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Abstract. In the present paper, we discuss a problem concerning monodromic fullness
of hyperbolic curves over number fields posed by Matsumoto and Tamagawa in the case where
a given hyperbolic curve is of genus zero.

Introduction. In the present paper, we discuss a problem concerning monodromic full-
ness of hyperbolic curves over number fields posed by Matsumoto and Tamagawa in the case
where a given hyperbolic curve is of genus zero. First, let us review the notion of monodromic
fullness: Let (g, r) be a pair of nonnegative integers such that 2g − 2 + r > 0 and k a number
field (i.e., a finite extension of the field of rational numbers). Write Primes for the set of all
prime numbers, Mg,[r] for the moduli stack of hyperbolic curves (cf. “Curves” in “Notation
and Conventions”) of type (g, r) over k, and Mg,r for the moduli stack of ordered r-pointed
proper smooth curves of genus g over k. Thus, by forgetting the order of marked points, we
have a natural finite étale Galois covering Mg,r → Mg,[r] whose Galois group is isomor-
phic to the symmetric group Sr on r letters; in particular, we have a normal open subgroup
π1(Mg,r ) ⊆ π1(Mg,[r]) such that the quotient π1(Mg,[r])/π1(Mg,r ) is isomorphic to Sr .
Let X be a hyperbolic curve of type (g, r) over k and k an algebraic closure of k. Then, for
each l ∈ Primes, if we write π {l}

1 (X⊗k k) for the maximal pro-l quotient of π1(X⊗k k), then

we have two natural outer representations on π {l}
1 (X ⊗k k)

ρ
{l}
X/k : Gk def= Gal(k/k) −→ Out(π {l}

1 (X ⊗k k)) ,

i.e., the pro-l outer Galois representation associated to the hyperbolic curve X/k, and

ρ
{l}
g,[r] : π1(Mg,[r]) −→ Out(π {l}

1 (X ⊗k k)) ,

i.e., the pro-l outer universal monodromy representation. Since ρ{l}
X/k factors, via the outer

homomorphism Gk → π1(Mg,[r]) induced by the classifying morphism Spec k → Mg,[r]
of X/k, through ρ{l}

g,[r], we obtain natural inclusions

ρ
{l}
X/k(Gk) ⊆ ρ

{l}
g,[r](π1(Mg,[r])) ⊇ ρ

{l}
g,[r](π1(Mg,r )) .
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For a nonempty subset Σ ⊆ Primes, we shall say that X is Σ-monodromically full (over k)
if, for each l ∈ Σ , it holds that ρ{l}

g,[r](π1(Mg,r )) ⊆ ρ
{l}
X/k(Gk) (cf. [2, Definition 2.2, (i)]);

X is quasi-Σ-monodromically full (over k) if, for each l ∈ Σ , it holds that ρ{l}
X/k(Gk) is open

in ρ{l}
g,[r](π1(Mg,[r])) (cf. [2, Definition 2.2, (iii)]). In [4], Matsumoto and Tamagawa proved

that, for each l ∈ Primes, there are many hyperbolic curves over number fields which are
l-monodromically full (cf. [4, Theorem 1.2]).

Now let us recall that if l ∈ Primes, and E is an elliptic curve over k, whose l-adic Tate
module we denote by Tl(E), then we have a natural isomorphism π

{l}
1 (E ⊗k k)

∼→ Tl(E) and

a noncanonical isomorphism Tl(E)
∼→ Z⊕2

l , that determine isomorphisms Out(π {l}
1 (E ⊗k

k))
∼→ Aut(Tl(E))

∼→ GL2(Zl ). Moreover, the image of the étale fundamental group of
the moduli stack of elliptic curves over k by the l-adic universal monodromy representation
coincides, with respect to the isomorphisms Out(π {l}

1 (E ⊗k k))
∼→ Aut(Tl(E))

∼→ GL2(Zl ),
with SL2(Zl ) ⊆ GL2(Zl ). Furthermore, in [6], Serre proved the following result concerning
the image of the pro-l Galois representation associated to E/k.

THEOREM (cf. [6]). In the notation of the above discussion, the following four condi-
tions are equivalent:

(0) E does not admit complex multiplication over k.
(1) For any l ∈ Primes, the image of the l-adic Galois representation Gk →

Aut(Tl(E)) associated to E/k is an open subgroup of Aut(Tl(E)).
(2) There exists an l ∈ Primes such that the l-adic Galois representation Gk →

Aut(Tl(E)) associated to E/k is surjective.
(3) There exists a finite subset Σ of Primes such that if l 	∈ Σ , then the l-adic Galois

representationGk → Aut(Tl(E)) associated to E/k is surjective.

From this point of view, “the property of being (quasi-)monodromically full” may be
regarded as an analogue for hyperbolic curves of “the property of not admitting complex
multiplication” for elliptic curves.

As an analogue for hyperbolic curves of the equivalences “(1) ⇔ (2) ⇔ (3)” in the
above result due to Serre, in [4], Matsumoto and Tamagawa posed the following problem
concerning monodromic fullness of hyperbolic curves over number fields.

PROBLEM (cf. [4, Problem 4.1]). Let X be a hyperbolic curve over a number field.
Then are the following three conditions equivalent?

(MT1) X is quasi-Primes-monodromically full.
(MT2) There exists an l ∈ Primes such that X is l-monodromically full.
(MT3) There exists a finite subsetΣ of Primes such thatX is (Primes\Σ)-monodromically

full.

In the present paper, we discuss the above problem due to Matsumoto and Tamagawa in
the case where the given hyperbolic curve X is of genus 0. More concretely, we prove the
following two results.
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THEOREM A. Let k be a number field. Then there exists a split (cf. “Curves” in “No-
tation and Conventions”) hyperbolic curve of type (0, 4) over k which satisfies (MT3), hence
also (MT2), but does not satisfy (MT1). Moreover, for any positive integer r > 4, there exists
a split hyperbolic curve of type (0, r) over k which satisfies (MT2) but does not satisfy (MT1).

THEOREM B. Let k be a number field, k0 ⊆ k a subfield of k, and X a hyperbolic
curve of type (0, 4) over k0 such thatX⊗k0 k is split. Thus, one verifies easily that there exists
λ ∈ k \ {0, 1} such that the hyperbolic curve X ⊗k0 k is isomorphic to P 1

k \ {0, 1, λ,∞} over
k. Here, we note that the set

mX
def=

{
λ,

1

λ
, 1 − λ,

1

1 − λ
,

λ

λ− 1
,
λ− 1

λ

}
⊆ k

(cf. [2, Definition 7.10]) depends only on (and completely determines!) the isomorphism class
of the hyperbolic curve X ⊗k0 k over k. Consider the following five conditions:

(1) The above set mX does not contain any unit of the ring of integers of k.
(2) There exists a finite subsetΣ of Primes such thatX is (Primes\Σ)-monodromically

full (over k0) (cf. [2, Definition 2.2, (i)]).
(3) There exists an l ∈ Primes such that X is l-monodromically full (over k0).
(4) There exists an l ∈ Primes such that X is quasi-l-monodromically full (over k0) (cf.

[2, Definition 2.2, (iii)]).
(5) The above set mX does not contain any root of unity of the ring of integers of k.
Then we have implications

(1) �⇒ (2) �⇒ (3) �⇒ (4) �⇒ (5) .

If, moreover, k is quadratic imaginary, then we have equivalences

(1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5) .

In particular, if k is quadratic imaginary, then the equivalence “(MT2) ⇔ (MT3)” for such
an X holds.

The author would like to thank Makoto Matsumoto and Akio Tamagawa for inspiring
me by means of their problem given in [4]. The author also would like to thank the referee for
some comments and, especially, a suggestion concerning the statement of Theorem B.

NOTATION AND CONVENTIONS. Numbers: The notation Primes will be used to de-
note the set of all prime numbers. The notation Z will be used to denote the ring of rational
integers. If p is a prime number, then the notation Fp will be used to denote the finite field
with p elements and the notation Zp will be used to denote the p-adic completion of Z. We
shall refer to a finite extension of the field of rational numbers as a number field.

Profinite groups: If G is a profinite group, then we shall write Aut(G) for the group of
(continuous) automorphisms of G, Inn(G) ⊆ Aut(G) for the group of inner automorphisms
of G, and

Out(G)
def= Aut(G)/Inn(G) .
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If, moreover, G is topologically finitely generated, then one verifies easily that the topology
of G admits a basis of characteristic open subgroups, which thus induces a profinite topology
on the group Aut(G), hence also a profinite topology on the group Out(G).

If G and H are profinite groups, then we shall write Hom(G,H) for the set of (con-
tinuous) homomorphisms from G to H . Then the group Inn(H) naturally acts on the set
Hom(G,H). We shall refer to an element of the quotient set Hom(G,H)/Inn(H) as an outer
homomorphism fromG to H .

If G is a profinite group, then we shall write Gab for the abelianization of G, i.e., the
quotient of G by the normal closed subgroup generated by the commutators of G.

Curves: Let k be a field and X a scheme over k. For a pair (g, r) of nonnegative inte-
gers, we shall say that X is a smooth curve of type (g, r) over k if there exist a scheme Xcpt

of dimension 1 which is smooth, proper, and geometrically connected over k and a closed
subscheme D ⊆ Xcpt of Xcpt which is étale and of degree r over k such that the complement
of D in Xcpt is isomorphic to X over k, and, moreover, a geometric fiber of Xcpt → Spec k
is (a necessarily smooth, proper, and connected curve) of genus g . Note that it follows imme-
diately that if X is a smooth curve of type (g, r) over k, then the pair “(Xcpt,D)” is uniquely
determined up to canonical isomorphism. We shall say that X is a hyperbolic curve over k if
there exists a pair (g, r) of nonnegative integers such that 2g − 2 + r > 0, and, moreover,X
is a smooth curve of type (g, r) over k. We shall say that X is a tripod over k if X is a smooth
curve of type (0, 3) over k. (Thus, any tripod over k is a hyperbolic curve over k.) Suppose
that there exists a pair (g, r) of nonnegative integers such that X is a smooth curve of type
(g, r) over k. Then we shall say that X is split if “D” appearing in the definition of the term
“smooth curve of type (g, r)” is isomorphic to the disjoint union of r copies of Spec k over k.

1. Various objects arising from split tripods. In this section, let us recall various
objects arising from split tripods. Let k be a field of characteristic 0 and k an algebraic closure

of k. Write Gk
def= Gal(k/k) for the absolute Galois group of k determined by the algebraic

closure k and
M def= P 1

k \ {0, 1,∞} = Spec k[t±1, 1/(1 − t)] ,
where t is an indeterminate, for the split tripod over k. Now we have a natural identification

M(k) � k \ {0, 1}
and an exact sequence of profinite groups

1 −→ π1(M ⊗k k) −→ π1(M) −→ Gk −→ 1 .

Moreover, for each prime number l, write

μl∞ ⊆ k
×

for the subgroup of k
×

of all l-powers roots of unity.
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DEFINITION 1.1. Let l be a prime number.
(i) We shall write

Δ{l}

for the maximal pro-l quotient of π1(M ⊗k k).
(ii) Since the closed subgroupπ1(M⊗kk) of π1(M) is normal, conjugation by elements

of π1(M) naturally determines continuous homomorphisms

π1(M) −→ Aut(Δ{l}) ; Gk −→ Out(Δ{l}) ,

where we refer to the discussion entitled “Profinite Groups” in “Notation and Conventions”
concerning the profinite topologies of Aut(Δ{l}) and Out(Δ{l}). We shall write

ρ̃{l} ; ρ{l}

for the above continuous homomorphisms, respectively. It follows immediately from the var-
ious definitions involved that these homomorphisms fit into the following commutative dia-
gram of profinite groups

1 −−−−→ π1(M ⊗k k) −−−−→ π1(M) −−−−→ Gk −−−−→ 1⏐⏐� ρ̃{l}
⏐⏐� ⏐⏐�ρ{l}

1 −−−−→ Inn(Δ{l}) −−−−→ Aut(Δ{l}) −−−−→ Out(Δ{l}) −−−−→ 1 ,

where the horizontal sequences are exact; moreover, since Δ{l} is center-free, the left-hand
vertical arrow factors as the composite of the natural surjection π1(M ⊗k k) � Δ{l} and the
natural isomorphismΔ{l} ∼→ Inn(Δ{l}).

(iii) We shall write

π1(M) � Φ{l} (resp. Gk � G
tpd-l
k )

for the quotient of π1(M) (resp. Gk) by the kernel of the homomorphism ρ̃{l} (resp. ρ{l}).
Thus, the commutative diagram in (ii) determines an exact sequence of profinite groups

1 −→ Δ{l} −→ Φ{l} −→ G
tpd-l
k −→ 1 .

(iv) We shall write
ktpd-l (⊆ k)

for the Galois extension of k corresponding to the quotient Gk � G
tpd-l
k , i.e., Gtpd-l

k =
Gal(ktpd-l/k).

(v) Let λ ∈ k be such that λ 	= 0, 1. Then we shall write

sλ : Gk −→ π1(M)

for the outer homomorphism induced by λ ∈ k \ {0, 1} � M(k).

REMARK 1.2. In [3], the notation Δ{l}
M/k

(resp. ρ̃{l}
M/k

; ρ{l}
M/k

; Φ{l}
M/k

; �{l}
M/k

) was

used to denote the object Δ{l} (resp. ρ̃{l}; ρ{l}; Φ{l}; Gtpd-l
k ) defined in Definition 1.1 of the

present paper (cf. [3, Definition 1]).
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LEMMA 1.3. Let l be a prime number and λ ∈ k \ {0, 1}. Then the following three
conditions are equivalent:

(1) The split hyperbolic curve of type (0, 4) over k

P 1
k \ {0, 1, λ,∞}

is l-monodromically full (resp. quasi-l-monodromically full) (cf. [2, Definition 2.2]).
(2) The k-rational point of M naturally corresponding to λ ∈ k \ {0, 1} is l-monodro-

mically full (resp. quasi-l-monodromically full) (cf. [3, Definition 8, (i)] in the case where we
take “(X, n)” to be (M, 1)).

(3) The image of the composite

Gk
sλ−→ π1(M) −→ Φ{l}

is Φ{l} (resp. is an open subgroup of Φ{l}).

PROOF. The equivalence “(1) ⇔ (2)” follows from the equivalence in [3, Remark 11,
(ii)] in the case where we take “(X, n)” to be (M, 1). The equivalence “(2) ⇔ (3)” follows
from [3, Proposition 19, (iv)] in the case where we take “(X,m)” to be (M, 1). �

2. Monodromic fullness for hyperbolic curves of type (0, 4). In the present section,
we discuss the monodromic fullness for hyperbolic curves of type (0, 4). We maintain the
notation of the preseding §1.

DEFINITION 2.1 (cf. [1]). Let l be an odd prime number.
(i) We shall write

Sl

for the minimal set of finite subsets of P 1
k
(k) � k ∪ {∞} which satisfies the following three

conditions: (1) {0, 1,∞} ∈ Sl . (2) If S ∈ Sl , then { a ∈ k ; al ∈ S } ∪ {∞} ∈ Sl . (3) If
S ∈ Sl , and φ is an automorphism of P 1

k
over k such that {0, 1,∞} ⊆ φ(S), then φ(S) ∈ Sl .

(ii) We shall write

El ⊆ k
×

for the subgroup of k
×

generated by the elements of S \ {0,∞} for all S ∈ Sl .

Some of main results of [1] are as follows.

PROPOSITION 2.2. Let l be an odd prime number. Then the following hold:
(i) ktpd-l = k(El).

(ii) (El)
l = El .

(iii) μl∞ ⊆ El .
(iv) Suppose that k is a number field. Then the algebraic extension ktpd-l/k is unrami-

fied at any nonarchimedean prime of k whose residue characteristic is not equal to l.

PROOF. This follows from [1, Theorems A, B]. �
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REMARK 2.3. Even if l = 2, by considering the composite

Gk
ρ{l}
−→ Out(Δ{l}) −→ Aut((Δ{l})ab) ,

one verifies easily that μl∞ ⊆ ktpd-l .

LEMMA 2.4. Let l be an odd prime number. Then l ∈ El .

PROOF. It follows from the condition (1) of Definition 2.1, (i), that {0, 1,∞} ∈ Sl .
Thus, it follows from the condition (2) of Definition 2.1, (i), that

S
def= {0, 1, ζl, ζ 2

l , . . . , ζ
l−1
l ,∞} ∈ Sl ,

where ζl ∈ k is a primitive l-th root of unity. Now since the automorphism φ of P 1
k

over k
given by “t �→ 1 − t” satisfies that {0, 1,∞} ⊆ φ(S), it follows from the condition (3) of
Definition 2.1, (i), that

φ(S) = {1, 0, 1 − ζl, 1 − ζ 2
l , . . . , 1 − ζ l−1

l ,∞} ∈ S l .

Therefore,

l =
l−1∏
i=1

(1 − ζ il ) ∈ El .

This completes the proof of Lemma 2.4. �

LEMMA 2.5. Let l be a prime number. Suppose that μl∞ ⊆ k. For each positive
integer n, write

Cln
def= Spec k[x±1, y±1]/(xln + yl

n − 1) −→ M ,

where x and y are indeterminates, for the finite étale Galois (Z/lnZ)⊕2-covering of M given
by “t �→ xl

n
”. Write, moreover,

π1(M) � Ql � Z⊕2
l

for the quotient of π1(M) determined by the Cln’s. Then the following hold:
(i) Let n be a positive integer and λ ∈ k \ {0, 1} � M(k). Write kn (⊆ k) for the finite

extension of k corresponding to the quotient of Gk determined by the composite

Gk
sλ→ π1(M) � Ql � Ql/l

nQl .

Then we have an equality

kn = k(λ1/ ln, (1 − λ)1/ l
n

) .

(ii) The quotient π1(M) � Ql factors through the quotient π1(M) � Φ{l}.

PROOF. First, we verify the assertion (i). It follows immediately from the various defi-
nitions involved that the fiber of the finite étale Galois covering Cln → M at λ ∈ k \ {0, 1} �
M(k) is isomorphic to the disjoint union of finitely many copies of Spec kn. Thus, the
assertion (i) follows immediately from the explicit description of the finite étale covering
Cln → M. This completes the proof of the assertion (i).
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Next, we verify the assertion (ii). To verify the assertion (ii), it is immediate that it
suffices to verify the fact that for any positive integer n, the quotient π1(M) � (Z/lnZ)⊕2

determined by the finite étale covering Cln → M factors through the quotient π1(M) �
Φ{l}. Moreover, to verify this fact, it follows immediately from [3, Proposition 25, (i)] in the
case where we take “(X, Y, n)” to be (M, Cln, 1) that it suffices to verify that the kernel of the
pro-l outer Galois representation associated to M/k (i.e., Ker(ρ{l})) coincides with the kernel
of the pro-l outer Galois representation associated to Cln/k. On the other hand, this follows
immediately from [3, Proposition 29], together with Proposition 2.2, (i), (iii); Remark 2.3.
This completes the proof of the assertion (ii). �

PROPOSITION 2.6. Let l be a prime number and λ ∈ k \ {0, 1}. Suppose that one of
the following conditions is satisfied:

(1) l is odd, and, moreover, there exist λ0 ∈ El ∩ k and a root of unity u ∈ k such that
λ = uλ0.

(2) λ is a root of unity.
Then the split hyperbolic curve of type (0, 4) over k

P 1
k \ {0, 1, λ,∞}

is not quasi-l-monodromically full.

PROOF. To verify Proposition 2.6, it follows immediately from Lemma 1.3, together
with the exactness of the sequence appearing in Definition 1.1, (iii), that, by replacing k by
ktpd-l ⊆ k (cf. Definition 1.1, (iv)), we may assume without loss of generality that k = ktpd-l .
Write φ for the composite

Gk
sλ−→ π1(M) −→ Ql ,

where the second arrow is the natural surjection from π1(M) to the quotientQl defined in the
statement of Lemma 2.5 (cf. Proposition 2.2, (i), (iii), together with Remark 2.3). Moreover,
for each positive integer n, write φn for the composite of φ and the natural surjection Ql �
Ql/l

nQl (� (Z/lnZ)⊕2) and kn ⊆ k for the finite Galois extension of k corresponding to the
quotient of Gk determined by the homomorphism φn. Thus, it follows from Lemma 2.5, (i),
that

kn = k(λ1/ ln, (1 − λ)1/ l
n

) .

Now we claim that for any positive integer n, it holds that kn = k((1 − λ)1/ l
n
). Indeed,

write u
def= λ if the condition (2) is satisfied. (Thus, u is always a root of unity of k.) Then

since u ∈ k is a root of unity, there exists a root of unity u 	=l ∈ k(μl∞) whose order is
prime to l such that u · u 	=l ∈ μl∞ . Now one verifies easily that u1/ ln· u 	=l ∈ μl∞ . In
particular, it follows immediately from Proposition 2.2, (i), (iii), together with Remark 2.3,
that u1/ ln ∈ k(μl∞) ⊆ ktpd-l = k. On the other hand, if the condition (1) is satisfied, then since
λ0 ∈ El , it follows immediately from Proposition 2.2, (i), (ii), that λ1/ ln

0 ∈ El ⊆ ktpd-l = k.
In particular, it holds that kn = k(λ1/ ln, (1 − λ)1/ l

n
) = k((1 − λ)1/ l

n
). This completes the

proof of the claim.
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Now it follows immediately from Lemma 1.3 that the hyperbolic curve of type (0, 4)
over k

P 1
k \ {0, 1, λ,∞}

is quasi-l-monodromically full if and only if the image of the composite

Gk
sλ−→ π1(M) −→ Φ{l}

is an open subgroup of Φ{l}. In particular, it follows from Lemma 2.5, (ii), that if P 1
k \

{0, 1, λ,∞} is quasi-l-monodromically full, then the image of φ is an open subgroup of Ql .
On the other hand, it follows immediately from the above claim that for any positive inte-
ger n, the image of φn is a cyclic group. In particular, the image of φ is not open in Ql .
Therefore, P 1

k \ {0, 1, λ,∞} is not quasi-l-monodromically full. This completes the proof of
Proposition 2.6. �

The following result is a consequence of [2, Corollary 7.11]. However, for the reader’s
convenience, a detailed proof will be given.

PROPOSITION 2.7. Suppose that k is a number field. Write ok for the ring of integers
of k. If λ ∈ k \ {0, 1} satisfies the condition that{

λ, 1 − λ,
λ

λ− 1

}
∩ o×

k = ∅ ,
then there exists a finite subsetΣ of Primes such that the split hyperbolic curve of type (0, 4)
over k

P 1
k \ {0, 1, λ,∞}

is (Primes \Σ)-monodromically full.

PROOF. For t ∈ k \ {0, 1}, write P(t) for the subset of Primes consisting of odd prime
numbers l such that the following condition is satisfied: There exists a pair (p, q) of nonar-
chimedean primes of k such that the residue characteristic of p (resp. q) is not equal to l,
and, moreover, if we write vp : k×

p → Z (resp. vq : k×
q → Z) for the surjective p-adic (resp.

q-adic) valuation of the p-adic (resp. q-adic) completion kp (resp. kq) of k, then vp(t) 	∈ l · Z,
vq(1 − t) 	∈ l · Z, and vq(t) = vp(1 − t) = 0. Note that it follows from [2, Lemma 7.6, (v)],
together with [2, Remark 7.7.1], that if{

t, 1 − t,
t

t − 1

}
∩ o×

k = ∅ ,
then there exists an element

t ′ ∈
{
t, 1 − t,

t

t − 1
,

1

t
,

1

1 − t
,
t − 1

t

}

such that Primes \ P(t ′) is finite. Thus, since, for such a t ′, P 1
k \ {0, 1, t,∞} is isomorphic

to P 1
k \ {0, 1, t ′,∞} over k, to verify Proposition 2.7, by replacing λ by a suitable element if

necessary, we may assume without loss of generality that Primes \ P(λ) is finite. Thus, to

verify Proposition 2.7, it suffices to verify that if l ∈ P(λ), then X
def= P 1

k \ {0, 1, λ,∞} is
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l-monodromically full. The rest of the proof of Proposition 2.7 is devoted to verifying that if
l ∈ P(λ), then X is l-monodromically full.

Let l be an odd prime number. Write ψ for the composite of natural surjections

π1(M ⊗k k
tpd-l ) −→ Δ{l} −→ ((Δ{l})ab)⊗Zl F l � F⊕2

l ,

where the first arrow is the surjection induced by the natural surjection π1(M) � Φ{l} (cf.
Definition 1.1, (iii)). Since the composite

Gal(k/ktpd-l )
sλ−→ π1(M ⊗k k

tpd-l ) −→ Δ{l} ,

where the second arrow is the surjection induced by the natural surjection π1(M) � Φ{l}, is
surjective if and only if the composite

Gal(k/ktpd-l )
sλ−→ π1(M ⊗k k

tpd-l )
ψ−→ ((Δ{l})ab)⊗Zl F l � F⊕2

l

is surjective (cf., e.g., [5, Corollary 2.8.5], together with [5, Lemma 2.8.7, (c)]), it follows
immediately from Lemma 1.3 that, to verify that X is l-monodromically full, it suffices to
verify that the Galois group over ktpd-l of the finite Galois extension of ktpd-l corresponding to
the quotient of Gal(k/ktpd-l ) determined by the composite

Gal(k/ktpd-l )
sλ−→ π1(M ⊗k k

tpd-l )
ψ−→ ((Δ{l})ab)⊗Zl F l � F⊕2

l

is isomorphic to F⊕2
l . On the other hand, it follows immediately from Lemma 2.5, (ii), to-

gether with the well-known structure of the abelianization of Δ{l}, that the finite étale Galois
F⊕2
l -covering of M ⊗k k

tpd-l corresponding to the surjection ψ is the finite étale covering

C
tpd-l
l

def= Spec ktpd-l[x±1, y±1]/(xl + yl − 1) −→ M ⊗k k
tpd-l ,

where x and y are indeterminates, given by “t �→ xl”. Thus, by Lemma 2.5, (i), we conclude
that, to verify that X is l-monodromically full, it suffices to verify that

Gal(ktpd-l (λ1/ l, (1 − λ)1/ l)/ktpd-l ) � F⊕2
l .

Suppose that l ∈ P(λ). Let ζl ∈ ktpd-l be a primitive l-th root of unity (cf. Proposi-
tion 2.2, (i), (iii)). Now since l ∈ P(λ), and [k(ζl) : k] < l, it follows immediately that
there exists a pair (p, q) of nonarchimedean primes of k(ζl) such that the residue charac-
teristic of p (resp. q) is not equal to l, and, moreover, vp(λ) 	∈ l · Z, vq(1 − λ) 	∈ l · Z,
and vq(λ) = vp(1 − λ) = 0. Then one verifies easily that the finite Galois extension
k(ζl, λ

1/ l)/k(ζl) (resp. k(ζl, (1 − λ)1/ l)/k(ζl)) is [necessarily totally tamely] ramified at p

(resp. q) and unramified at q (resp. p). Therefore, it follows immediately from Proposition 2.2,
(iv), that the Galois group Gal(ktpd-l (λ1/ l, (1−λ)1/ l)/ktpd-l ) is isomorphic to F⊕2

l . This com-
pletes the proof of Proposition 2.7. �
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3. Proofs of main results. In the present section, we give proofs of Theorems A, B
in Introduction.

PROOF OF THEOREM A. Let l be an odd prime number. Then since l ∈ El (cf.
Lemma 2.4), it follows immediately from Proposition 2.6 that the hyperbolic curve of type
(0, 4) over k

X
def= P 1

k \ {0, 1, l,∞}
is not quasi-l-monodromically full. On the other hand, since neither l, 1 − l, nor l/(l− 1) is a
unit of the ring of integers of k, it follows from Proposition 2.7 that there exists a finite subset
Σ of Primes such that X is (Primes \Σ)-monodromically full. In particular, X satisfies the
condition (MT3) but does not satisfy the condition (MT1). This completes the proof of the
fact that there exists a split hyperbolic curve of type (0, 4) over k which satisfies (MT3), hence
also (MT2), but does not satisfy (MT1).

Moreover, let r > 4 be a positive integer and l′ ∈ Primes \ Σ (cf. the notation of the
preceding paragraph). Then it follows from [3, Proposition 13] in the case where we take
“(X, n)” to be (X, r − 4) that there exists an l′-monodromically full k-rational point x (cf.
[3, Definition 8, (i)] in the case where we take “(X, n)” to be (X, r − 4)) of the (r − 4)-th
configuration space of the hyperbolic curve X/k. Since X is l′-monodromically full and x is
l′-monodromically full, it follows from [3, Proposition 21] in the case where we take “(X, n)”
to be (X, r − 4) that the split hyperbolic curve Y of type (0, r) determined by x, i.e., the
hyperbolic curve obtained by taking the complement in X of the images of r − 4 distinct k-
rational points of X determined by x, is l′-monodromically full. In particular, Y satisfies the
condition (MT2). On the other hand, since Y ⊆ X, and X is not quasi-l-monodromically full,
it follows from [2, Remark 2.2.5] that Y is not quasi-l-monodromically full. In particular, Y
does not satisfy the condition (MT1). This completes the proof of the fact that for any positive
integer r > 4, there exists a split hyperbolic curve of type (0, r) over k which satisfies (MT2)

but does not satisfy (MT1). �

PROOF OF THEOREM B. First, let us observe that it follows immediately from the var-
ious definitions involved that, to verify the implication “(1) ⇒ (2)”, by replacing X/k0 by
replacingX⊗k0k/k, we may assume without loss of generality thatX is split over k0. Then the
implication “(1) ⇒ (2)” follows from Proposition 2.7. The implications “(2) ⇒ (3) ⇒ (4)”
are immediate. The implication “(4) ⇒ (5)” follows immediately from Proposition 2.6, to-
gether with [2, Remark 2.2.6]. The implication “(5) ⇒ (1)” in the case where k is imaginary
quadratic follows immediately from the well-known fact that every unit of the ring of integers
of an imaginary quadratic field is a root of unity. �
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