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Abstract. We introduce a new method which enables us to calculate the coefficients
of the poles of local zeta functions very precisely and prove some explicit formulas. Some
vanishing theorems for the candidate poles of local zeta functions will be also given. Moreover
we apply our method to oscillating integrals and obtain an explicit formula for the coefficients
of their asymptotic expansions.

1. Introduction. The theory of local zeta functions is an important subject in many
fields of mathematics, such as generalized functions, number theory, prehomogeneous vector
spaces (see [12] etc.) and singularity theory. The aim of this paper is to study the coefficients
of their poles. Let f be a real-valued real analytic function defined on an open neighborhood
U of 0 ∈ Rn such that f (0) = 0 and ϕ ∈ C∞

0 (U) a real-valued test function on U . Then the
integral

(1.1) Zf (ϕ)(λ) =
∫

Rn

|f (x)|λϕ(x)dx

converges locally uniformly on {λ ∈ C ; �λ > 0} and defines a holomorphic function there.
Moreover Zf (ϕ)(λ) can be extended to a meromorphic function on the whole complex plane
C (see [1] and [22] etc.). This meromorphic function Zf (ϕ) of λ is called the local zeta
function (or the complex power) associated to f and ϕ. In 1954 in an invited talk at ICM
Amsterdam, I. M. Gelfand raised a famous problem of describing the coefficients of the poles
of Zf (ϕ) as distributions on Rn (see [6] etc.). About 20 years later, Varchenko [22] proved
that there exists a subset P of Q<0 in which the poles of Zf (ϕ) are contained (see [1] etc.
for the details). After this very fundamental paper [22] many authors studied the poles of
local zeta functions. For example, an important progress was made by Denef-Sargos [4] in
reducing the set P of candidate poles. However, to the best of our knowledge, there seems to
be no paper which calculated the coefficients of these poles explicitly in a general setting. In
particular, by the preceding results we cannot see how these coefficients depend on the test
function ϕ at all.

In this paper, we introduce a new method which enables us to calculate the coefficients
of the poles of local zeta functions as precisely as we want. The key idea is the use of a
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meromorphic continuation of the distribution

(1.2) x
l1λ+m1
1+ x

l2λ+m2
2+ · · · xlnλ+mnn+ ∈ D′(Rn)

(l1, l2, . . . , ln ∈ R>0 and m1,m2, . . . ,mn ∈ R+ = R≥0) with respect to the complex param-
eter λ, which is different from the one traditionally used in the study of local zeta functions
(see [1] etc.). See Section 2 for the detail. This meromorphic continuation enables us to get
the information on the poles of local zeta functions much more precisely than before. As is
clear from the proofs of our results, by our method we can calculate the coefficients of the
poles of Zf (ϕ) very precisely once we construct an embedded resolution of the hypersurface
{x ∈ U ; f (x) = 0}. It would be possible to calculate them as precisely as we want by nu-
merical computations. However, since the general formula (which is evident from our proofs)
is more involved, we restrict ourselves here to a generic case where the formulas can be stated
neatly. From now on, we assume that the hypersurface {x ∈ U ; f (x) = 0} has an isolated
singular point at 0 ∈ U ⊂ Rn. Let

(1.3) f (x) =
∑
α∈Zn+

aαx
α (aα ∈ R)

be the Taylor expansion of f at 0 ∈ Rn.

DEFINITION 1.1. (i) Let Γ+(f ) ⊂ Rn+ := Rn
≥0 be the convex hull of

⋃
α:aα �=0(α +

Rn+) in Rn+. We call Γ+(f ) the Newton polyhedron of f .
(ii) For each compact face γ ≺ Γ+(f ) of Γ+(f ) we set

(1.4) fγ (x) =
∑

α∈γ∩Zn+

aαx
α ∈ R[x1, x2, . . . , xn].

We call fγ (x) the γ -part of f .

Note that by the condition f (0) = 0 we have 0 /∈ Γ+(f ). From now on, we assume also
that f satisfies the following condition.

DEFINITION 1.2. We say that f is non-degenerate if for any compact face γ ≺ Γ+(f )
of Γ+(f ) we have

(1.5)

(
∂fγ

∂x1
(x),

∂fγ

∂x2
(x), . . . ,

∂fγ

∂xn
(x)

)
�= (0, 0, . . . , 0)

at any point x of {x ∈ Rn ; x1x2 · · · xn �= 0, fγ (x) = 0} ⊂ (R \ {0})n.
Recall that generic (i.e., almost all) functions f having a fixed Newton polyhedron are

non-degenerate. For the sake of simplicity, let us assume also that f is convenient: for any
1 ≤ i ≤ n we have Γ+(f ) ∩ {α = (α1, . . . , αn) ∈ Rn+ ; αj = 0 for j �= i and αi > 0} �= ∅.
Then by the results of Varchenko [22] (see also [1] and [11]) we can describe the candidate
poles of Zf (ϕ) in terms of Γ+(f ) as follows.
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DEFINITION 1.3 (see [1], [5] and [11] etc.).
(i) A family Σ = {σ } of rational convex polyhedral cones σ in Rn is called a fan if

it satisfies the conditions: (a) If a cone σ is an element of Σ , all its faces are also so. (b) If
σ, τ ∈ Σ , then σ ∩ τ is a common face of σ and τ .

(ii) For a rational convex polyhedral cone σ in Rn the set {a1(σ ), a2(σ ), . . . , ak(σ )}
of the (non-zero) primitive vectors ai(σ ) ∈ ∂σ ∩ (Zn \ {0}) on its edges (i.e., 1-dimensional
faces) is called the 1-skeleton of σ .

(iii) A fan Σ = {σ } in Rn is called simplicial (resp. smooth) if for any cone σ ∈ Σ its
1-skeleton forms a part of a basis of the vector space Rn (resp. the lattice Zn).

For a face γ ≺ Γ+(f ) of Γ+(f ), let σ(γ ) ⊂ Rn+ be the convex polyhedral cone gener-
ated by the inner conormal vectors of the (n − 1)-dimensional faces γ ′ ≺ Γ+(f ) such that
γ ≺ γ ′ over R+. We can easily see that dim σ(γ ) = n − dimγ . It is well known that the
family {σ(γ )}γ≺Γ+(f ) of cones is a fan in Rn satisfying the condition Rn+ = ⋃

γ≺Γ+(f ) σ (γ )
(see [1], [5] and [11] etc.).

DEFINITION 1.4 (see [1], [5] and [11] etc.). We set Σ0 = {σ(γ )}γ≺Γ+(f ) and call it
the dual fan of Γ+(f ).

LetΣ be a smooth subdivision ofΣ0. Note thatΣ = {σ } is a family of rational simplicial
polyhedral cones in Rn+ such that Rn+ = ⋃

σ∈Σ σ . For a cone σ in Σ let {a1(σ ), a2(σ ), . . . ,

adimσ (σ )} ⊂ ∂σ ∩ (Zn \ {0}) be the 1-skeleton of σ . Recall that by the smoothness of Σ
there exist exactly dim σ edges on σ and the (non-zero) primitive vectors a1(σ ), a2(σ ), . . . ,

adimσ (σ ) form a part of a basis of the lattice Zn. For each n-dimensional cone σ ∈ Σ we
fix the ordering of its 1-skeleton {a1(σ ), a2(σ ), . . . , an(σ )} so that the determinant of the
invertible matrix

(1.6) A(σ) = {ai(σ )j }ni,j=1 ∈ GLn(Z)
is 1. For a cone σ ∈ Σ and 1 ≤ i ≤ dim σ we set

(1.7) l(ai(σ )) = min
α∈Γ+(f )

〈ai(σ ), α〉 ∈ Z+

and

(1.8) |ai(σ )| =
n∑
j=1

ai(σ )j ∈ Z>0 .

For 0 ≤ k ≤ n let Σ(k) ⊂ Σ be the subset ofΣ consisting of k-dimensional cones.

DEFINITION 1.5 (see [1] and [22] etc.). Let P ⊂ Q<0 be the union of the following
subsets of Q<0:

(1.9) {−1,−2,−3, . . . } ,

(1.10)

{
− |a1(σ )|
l(a1(σ ))

,−|a1(σ )| + 1

l(a1(σ ))
, . . .

}
(σ ∈ Σ(1) such that l(a1(σ )) > 0) .
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By the fundamental result of [22], the poles of Zf (ϕ) are contained in P . We call an
element of P a candidate pole of Zf (ϕ). Let us order the candidate poles of Zf (ϕ) as

(1.11) P = {−λ1 > −λ2 > −λ3 > · · · } (λj ∈ Q>0) .

DEFINITION 1.6. (i) Let σ ∈ Σ . For 1 ≤ i ≤ dim σ such that l(ai(σ )) > 0 (⇐⇒
ai(σ ) ∈ Rn

>0) we set

(1.12) Ki(σ) =
{ |ai(σ )|
l(ai(σ ))

,
|ai(σ )| + 1

l(ai(σ ))
, . . .

}
⊂ Q>0 .

(ii) For the j -th candidate pole −λj ∈ P of Zf (ϕ) and 0 ≤ k ≤ n we define a subset

Σ
(k)
j of Σ(k) by

(1.13) Σ
(k)
j ={σ ∈Σ(k) ; l(ai(σ )) > 0 and λj ∈ Ki(σ) for any 1≤ i ≤k=dimσ } .

(iii) For σ ∈ Σ(k)
j and 1 ≤ i ≤ k we define a non-negative integer ν(σ )i ∈ Z+ by

(1.14) λj = |ai(σ )| + ν(σ )i

l(ai(σ ))
.

For the sake of simplicity, in this introduction we assume that −λj ∈ P is not an integer.
Then it is well known that the order of the pole of Zf (ϕ) at λ = −λj is less than or equal to

(1.15) kj := max
{

0 ≤ k ≤ n ; Σ(k)
j �= ∅

}
∈ Z+ .

Let

(1.16)
aj,kj (ϕ)

(λ+ λj )
kj

+ · · · + aj,2(ϕ)

(λ+ λj )2
+ aj,1(ϕ)

(λ+ λj )
+ · · · (aj,k(ϕ) ∈ R)

be the Laurent expansion of Zf (ϕ) at λ = −λj . Then we obtain the following vanishing
theorem which generalizes Jacobs [10, Theorem 4.23].

THEOREM 1.7. Let 1 ≤ k ≤ kj . Assume that for any σ ∈ Σ
(k)
j there exists 1 ≤ i ≤

k = dim σ such that ν(σ )i is odd. Then we have aj,k(ϕ) = · · · = aj,kj (ϕ) = 0.

In order to state our another vanishing theorem, let

(1.17) ϕ(x) =
∑
α∈Zn+

cαx
α

(
cα = ∂αx ϕ(0)

α! ∈ R

)

be the (formal) Taylor expansion of the test function ϕ at 0 ∈ U ⊂ Rn.

THEOREM 1.8. For 1 ≤ k ≤ kj assume that {α ∈ Zn+ ; cα �= 0} ∩ Δj,k = ∅,
where Δj,k is a certain compact subset of Rn+ (to be defined in Definition 3.4). Then we have
aj,k(ϕ) = · · · = aj,kj (ϕ) = 0.

Moreover the coefficients aj,n(ϕ) of the deepest poles λ = −λj ∈ P can be explicitly

described by the following formula. For σ ∈ Σ
(n)
j , 1 ≤ i ≤ n and α ∈ Zn+ we define an
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integer μ(σ, α)i by

(1.18) μ(σ, α)i = ν(σ )i − 〈ai(σ ), α〉 ∈ Z .

We also define a function fσ on a neighborhood of 0 ∈ Rn
y satisfying fσ (0) �= 0 by

(1.19) fσ (y) =
∑
α∈Zn+

aα

n∏
i=1

y
〈ai(σ ),α〉−l(ai(σ ))
i

by using the Taylor expansion f (x) = ∑
α∈Zn+ aαx

α of f .

THEOREM 1.9. Assume that kj = n. Then aj,n(ϕ) is given by

(1.20) aj,n(ϕ) =
∑
α∈Δj,n

{ ∑
σ∈Σ(n)

j

( n∏
i=1

1 + (−1)ν(σ )i

l(ai(σ )) · μ(σ, α)i !
)
∂μ(σ,α)y |fσ |−λj (0)

}
∂αx ϕ(0)

α! ,

where we set

(1.21) ∂μ(σ,α)y = ∂μ(σ,α)1+···+μ(σ,α)n

∂y
μ(σ,α)1
1 · · · ∂yμ(σ,α)nn

and (∂μ/∂yμi )(·) = 0 if μ < 0.

Our results on the poles of the local zeta function Zf (ϕ) also have some applications to
the oscillating integral If (ϕ)(t) (t ∈ R) defined by

(1.22) If (ϕ)(t) =
∫

Rn

eitf (x)ϕ(x)dx .

By the fundamental results of Varchenko [22] (see also [1] for the detail), as t → +∞ the
oscillating integral If (ϕ)(t) has an asymptotic expansion of the form

(1.23) If (ϕ)(t) ∼
∞∑
j=1

kj∑
k=1

cj,k(ϕ)t
−λj (log t)k−1 ,

where cj,k(ϕ) are some complex numbers. Despite the important contributions by many
mathematicians (see for example [1], [3], [8] and [20] etc.), only little is known about the
coefficients cj,k(ϕ) of this asymptotic expansion. Here we can prove the following general
vanishing theorem.

THEOREM 1.10. In the situation as above, let 1 ≤ k ≤ kj and assume that {α ∈
Zn+ ; cα �= 0} ∩Δj,k = ∅. Then we have cj,k(ϕ) = · · · = cj,kj (ϕ) = 0.

Moreover by Theorem 1.9 we obtain also an explicit formula for the coefficients cj,n(ϕ)
of t−λj (log t)n−1 in the asymptotic expansion of If (ϕ). See Section 5 for the detail. Note that
recently by the second author the method of toric modifications used in this paper was applied
also to various problems of mathematics in [13], [14], [15] and [21] etc. Finally let us mention
that the method introduced in this paper would have some applications also in the study of
p-adic local zeta functions (see [9] etc.). It would be a very interesting subject to study the
twisted monodromy conjecture (see [16] for a review on this conjecture) by this method.
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2. Meromorphic continuations of distributions. In this section, as a preparation
we prove some basic results on the meromorphic continuations of the distributions
x
l1λ+m1
1+ x

l2λ+m2
2+ · · · xlnλ+mnn+ (li ∈ R>0, mi ∈ R+ = R≥0) with respect to the complex pa-

rameter λ. In Sections 3 and 4 these results will be used effectively to study the poles of local
zeta functions. First, let us recall the classical result in the 1-dimensional case (see Gelfand-
Shilov [6] etc.). Let l ∈ R>0 be a positive real number and m ∈ R+. Then for ϕ ∈ C∞

0 (R)

the integral

(2.1) F+(ϕ)(λ) =
∫ +∞

−∞
xlλ+m+ ϕ(x)dx =

∫ +∞

0
xlλ+mϕ(x)dx

converges locally uniformly on {λ ∈ C ; �λ > −(m + 1)/ l} and defines a holomorphic
function there. In other words, if �λ > −(m + 1)/ l the map ϕ �→ F+(ϕ)(λ) ∈ R defines
a distribution xlλ+m+ ∈ D′(R) on R. Let us fix a test function ϕ ∈ C∞

0 (R). Following the
methods in Gelfand-Shilov [8] we shall extendF+(ϕ) to a meromorphic function on the whole
complex plane C as follows. First take a sufficiently large integerN � 0. Then for any λ ∈ C

such that �λ > −(m+ 1)/ l we have

F+(ϕ)(λ)=
∫ +∞

0
xlλ+mϕ(x)dx

=
∫ 1

0
xlλ+m

[
ϕ(x)−

N∑
r=1

ϕ(r−1)(0)
xr−1

(r − 1)!
]
dx

+
∫ +∞

1
xlλ+mϕ(x)dx +

N∑
r=1

ϕ(r−1)(0)

(r − 1)!(lλ+m+ r)

=
∫ 1

0
xlλ+mdx

∫ x

0

ϕ(N)(t)

(N − 1)!(x − t)N−1dt +
∫ +∞

1
xlλ+mϕ(x)dx(2.2)

+
N∑
r=1

ϕ(r−1)(0)

(r − 1)! × l{λ+ (m+ r)/ l}

=
∫ 1

0
gN(λ, t)ϕ(N)(t)dt +

∫ +∞

1
t lλ+mϕ(t)dt

+
N∑
r=1

1

(r − 1)! × l{λ+ (m+ r)/ l} 〈(−1)r−1δ(r−1), ϕ〉 ,

where δ ∈ D′(R) is Dirac’s delta function and we set

(2.3) gN(λ, t) = 1

(N − 1)!
∫ 1

t

xlλ+m(x − t)N−1dx

for 0 < t ≤ 1. The function gN(λ, t) satisfies the following nice properties.

LEMMA 2.1. (i) For any 0 < t ≤ 1, gN(λ, t) is an entire function of λ.
(ii) If �λ > −(m+N + 1)/ l then the function gN(λ, t) of t is integrable on (0, 1].
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By this lemma we see that the integral

(2.4)
∫ 1

0
gN(λ, t)ϕ(N)(t)dt

converges locally uniformly on {λ ∈ C ; �λ > −(m+N + 1)/ l} and defines a holomorphic
function there. Since the integral

∫ +∞
1 t lλ+mϕ(t)dt is an entire function of λ, the function

F+(ϕ) is extended to a meromorphic function on {λ ∈ C ; �λ > −(m + N + 1)/ l} with
simple poles at λ = −(m + r)/ l (r = 1, 2, . . . , N). Moreover the residue of F+(ϕ) at
λ = −(m+ r)/ l is given by

(2.5) Res

(
F+(ϕ); −m+ r

l

)
= 1

(r − 1)! × l
〈(−1)r−1δ(r−1), ϕ〉 .

Similarly set

(2.6) F−(ϕ)(λ) =
∫ +∞

−∞
xlλ+m− ϕ(x)dx =

∫ 0

−∞
|x|lλ+mϕ(x)dx .

Then F−(ϕ)(λ) can be also extended to a meromorphic function on the whole complex plane
C with simple poles at λ = −(m+ r)/ l (r = 1, 2, . . . ) and we have

(2.7) Res

(
F−(ϕ); −m+ r

l

)
= 1

(r − 1)! × l
〈δ(r−1), ϕ〉 .

This basic result in the 1-dimensional case can be generalized to higher-dimensional cases as
follows. Let ϕ ∈ C∞

0 (R
n) be a test function on Rn. For positive real numbers l1, l2, . . . , ln ∈

R>0 and m1,m2, . . . ,mn ∈ R+ we set

(2.8) G(ϕ)(λ) =
∫

Rn

x
l1λ+m1
1+ x

l2λ+m2
2+ · · · xlnλ+mnn+ ϕ(x)dx

and

(2.9) L = − min

{
m1 + 1

l1
,
m2 + 1

l2
, . . . ,

mn + 1

ln

}
.

Then this integral converges locally uniformly on {λ ∈ C ; �λ > L} and defines a holomor-
phic function there. By using the tensor product ⊗ of distributions we can rewrite G(ϕ)(λ)
as

(2.10) G(ϕ)(λ) = 〈xl1λ+m1
1+ ⊗ x

l2λ+m2
2+ ⊗ · · · ⊗ x

lnλ+mn
n+ , ϕ〉 .

Let N � 0 be a sufficiently large integer. Then for λ ∈ C such that �λ > L we have the
following equalities in the space D′(R) of 1-dimensional distributions.

(2.11)

x
liλ+mi
i+ = Gi,N (λ)

+
N∑
r=1

(−1)r−1

(r − 1)! × li{λ+ (mi + r)/ li}δ
(r−1)(xi) (i = 1, 2, . . . , n) ,
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where Gi,N (λ) ∈ D′(R) is a 1-dimensional distribution of the form

(2.12) 〈Gi,N (λ), φ〉 =
∫ 1

0
gi,N (λ, t)φ(N)(t)dt +

∫ +∞

1
t liλ+miφ(t)dt (φ ∈ C∞

0 (R)) .

Here gi,N (λ, t) is an integrable function of t ∈ (0, 1] for λ ∈ C such that �λ > −(mi +N +
1)/ li . Putting these new expressions of the 1-dimensional distributions xliλ+mii+ into (2.10) we
see that G(ϕ)(λ) is extended to a meromorphic function on {λ ∈ C ; �λ > LN }, where we
set

(2.13) LN = − min

{
m1 +N + 1

l1
,
m2 +N + 1

l2
, . . . ,

mn + N + 1

ln

}
.

Since the integer N � 0 can be taken as large as possible, G(ϕ)(λ) is meromorphically
continued to the whole complex plane C. Moreover the poles of this meromorphic function
G(ϕ)(λ) are contained in a discrete subset P of C defined by

(2.14) P =
⋃

1≤i≤n

{
−mi + 1

li
,−mi + 2

li
,−mi + 3

li
, . . .

}
⊂ R<0 ⊂ C .

An element of P is called a candidate pole of G(ϕ). Let us rewrite this set P as

(2.15) P = {−λ1 > −λ2 > −λ3 > · · · } (λj ∈ R>0) .

For each candidate pole −λj ∈ P of G(ϕ) we define a subset Sj of {1, 2, . . . , n} by

(2.16) Sj =
{

1 ≤ i ≤ n ; ∃r ∈ Z>0 such that
mi + r

li
= λj

}

and set kj = �Sj . Then we can easily see that the order of the pole of G(ϕ) at λ = −λj is
less than or equal to kj . For a candidate pole −λj ∈ P of G(ϕ) let

(2.17)
aj,kj

(λ+ λj )
kj

+ · · · + aj,2

(λ+ λj )2
+ aj,1

(λ+ λj )
+ · · · (aj,k ∈ R)

be the Laurent expansion of G(ϕ) at λ = −λj . For each i ∈ Sj ⊂ {1, 2, . . . , n} we define a
non-negative integer νi ∈ Z+ = Z≥0 by the formula

(2.18)
mi + 1 + νi

li
= λj .

PROPOSITION 2.2. Let 1 ≤ k ≤ kj . Then the coefficient aj,k of 1/(λ + λj )
k in the

Laurent expansion ofG(ϕ)(λ) at λ = −λj is written as

(2.19) aj,k =
∑

S⊂Sj :�S≥k

1

(�S − k)!
{
∂�S−k

∂λ�S−k ρS(λ)
}
λ=−λj

,

where for each subset S ⊂ Sj of Sj such that �S ≥ k the function ρS(λ) is holomorphic at
λ = −λj and written as follows:
For the sake of simplicity, assume that S = {1, 2, . . . , p} for some p ≥ k. Then we have

ρS(λ)=
( p∏
i=1

1

li · νi !
)

×
∫

{x∈Rn ; x1=···=xp=0}

n∏
i=p+1

gi (λ, xi)
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×
{

∂ν1+···+νp

∂x
ν1
1 · · · ∂xνpp

ϕ(x)

}
x1=···=xp=0

dxp+1 · · · dxn ,(2.20)

where gi (λ, ·) (i = p + 1, . . . , n) are 1-dimensional integrable functions with holomorphic
parameter λ at λ = −λj .

When kj = �Sj = n we have the following very simple expression of aj,n.

PROPOSITION 2.3. If kj = �Sj = n, we have

(2.21) aj,n =
( n∏
i=1

1

li · νi !
)

∂ν1+···+νn
∂x

ν1
1 · · · ∂xνnn ϕ(0) .

Similarly let us set

(2.22) H(ϕ)(λ) =
∫

Rn

|x1|l1λ+m1 |x2|l2λ+m2 · · · |xn|lnλ+mnϕ(x)dx .
Then H(ϕ) can be also extended to a meromorphic function on C whose poles are contained
in the set P ⊂ R<0. Moreover the order of the pole of H(ϕ) at λ = −λj ∈ P is less than or
equal to kj . For a candidate pole −λj ∈ P of H(ϕ), let

(2.23)
bj,kj

(λ+ λj )
kj

+ · · · + bj,2

(λ+ λj )2
+ bj,1

(λ+ λj )
+ · · · (bj,k ∈ R)

be the Laurent expansion of H(ϕ) at λ = −λj .

PROPOSITION 2.4. Let 1 ≤ k ≤ kj . Then the coefficient bj,k of 1/(λ + λj )
k in the

Laurent expansion of H(ϕ)(λ) at λ = −λj is written as

(2.24) bj,k =
∑

S⊂Sj :�S≥k

1

(�S − k)!
{
∂�S−k

∂λ�S−k τS(λ)
}
λ=−λj

,

where, for each subset S ⊂ Sj of Sj such that �S ≥ k, the function τS(λ) is holomorphic at
λ = −λj and written as follows:
For the sake of simplicity, assume that S = {1, 2, . . . , p} for some p ≥ k. Then we have

τS(λ)=
( p∏
i=1

1 + (−1)νi

li · νi !
)

×
∫

{x∈Rn;x1=···=xp=0}

n∏
i=p+1

g ′
i (λ, xi)

×
{

∂ν1+···+νp

∂x
ν1
1 · · · ∂xνpp

ϕ(x)

}
x1=···=xp=0

dxp+1 · · · dxn ,(2.25)

where g ′
i (λ, ·) (i = p + 1, . . . , n) are 1-dimensional integrable functions as in Proposition

2.2.

As a special case of this proposition, we obtain the following.

COROLLARY 2.5. Let 1 ≤ k ≤ kj . Assume that for any S ⊂ Sj with �S = k there
exists i ∈ S such that νi is odd. Then we have bj,k = · · · = bj,kj = 0.

If kj = �Sj = n, we can also obtain the following explicit expression of bj,n.
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PROPOSITION 2.6. If kj = �Sj = n, we have

(2.26) bj,n =
( n∏
i=1

1 + (−1)νi

li · νi !
)

∂ν1+···+νn
∂x

ν1
1 · · · ∂xνnn ϕ(0) .

REMARK 2.7. Combining our idea above with [2, Petit lemme on p.136] (instead of
the meromorphic continuations of Gelfand-Shilov [6] etc.) we can prove some results similar
to the ones in this section. We thank the referee for pointing out this alternative approach.

3. Vanishing theorems for the poles of local zeta functions. Let f be a real-valued
real analytic function defined on an open neighborhood U of 0 ∈ Rn such that f (0) = 0.
Then for any real-valued test function ϕ ∈ C∞

0 (U), the integral

(3.1) Zf (ϕ)(λ) =
∫

Rn

|f (x)|λϕ(x)dx
converges locally uniformly on {λ ∈ C ; �λ > 0} and defines a holomorphic function there.
Moreover it is well known that Zf (ϕ)(λ) can be extended to a meromorphic function defined
on the whole complex plane C (see [1], [11] and [22] etc.). In this section, assuming that the
real hypersurface {x ∈ U ; f (x) = 0} has an isolated singular point at 0 ∈ U ⊂ Rn, we
prove some general vanishing theorems on the poles of the local zeta function Zf (ϕ)(λ). As
in Section 1 we assume also that f is convenient and non-degenerate. Let Σ be a smooth
subdivision of the dual fan Σ0 of Γ+(f ). Then by the general theory of toric varieties as in
Fulton [5], to the smooth fanΣ in Rn such that Rn+ = ⋃

σ∈Σ σ we can naturally associate an
n-dimensional real analytic manifold XΣ and a proper morphism

(3.2) π : XΣ −→ Rn

of real analytic manifolds. Here we simply recall that for any σ ∈ Σ there exists a subset
Oσ � (R \ {0})n−dimσ of XΣ such that XΣ = ⊔

σ∈Σ Oσ . For each n-dimensional cone σ in
Σ the open subset Rn(σ ) := ⊔

τ≺σ Oτ of XΣ is isomorphic to Rn and O{0} ⊂ Rn(σ ) (resp.
Oσ ⊂ Rn(σ )) corresponds to the standard open dense real torus (R \ {0})n (resp. the origin
0) in Rn. It follows immediately from this construction that if σ �= τ are n-dimensional cones
in Σ the origins of Rn(σ ) � Rn and Rn(τ ) � Rn are disjoint in XΣ . By the convenience of
f we can construct the smooth fan Σ without subdividing the cones of Σ0 contained in ∂Rn+
so that π induces an isomorphism

(3.3) XΣ \ π−1(0)
∼−→ Rn \ {0} .

Moreover by the non-degeneracy of f , the pull-back f ◦ π : XΣ −→ R of f to XΣ defines
a hypersurface {f ◦ π = 0} in XΣ having only normal crossing singularities in π−1(U) (see
[1], [11], [18] and [22] etc.). Indeed, on each affine open subset Rn(σ ) � Rn of XΣ the
morphism π : XΣ −→ Rn and the function f ◦ π can be very explicitly written as follows.
First, note that by the smoothness of Σ any cone σ ∈ Σ is simplicial and hence there exist
exactly dim σ edges on it. For a cone σ ∈ Σ let {a1(σ ), a2(σ ), . . . , adimσ (σ )} be the 1-
skeleton of σ . For each n-dimensional cone σ ∈ Σ we fix the ordering of its 1-skeleton
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{a1(σ ), a2(σ ), . . . , an(σ )} so that the determinant of the invertible matrix

(3.4) A(σ) = {ai(σ )j }ni,j=1 ∈ GLn(Z)
is 1. For a cone σ ∈ Σ and 1 ≤ i ≤ dim σ we set

(3.5) l(ai(σ )) = min
α∈Γ+(f )

〈ai(σ ), α〉 ∈ Z+

and

(3.6) |ai(σ )| =
n∑
j=1

ai(σ )j ∈ Z>0 .

Now let σ be an n-dimensional cone in Σ and Rn(σ ) � Rn
y the affine open subset of XΣ

associated to σ . Then the restriction π(σ) : Rn(σ ) −→ Rn of π : XΣ −→ Rn to Rn(σ ) �
Rn
y and its Jacobian J (π(σ)) : Rn(σ ) −→ R are explicitly given by

(3.7) π(σ)(y) =
( n∏
i=1

y
ai(σ )1
i ,

n∏
i=1

y
ai(σ )2
i , . . . ,

n∏
i=1

y
ai(σ )n
i

)
,

(3.8) J (π(σ))(y) = y
|a1(σ )|−1
1 y

|a2(σ )|−1
2 · · · y |an(σ )|−1

n .

Hence we can easily see that on Rn(σ ) � Rn
y we have

(3.9) (f ◦ π(σ))(y) = fσ (y)×
n∏
i=1

y
l(ai(σ ))
i ,

where fσ is a real analytic function defined on π(σ)−1(U) ⊂ Rn(σ ). By the non-degeneracy
of f the (smooth) hypersurface {fσ = 0} intersects all coordinate subspaces of Rn(σ )

transversally (see [1], [11], [18] and [22] etc.). In particular, we have fσ (0) �= 0. For
0 ≤ k ≤ n let Σ(k) ⊂ Σ be the subset of Σ consisting of k-dimensional cones.

DEFINITION 3.1 (see [1], [11] and [22] etc.). Let P ⊂ Q<0 be the union of the fol-
lowing subsets of Q<0:

(3.10) {−1,−2,−3, . . . } ,

(3.11)

{
− |a1(σ )|
l(a1(σ ))

,−|a1(σ )| + 1

l(a1(σ ))
, . . .

}
(σ ∈ Σ(1) such that l(a1(σ )) > 0) .

By the fundamental result of [22], the poles of the local zeta function Zf (ϕ) are con-
tained in the set P . An element of P is called a candidate pole of Zf (ϕ). We order the
candidate poles of Zf (ϕ) as

(3.12) P = {−λ1 > −λ2 > −λ3 > · · · } (λj ∈ Q>0) .

Hereafter we fix a candidate pole −λj ∈ P of Zf (ϕ). Recall the definitions of Ki(σ), Σ(k)
j

and ν(σ )i ∈ Z+ in Section 1. Then, after [1] and [22] the following results are well known to
the specialists.
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THEOREM 3.2. (i) Assume that λj /∈ Z. Then the order of the pole of Zf (ϕ) at
λ = −λj is less than or equal to

(3.13) kj := max
{

0 ≤ k ≤ n ; Σ(k)
j �= ∅

}
∈ Z+ .

(ii) Assume that λj ∈ Z. Then the order of the pole of Zf (ϕ) at λ = −λj is less than
or equal to

(3.14) kj := 1 + max
{

0 ≤ k ≤ n ; Σ(k)
j �= ∅

}
∈ Z+ .

Now let

(3.15)
aj,kj (ϕ)

(λ+ λj )
kj

+ · · · + aj,2(ϕ)

(λ+ λj )2
+ aj,1(ϕ)

(λ+ λj )
+ · · · (aj,k(ϕ) ∈ R)

be the Laurent expansion of Zf (ϕ) at λ = −λj . Then we obtain the following result which
generalizes Jacobs [10, Theorem 4.23].

THEOREM 3.3. (i) Assume that λj is not an odd integer and let 1 ≤ k ≤ kj . Assume

moreover that for any σ ∈ Σ(k)
j there exists 1 ≤ i ≤ k = dim σ such that ν(σ )i is odd. Then

we have aj,k(ϕ) = · · · = aj,kj (ϕ) = 0.
(ii) Assume that λj is an odd integer and let 2 ≤ k ≤ kj . Assume moreover that for

any σ ∈ Σ
(k−1)
j there exists 1 ≤ i ≤ k − 1 = dim σ such that ν(σ )i is odd. Then we have

aj,k(ϕ) = · · · = aj,kj (ϕ) = 0.

PROOF. (i) Since suppϕ is compact and π : XΣ −→ Rn is proper, there exists finite
C∞-functions ϕq (1 ≤ q ≤ N) on XΣ such that

∑N
q=1 ϕq ≡ 1 on supp(ϕ ◦ π). We may

assume that for any 1 ≤ q ≤ N there exists an n-dimensional cone σq ∈ Σ(n) such that
suppϕq ⊂⊂ Rn(σq). Then we have

Zf (ϕ)(λ) =
N∑
q=1

∫
Rn(σq)

( n∏
i=1

|yi |l(ai(σq))λ+|ai(σq)|−1
)

|fσq |λ(y)(ϕ ◦ π(σq))(y)ϕq(y)dy .

We divide the proof of the assertion (i) into the following two cases (I) and (II).
(I) First assume that λj is not an integer. Then by (the proof of) Proposition 2.2, aj,k(ϕ)

can be written as

(3.16) aj,k(ϕ) =
N∑
q=1

∑
p≥k

∑
σ∈Σ(p)

j,q

Jq(σ ) ,

where for 1 ≤ q ≤ N and 0 ≤ p ≤ n we set

(3.17) Σ
(p)

j,q = {σ ∈ Σ(p)

j ; σ ≺ σq } .
Moreover for p such that k ≤ p ≤ n and σ ∈ Σ(p)

j,q the number Jq(σ ) is expressed as follows.

(3.18) Jq(σ ) = 1

(p − k)! × dp−k

dλp−k ρq,σ (λ)|λ=−λj .
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Let us explain the function ρq,σ (λ) which is holomorphic at λ = −λj . For the sake of
simplicity, we assume that {a1(σq), a

2(σq), . . . , a
p(σq)} is the 1-skeleton of σ ≺ σq .

(a) (The case where suppϕq∩{y ∈ Rn(σq) ; fσq (y) = y1 = y2 = · · · = yp = 0} = ∅)
We set

(3.19)

ρq,σ (λ) =
( p∏
i=1

1 + (−1)ν(σq)i

l(ai(σq)) · ν(σq)i !
) ∫

{y1=···=yp=0}

n∏
i=p+1

gi (λ, yi)

× ∂ν(σq)1+···+ν(σq)p

∂y
ν(σq)1
1 · · · ∂yν(σq)pp

{|fσq |λ(ϕ ◦ π(σq))ϕq
}
y1=···=yp=0

dyp+1 · · · dyn ,

where gp+1(λ, ·), . . . , gn(λ, ·) are 1-dimensional integrable functions with holomorphic pa-
rameter λ at λ = −λj ∈ P .

(b) (The case where suppϕq ∩ {y ∈ Rn(σq) ; fσq (y) = y1 = y2 = · · · = yp =
0} �= ∅) For 1 ≤ i ≤ n set Hi = {y ∈ Rn(σq) ; yi = 0}. Then we may assume that
{1 ≤ i ≤ n ; suppϕq ∩Hi �= ∅} = {1, 2, . . . , r} for some r ∈ Z such that p ≤ r ≤ n− 1. In
this case, by a real analytic local coordinate change Φ : (y1, . . . , yn) �−→ (z1, . . . , zn) such
that zi = yi (1 ≤ i ≤ r) which sends the hypersurface {fσq = 0} to {zn = 0}, the function
ρq,σ (λ) is expressed as

ρq,σ (λ) =
( p∏
i=1

1 + (−1)ν(σq)i

l(ai(σq)) · ν(σq)i !
) ∫

{z1=···=zp=0}

( r∏
i=p+1

gi (λ, zi)
)
gn(λ, zn)

× ∂ν(σq)1+···+ν(σq)p

∂z
ν(σq)1
1 · · · ∂zν(σq)pp

{
F(λ, z)(ϕ ◦ π(σq) ◦Φ−1)(ϕq ◦Φ−1)

∣∣∣∣∂(y1, . . . , yn)

∂(z1, . . . , zn)

∣∣∣∣
}
z1=···=zp=0

dzp+1 · · · dzn ,
where

(3.20) F(λ, z) =
( n∏
i=r+1

|yi |l(ai(σq))λ+|ai(σq)|−1
)

◦Φ−1

is a real analytic function of z on a neighborhood of Φ(suppϕq) and gp+1(λ, ·), . . . , gr (λ, ·)
and gn(λ, ·) are 1-dimensional integrable functions with holomorphic parameter λ at λ =
−λj ∈ P . To ensure the existence of such gn(λ, ·) we used the condition that λj is not an
integer.

Now by our assumption, for any σ ∈ Σ
(p)
j,q (p ≥ k) there exists 1 ≤ i ≤ p such that

ν(σq)i is odd. Therefore we obtain aj,k(ϕ) = 0 in this case. In the same way, we can prove
also that aj,k+1(ϕ) = · · · = aj,kj (ϕ) = 0.

(II) Next assume that λj is an (even) integer and set m := λj . Then by (the proof of)
Proposition 2.2, aj,k(ϕ) can be written as

(3.21)
N∑
q=1

{ ∑
p≥k

∑
σ∈Σ(p)

j,q

Jq(σ )+
∑
p≥k−1

∑
σ∈Σ(p)

j,q

J̃q(σ )

}
,
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where Jq(σ ) is as in (I) and for p such that k − 1 ≤ p ≤ n and σ ∈ Σ(p)
j,q the number J̃q(σ )

is expressed as follows.

(3.22) J̃q(σ ) = 1

(p + 1 − k)! × dp+1−k

dλp+1−k τq,σ (λ)|λ=−λj .

Let us explain the function τq,σ (λ) which is holomorphic at λ = −λj . For simplicity, we
assume that {a1(σq), a

2(σq), . . . , a
p(σq)} is the 1-skeleton of σ ≺ σq . If suppϕq ∩ {y ∈

Rn(σq) ; fσq (y) = y1 = · · · = yp = 0} = ∅ we set τq,σ (λ) ≡ 0. If suppϕq ∩ {y ∈
Rn(σq) ; fσq (y) = y1 = · · · = yp = 0} �= ∅, assuming as in (I)(b) that {1 ≤ i ≤
n ; suppϕq ∩Hi �= ∅} = {1, 2, . . . , r} for some r ∈ Z such that p ≤ r ≤ n− 1 and using the
local coordinate changeΦ used in (I)(b), the function τq,σ (λ) is expressed as

τq,σ (λ)=
( p∏
i=1

1 + (−1)ν(σq)i

l(ai(σq)) · ν(σq)i !
)

× 1 + (−1)m−1

(m− 1)!

×
∫

{z1=···=zp=zn=0}

( r∏
i=p+1

gi (λ, zi)
)
K(λ, zp+1, . . . , zn−1)dzp+1 · · · dzn−1 ,

where K(λ, zp+1, . . . , zn−1) is the function

∂ν(σq)1+···+ν(σq)p+m−1

∂z
ν(σq)1
1 · · · ∂zν(σq)pp ∂zm−1

n

{
F(λ, z)(ϕ ◦ π(σq) ◦Φ−1)(ϕq ◦Φ−1)

×
∣∣∣∣∂(y1, . . . , yn)

∂(z1, . . . , zn)

∣∣∣∣
}
z1=···=zp=zn=0

obtained by taking F(λ, z) and gp+1(λ, ·), . . . , gr (λ, ·) as in (I)(b). Then, as in (I), by our

assumption we obatin Jq(σ ) = 0 for any σ ∈ Σ
(p)

j,q (p ≥ k). Moreover, since by our as-

sumption in (i) the integer m = λj must be even, we obtain J̃q(σ ) = 0 for any σ ∈ Σ
(p)
j,q

(p ≥ k − 1). Therefore we get aj,k(ϕ) = 0 in this case, too. In the same way, we can prove
also that aj,k+1(ϕ) = · · · = aj,kj (ϕ) = 0. This completes the proof of (i). The remaining
assertion (ii) can be shown similarly. �

By this theorem we see that many candidate poles of Zf (ϕ) are fake, i.e., not the actual
poles. We can also find a nice condition on the test function ϕ ∈ C∞

0 (R
n) under which

we have the vanishing aj,k(ϕ) = · · · = aj,kj (ϕ) = 0. For this purpose, we introduce the
following subset Δj,k of Rn+.

DEFINITION 3.4. Let 1 ≤ k ≤ kj .

(i) For σ ∈ Σ(k)
j we define a compact convex subset Δσj,k of Rn+ by

(3.23) Δσj,k = {α ∈ Rn+ ; 〈ai(σ ), α〉 ≤ ν(σ )i for any 1 ≤ i ≤ k} .
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(ii) We define a compact subset Δj,k of Rn+ by

(3.24) Δj,k =
⋃

σ∈Σ(k)
j

Δσj,k .

Note that Δj,k is not necessarily a convex subset of Rn+. It follows also from the defini-
tion that we have Δj,k ⊃ Δj,k′ for 1 ≤ k ≤ k′ ≤ kj . In order to state our another vanishing
theorem, let

(3.25) ϕ(x) =
∑
α∈Zn+

cαx
α

(
cα = ∂αx ϕ(0)

α! ∈ R

)

be the (formal) Taylor expansion of the test function ϕ at 0 ∈ U ⊂ Rn.

THEOREM 3.5. (i) Let 1 ≤ k ≤ kj . Assume that λj is not an odd integer and
{α ∈ Zn+ ; cα �= 0} ∩Δj,k = ∅. Then we have aj,k(ϕ) = · · · = aj,kj (ϕ) = 0.

(ii) Let 2 ≤ k ≤ kj . Assume that λj is an odd integer and {α ∈ Zn+ ; cα �= 0} ∩
Δj,k−1 = ∅. Then we have aj,k(ϕ) = · · · = aj,kj (ϕ) = 0.

PROOF. We use the notations in the proof of Theorem 3.3.
(i) Since the proof for the case where λj is an (even) integer is similar, we prove the

assertion only in the case where λj is not an integer. In this case, we have

(3.26) aj,k(ϕ) =
N∑
q=1

∑
p≥k

∑
σ∈Σ(p)

j,q

1

(p − k)!
dp−k

dλp−k ρq,σ (λ)|λ=−λj ,

where the function ρq,σ (λ) is holomorphic at λ = −λj (for its expression, see the proof of
Theorem 3.3). For α ∈ Zn+ let ψα ∈ C∞

0 (U) be a test function on U such that ψα ≡ xα in a

neighborhood of 0 ∈ U ⊂ Rn. For 1 ≤ q ≤ N and σ ∈ Σ(p)
j,q (p ≥ k), assume for simplicity

that {a1(σq), a
2(σq), . . . , a

p(σq)} is the 1-skeleton of σ ≺ σq . Then in an open neighborhood
of {y ∈ Rn(σq) ; y1 = · · · = yp = 0} ⊂ Rn(σq) ⊂ XΣ we have

(3.27) (ψα ◦ π(σq))(y) ≡ y
〈a1(σq),α〉
1 · · · y〈an(σq),α〉

n .

Moreover, by the definition of Δj,k , if α /∈ Δj,k then we have α /∈ Δj,p and there exists
1 ≤ i ≤ p such that 〈ai(σq), α〉 > ν(σq)i . This implies the vanishing of the function

(3.28)
∂ν(σq)1+···+ν(σq)p

∂y
ν(σq)1
1 · · · ∂yν(σq)pp

{|fσq |λ(ψα ◦ π(σq))ϕq
}
y1=···=yp=0 ≡ 0 .

By applying this vanishing result to the expressions of ρq,σ (λ) in (3.19) and (3.20), we obtain
aj,k(ψα) = 0 for α /∈ Δj,k . Moreover by using the Taylor expansion of ϕ, under our assump-
tion {α ∈ Zn+ ; cα �= 0} ∩Δj,k = ∅ we can easily prove that aj,k(ϕ) = 0. In the same way,
we can prove also that aj,k+1(ϕ) = · · · = aj,kj (ϕ) = 0. This completes the proof of (i). The
assertion (ii) can be shown similarly. �
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Now let us consider the following two local zeta functions.

(3.29) Z±
f (ϕ)(λ) =

∫
Rn

f λ±(x)ϕ(x)dx .

Note that we have Zf (ϕ) = Z+
f (ϕ) + Z−

f (ϕ). Then the poles of these lcoal zeta functions

Z±
f (ϕ) are also contained in P and their Laurent expansions at a candidate pole λ = −λj ∈ P

have the following form:

(3.30)
a±
j,kj
(ϕ)

(λ+ λj )
kj

+ · · · + a±
j,2(ϕ)

(λ+ λj )2
+ a±

j,1(ϕ)

(λ+ λj )
+ · · · (a±

j,k(ϕ) ∈ R)

(see for example [1], [11] etc.). By the proof of Theorem 3.5 we obtain a vanishing theorem
also for the coefficients a±

j,k(ϕ) of the poles of Z±
f (ϕ).

THEOREM 3.6. (i) Let 1 ≤ k ≤ kj . Assume that λj is not an integer and {α ∈
Zn+ ; cα �= 0} ∩Δj,k = ∅. Then we have a±

j,k(ϕ) = · · · = a±
j,kj
(ϕ) = 0.

(ii) Let 2 ≤ k ≤ kj . Assume that λj is an integer and {α ∈ Zn+ ; cα �= 0}∩Δj,k−1 = ∅.
Then we have a±

j,k(ϕ) = · · · = a±
j,kj
(ϕ) = 0.

REMARK 3.7. By replacing Σ by Σ0 we can also define compact subsets Δ′
j,k of

Rn+. For these subsets Δ′
j,k we obtain the analogues of Theorems 3.5 and 3.6 by using the

arguments in Denef-Sargos [4]. However we cannot similarly obtain the analogues of Theo-
rems 3.3 and 4.2 etc., which are more directly related to the dual fan Σ0 of Γ+(f ), by some
technical reason.

4. Explicit formulas for the poles of local zeta functions. In this section we give
some explicit formulas for the coefficients aj,n(ϕ), a

±
j,n(ϕ) of the deepest poles λ = −λj ∈ P

of the local zeta functionsZf (ϕ), Z
±
f (ϕ) introduced in Section 3. We inherit the situation and

the notations in Section 3. Let −λj ∈ P be a candidate pole of Zf (ϕ).

DEFINITION 4.1. For σ ∈ Σ(n)
j and α ∈ Zn+ we define an integer μ(σ, α)i by

(4.1) μ(σ, α)i = ν(σ )i − 〈ai(σ ), α〉 ∈ Z .

THEOREM 4.2. Assume that λj is not an odd integer and kj = n. Then the coefficient
aj,n(ϕ) of the deepest possible pole λ = −λj ∈ P of Zf (ϕ) is given by

(4.2) aj,n(ϕ) =
∑
α∈Δj,n

{ ∑
σ∈Σ(n)

j

( n∏
i=1

1 + (−1)ν(σ )i

l(ai(σ )) · μ(σ, α)i !
)
∂μ(σ,α)y |fσ |−λj (0)

}
∂αx ϕ(0)

α! ,

where we set

(4.3) ∂μ(σ,α)y = ∂μ(σ,α)1+···+μ(σ,α)n

∂y
μ(σ,α)1
1 · · · ∂yμ(σ,α)nn

and (∂μ/∂yμi )(·) = 0 if μ < 0.
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PROOF. Since λj is not an odd integer, by the proof of Theorem 3.3 we have

(4.4) aj,n(ϕ) =
∑
σ∈Σ(n)

j

( n∏
i=1

1 + (−1)ν(σ )i

l(ai(σ )) · ν(σ )i !
)
∂ν(σ )y

{|fσ |−λj (ϕ ◦ π(σ))}
y=0 .

Now let

(4.5) ϕ(x) =
∑
α∈Zn+

∂αx ϕ(0)

α! xα

be the (formal) Taylor expansion of ϕ at 0 ∈ Rn. Since aj,n(xα) = 0 for α /∈ Δj,n by

Theorem 3.5 and for any σ ∈ Σ(n)
j and α ∈ Δj,k we have

(4.6) (xα ◦ π(σ))(y) ≡ y
〈a1(σ ),α〉
1 · · · y〈an(σ ),α〉

n

in a neighborhood of 0 ∈ Rn(σ ), we obtain

aj,n(ϕ)

=
∑
α∈Δj,n

{ ∑
σ∈Σ(n)

j

( n∏
i=1

1 + (−1)ν(σ )i

l(ai(σ )) · ν(σ )i !
)
∂ν(σ )y

(|fσ |−λj y〈a1(σ ),α〉
1 · · · y〈an(σ ),α〉

n

)
y=0

}

× ∂αx ϕ(0)

α! .

Then the result follows from the Leibniz rule. This completes the proof. �

In order to state similar results for a±
j,n(ϕ) we define two integers c±(σ ) (σ ∈ Σ

(n)
j ) as

follows. First set {±1}n := {ε = (ε1, ε2, . . . , εn) ; εi = ±1}. For σ ∈ Σ(n)
j we define subsets

Q±(σ ) of {±1}n by

(4.7) Q±(σ ) =
{
ε = (ε1, ε2, . . . , εn) ; ±fσ (0)×

n∏
i=1

ε
l(ai(σ ))
i > 0

}
.

Let us explain the meaning ofQ±(σ ) ⊂ {±1}n. For each ε = (ε1, . . . , εn) ∈ {±1}n we define
an open subset Vε of Rn(σ ) � Rn

y by

(4.8) Vε = {(y1, y2, . . . , yn) ∈ Rn(σ ) ; εiyi > 0 for any 1 ≤ i ≤ n} .
Then there exists a sufficiently small open neighborhood W of 0 ∈ Rn(σ ) such that
±(f ◦ π(σ))|W∩Vε > 0 for any ε ∈ Q±(σ ). Namely Q±(σ ) is naturally identified with
the set {Vε}ε∈Q±(σ ) of open quadrants in Rn(σ ) � Rn

y such that ±(f ◦ π(σ))|W∩Vε > 0 for a
small neighborhoodW of 0 ∈ Rn(σ ).

DEFINITION 4.3. For σ ∈ Σ(n)
j we set

(4.9) c±(σ ) =
∑

ε∈Q±(σ )

( n∏
i=1

ε
ν(σ )i
i

)
∈ Z .
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Note that for any σ ∈ Σ(n)
j we have

(4.10) c+(σ )+ c−(σ ) =
n∏
i=1

{1 + (−1)ν(σ )i } .

THEOREM 4.4. Assume that λj is not an integer and kj = n. Then the coefficient
a±
j,n(ϕ) of the deepest possible pole λ = −λj ∈ P of Z±

f (ϕ) is given by

a±
j,n(ϕ)

=
∑
α∈Δj,n

{ ∑
σ∈Σ(n)

j

c±(σ )
( n∏
i=1

1

l(ai(σ )) · μ(σ, α)i !
)
∂μ(σ,α)y |fσ |−λj (0)

}
∂αx ϕ(0)

α! ,

where for μ < 0 we set (∂μ/∂yμi )(·) = 0.

5. Asymptotic expansions of oscillating integrals. In this section, combining our
previous arguments with the basic results in [1] and [22], we obtain some results on the as-
ymptotic expansions of oscillating integrals. As before, let f be a real-valued real analytic
function defined on an open neighborhood U of 0 ∈ Rn such that f (0) = 0 and ϕ ∈ C∞

0 (U)

a real-valued test function defined on U . Then the oscillating integral If (ϕ)(t) (t ∈ R) asso-
ciated to f and ϕ is defined by

(5.1) If (ϕ)(t) =
∫

Rn

eitf (x)ϕ(x)dx .

Here we set i = √−1 for short. From now on, we assume the situation in Sections 3 and
4 and use the notations there. Then by the fundamental results of Varchenko [22] (see also
[1] and [11] for the detail), as t → +∞ the oscillating integral If (ϕ)(t) has an asymptotic
expansion of the form

(5.2) If (ϕ)(t) ∼
∞∑
j=1

kj∑
k=1

cj,k(ϕ)t
−λj (log t)k−1 ,

where cj,k(ϕ) are some complex numbers. Despite the important contributions by many math-
ematicians (see for example [1], [3], [8] and [20] etc.), only little is known about the coef-
ficients cj,k(ϕ) of the asymptotic expansion. First of all, we shall give a general vanishing
theorem for these coefficients cj,k(ϕ). Let us fix a candidate pole −λj ∈ P of the local zeta
function Zf (ϕ) and let

(5.3) ϕ(x) =
∑
α∈Zn+

cαx
α

(
cα = ∂αx ϕ(0)

α! ∈ R

)

be the (formal) Taylor expansion of the test function ϕ at 0 ∈ U ⊂ Rn.

THEOREM 5.1. (i) Let 1 ≤ k ≤ kj . Assume that λj is not an integer and {α ∈
Zn+ ; cα �= 0} ∩Δj,k = ∅. Then we have cj,k(ϕ) = · · · = cj,kj (ϕ) = 0.
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(ii) Let 2 ≤ k ≤ kj . Assume that λj is an integer and {α ∈ Zn+ ; cα �= 0}∩Δj,k−1 = ∅.
Then we have cj,k(ϕ) = · · · = cj,kj (ϕ) = 0.

PROOF. By the results of [1] and [22], cj,l(ϕ) are linear combinations of a±
j,m(ϕ) (m ≥

l). Then the assertion follows immediately from Theorem 3.6. �

Next we give an explicit formula for the coefficients cj,n(ϕ) of t−λj (log t)n−1 in the
asymptotic expansion (5.2). For this purpose, we define two real numbers b±

j,n(ϕ) ∈ R by

b±
j,n(ϕ)

=
∑
α∈Δj,n

{ ∑
σ∈Σ(n)

j

c±(σ )
( n∏
i=1

1

l(ai(σ )) · μ(σ, α)i !
)
∂μ(σ,α)y |fσ |−λj (0)

}
∂αx ϕ(0)

α! ,

where forμ < 0 we set (∂μ/∂yμi )(·) = 0. Recall that if λj is not an integer we have a±
j,n(ϕ) =

b±
j,n(ϕ).

THEOREM 5.2. The coefficient cj,n(ϕ) of t−λj (log t)n−1 in the asymptotic expansion
(5.2) of If (ϕ) is given by

(5.4) cj,n(ϕ) = Γ (λj )

(n− 1)!
{
e(πiλj )/2 · b+

j,n(ϕ)+ e−(πiλj )/2 · b−
j,n(ϕ)

}
.

PROOF. We use the notations in the proof of Theorem 3.3. By the well-known argu-
ments in [11] and [22] etc. we do not have to consider the contributions from {fσq = 0}
(q = 1, 2, . . . , N). Then the result follows from (the proof of) Theorems 4.2 and 4.4. �
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