L ,
and the mean curvature vector H satisfies CH ≡ αF⊥, where F is the position vector of L.
Note that θ(s) is a function depending only on s, and L is a self-expander when α/C > 0 and
a self-shrinker when α/C < 0. When α = 0 the Lagrangian angle θ is constant, so that L is
special Lagrangian.

REMARK 2.1.1. In the situation of Lemma 2.1, if we set a1 = · · · = an = 1, α =
−∑n

k=1 λk and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f (s, y1, . . . , yn+2) = i ,

u(s) = 0 ,

φj (s) = λj s, 1 ≤ j ≤ n ,

θ(s) = −αs + π

2
=
( n∑
k=1

λk

)
s + π

2
,

(16)

then it is easily seen that this setting satisfies the assumptions of Lemma 2.1, and the con-
struction is Hamiltonian stationary in addition to being self-similar and it reduces to that of
Lee and Wang [5, Theorem 1.1]. If f is a real valued function, then the submanifold L is an
open subset of the special Lagrangian n-plane

{(y1e
iξ1, . . . , yne

iξn); yj ∈ R, 1 ≤ j ≤ n} ,
where ξj ∈ R.

PROOF OF LEMMA 2.1. Write

ωj (s) =
√

1/aj + λju(s) e
iφj (s) , 1 ≤ j ≤ n .

We compute

dωj

ds
= d

ds

(√
1/aj + λju(s)

) · eiφj (s) +
√

1/aj + λju(s) · i dφj
ds

eiφj (s)
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=
(
λjRe(f (s, u, φ1, . . . , φn, θ))√

1/aj + λju(s)
+ i

λj Im(f (s, u, φ1, . . . , φn, θ))√
1/aj + λju(s)

)
eiφj (s)

= λjf (s, u, φ1, . . . , φn, θ)

ωj
.

Thus we obtain

(17)

⎧⎪⎪⎨
⎪⎪⎩
dωj

ds
= λjf (s, u, φ1, . . . , φn, θ)

ωj
, j = 1, . . . , n ,

dθ

ds
= −α Im(f (s, u, φ1, . . . , φn, θ)) .

By (14) and (17), we can prove this theorem similarly to the proof of [3, Theorem A]. The
details are left to the reader. This finishes the proof of Lemma 2.1. �

Now we can show Theorems 1.2 and 1.3.

PROOF OF THEOREM 1.2. Define f̃ : I → C \ {0} by

f̃ (s) = 1

2
+ i

2
√
E
{∏n

k=1(1 + akλks)
}
eαs − 1

and f : I × Rn+2 → C \ {0} by f (s, y1, . . . , yn+2) = f̃ (s). Note that f is a function
depending only on s ∈ I. We also define u : I → R by

u(s) = 2
∫ s

0
Re(f̃ (t))dt = s ,

and θ : I → R by

(18) θ(s) =
n∑
j=1

φj (s)+ arg(f̃ (s)) .

Then we get

rj (s) =
√

1

aj
+ λju(s)

and

(19)
dφj

ds
= λj Im (f̃ )

1/aj + λju

for any j = 1, . . . , n. By our assumption we have

inf
s∈I (1/aj + λju(s)) = inf

s∈I (1/aj + λj s) > 0 , j = 1 , . . . , n .

Since

d

ds
arg(f̃ )= d

ds
tan−1

(
Im(f̃ )

Re(f̃ )

)

=
(

1 + Im(f̃ )2

Re(f̃ )2

)−1

· d
ds

(
Im(f̃ )

Re(f̃ )

)
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=
(

1 + 1

E
{∏n

k=1(1 + akλks)
}
eαs − 1

)−1

· d
ds

(
1√

E
{∏n

k=1(1 + akλks)
}
eαs − 1

)

= E
{∏n

k=1(1 + akλks)
}
eαs − 1

E
{∏n

k=1(1 + akλks)
}
eαs

· −1

2
[
E
{∏n

k=1(1 + akλks)
}
eαs − 1

]3/2

·
[
E

{ n∑
l=1

{∏n
k=1(1 + akλks)

}
alλl

1 + alλls

}
eαs + E

{ n∏
k=1

(1 + akλks)

}
αeαs

]

= 1

E
{∏n

k=1(1 + akλks)
}
eαs

· −1

2
√
E
{∏n

k=1(1 + akλks)
}
eαs − 1

·E
{ n∏
k=1

(1 + akλks)

}
eαs

( n∑
l=1

alλl

1 + alλls
+ α

)

= −1

2
√
E
{∏n

k=1(1 + akλks)
}
eαs − 1

( n∑
l=1

λl

1/al + λlu
+ α

)

= −Im(f̃ )

( n∑
l=1

λl

1/al + λlu
+ α

)
,

we obtain

(20)
n∑
j=1

λj Im(f̃ )

1/aj + λju
+ d

ds
arg(f̃ ) = −α Im(f̃ ) .

From (18), (19) and (20), we get

dθ

ds
= −α Im(f̃ (s)) .

Accordingly,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

du

ds
= 2 Re(f (s, u, φ1, . . . , φn, θ)) ,

dφj

ds
= λj Im (f (s, u, φ1, . . . , φn, θ))

1/aj + λju(s)
, j = 1, . . . , n ,

dθ

ds
= −α Im(f (s, u, φ1, . . . , φn, θ)) .

Therefore we can apply Lemma 2.1 to the data f, u, φj , θ above. This finishes the proof of
Theorem 1.2. �
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PROOF OF THEOREM 1.3. We define f̃ : R \ {0} → C \ {0} by

f̃ (s) = s + i
|s|√

E
{∏n

k=1(1 + aks2)
}
eαs

2 − 1

and f : (R \ {0}) × Rn+2 → C \ {0} by f (s, y1, . . . , yn+2) = f̃ (s). We also define u :
R \ {0} → C \ {0} by

u(s) = 2
∫ s

0
Re(f̃ (t))dt = s2

and θ : R \ {0} → R by

(21) θ(s) =
n∑
j=1

φj (s)+ arg(f̃ (s)) .

Then we get rj (s) = √
1/aj + u(s) and

(22)
dφj

ds
= Im (f̃ )

1/aj + u

for any j = 1, . . . , n. It is clear that

inf
s∈R\{0}(1/aj + u(s)) = inf

s∈R\{0}(1/aj + s2) = 1/aj > 0 , j = 1, . . . , n .

Since

d

ds
arg(f̃ )= d

ds
tan−1

(
Im(f̃ )

Re(f̃ )

)

=
(

1 + Im(f̃ )2

Re(f̃ )2

)−1

· d
ds

(
Im(f̃ )

Re(f̃ )

)

=
(

1 + 1

E
{∏n

k=1(1 + aks2)
}
eαs

2 − 1

)−1

· d
ds

( |s|
s

√
E
{∏n

k=1(1 + aks2)
}
eαs

2 − 1

)

= E
{∏n

k=1(1 + aks
2)
}
eαs

2 − 1

E
{∏n

k=1(1 + aks2)
}
eαs

2 · |s|
s

d

ds

(
1√

E
{∏n

k=1(1 + aks2)
}
eαs

2 − 1

)

= E
{∏n

k=1(1 + aks
2) }eαs2 − 1

E
{∏n

k=1(1 + aks2)
}
eαs

2 · |s|
s

· −1

2
[
E
{∏n

k=1(1 + aks2)
}
eαs

2 − 1
]3/2

·
[
E

{ n∑
l=1

{∏n
k=1(1 + aks

2)
}
2als

1 + als2

}
eαs

2 + E

{ n∏
k=1

(1 + aks
2)

}
2αseαs

2
]

= 1

E
{∏n

k=1(1 + aks2)
}
eαs

2 · |s|
s

· −1

2
√
E
{∏n

k=1(1 + aks2)
}
eαs

2 − 1
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·2sE
{ n∏
k=1

(1 + aks
2)

}
eαs

2
( n∑
l=1

al

1 + als2 + α

)

= −|s|√
E
{∏n

k=1(1 + aks2)
}
eαs

2 − 1

( n∑
l=1

1

1/al + u
+ α

)

= −Im(f̃ )

( n∑
l=1

1

1/al + u
+ α

)
,

we obtain

(23)
n∑
j=1

Im(f̃ )

1/aj + u
+ d

ds
arg(f̃ ) = −α Im(f̃ ) .

From (21), (22) and (23), we have dθ/ds = −α Im(f̃ (s)). Thus⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

du

ds
= 2 Re(f (s, u, φ1, . . . , φn, θ)) ,

dφj

ds
= Im (f (s, u, φ1, . . . , φn, θ))

1/aj + u(s)
, j = 1, . . . , n ,

dθ

ds
= −α Im(f (s, u, φ1, . . . , φn, θ)) .

So we can apply Lemma 2.1 to the data λ1 = · · · = λn = 1 and f, u, φj , θ above. That L is
embedded follows from the same argument as the proof of [3, Theorem C]. This completes
the proof of Theorem 1.3. �

3. Proofs for translating solitons. This section is analogous to Section 2. In order
to prove Theorems 1.4 and 1.5, we use the following Lemma 3.1 that is generalized from
[3, Corollary H]. The following Lemma 3.1 sets up the ordinary differential equations for
immersed Lagrangian translating soliton diffeomorphic to Rn.

LEMMA 3.1. Fix n ≥ 2. Let I be an open interval in R andD a domain in Rn+1 ×C.

Let α ∈ R, λ1, . . . , λn−1, C ∈ R \ {0} and a1, . . . , an−1 > 0 be constants, and f : I ×D →
C \ {0} a smooth function. Let u, φ1, . . . , φn−1, θ : I → R and β : I → C be smooth
functions such that {(s, u(s), φ1(s), . . . , φn−1(s), θ(s), β(s)); s ∈ I } ⊂ I ×D. Suppose that

(24)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

ds
= 2 Re(f (s, u, φ1, . . . , φn−1, θ, β)) ,

dφj

ds
= λj Im (f (s, u, φ1, . . . , φn−1, θ, β))

1/aj + λju(s)
, j = 1, . . . , n− 1 ,

dθ

ds
= −α Im(f (s, u, φ1, . . . , φn−1, θ, β)) ,

dβ

ds
= f (s, u, φ1, . . . , φn−1, θ, β) .
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hold in I. We also suppose that

inf
s∈I(1/aj + λju(s)) > 0 , j = 1, . . . , n− 1 ,

and

(25) θ(s) =
n−1∑
j=1

φj (s)+ arg(f (s, u(s), φ1(s), . . . , φn−1(s), θ(s), β(s)))

hold in I. Then the submanifold L in Cn given by

L=
{(
x1r1(s)e

iφ1(s), . . . , xn−1rn−1(s)e
iφn−1(s),−1

2

n−1∑
j=1

λj x
2
j + β(s)

)
;

x1, . . . , xn−1 ∈ R, s ∈ I
}

is an immersed Lagrangian submanifold diffeomorphic to Rn with Lagrangian angle θ(s) at

(
x1r1(s)e

iφ1(s), . . . , xn−1rn−1(s)e
iφn−1(s),−1/2

n−1∑
j=1

λj x
2
j + β(s)

)
∈ L ,

and the mean curvature vector H satisfies H ≡ T ⊥, where T = (0, . . . , 0, α). When α = 0
it is special Lagrangian.

REMARK 3.1.1. In the situation of Lemma 3.1, if we set α = −∑n
k=1 ajλk and

(26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (s, y1, . . . , yn+1, z) = i ,

u(s) = 0 ,

φj (s) = ajλj s , 1 ≤ j ≤ n− 1 ,

θ(s) = −αs + π

2
=
( n−1∑
k=1

akλk

)
s + π

2
,

β(s) = is ,

then it is easy to check that this setting satisfies the assumptions of Lemma 3.1, and the
construction is Hamiltonian stationary in addition to being translating solition. If f is a real
valued function, then the submanifold L is an open subset of the special Lagrangian n-plane

{(y1e
iξ1, . . . , yn−1e

iξn−1, yn); yj ∈ R, 1 ≤ j ≤ n} ,
where ξl ∈ R, 1 ≤ l ≤ n− 1.

PROOF OF LEMMA 3.1. Write

ωj (s) =
√

1/aj + λju(s) e
iφj (s) , 1 ≤ j ≤ n− 1 .
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We compute

dωj

ds
= d

ds

(√
1/aj + λju(s)

)
· eiφj (s) +

√
1/aj + λju(s) · i dφj

ds
eiφj (s)

=
(
λjRe(f (s, u, φ1, . . . , φn−1, θ, β))√

1/aj + λju(s)
+ i

λj Im(f (s, u, φ1, . . . , φn−1, θ, β))√
1/aj + λju(s)

)
eiφj (s)

= λjf (s, u, φ1, . . . , φn−1, θ, β)

ωj
.

Accordingly,

(27)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dωj

ds
= λjf (s, u, φ1, . . . , φn−1, θ, β)

ωj
, j = 1, . . . , n− 1 ,

dθ

ds
= −α Im(f (s, u, φ1, . . . , φn−1, θ, β)) ,

dβ

ds
= f (s, u, φ1, . . . , φn−1, θ, β) .

By (25) and (27), we can prove this theorem similarly to the proof of [3, Theorem G]. This
finishes the proof, the detailed verification being left to the reader. �

Now we can show Theorems 1.4 and 1.5.

PROOF OF THEOREM 1.4. Define f̃ : I → C \ {0} by

f̃ (s) = 1

2
+ i

2
√
E
{∏n−1

k=1(1 + akλks)
}
eαs − 1

and f : I × Rn+1 × C → C \ {0} by f (s, y1, . . . , yn+1, z) = f̃ (s). We also define

u(s) = 2
∫ s

0
Re(f̃ (t))dt = s ,

θ(s) =
n−1∑
j=1

φj (s)+ arg(f̃ (s)) ,

and

β(s) =
∫ s

0
f̃ (t)dt = s

2
+ i

2

∫ s

0

dt√
E
{∏n−1

k=1(1 + akλkt)
}
eαt − 1

.

Then we get rj (s) = √
1/aj + λju(s) and

dφj

ds
= λj Im (f̃ )

1/aj + λju

for any j = 1, . . . , n− 1. By our assumption we have

inf
s∈I (1/aj + λju(s)) = inf

s∈I (1/aj + λj s) > 0, j = 1, . . . , n− 1 .
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We can check dθ/ds = −αIm(f̃ ) similarly to the proof of Theorem 1.2. Thus we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

ds
= 2 Re(f (s, u, φ1, . . . , φn−1, θ, β)) ,

dφj

ds
= λj Im (f (s, u, φ1, . . . , φn−1, θ, β))

1/aj + λju(s)
, j = 1, . . . , n− 1 ,

dθ

ds
= −α Im(f (s, u, φ1, . . . , φn−1, θ, β)) ,

dβ

ds
= f (s, u, φ1, . . . , φn−1, θ, β) .

Therefore we can apply Lemma 3.1 to the data f, u, φj , θ, β above. This finishes the proof of
Theorem 1.4. �

PROOF OF THEOREM 1.5. We define f̃ : R \ {0} → C \ {0} by

f̃ (s) = s + i
|s|√

E
{∏n−1

k=1(1 + aks2)
}
eαs

2 − 1

and f : (R \ {0})× Rn+1 × C → C \ {0} by f (s, y1, . . . , yn+1, z) = f̃ (s). We also define

u(s) = 2
∫ s

0
Re(f̃ (t))dt = s2 ,

θ(s) =
n−1∑
j=1

φj (s)+ arg(f̃ (s)) ,

and

β(s) =
∫ s

0
f̃ (t)dt = s2

2
+ i

∫ s

0

|t|dt√
E
{∏n−1

k=1(1 + akt2)
}
eαt

2 − 1
.

Then we have rj (s) = √
1/aj + u(s) and

dφj

ds
= Im (f̃ )

1/aj + u

for any j = 1, . . . , n− 1. It is clear that

inf
s∈R\{0}(1/aj + u(s)) = inf

s∈R\{0}(1/aj + s2) = 1/aj > 0 , j = 1, . . . , n− 1 .

We can check dθ/ds = −αIm(f̃ ) similarly to the proof of Theorem 1.3. Thus we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

ds
= 2 Re(f (s, u, φ1, . . . , φn, θ)) ,

dφj

ds
= Im (f (s, u, φ1, . . . , φn, θ))

1/aj + u(s)
, j = 1, . . . , n− 1 ,

dθ

ds
= −α Im(f (s, u, φ1, . . . , φn, θ)) ,

dβ

ds
= f (s, u, φ1, . . . , φn−1, θ, β) .
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So we can apply Lemma 3.1 to the data λ1 = · · · = λn−1 = 1 and f, u, φj , θ, β above.
That L is embedded follows from the same argument as the proof of [3, Theorem C]. This
completes the proof of Theorem 1.5. �
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