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Abstract. Let p be a prime number and n a non-negative integer. We denote by hp,n
the class number of the n-th layer of the cyclotomic Zp-extension of Q. Let l be a prime
number. In this paper, we assume that p is odd and consider the l-divisibility of hp,n. Let f
be the inertia degree of l in the p-th cyclotomic field and s the maximal exponent such that
ps divides l p−1 − 1. Set r = min{n, s}. We define a certain explicit constant G1(p, r, f ) in
terms of the property of the residue class of l modulo pr . If l is larger than G1(p, r, f ), then
the integer hp,n/hp,n−1 is coprime with l. Our proof refines Horie’s method.

Introduction. Letp be a prime number andμm the group of allm-th roots of unity in C

and put Q(μp∞) = ⋃n≥1 Q(μpn). We denote by Bp,∞ the unique real subfield of Q(μp∞)
whose Galois group Gal(Bp,∞/Q) is topologically isomorphic to the p-adic integer ring Zp

as additive groups. Let Bp,n be the unique subfield of Bp,∞ which is cyclic of degree pn

over Q and hp,n its class number. In the case p = 2, Weber [26] showed that 2 does not
divide h2,n for any positive integer n and he also showed h2,1 = h2,2 = h2,3 = 1. Based on
these results, Weber asked whether h2,n = 1 for any positive integer n. Then we consider a
generalized version of his problem:

WEBER’S CLASS NUMBER PROBLEM. Is the class number hp,n equal to one for any
positive integer n?

This problem has been studied by Bauer [1], Cohn [2], Masley [19], who showed h2,4 =
1. Later, van der Linden [17] showed h2,5 = 1 or 97. However, Komatsu and Fukuda [4]
showed that 97 does not divide h2,n for any positive integer n. Hence we have h2,5 = 1.
In [1] and [17], we know that hp,n = 1 for (p, n) ∈ {(3, 1), (3, 2), (3, 3), (5, 1), (7, 1)}.
Linden also showed that hp,n = 1 for (p, n) ∈ {(2, 6), (3, 4), (5, 2), (11, 1), (13, 1)} under
the generalized Riemann hypothesis.

However, the direct calculation of hp,n is extremely difficult for large pn. Therefore, in
order to break the wall of the computational complexity, we study the l-divisibility of hp,n for
a prime number l and for all positive integer n:

PROBLEM. Does a prime number l divide hp,n for any positive integer n?
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In the case l = p, Iwasawa [16] proved that p does not divide hp,n for any positive inte-
ger n. Thus we study the non-p-part of hp,n. Washington [25] showed that the l-part of hp,n
is bounded as n tends to ∞ for each prime number l different from p. In a similar direction,
Washington [24] also showed that l does not divide the relative class number h−(Q(μ5n)) of
Q(μ5n) for any positive integer n if l8 �≡ 1 (mod 100).

Horie [8, 9, 10, 11] and Horie and Horie [12, 13, 14, 15] developed a method for proving
l-indivisibility of hp,n:

THEOREM 0.1 (Horie-Horie [13]). Let p be a prime number, l a prime number dif-
ferent from p, f the inertia degree of l in Q(μ2p)/Q and ps the exact power of p dividing
l f − 1. Then there exists an explicit positive constant H(p, s, f ) such that l does not divide
hp,n for any positive integer n if l does not divide hp,s−1 and is greater than H(p, s, f ).

From Theorem 0.1 and numerical calculations, K. Horie and M. Horie showed that l does
not divide hp,n for any positive integer n if 2 ≤ p ≤ 23 and l is a primitive root modulo p2.
In the case p = 2, Fukuda and Komatsu [4, 5, 6] showed that l does not divide h2,n for any
positive integer n if l < 5 × 108 or l �≡ ±1 (mod 32). In the case p = 3, the first author
[20, 21] showed that l does not divide h3,n for any positive integer n if l < 4 × 105 or l �≡ ±1
(mod 27). Moreover, in the cases p = 2 and p = 3, we improved upon Theorem 0.1:

THEOREM 0.2 (The case p = 2 [22]). A prime number l different from 2 is given. Let
f be the inertia degree of l in Q(μ4)/Q and 2s the exact power of 2 dividing l f − 1. We put
c = 2s−1. If l satisfies l > (c!)1/f , then l does not divide h2,n for any positive integer n.

THEOREM 0.3 (The case p = 3 [21]). A prime number l different from 3 is given. Let
f be the inertia degree of l in Q(μ3)/Q and 3s the exact power of 3 dividing l f − 1. We put
c = 2 · 3s−1. If l satisfies l > (2c/2 · c!)1/f , then l does not divide h3,n for any positive integer
n.

In this paper, we improve the bound for the prime number l in Theorem 0.1 for any odd
prime number p.

THEOREM A. Let p be an odd prime number, l a prime number different from p and
n a positive integer. Choose s so that ps is the exact power of p dividing l p−1 − 1. We put
r = min{n, s} and c = (p − 1) · pr−1. We denote by f the inertia degree of l in Q(μp)/Q.
We also put

G1(p, r, f ) =
((√

6p

2

)c
· c!
)1/f

.

If l satisfies l > G1(p, r, f ), then l does not divide hp,n.

A more difficult argument gives a further improvement as follows.

THEOREM B. Let p, l, n, s, r , c and f be the same as in Theorem A. We put

Gcyclo(p, r, f ) =
(√

6
c
(
pp−2((p − 1)/2)!2

(p − 1)!
)c/(p−1)

c!
)1/f

.
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If l satisfies l > Gcyclo(p, r, f ), then l does not divide hp,n.

We illustrate the improvement upon previous results by taking p = 5 as an example. In
[13], K. Horie and M. Horie showed that l does not divide h5,n if l ≡ a (mod 25) for some
a ∈ {2, 3, 4, 8, 9, 12, 13, 14, 17, 19, 22, 23}. For l ≡ 6, 11, 16, 21 (mod 25), that is, s = 1
and f = 1, we can verify

H(5, 1, 1) > 6 × 1012

and

G1(5, 1, 1) = 33750 , Gcyclo(5, 1, 1) = 18000 .

Acknowledgments. The authors thank Professor Ken Yamamura who gave us useful advices for
improving the paper. The authors also thank the referee and editors for reading this paper carefully and
giving several valuable comments.

1. Horie unit. Let p be an odd prime number. We put ζn = exp(2π
√−1/pn), Bn =

Bp,n and hn = hp,n, for the ease of notation. Given k ∈ Z which is prime to p, there exists a
unique p − 1-th root of unity ω(k) ∈ Zp such that

k ≡ ω(k) (mod p) .

We call ω the Teichmüller character modulo p. For each b ∈ Zp \ pn+1Zp, we put

δ(b) = ζ b1 ζ
b
n+1 − ζ−b

1 ζ−b
n+1

ζ bn+1 − ζ−b
n+1

,

a cyclotomic unit in Q(ζn+1 + ζ−1
n+1). It can be rewritten as

δ(b) = sin(2b(1 + pn)π/pn+1)

sin(2bπ/pn+1)
.

We define the n-th Horie unit

(1) ηn =
(p−1)/2∏
k=1

δ(ω(k))

as a cyclotomic unit in Bn.

REMARK 1.1. The n-th Horie unit is a norm of δ(1) from Q(ζn+1 + ζ−1
n+1) to Bn.

REMARK 1.2. Since δ(ω(p − k)) = δ(ω(k)), we have

ηn =
p−1∏

k=(p+1)/2

δ(ω(k)) .

Next, let En be the unit group of Bn, σ the element of the Galois group Gal(Q(ζn+1)/

Q(ζ1)) with ζ σn+1 = ζ
1+p
n+1 and τ = σp

n−1
. Then σ and τ generate Gal(Q(ζn+1)/Q(ζ1)) and
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Gal(Q(ζn+1)/Q(ζn)), respectively. An element α in Z[ζn] is uniquely expressed in the form

α =
(p−1)pn−1−1∑

i=0

aiζ
i
n (ai ∈ Z) .

For each such α, we associate an element ασ in the group ring Z[Gal(Q(ζn+1)/Q(ζ1))] by

ασ =
(p−1)pn−1−1∑

i=0

aiσ
i .

Since

Z[ζn] ∼= Z[Gal(Q(ζn+1)/Q(ζ1))]/(1 + τ + · · · + τp−1)

α 
→ ασ mod (1 + τ + · · · + τp−1) ,

the group ring Z[ζn] acts on (B×
p,n)

1−τ . Horie [9] proved the following lemma.

LEMMA 1.3. Let l be a prime number different from p and F an extension in Q(ζn)

of the decomposition field of l for Q(ζn)/Q. Then l divides the integer hn/hn−1 if and only
if there exists a prime ideal L of F dividing l such that ηασn is an l-th power in En for every
element α of the integral ideal lL−1 of F .

2. Mahler measure and Schinzel’s inequality. Let α be an algebraic number. De-
note by degα its degree over Q. Suppose that the minimal polynomial of α in Z[X] factors
as

a(X − α1)(X − α2) · · · (X − αdegα)

over C. The Mahler measure M(α) of α is defined by

M(α) = |a|
degα∏
j=1

max{1, |αj |} .

It satisfies the following proposition.

PROPOSITION 2.1. Let α, β be algebraic integers. Then we have the following (1)
through (4).

(1) Let r be a positive integer. If degαr = degα, then we have M(αr) = M(α)r .
(2) If degαβ ≤ degα and degαβ ≤ degβ, then we have M(αβ) ≤ M(α)M(β).
(3) If σ is an automorphism of Q(α), then we haveM(ασ ) = M(α).
(4) If α is a unit, then we have M(α−1) = M(α).

Let F(x) be the minimal polynomial of a unit in Bn. We pay attention to Remark 1.16
in [3] and notice that F(1)F (−1) has an exponential lower bound for the degree of Bn. Now
we can show the following inequality by tracing the proof of Theorem 1.14 in [3].
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THEOREM 2.2. Let ε be a totally real unit different from ±1. Let M be an ideal of
Q(ε) containing ε2 − 1. Then we have

M(ε) ≥
(
C1/d + √

C2/d + 4

2

)d/2
where d = deg ε and C is the absolute norm of M. In particular, we have

M(ε) ≥
(

1 + √
5

2

)d/2
.

PROOF. Let F(x) be the minimal polynomial of ε and ε(1), . . . , ε(d) all conjugates of
ε. We put M = M(ε) and CF = |F(1)F (−1)|. Then we have

logCF = log

( d∏
i=1

|(1 − ε(i))(1 + ε(i))|
)

=
d∑
i=1

log

∣∣∣∣ε(i) − 1

ε(i)

∣∣∣∣
=

d∑
i=1

log 2 sinh | log |ε(i)||

≤ max

{ d∑
i=1

log 2 sinh ti ; ti ≥ 0,
d∑
i=1

ti = 2 logM

}
≤ d log 2 sinh

2 logM

d
.

This implies the inequality

M ≥ C
1/d
F +

√
C

2/d
F + 4

2
.

Since C ≤ CF , we obtain the assertion. �

3. Upper bound of Mahler measure of Horie unit. In this section, we study an
upper bound of Mahler measure of Horie unit.

LEMMA 3.1. Let ν be a positive integer. Assume sequences {ai}νi=1 and {bi}νi=1 satisfy
the properties a1 ≥ a2 ≥ · · · ≥ aν > 0 and 0 < b1 ≤ b2 ≤ · · · ≤ bν , respectively. Let λ
be the largest number such that aλ ≥ bλ if a1 ≥ b1 or 0 otherwise. Let φ and ψ be injective
maps from {1, 2, . . . , μ} to {1, 2, . . . , ν} for 0 ≤ μ ≤ ν. Then we have

μ∏
i=1

aφ(i)

bψ(i)
≤

λ∏
i=1

ai

bi
,

where the left-hand side reads 1 if it is an empty product.
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PROOF. Obviously, we have
μ∏
i=1

aφ(i) ≤
μ∏
i=1

ai ,

μ∏
i=1

bψ(i) ≥
μ∏
i=1

bi .

Hence we have
μ∏
i=1

aφ(i)

bψ(i)
≤

μ∏
i=1

ai

bi
.

On the other hand, the function

μ 
→
μ∏
i=1

ai

bi

takes its maximum at μ = λ. �

We put N = pn and Θ = π/(2pN). Let ηn be the n-th Horie unit in (1). The definition
of the Mahler measure implies

M(ηn) ≤
(pN−1)/2∏
j=1

max{1, |δ(j)|} .

We put S = {| sin(4jΘ)|}(pN−1)/2
j=1 . Since δ(j) = | sin(4j (1 + N)Θ)|/| sin(4jΘ)|, the nu-

merator and the denominator of δ(j) are in S. Since sin(4jΘ) = sin(2(pN − 2j)Θ), we
have

S =
{

sin(2jΘ) ; j = 1, 2, . . . ,
pN − 1

2

}
.

Then we have

M(ηn) ≤
�(pN−1)/4∏

j=1

sin((pN + 1 − 2j)Θ)

sin(2jΘ)

from Lemma 3.1. Since

sin((pN + 1 − 2j)Θ) = cos((2j − 1)Θ) ,

we have

M(ηn)≤
�(pN−1)/4∏

j=1

cos((2j − 1)Θ)

sin((2j − 1)Θ)

=
�(pN−1)/4∏

j=1

cot((2j − 1)Θ) .

We will estimate the logarithm of the right-hand side by using a certain integral. For this
purpose, we verify the convexity of the function log cot θ on the interval 0 < θ < π/4.
Indeed, we have

d

dθ
log cot θ = − 1

sin θ cos θ
< 0
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and
d2

dθ2 log cot θ = cos 2θ

(sin θ cos θ)2
> 0 .

Therefore, we have

π

pN

�(pN−1)/4∑
j=1

log cot((2j − 1)Θ) <
∫ π/4

0
log cot t dt .

This implies the inequality

M(ηn) < exp

(
pN

π

∫ π/4

0
log cot t dt

)
.

Here, we put the Lobachevsky function

L(θ) =
∫ θ

0
log cot t dt

for 0 ≤ θ < π/2 (see [7], [18]). Then we get the following lemma.

LEMMA 3.2. We have

L(θ) =
∞∑
m=0

1

(2m+ 1)2
sin(2(2m+ 1)θ) .

By the above lemma, we have

L
(π

4

)
=

∞∑
m=0

(−1)m

(2m+ 1)2
.

The right-hand side is called Catalan’s constant. Its value is evaluated as follows

L
(π

4

)
= 0.915965594 · · · .

Hence we have
pN

π
L
(π

4

)
< 0.291560904 · pN .

Therefore, we have the following lemma.

LEMMA 3.3. We have

M(ηn) < exp(0.291560904 · pN) .
4. Minkowski convex body theorem for Theorem A. Let l be a prime number dif-

ferent from p, n a positive integer and ps the exact power of p dividing l p−1 − 1. We put
r = min{n, s}, q = pr−1, c = (p − 1)q and ζ = ζr . In this section, we consider the map

(2) μ : Q(ζ ) → Cc , α 
→ −→α := (αρ)ρ∈Gal(Q(ζ )/Q) ,

and the R-vector space

(3) W = R
−→
1 + R

−→
ζ + · · · + R

−−→
ζ c−1 ∼= Rc ,

c−1∑
j=0

aj
−→
ζ j 
→ (a0, a1, . . . , ac−1) .
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We put

X1 =
{ c−1∑
i=0

ai
−→
ζ ir ∈ W ; a0, . . . , ac−1 ∈ R, |a0| + |a1| + · · · + |ac−1| ≤ 2l√

6p

}
and define | · |1 on Z[ζr ] by

|a0 + a1ζ + · · · + ac−1ζ
c−1|1 = |a0| + |a1| + · · · + |ac−1| .

Now we apply the Minkowski convex body theorem with respect to the volume onW induced
by the standard volume on Rc by (3) to see:

LEMMA 4.1. Let l, n, s, r , c andX1 be as above and L a prime ideal of Q(ζr ) dividing
l. We denote by f the inertia degree of L in Q(ζr )/Q. If l satisfies lf > (

√
6p/2)c · c!,

then there exists a non-zero element −→α in X1 ∩ μ(lL−1). This α lies in lL−1 and satisfies
|α|1 ≤ 2l/

√
6p.

5. Proof of Theorem A. Let l be a prime number different form p, ps the exact
power of p dividing l p−1 − 1 and n a positive integer. We put N = pn, r = min{n, s} and
c = (p−1) ·pr−1. We denote by f the inertia degree of l in Q(ζr)/Q. Assume that l satisfies
lf > (

√
6p/2)c · c!. We also assume that l divides hn/hn−1. By Lemma 1.3 and Lemma 4.1,

there exist a prime ideal L in Q(ζr ) lying above l, an element α in lL−1 and a unit ε in En
such that

ηασn = εl , |α|1 < 2l√
6p

.(4)

By Theorem 2.2, we have

M(ε) ≥
(

1 + √
5

2

)N/2
> exp(0.240605912 · N) .(5)

Since deg εl = deg ε and degηασn ≤ deg ηn, we have

M(εl) = M(ε)l(6)

and

M(ηασn ) ≤ M(ηn)
|α|1 .(7)

By (4), (5), (6), (7) and Lemma 3.3, we have

exp(0.240605912 · Nl) ≤M(ε)l = M(εl) = M(ηασn )

≤M(ηn)|α|1

< exp

(
0.291560904 · pN · 2l√

6p

)
.

Hence we have

0.240605912< 0.291560904 · 2√
6

= 0.238058481 · · · .
Contradiction establishes Theorem A.
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6. Volume of a certain convex body. To prove Theorem B, we consider another
convex body.

Let p be an odd prime number and r a positive integer. Put q = pr−1, c = (p − 1)q ,
ζ = ζr and ξ = ζ1. We also put

B =
{ c−1∑
i=0

si ti
−→
ζ i ; si ∈ {+1,−1}, 0 ≤ ti ≤ 1, (i = 0, 1, . . . , c − 1),

c−1∑
i=0

ti ≤ 1

}

where
−→
ζ i is defined in Section 4. In this section, we consider the volume of B.

6.1. The convex hull of standard vectors. We consider more general situations. Let
2 ≤ ν ∈ Z and V the linear space

V = Rν .

Denote by e1, e2. . . . , eν the standard basis for V and set

d = e1 + e2 + · · · + eν .

For any set M in V , we denote by M̂ the convex hull of M. We also set N = {1, 2, . . . , ν}.
We consider the symmetric convex hull Bν of the set R = {d,−d,+ei ,−ei ; i ∈ N }:

Bν = R̂ =
{
s0t0d +

ν∑
i=1

si tiei ; sj ∈ {+1,−1}, 0 ≤ tj ≤ 1, (j = 0, 1, . . . , ν),
ν∑
i=0

ti ≤ 1

}
.

In Subsection 6.3, we will calculate its volume vol(Bν), where vol denotes the Lebesgue
measure on V .

Define the norm | · |cyclo on V by

|v|cyclo = inf{x ∈ R≥0 ; v ∈ xBν} .
Then, for v ∈ V , we have

|v|cyclo = min{x ∈ R≥0 ; v ∈ xBν} < +∞ .

We also denote by | · |cyclo the norm on V K defined by

|(v1, v2, . . . , vK)|cyclo =
K∑
i=1

|v|cyclo .

Let

B(K)ν = {(v1, v2, . . . , vK) ∈ VK ; |(v1, v2, . . . , vK)|cyclo ≤ 1} .
In Subsection 6.5, we will calculate its volume vol(K)(B(K)ν ), where vol(K) denotes the
Lebesgue measure on V K .
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6.2. A decomposition into simplices. The symmetric convex body Bν contains the
convex hull Cν of the set Q = {+ei ,−ei ; i ∈ N }:

Cν =
{ ν∑
i=1

si tiei ; sj ∈ {+1,−1}, 0 ≤ tj ≤ 1, (j ∈ N );
ν∑
i=1

ti ≤ 1

}
.

For an arbitrary subset I of {1, 2, . . . , ν}, we define

VI = {+ei ,−ej ; i ∈ I, j /∈ I }; FI = V̂I .
Then, FI with I ⊂ {1, 2, . . . , ν} form the facets of Cν . We set

SI (P ) = ̂{P } ∪ FI .
Obviously, SI (P ) is a simplex of ν-dimension.

The symmetric convex body Cν has the following decomposition into simplices:

Cν =
⋃
I⊂N

SI (o),

where o = (0, 0, . . . , 0) is the origin of V .

LEMMA 6.1. The symmetric convex body Bν is decomposed into a non-overlapping
union of ν-dimensional closed simplices as follows:

Bν =
⋃
I⊂N

SI (o) ∪
⋃

I⊂N ; 2|I |>ν
SI (+d) ∪

⋃
I⊂N ; 2|I |<ν

SI (−d) .

PROOF. Obviously, Bν contains the right-hand side. It suffice to prove that Bν is con-
tained in the right-hand side.

Let P ∈ Bν \ Cν . Then, there exist x, y, z ∈ [0, 1] and Q ∈ Cν such that P = xQ +
y(+d) + z(−d) and x + y + z = 1. Let b = +1 or −1 according as y ≥ z or not. Then,
we have P = |y − z|(bd) + (xQ + (y + z − |y − z|)o). Thus, P lies on the line segment
L connecting one of ±d to some point Q′ of Cν . Since Bν is a symmetric convex body, we
may assume that the sign in front of d is positive. The closest pointQ′′ in L ∩ Cν is uniquely
determined since Cν is topologically closed while Q′ ∈ Cν , d /∈ Cν . By the convexity of Cν ,
the line segment connecting Q′ to Q′′ is contained in Cν . Thus, the point P lies on the line
segment connecting d to Q′′.

Write Q′′ = (x1, x2, . . . , xν). Then, we have

−1 ≤ xi ≤ +1 , (i ∈ N ) ;
ν∑
i=1

|xi| = 1 .

By symmetry of the set Bν with respect to permutation of the coordinates, we may assume

+1 ≥ x1 ≥ x2 ≥ · · · ≥ xm ≥ 0 > xm+1 ≥ xm+2 ≥ · · · ≥ xm+n ≥ −1,

where m+ n = ν. An arbitrary point Y = (y1, y2, . . . , yν) on the line segment connecting d

to Q′′ is written as

Y = td + (1 − t)(x1, x2, . . . , xν) , 0 ≤ t ≤ 1 .
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For sufficiently small positive t , we have

|y1| + |y2| + · · · + |yν | =
m∑
i=1

(t + (1 − t) |xi |)+
n∑
j=1

(−t + (1 − t) |xm+j |
)

= t (m− n)+ (1 − t)

ν∑
k=1

|xk|

= t (m− n− 1)+ 1 .

Here, by the choice of Q′′, the left-hand side is larger than 1. Therefore, we have m > n.
Set I = {1, 2, . . . ,m}. Then, (x1, x2, . . . , xν) ∈ FI with 2|I | > ν. We now see P ∈

SI (+d).
Ambiguity in the choice of I such that (x1, x2, . . . , xν) ∈ FI only occurs if xk = 0 for

some k. In this case P belongs to the convex hull of the set {d,+ei , ej ; xi > 0; xj < 0}
consisting less than ν+ 1 points. This convex hull has smaller dimension than ν. We now see
that our union of the lemma is non-overlapping.

6.3. The volume of each simplex. By decomposing into simplices and evaluating the
volume of each simplex, we show the following proposition.

PROPOSITION 6.2. We have

(8) vol(Bν) =

⎧⎪⎪⎨⎪⎪⎩
2

(m!)2 if ν = 2m+ 1 ,

2m+ 1

(m!)2 if ν = 2m .

We can modify (8) into the following formula, which is a bit simpler

vol(Bν) = 2ν

ν!Bm = vol(M̂)Bm ,

where we put,

(9) Bm = (2m+ 1)!
22mm!2 , m =

⌊ν
2

⌋
vol(M̂ν) = 2ν

ν! , Mν = {ei ,−ei ; 1 ≤ i ≤ ν} .
We begin with the following proposition.

PROPOSITION 6.3. Put Mn =∑2k<n
k=0

(
n
k

)
(n− 2k − 1)+ 2n−1. Then we have

vol(Bν) = 2

ν!Mν .

In the following lemma, we evaluate this combinatorial sum.

LEMMA 6.4. We have

M2n = 2n+ 1

2

(
2n

n

)
, M2n+1 = (2n+ 1)

(
2n

n

)
.

Then Proposition 6.2 follows immediately from Proposition 6.3 and Lemma 6.4.
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PROOF OF PROPOSITION 6.3. Let column vectors e′
1, e′

2, . . . , e
′
ν+1 be the standard

basis of Rν+1. Let v ∈ V → ṽ ∈ Rν+1 be the map

(z1, z2, . . . , zν) 
→ t (z1, z2, . . . , zν, 1) .

Then, we have

vol(SI (v)) = 1

ν! |det (s̃1e1, s̃2e2, . . . , s̃νeν, ṽ)| ,
where si = +1 or −1 according as i ∈ I or not. In particular,

vol(SI (d)) = 1

ν!
∣∣det

(
s̃1e1, s̃2e2, . . . , s̃νeν, d̃

)∣∣ ,
We perform the column operation of subtracting si s̃iei (i ∈ N ) from the last column on the
matrix. Then, we get

vol(SI (d)) = 1

ν! |det (s̃1e1, s̃2e2, . . . , s̃νeν, (ν + 1 − 2|I |)̃o)| = 2|I | − ν − 1

ν! ,

provided 2|I | > ν. By symmetry, we also get

vol(SI (−d)) = 2(ν − |I |)− ν − 1

ν! = ν − 2|I | − 1

ν!
provided 2|I | < ν. We now see

vol(Bν) = 2

ν!
( 2k<ν∑
k=0

(
ν

k

)
(ν − 2k − 1)+ 2ν−1

)
= 2

ν!Mν .

�

Hacene Belbachir kindly gave us permission to include his proof of Lemma 6.4.

PROOF OF LEMMA 6.4. We put Sn =∑2k<n
k=0

(
n
k

)
and Tn =∑2k<n

k=0 k
(
n
k

)
. Using the fact

that

k

(
n

k

)
= n

(
n− 1

k − 1

)
,

we have

Tn = n

2k<n−2∑
k=0

(
n− 1

k

)
.

Now using the symmetry of binomial coefficient, we have

S2n = 22n−1 − 1

2

(
2n

n

)
, S2n+1 = 22n

and

T2n = n22n−1 − n

(
2n

n

)
, T2n+1 = (2n+ 1)22n−1 − 2n+ 1

2

(
2n

n

)
.

Since Mn = (n− 1)Sn − 2Tn + 2n−1, we have

M2n = 2n+ 1

2

(
2n

n

)
, M2n+1 = (2n+ 1)

(
2n

n

)
.

�
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6.4. Magnitude of the combinatorial sum Mn. We are interested in the magnitude
of the coefficient Bm.

By the Wallis Formula

lim
m→+∞

(
(2m)!
m!2 ·

√
π

√
m

22m

)
= 1 ,

we see that the ratio of Bm and 2
√
m/

√
π tends to 1 as m tends to infinity.

Since Bm and 2
√
m/

√
π have good multiplicative structure, we investigate the ratio

Bm/Bm−1 and its counter part as follows:(
Bm

Bm−1

)2

=
(
(2m+ 1)(2m)

4m2

)2

= 1 + 1

m
+ 1

4m2 ,(
22m+1√m/√π

22m−1
√
m− 1/

√
π

)2

= m

m− 1
= 1 + 1

m
+ 1

m2 + · · · .

Therefore, 2
√
m/

√
π grows slightly faster than Bm. As their ratio converge to 1, this implies

the inequality

(10) Bm >
2
√
m√
π
.

We consider

Am = 4m+ 3 + 1

8m+ 7
and A′

m = 4m+ 3 + 1

8m+ 6
.

Since
Am

Am−1
− B2

m

B2
m−1

= 6m− 7

4m2(8m+ 7)(16m2 − 6m+ 1)
,

we get Am/Am−1 > B2
m/B

2
m−1. Noting that Am/B2

m tends to π , we see the same line of the
proof for (10) gives

Bm >

√
4m+ 3 + 1/(8m+ 7)√

π
.

Similarly, we have

A′
m

A′
m−1

− B2
m

B2
m−1

= − 9

4m2(4m+ 3)(32m2 − 16m+ 3)
.

Hence we get A′
m/A

′
m−1 < B2

m/B
2
m−1. Again, we see

Bm <

√
4m+ 3 + 1/(8m+ 6)√

π
.

The error is estimated by the following calculation:
√

4m+ 3 + 1/(8m+ 6)/
√
π√

4m+ 3 + 1/(8m+ 7)/
√
π

=
√

1 + 1/(8m+ 6)− 1/(8m+ 7)

4m+ 3 + 1/(8m+ 7)
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=
√

1 + 1

4(4m+ 3)(16m2 + 26m+ 11)

≤
√

1 + 1

4 · 7 · 53
< 1.0004 .

In particular, we have

(11) 1 <

√
4m+ 3 + 1/(8m+ 6)

Bm
√
π

,

√
πBm√

4m+ 3 + 1/(8m+ 7)
< 1.0004 .

6.5. Calculation of vol(B(K)ν ). In (8), we have

(12) vol(B(1)ν ) = vol(Bν) =

⎧⎪⎪⎨⎪⎪⎩
2

(m!)2 if ν = 2m+ 1 ,

2m+ 1

(m!)2 if ν = 2m .

Let K ≥ 2. The set BKν is not the direct product (e.g., of Bν and B(K−1)
ν ). However, it is

a fiber product:
B(K)ν =

⋃
v∈Bν

( {v} × (1 − |v|cyclo)B(K−1)
ν

)
.

Therefore, we have

vol(B(K)ν )=
∫

v∈Bν
vol(K−1)((1 − |v|cyclo)B(K−1)

ν

)
dvol(v)

=
∫ 1

0
vol(K−1)((1 − x)B(K−1)

ν

)
dvol(xBν),

where the right-hand side is the Stieltjes integral. Thus, we can calculate

vol(B(K)ν )=
∫ 1

0
(1 − x)(K−1)ν vol(K−1)(B(K−1)

ν

)
dxνvol(Bν)

=
∫ 1

0
(1 − x)(K−1)ν dxν · vol(Bν) · vol(K−1)(B(K−1)

ν

)
.

Hence we have

(13) vol(B(K)ν ) = ν

∫ 1

0
(1 − x)(K−1)ν xν−1dx · vol(Bν) · vol(K−1)(B(K−1)

ν

)
.

As∫ 1

0
(1 − x)axbdx =

[
− 1

a + 1
(1 − x)a+1xb

]x=1

x=0

+
∫ 1

0

1

a + 1
(1 − x)a+1 · bxb−1dx

= b

a + 1

∫ 1

0
(1 − x)a+1xb−1dx ,



MAHLER MEASURE AND WEBER’S CLASS NUMBER PROBLEM 267

we have∫ 1

0
(1 − x)(K−1)ν xν−1dx

= ν − 1

(K − 1)ν + 1
· ν − 2

(K − 1)ν + 2
· · · ν − (ν − 1)

(K − 1)ν + (ν − 1)

∫ 1

0
(1 − x)(K−1)ν+(ν−1) dx

= ν − 1

(K − 1)ν + 1
· ν − 2

(K − 1)ν + 2
· · · ν − (ν − 1)

(K − 1)ν + (ν − 1)
· 1

(K − 1)ν + ν

= (ν − 1)!(Kν − ν)!
(Kν)! .

Substituting this in (13), we deduce the recursion:

vol(B(K)ν ) = ν!(Kν − ν)!
(Kν)! · vol(Bν) · vol(K−1)(B(K−1)

ν

)
.

This implies

vol(B(K)ν ) = ν!K
(Kν)! vol(Bν)K .

By substituting (12) in the right-hand side, we get

vol(B(K)ν ) = ν!K
(Kν)! vol(Bν)K =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ν!K
(Kν)!

2K

(m!)2K if ν = 2m+ 1 ,

ν!K
(Kν)!

(2m+ 1)K

(m!)2K if ν = 2m .

Therefore, we have the following lemma.

LEMMA 6.5. Let 2 ≤ ν ∈ Z and 1 ≤ K ∈ Z. We have

vol(B(K)ν ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ν!K
(Kν)!

2K

(m!)2K if ν = 2m+ 1 ,

ν!K
(Kν)!

(2m+ 1)K

(m!)2K if ν = 2m .

We can modify this into the following formula, which is a bit simpler

vol(B(K)ν ) = 2K(ν−2m)

(Kν)!
(2m+ 1)!K
(m!)2K = 2Kν

(Kν)!B
K
m ,

where we putm = �ν/2 and Bm is defined by (9).
By (11), we get

2Kν

(Kν)!
√

4m+ 3 + 1/(8m+ 7)K√
π
K

< vol(B(K)ν ) <
2Kν

(Kν)!
√

4m+ 3 + 1/(8m+ 6)K√
π
K

,

where the ratio of smaller and larger approximants is smaller than 1.0004K .
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6.6. The volume of B. In the case ν = p − 1 andK = q , we have B(q)p−1 = B. From
Lemma 6.5, we get the following:

LEMMA 6.6. We have

vol(B) = (p − 1)!q
(q(p − 1))!

pq

((p − 1)/2)!2q .

7. Minkowski convex body theorem for Theorem B. Let l be a prime number dif-
ferent from p, n a positive integer and ps the exact power of p dividing l p−1 − 1. We put
r = min{n, s}, q = pr−1, c = (p − 1)q , ζ = ζr and ξ = ζ1. Let μ be the map in Section 4
(2), i.e.,

μ : Q(ζ ) → Cc , α 
→ −→α := (αρ)ρ∈Gal(Q(ζ )/Q) ,

and W the R-vector space R
−→
1 + R

−→
ζ + · · · + R

−−→
ζ c−1. We put

Wi = R
−→
ζ i + R

−→
ζ iξ + · · · + R

−−−−→
ζ iξp−2.

Then we have

(14) W ∼= Rc ,

c−1∑
j=0

aj
−→
ζ j 
→ (a0, a1, . . . , ac−1),

Wi
∼= Rp−1,

p−2∑
j=0

ai+qj
−−→
ζ iξj 
→ (ai, ai+q, . . . , ai+q(p−2)) ,

and
W = W0 +W1 + · · · +Wq−1 .

By the above isomorphism, we identify W with Rc and Wi with Rp−1. Then
−−−−→
ζ iξp−1 is

(−1, . . . ,−1) in Wi . We define | · |cyclo on W similarly as in Subsection 6.1 for ν = p − 1
and K = q . Let

B =
{ c−1∑
i=0

si ti
−→
ζ i ; si ∈ {+1,−1}, 0 ≤ ti ≤ 1, (i = 0, 1, . . . , c − 1),

c−1∑
i=0

ti ≤ 1

}
and

Xcyclo = 2l√
6p

B .
From Lemma 6.6 and the Minkowski convex body theorem with respect to the volume

on W induced by the standard volume on Rc by (14), we have the following lemma.

LEMMA 7.1. Let l, n, s, r , q , c and Xcyclo be as above and L a prime ideal of Q(ζr )

dividing l. We denote by f the inertia degree of L in Q(ζr)/Q. If l satisfies

lf >
√

6
c
(
pp−2((p − 1)/2)!2

(p − 1)!
)q
c!,

then there exists a non-zero element −→α in Xcyclo ∩ μ(lL−1). This α lies in lL−1 and satisfies
|μ(α)|cyclo ≤ 2l/

√
6p.
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8. Proof of Theorem B. Let l be a prime number different formp, ps the exact power
of p dividing l p−1 − 1 and n a positive integer. We put N = pn, r = min{n, s}, q = pr−1,
c = (p − 1)q and ξ = ζ1. We denote by f the inertia degree of l in Q(ζr)/Q. Assume that l
satisfies

lf >
√

6
c
(
pp−2((p − 1)/2)!2

(p − 1)!
)q
c! .

We also assume that l divides hn/hn−1. By Lemma 1.3 and Lemma 7.1, there exist a prime
ideal L in Q(ζr) lying above l, an element α in lL−1 and a unit ε in En such that

ηασn = εl , |μ(α)|cyclo <
2l√
6p

.(15)

By Theorem 2.2, we have

M(ε) ≥
(

1 + √
5

2

)N/2
> exp(0.240605912 · N) .(16)

Since deg εl = deg ε, degηασn ≤ deg ηn and 1 + ξ + · · · + ξp−1 = 0, we have

M(εl) = M(ε)l, M(ηασn ) ≤ M(ηn)
|μ(α)|cyclo .(17)

By (15) through (17) and Lemma 3.3, we have

exp(0.240605912 · Nl) ≤M(ε)l = M(εl) = M(ηασn )

≤M(ηn)|μ(α)|cyclo

< exp

(
0.291560904 · pN · 2l√

6p

)
.

Hence we have

0.240605912< 0.291560904 · 2√
6

= 0.238058481 · · · .

This is a contradiction.

9. Appendix. If we fix a prime number p, then we get a better estimate than Theo-
rems A and B.

Let p be an odd prime number. We put ζ = ζn+1 andN = pn. Let P be a prime ideal in
Q(ζ ) dividing p and ordP(x) the normalized additive P-adic valuation of x. Moreover, we
let p be a prime ideal in Bn dividing p and ordp(x) the normalized additive p-adic valuation
of x which satisfies ordp(x) = (p−1) ·ordP(x) for all x in Bn. We denote by τ the generator
of Gal(Bn/Bn−1) which satisfies ζ τ = ζN+1.

LEMMA 9.1. Let ε be a unit in Bn. If NrBn/Bn−1(ε) = 1 and ε �= 1, then we have

ordp(ε − 1) ≥ N − 1

p − 1
.
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PROOF. There exists an element x in Z[ζ ] such that ε = x1−τ by Hilbert’s theorem 90.
Since Pp = (1 − ζ p) and (1 − ζ p)τ = 1 − ζ p, we may assume ordP(x) = 0, 1, . . . , p − 1.
Note that if α is an element of Z[ζ ] then we have ordP(α − ατ ) ≥ N . Hence we have

ordP(ε − 1) = ordP

(
x − xτ

xτ

)
≥ N − p + 1 ,

that is, (p − 1)ordp(ε − 1) ≥ N − p + 1. Since ordp(ε − 1) is a rational integer, we have

ordp(ε − 1) ≥ N − 1

p − 1
.

�

Note that the absolute norm of p is equal to p. From Theorem 2.2 and Lemma 9.1, we
get the following lemma.

LEMMA 9.2. Let ε be a unit in Bn with NrBn/Bn−1(ε) = 1 and put N = pn. Then we
have

M(ε) ≥
(
p(N−1)/(p−1)N +√p2(N−1)/(p−1)N + 4

2

)N/2
.

We study the case p = 5. From now on, we put Bn = B5,n and hn = h5,n. Let l be
a prime number different from 5, n a positive integer and 5s the exact power of 5 dividing
l4 − 1. We put r = min{n, s}, q = 5r−1 and c = 4q . Now we apply the Minkowski convex
body theorem and obtain the following lemma.

LEMMA 9.3. Let p = 5, l be a prime number different form 5 and L a prime ideal
of Q(ζr ) dividing l. We denote by f the inertia degree of L in Q(ζr )/Q. If l satisfies lf >
(640/3)q · c!, then there exists a non-zero element α in lL−1 such that |μ(α)|cyclo ≤ l/2

√
5.

We assume that l divides hn/hn−1. Since Linden [17] showed that h1 = 1, we may
assume n ≥ 2. By Lemma 9.2, we have

M(ε) ≥
(

56/25 + √
512/25 + 4

2

)N/2
> exp(0.681697987 · N/2) .(18)

We also assume lf > (640/3)q · c!. By Lemmas 1.3 and 9.3, there exist a prime ideal L in
Q(ζr ) lying above l, an element α in lL−1 and a unit ε in En such that

ηασn = εl , |μ(α)|cyclo <
l

2
√

5
.(19)

By (18), (19) and Lemma 3.3, we have

exp(0.681697987 · lN/2)≤M(ε)l = M(εl) = M(ηασn )

≤M(ηn)
|μ(α)|cyclo

< exp

(
0.291560904 · 5 ·N · l

2
√

5

)
.
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Hence we have

0.681697987< 0.291560904 × √
5 = 0.651950000 · · · .

This is a contradiction. Therefore, we conclude the following theorem.

THEOREM 9.4. Let p = 5, l be a prime number different from 5, n a positive integer
and 5s the exact power of 5 dividing l4 − 1. We put r = min{n, s}, q = pr−1 and c = 4q . We
denote by f the inertia degree of l in Q(ζr )/Q. If l satisfies lf > (640/3)q · c!, then l does
not divide hn/hn−1.
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