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Abstract. We study Tauberian conditions for the existence of Cesàro limits in terms of
the Laplace transform. We also analyze Tauberian theorems for the existence of distributional
point values in terms of analytic representations. The development of these theorems is parallel
to Tauber’s second theorem on the converse of Abel’s theorem. For Schwartz distributions, we
obtain extensions of many classical Tauberians for Cesàro and Abel summability of functions
and measures. We give general Tauberian conditions in order to guarantee (C, β) summability
for a given order β. The results are directly applicable to series and Stieltjes integrals, and we
therefore recover the classical cases and provide new Tauberians for the converse of Abel’s
theorem where the conclusion is Cesàro summability rather than convergence. We also apply
our results to give new quick proofs of some theorems of Hardy-Littlewood and Szász for
Dirichlet series.

1. Introduction. Tauberian Theory was initiated in 1897 by two simple theorems of
Tauber for the converse of Abel’s theorem [36] (see also [19, p. 11]). The present article is
dedicated to providing extensions of Tauber’s second theorem, in several directions.

Let us state Tauber’s original theorems. Let us recall from [12, 19] that a sequence of
complex numbers {cn}∞n=0 is said to be Abel summable to the number γ if F(r) = ∑∞

n=0 cnr
n

converges for |r| < 1 and limr→1− F(r) = γ . In such a case one writes
∞∑

n=0

cn = γ (A) .

THEOREM 1.1 (Tauber’s first theorem). If
∑∞

n=0 cn = γ (A) and

(1) cn = o

(
1

n

)
, n → ∞ ,

then
∑∞

n=0 cn converges to γ .

THEOREM 1.2 (Tauber’s second theorem). If
∑∞

n=0 cn = γ (A) and

(2)
N∑

n=1

ncn = o(N) , N → ∞ ,
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then
∑∞

n=0 cn converges to γ .

Tauber’s theorems are very simple to prove [36, 12]. In 1910, Littlewood [20] gave his
celebrated extension of Tauber’s first theorem, where he substituted the Tauberian condition
(1) by the weaker one cn = O

(
n−1

)
and obtained the same conclusion of convergence as in

Theorem 1.1. Actually, it can be shown that the hypotheses imply the (C, β) summability for
any β > −1 [13]. It turns out that Littlewood’s theorem is much deeper and difficult to prove
than Theorem 1.1. Two years later, Hardy and Littlewood [13] conjectured that the condition
ncn > −K would be enough to ensure the convergence; indeed, they provided a proof later
in [14].

A version of Tauber’s second theorem for Stieltjes integrals appeared in [47] (see [19, p.
28]).

Extensions of Theorem 1.2 are also known. It is natural to ask whether the replacement
of (2) by a big O condition would lead to convergence; unfortunately, it does not suffice (see
[30] for example). Nevertheless, one gets (C, 1) summability as shown in the next theorem of
Szász [34] (see also [29, 30, 35]), where even less is assumed.

THEOREM 1.3 (Szász, [34]). Suppose that
∑∞

n=0 cn = γ (A). Then the Tauberian
condition

(3)
N∑

n=1

ncn > −KN ,

for some K > 0, implies that
∑∞

n=0 cn = γ (C, 1).

We will actually show (see Corollary 4.17 below) that if a two-sided condition is assumed
instead of (3), then the series is summable (C, β) for all β > 0. It should be noticed that
Theorem 1.3 includes Hardy-Littlewood’s theorem quoted above (just apply Hardy’s theorem
for (C, 1) summability [12, p. 121]). Versions of Theorem 1.3 for Dirichlet series can be
found in [34] and [3, Sec. 3.8].

Tauberian theorems for power series have stimulated the creation of many interesting
methods and theories in order to obtain extensions and easier proofs of them. Among the
classical ones, one could mention those of Wiener [48] and Karamata [17, 18]. Other im-
portant ones come from the theory of generalized functions. In [44], Vladimirov obtained a
multidimensional extension of Hardy-Littlewood type theorems for positive measures. Later
on, the results from [44] were generalized to include tempered distributions, resulting in a
powerful multidimensional Tauberian theory for the Laplace transform [5, 46] (see also [6]).
Distributional Abelian and Tauberian theorems for other integral transforms are investigated
in [22, 25, 26]. Other related results are found in [23, 24, 27]. Some Tauberian results for
distributions have interesting consequences in the theory of Fourier series [11].

Recently, the authors were able to deduce Littlewood’s Tauberian theorem [20] from a
Tauberian theorem for distributional point values [41]; actually, the method recovered the
more general version for Dirichlet series proved first by Ananda Rau [1]. A similar approach,
but with a more comprehensive character, will be taken in this paper. In Section 2, we collect
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some known results and explain the notation to be used in the course of the article. Section 3 is
devoted to the study of Cesàro limits and summability in the context of Schwartz distributions;
we extend the known definitions in order to consider fractional orders of summability, then
we provide several technical Tauberian theorems which will establish the link between results
for generalized functions and Stieltjes integrals. The main part of the article is Section 4.
There, we first show a theorem for distributional point values which generalizes Theorem
1.3. Moreover, our theorem is capable to recover Theorem 1.3, and it is applicable to much
more situations. Finally, Section 5 is dedicated to applications of the distributional method,
we generalize [35, Thm. B] from series to Stieltjes integrals, and we also give quick proofs
of some classical Tauberians of Hardy-Littlewood [15] and Szász [32, 33, 34] for Dirichlet
series.

2. Preliminaries and notation. We will assume the reader is familiar with the basic
notions from the theory of summability of numerical series and Stieltjes integrals, specifically
with the summability methods by Cesàro, Riesz and Abel means. There is a very rich and
extensive literature on the subject; for instance, we refer to [3, 12, 19].

The spaces of test functions and distributions D(R), S(R), D′(R), and S ′(R) are well
known for most analysts. The space of all C∞-functions over the real line with its canonical
topology is denoted by E(R); hence, its dual, E ′(R), is the space of distributions with compact
support. We refer to [31, 45] for properties of these spaces.

A distribution f ∈ D′(R) is said to have a distributional point value (in the sense of
Łojasiewicz [21]) at x = x0 ∈ R if limε→0 f (x0 + εx) = γ in the weak topology of D′(R);
that is, for each φ ∈ D(R),

(4) lim
ε→0

1

ε

〈
f (x), φ

(
x − x0

ε

)〉
= γ

∫ ∞

−∞
φ(x)dx .

In this case we write f (x0) = γ , distributionally. Suppose that f ∈ S ′(R), it is then natural
to ask whether (4) would hold for φ ∈ S(R); the answer is positive, as shown in [9, 43].

More generally, one can consider asymptotic relations

(5) f (x0 + εx) ∼ εαg(x) as ε → 0+ ,

in the weak topology of D′(R) or S ′(R). These relations are then particular cases of the so
called quasiasymptotic behavior of distributions at finite points [10, 27, 43, 46]. The distri-
bution g in (5) must necessarily be homogeneous of degree α [26, 27]. We also have that
for tempered distributions the asymptotic relation (5) in D′(R) implies the same asymptotic
behavior in S ′(R) [9, 43]. The same is true for the relations f (x0 + εx) = O(εα) as ε → 0+
[9, 39]. Observe also that (5) is a local property, thus, it still makes sense if the distribution f

is only defined in a neighborhood of x = x0.
We say that f ∈ D′(R) is distributionally bounded at x = x0 ∈ R if f (x0 +εx) = O(1)

as ε → 0+ in D′(R).
These notions have their obvious analogs at infinity [10, 27, 37, 39, 46]; indeed, one

considers the behavior of f (λx) as λ → ∞ in the weak topology of a distribution space.
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Let f ∈ D′(R). A function U(z), harmonic for �m z > 0, is said to be a harmonic
representation of f if limy→0+ U(x + iy) = f (x) in D′(R) (see [2]). In such a case we write
f (x) = U(x + i0). If f (x) = U(x + i0) and f (x0) = γ , distributionally, then U(z) → γ as
z → x0, in an angular (or nontangential) fashion [4, 9, 27, 39]; however, the converse is not
true in general [8]. In the case of boundary values of analytic functions, we have the following
Tauberian theorem [41].

THEOREM 2.1. Let F be analytic in a rectangular region of the form (a, b) × (0, R).
Suppose f (x) = F(x+i0) in D′(a, b). Let x0 ∈ (a, b) such that F(x0+iy) → γ as y → 0+.
The Tauberian condition “f is distributionally bounded at x = x0” implies that f (x0) = γ ,
distributionally.

We shall employ several special distributions in this article. We will follow the notation
from [10]. The Dirac delta distribution is denoted by δ, as usual. H is the Heaviside function,
i.e., the characteristic function of (0,∞). Let Γ be the Euler gamma function. The analytic
family of distributions x

β−1
+ /Γ (β) is given by〈

t
β−1
+

Γ (β)
, φ(t)

〉
= 1

Γ (β)

∫ ∞

0
tβ−1φ(t)dt ,

whenever �e β > 0, and they are obtained by analytic continuation of the last equation in
the other cases [10, p. 65]. In particular, we have (x

β−1
+ /Γ (β)) |β=0 = δ(x), the Dirac delta

distribution.
We will work with the Fourier transform

φ̂(x) =
∫ ∞

−∞
φ(t)e−ixtdt ,

defined for φ ∈ S(R), and by duality on S ′(R).
Let s be a function of local bounded variation. Furthermore, suppose that s has support

in [0,∞). We shall always assume that s is normalized at x = 0, in the sense that s(0) = 0,
so that the distributional derivative, s′ ∈ D′(R), of s is given by the Stieltjes integral

〈s′(t), φ(t)〉 =
∫ ∞

0
φ(t)ds(t) .

Let μ be a Radon measure, that is, a continuous linear functional over the space of
continuous functions with compact support. We can always associate to it a function of lo-
cal bounded variation, which we shall denote by sμ, so that μ = dsμ, i.e., 〈μ(t), φ(t)〉 =∫ ∞
−∞ φ(t)dsμ(t). If |μ| is the variation measure associated to μ, we also denote it by

∣∣dsμ
∣∣.

3. Tauberian theorems for (C) summability. In this section we show Tauberian the-
orems for (C) summability of distributions and measures related to Theorems 1.2 and 1.3. We
first study Cesàro limits and boundedness, of fractional orders, for distributions; then these
notions are extended to distributional evaluations, which include as particular cases those of
series and Stieltjes integrals. Next, a convexity theorem is shown. Finally, we present the
Tauberian theorems.
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3.1. Cesàro limits and boundedness. Suppose that s is locally bounded on [0,∞).
Recall [12, 19] that we write limx→∞ s(x) = γ (C, β), β > 0, if

(6) lim
x→∞

β

x

∫ x

0
s(t)

(
1 − t

x

)β−1

dt = γ .

When s is of local bounded variation, we may also denote this relation by
∫ ∞

0 ds(t) = γ

(C, β), and the limit in the above equation might be replaced by the limit of
∫ x

0 (1 − (t/x))β

ds(t), as integration by parts shows (here we use the assumption s(0) = 0). If 1 ≤ β, the
notion (6) makes also sense for s being merely locally integrable.

The Cesàro behavior can also be defined for distributions [7, 10]. It includes the case of
classical functions and Stieltjes integrals. We adopt in this paper new definitions, our purpose
is to include fractional orders for Cesàro limits and boundedness of distributions at infinity;
a similar approach has been followed in [42]. In the case of integral orders, it coincides with
the definition from [7]. We will also define one-sided boundedness.

Given f ∈ D′(R), with support bounded at the left, its β-primitive is given by the
convolution [45, p. 72]

f (−β) = f ∗ x
β−1
+

Γ (β)
.

DEFINITION 3.1. Let f ∈ D′(R), and β ≥ 0. We say that f is bounded at infinity in
the Cesàro sense of order β (in the (C, β) sense), and write

f (x) = O(1) (C, β) , as x → ∞ ,

if for a decomposition f = f− + f+ as sum of two distributions with the supports bounded
on the right and left, respectively, one has that the β-primitive of f+ is an ordinary function
(locally integrable) for large arguments and satisfies the ordinary order relation

f
(−β)
+ (x) = O(xβ) , x → ∞ .

A similar definition applies for the little o-symbol. We denote
lim

x→∞ f (x) = γ (C, β)

if
f (x) = γ + o(1) (C, β) , as x → ∞ ,

that is, f
(−β)
+ is locally integral for large arguments and

f
(−β)
+ (x) ∼ γ x

β
+

Γ (β + 1)
, x → ∞ .

in the ordinary sense.

Naturally, there is some consistency to be checked in Definition 3.1. We show in the next
proposition that Definition 3.1 is independent of the choice of f+.

PROPOSITION 3.2. Suppose that f has compact support. If β ≥ 0 and α > −1, then
f (−β)(x) = o(xβ+α), x → ∞. In particular,

lim
x→∞ f (x) = 0 (C, β) , for each β ≥ 0 .
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PROOF. If β is a non-negative integer, the conclusion is obvious. Assume β > 0 is not
a positive integer. We show that f (−β) is locally integrable for large arguments and f −β(x) =
o(xβ+α), x → ∞. Let k be a positive integer such that f (−k) is continuous over the whole
real line. Then f (−k) = P + F , where P(x) = ∑k−1

j=0 aj (x
j
+/j !), for some constants, and F

is continuous on a certain compact interval [a, b], and F(x) = 0 for x /∈ (a, b). We have that
f = P (k) + F (k). Note first that

P (k) ∗ xβ−1

Γ (β)
=

k−1∑
j=0

ajδ
(k−1−j) ∗ x

(β−1)
+
Γ (β)

=
k−1∑
j=0

aj

x
(β+j−k)
+

Γ (β + 1 + j − k)

= O
(
xβ−1) = o

(
xβ+α

)
, x → ∞ .

So, it is enough to show that

F (k) ∗ (
xβ−1/Γ (β)

) = F ∗ (
xβ−k−1/Γ (β − k)

)
is locally integrable for large arguments and satisfies an order estimate o(xβ+α) as x → ∞.
Indeed, we show it is locally integrable on (b + 1,∞). If φ ∈ D(R) is so that supp φ ⊆
(b + 1,∞), then supp φ ∗ F(−t) ⊆ [1,∞), hence,〈

F ∗ xβ−k−1, φ(x)
〉 = 〈

xβ−k−1, (F (−t) ∗ φ) (x)
〉

=
∫ ∞

1
xβ−k−1

(∫ ∞

−∞
F(t − x)φ(t)dt

)
dx

=
∫ ∞

−∞

(∫ ∞

1
tβ−k−1F(x − t)dt

)
φ(x)dx .

On the other hand if x > b + 1, we obtain, as x → ∞,∫ ∞

1
tβ−k−1F(x − t)dt =

∫ b

a

(x − t)β−k−1F(t)dt = O
(
xβ−1−k

) = o
(
xβ+α

)
.

�

We now define one-sided boundedness. Recall that a positive distribution is nothing but
a positive Radon measure.

DEFINITION 3.3. Let f ∈ D′(R), β ≥ 0, and α > −1. We say that f is bounded
from below (or left bounded) near infinity by OL(xα) in the Cesàro sense of order β, and
write

f (x) = OL(xα) (C, β) , as x → ∞ ,

if there exist a decomposition f = f− + f+, as sum of two distributions with the supports
bounded on the right and left, respectively, a constant K > 0, and an interval (a,∞) such that
�e f

(−β)
+ + Kx

α+β
+ and �m f

(−β)
+ + Kx

α+β
+ are positive distributions on (a,∞). A similar

definition applies for right boundedness, in such a case we employ the symbol OR(xα).

In case f is one-sided bounded by OL(1) or OR(1), we simply say that f is one-sided
bounded. Our definitions of Cesàro behavior have the following expected property.
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PROPOSITION 3.4. If f is Cesàro bounded (resp. has Cesàro limit, or is one-sided
bounded) at infinity of order β, then it is Cesàro bounded (resp. has Cesàro limit, or is one-
sided bounded) at infinity of order β̃ > β.

PROOF. It follows immediately from Proposition 3.2. �

Observe that, because of Proposition 3.2, we can always assume in Definitions 3.1 and
3.3 that f = f+, if needed. When we do not want to make reference to the order β in (C, β),
we write (C). Most statements below are about complex-valued distributions. We will often
drop x → ∞ from the notation. Note that if f (x) = O(1), x → ∞, then f+ ∈ S ′(R) (here
f = f− + f+ as in Definitions 3.1 and 3.3). In addition, it should be noticed that if both
conditions f (x) = OL(1) and f (x) = OR(1) hold in the (C, β) sense, then f (x) = O(1)

(C, β).
3.2. Cesàro summability of distributional evaluations and the connection with se-

ries and Stieltjes integrals. It is convenient for future purposes to use the notion of Cesàro
summability of distributional evaluations [7, 10]. It will provide the link between our theo-
rems for distributions and results for series and Stieltjes integrals. Let g be a distribution with
the support bounded at the left and let φ ∈ E(R); we say that the distributional evaluation
〈g(x), φ(x)〉 exists and is equal to a number γ in the Cesàro sense (of order β ≥ 0), and write

〈g(x), φ(x)〉 = γ (C, β) ,

if the primitive G of φg with the support bounded at the left, i.e., G = (φg)(−1), satisfies
limx→∞ G(x) = γ (C, β). Note that when s is of local bounded variation with s(x) = 0 for
x ≤ 0, we have ∫ ∞

0
φ(t)ds(t) = γ (C, β)

if and only if
〈s′(t), φ(t)〉 = γ (C, β) ;

and it explicitly means that

lim
x→∞

∫ x

0
φ(t)

(
1 − t

x

)β

ds(t) = γ .

A similar consideration applies for Cesàro boundedness. In particular, when s(x)=∑
λn<x cn,

where λn ↗ ∞, we have
∞∑

n=0

cn = γ (R, {λn} , β)

if and only if 〈 ∞∑
n=0

cnδ (x − λn) , 1

〉
= γ (C, β) ,
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where here (R) stands for the Riesz method by typical means [3, 10, 12].
Using the well-known equivalence between summability by (R, {n}) means and Cesàro

means [12, 16], we have that if β ≥ 0, then
∑∞

n=0 cn = γ (C, β) if and only if〈 ∞∑
n=0

cnδ (x − n) , 1

〉
= γ (C, β) .

Finally, we will need the following observation in the future. Given a sequence {bn}∞n=0
and β > 0, write

bN = O(N) (C, β) ,

if the Cesàro means of order β of the sequence (not to be confused with the Cesàro means of
a series) are O(N), that is,

N∑
n=0

(
N − n + β − 1

N − n

)
bn = O(Nβ+1) .

Likewise, we define the symbols OR and OL in the Cesàro sense for sequences. Following
Ingham’s method [16], we obtain the following useful equivalence.

LEMMA 3.5. Let β ≥ 0. The conditions

(7)
N∑

n=0

cn = O(N) (C, β)

and

(8)
∞∑

n=0

cnδ(x − n) = O(1) (C, β + 1) , as x → ∞ ,

are equivalent. The same holds for the symbols OR and OL.

PROOF. Repeating the arguments from [16], with the obvious modifications, one is led
to the equivalence between (7) and the relation∑

n<x

(x − n)β cn = O(xβ+1) , (resp. OR and OL) ,

which turns out to be the meaning of (8). �

3.3. A convexity (Tauberian) theorem. We now show a convexity theorem for the
Cesàro limits of distributions. It generalizes [12, Thm. 70].

THEOREM 3.6. Let f ∈ D′(R). Suppose that limx→∞ f (x) = γ (C, β2), for some
β2 > 0. If f (x) = OL(1) (C, β1), then limx→∞ f (x) = γ (C, β) for any β ≥ β1 + 1.
The same conclusion holds if we replace OL(1) by OR(1). If now f (x) = O(1) (C, β1), as
x → ∞, then limx→∞ f (x) = γ (C, β) for any β > β1.

Theorem 3.6 follows immediately from the next proposition. For the first part we give a
proof based on the distributional ideas of Drozhzhinov and Zavialov [5, Lem. 3]; it may also
be deduced from the classical results on asymptotics of derivatives (see [19, pp. 34–37], [12,
Thm. 112]). We give a direct proof of the second part.
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PROPOSITION 3.7. Let μ be a (real-valued) Radon measure supported in [0,∞) and
α > −1. Suppose that for some β1 > 1,

(9)
∫ x

0
(x − t)β1−1dsμ(t) ∼ γΓ (β1) Γ (α + 1)

Γ (β1 + α + 1)
xα+β1 , x → ∞ .

If the one-sided condition μ = OL(xα) is satisfied, i.e., in a neighborhood of infinity

Cxα+ + μ is a positive measure,

for some constant C, then for any β ≥ 1,

(10)
∫ x

0

(
1 − t

x

)β−1

dsμ(t) ∼ γΓ (β)Γ (α + 1)

Γ (β + α + 1)
xα+1 , x → ∞ .

If in addition μ is absolutely continuous with respect to the Lebesgue measure, and the two-
sided condition

Fμ(x) = O
(
xα

)
, x → ∞ ,

is satisfied, where Fμ ∈ L1
loc(R) is such that dsμ(t) = Fμ(t)dt , then (10) holds whenever

β > max {−α, 0}.
PROOF. Let us show the first part of the theorem. By adding Cxα+ to μ, we may assume

C = 0, and so we are assuming that μ is a positive measure. Next (9) directly implies that μ

has the quasiasymptotic behavior

(11) μ(λx) = γ λαxα+ + o
(
λα

)
as λ → ∞ in D′(R) ,

[5, 37, 46], that is, for each test function φ ∈ D(R),

〈μ(λx), φ(x)〉 = 1

λ

∫ ∞

0
φ

(x

λ

)
dsμ(x) ∼ γ λα

∫ ∞

0
φ(x)xαdx .

But it is well known that for positive measures the quasiasymptotic behavior (11) is equivalent
to the asymptotics of the primitive, i.e., (10) for β = 1,

sμ(λ) =
∫ λ

0
dsμ(t) ∼ γ

λα+1

α + 1
, λ → ∞ ,

from which (10) follows for any β ≥ 1. This completes the proof of the first part.
For the second part, write F := Fμ and s(x) := sμ(x) = ∫ x

0 F(t)dt . We assume that
|F(x)| ≤ Mxα for some constant M and x large enough. Moreover, by Proposition 3.2, it is
clear that we can assume this condition to hold for all x. We obtain from the first part that
s(x) ∼ γ xα+1/(α + 1), x → ∞. We also have that if 0 < r < 1,

|s(rx) − s(x)| ≤ M

∫ x

rx

tαdt = M

α + 1
(1 − r)α+1xα+1 .

Hence, if max {−α, 0} < β < 1,
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∫ x

0
F(t)

(
1 − t

x

)β−1

dt = lim
r→1−

∫ rx

0
F(t)

(
1 − t

x

)β−1

dt

= lim
r→1−

(
s(rx)(1 − r)β−1 + β − 1

x

∫ rx

0
s(t)

(
1 − t

x

)β−2

dt

)

= lim
r→1−

(
(1 − r)α+β s(rx) − s(x)

(1 − r)α+1 + s(x)(1 − r)β−1 + β − 1

x

∫ rx

0
s(t)

(
1 − t

x

)β−2

dt

)

= s(x) + lim
r→1−

β − 1

x

∫ rx

0

(
s(t) − s(x)

) (
1 − t

x

)β−2

dt

= (β − 1)

∫ 1

0

(
s(xt) − s(x)

)
(1 − t)β−2dt + γ

xα+1

α + 1
+ o(xα+1)

= xα+1
(

(β − 1)

∫ 1

0

s(xt) − s(x)

xα+1(1 − t)
(1 − t)β−1dt + γ

α + 1
+ o(1)

)

= γ
β − 1

α + 1
xα+1

( ∫ 1

0
(tα+1 − 1)(1 − t)β−2 + 1

β − 1
+ o(1)

)

= γ
β − 1

α + 1
xα+1

(
Γ (β − 1)Γ (α + 2)

Γ (β + α + 1)
− 1

β − 1
+ 1

β − 1
+ o(1)

)

= γ
Γ (β)Γ (α + 1)

Γ (β + α + 1)
xα+1 + o

(
xα+1) , x → ∞ .

�

3.4. Tauberian theorems for (C) summability. We now analyze Tauberian condi-
tions of Tauber’s second type. For that, we need the following formula. Given g ∈ S ′(R), with
the support bounded at the left, its Laplace transform is denoted by L {g; z} := 〈g(t), e−zt 〉,
for �e z > 0.

LEMMA 3.8. Suppose that f ∈ D′(R) has the support bounded at the left. Then

(12) (xf )(−β) = xf (−β) − βf (−β−1) .

PROOF. We first assume that f ∈ S ′(R). We make use of the injectivity of the Laplace
transform. Set F(z) = L {f (t); z}. Then,

L{
tf (−β)(t); z

} = − d

dz

(L{
f (−β)(t); z

}) = − d

dz

(
F(z)L

{
t
(β−1)
+
Γ (β)

; z

})

= β
F(z)

zβ+1
− F ′(z)

zβ
= L{

βf (−β−1) + (tf )(−β) ; z
}
,

which shows (12). In the general case we take a sequence {fn}∞n=0, with each fn being tem-
pered and having support on some fixed interval [a,∞), such that fn → f in D′(R); then
(12) is satisfied for each fn. Thus, the continuity of the fractional integration operator [45],
on D′[a,∞), shows (12) for f , after passing to the limit. �

We now connect Tauber’s second type conditions with Cesàro boundedness.
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LEMMA 3.9. Let f ∈ D′(R). Suppose that f (x) = O(1) (C, β2), as x → ∞, for
some β2 ≥ 0. Then, the condition

(i) xf ′(x) = O(1) (C, β1 + 1) holds if and only if f (x) = O(1) (C, β1),
(ii) xf ′(x) = OL(1) (C, β1 + 1) holds if and only if f (x) = OL(1) (C, β1). The same

is true if OL(1) is replaced by OR(1).

PROOF. We show (i). Assume that f has the support bounded on the left. We can
assume that β2 has the form β2 = β1 + k, for some k ∈ N . Let g = xf ′, then, by Lemma 3.8,

xf (−β1−k+1)(x) = β2f
(−β1−k)(x) + g(−β1−k)(x) = g(−β1−k)(x) + O

(
xβ1+k

)
, x → ∞ ;

then f (x) = O(1) (C, β1 + k − 1) if and only if g(x) = O(1) (C, β1 + k), as x → ∞. A
recursive argument shows that f (x) = O(1) (C, β1) if and only if g(x) = O(1) (C, β1 + 1).

The same proof applies for one-sided boundedness. �

So, we immediately obtain the following result from Theorem 3.6.

THEOREM 3.10. Let f ∈ D′(R). Suppose that limx→∞ f (x) = γ (C, β2) for some
β2 ≥ 0. The Tauberian condition xf ′(x) = O(1) (C, β1 + 1), for some β1 ≥ 0, implies that
limx→∞ f (x) = γ (C, β) for all β > β1.

PROOF. Indeed, we obtain, by Lemma 3.9, f (x) = O(1) (C, β1), as x → ∞; hence,
an application of Theorem 3.6 gives the result. �

THEOREM 3.11. Let f ∈ D′(R). Suppose that limx→∞ f (x) = γ (C, β2) for some
β2 ≥ 0. The Tauberian condition xf ′(x) = OL(1) (C, β1 + 1), for some β1 ≥ 0, implies that
limx→∞ f (x) = γ (C, β) for all β ≥ β1 + 1. The same holds if we replace OL(1) by OR(1).

PROOF. From Lemma 3.9, we have f (x) = OL(1) (C, β1), as x → ∞; hence, again,
we can an apply Theorem 3.6. �

We also analyze a little o condition. It generalizes [12, Thm. 65] to distributions.

THEOREM 3.12. Let f ∈ D′(R). Suppose that limx→∞ f (x) = γ (C, β2). If β2 >

β1 ≥ 0, a necessary and sufficient condition for the limit to hold (C, β1) is xf ′(x) = o(1)

(C, β1 + 1).

PROOF. We retain the notation from the proof of Lemma 3.9. If limx→∞ f (x) = γ

(C, k + β1), for some k > 0, then the relation

xf (−β1−k+1)(x) = g(−β1−k)(x) + (β1 + k)f (−β1−k)(x)

= g(−β1−k)(x) + γ xβ1+k

Γ (β1 + k)
+ o

(
xβ1+k

)

shows the equivalence at level k −1. A recursive argument proves that the equivalence should
hold for k = 1. �

We may state our results in terms of (C) summability of distributional evaluations. We
obtain the next series of corollaries directly from Theorems 3.10, 3.11, and 3.12.
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COROLLARY 3.13. Let g ∈ D′(R) and φ ∈ E(R). Suppose that supp g is bounded at
the left and

(13) 〈g(x), φ(x)〉 = γ (C) .

(i) If xφ(x)g(x) = O(1) (C, β1 + 1), as x → ∞, for β1 ≥ 0, then
〈g(x), φ(x)〉 = γ (C, β) , for all β > β1 .

(ii) If xφ(x)g(x) = OL(1) (C, β1 + 1), as x → ∞, for β1 ≥ 0, then
〈g(x), φ(x)〉 = γ (C, β) , for all β ≥ β1 + 1 .

(iii) Given β ≥ 0, a necessary and sufficient condition for (13) to hold (C, β) is
xφ(x)g(x) = o(1) (C, β + 1), as x → ∞.

4. Tauber’s second type theorems for distributional point values and (A) summa-
bility.

4.1. Tauberian theorem for distributional point values. We are ready to show the
main theorem of this article.

THEOREM 4.1. Let F be analytic in a rectangular region of the form (a, b) × (0, R).
Suppose f (x) = F(x + i0) in D′(a, b). Let x0 ∈ (a, b) such that F(x0 + iy) → γ as
y → 0+. The Tauberian condition f ′(x0 +εx) = O(ε−1) as ε → 0+ in D′(a, b) implies that
f (x0) = γ , distributionally.

PROOF. Clearly, by a translation, we can assume that x0 = 0. We first show that it may
be assumed f ∈ S ′(R) and F is the standard Fourier-Laplace representation [2, 45]. Let C be
a smooth simple curve contained in (a, b) × [0, R) such that C ∩ (a, b) = [x0 − σ, x0 + σ ],
for some small σ , and which is symmetric with respect to the imaginary axis. Let τ be a
conformal bijection [28] between the upper half-plane and the region enclosed by C such
that the image of the imaginary axis is contained on the imaginary axis and τ extends to a
C∞-diffeomorphism from R to C \ (C ∩ iR+). Then, F ◦ τ (iy) → γ as y → 0+, and
f (τ(εx)) = O(ε−1) as ε → 0+ in D′(R) if and only if F(iy) → γ and f (εx) = O(ε−1)

in D′(R). Moreover, f ◦ τ (0) = γ if and only if f (0) = γ , distributionally [21]. In addition
F ◦τ is bounded away from an open half-disk about the origin, hence it is the Fourier-Laplace
analytic representation of f ◦ τ . We can therefore assume that f ∈ S ′(R) and

F(z) = 1

2π
〈f̂ (t), eizt 〉 .

Our aim is to show that f is distributionally bounded at x = 0. Indeed, if one established
this fact then f (0) = γ , distributionally, by Theorem 2.1. The condition f ′(εx) = O(ε−1)

still holds in S ′(R) [9, 38]. If we integrate this condition [43], we obtain from the definition
of primitive in S ′(R) that there exists a function c, continuous on (0,∞), such that

f (εx) = c(ε) + O(1) ,

as ε → 0+ in S ′(R), in the sense that for each φ ∈ S(R),

〈f (εx), φ(x)〉 = c(ε)

∫ ∞

−∞
φ(x)dx + O(1) ,

as ε → 0+. Fourier transforming the last relation, we have that
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f̂ (λx) = 2πc(λ−1)
δ(x)

λ
+ O

(
1

λ

)
,

as λ → ∞ in S ′(R). Evaluating at e−x , we obtain, as y → 0+, F(iy) = O(1) and

F(iy) = 1

2π
〈f̂ (t), e−yt 〉 = 1

2πy
〈f̂ (y−1t), e−t 〉 = c(y) + O(1) .

Hence, c is bounded near the origin, and thus f (εx) = c(ε) + O(1) = O(1) as ε → 0+ in
S ′(R), as required. �

So, we obtain the following Tauberian theorem in terms of the Laplace transform.

THEOREM 4.2. Let G ∈ D′(R) have the support bounded at the left. Necessary and
sufficient conditions for

(14) lim
λ→∞ G(λx) = γ in D′(R) ,

are

(15) lim
y→0+ yL {G; y} = lim

y→0+ L {
G′; y

} = γ ,

and

(16) λxG′(λx) = O(1) as λ → ∞ in D′(R) .

PROOF. Either (14) or (16) implies that G is a tempered distribution and hence its
Laplace transform is well defined for �e z > 0. The necessity is clear. Now, the condi-
tion (16) translates into f ′(εx) = O(ε−1) in S ′(R), where f̂ = 2πG′. Relation (25) gives
F(iy) = L {

G′; y
} → γ as y → 0+, for the Fourier-Laplace representation of f , hence by

Theorem 4.1, f (0) = γ in S ′(R). Hence, taking Fourier inverse transform, we conclude that
G′(λx) ∼ λ−1γ δ(x) as λ → ∞ in S ′(R), which implies (14) [40]. �

4.2. Tauberian results for Abel limits. Let us define Abel limits for distributions.
Let g ∈ D′(R), it is called Laplace transformable on the strip a < �e z < b if e−ξ tg(t) is a
tempered distribution for a < ξ < b (see [31]); in such a case its Laplace transform is well
defined on that strip.

DEFINITION 4.3. Let f ∈ D′(R). We say that f has a limit γ at infinity in the Abel
sense, and write

lim
x→∞ f (x) = γ (A) ,

if there exists a distribution f+ with support bounded at the left such that f+ coincides with
f on an open interval (a,∞), f+ is Laplace transformable for �e z > 0, and

(17) lim
y→0+ yL {f+; y} = γ .

Notice that Definition 4.3 is independent of the choice of f+, because every compactly
supported distribution satisfies (17) with γ = 0. The case of locally integrable functions is of
interest; it is analyzed in the next example.
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EXAMPLE 4.4. If f ∈ L1
loc[0,∞) is such that the improper integral

(18) L {f ; y} =
∫ ∞

0
f (t)e−tydt converges for each y > 0 ,

and

(19) lim
y→0+ yL {f ; y} = γ ,

then f has γ as an Abel limit in the sense of Definition 4.3. However, the Abel limit of f , in
the sense of Definition 4.3, exists under weaker assumptions, namely, under the existence of
the Laplace transform as integrals in the Cesàro sense, i.e.,

(20) L {f ; y} =
∫ ∞

0
f (t)e−tydt (C) exists for each y > 0 ,

and (19). Observe that the order of (C) summability might change in (20) with each y. Con-
versely, the reader may verify that the existence of the Abel limit, interpreted as in Definition
4.3, of a locally integrable function is equivalent to (20) and (19).

Observe that (17) coincides with (15). Therefore, using the well-known equivalence
between Cesàro behavior and parametric (quasiasymptotic) behavior [10, 37, 39], we may
reformulate Theorem 4.2.

COROLLARY 4.5. Let f ∈ D′(R). A necessary and sufficient condition for

(21) lim
x→∞ f (x) = γ (C)

is

lim
x→∞ f (x) = γ (A) and xf ′(x) = O(1) (C) , as x → ∞ .

We now combine Corollary 4.5 with the results from Section 3.4 to obtain more precise
information about the Cesàro order in (21).

THEOREM 4.6. Let f ∈ D′(R). Suppose that limx→∞ f (x) = γ (A). The Tauberian
condition xf ′(x) = O(1) (C, β1 + 1), as x → ∞, implies limx→∞ f (x) = γ (C, β) for all
β > β1.

PROOF. It follows directly from Corollary 4.5 and Theorem 3.10. �

We can also consider a one-sided Tauberian condition.

THEOREM 4.7. Let f ∈ D′(R). Suppose that limx→∞ f (x) = γ (A). Let β1 ≥ 1.
The one-sided Tauberian condition xf ′(x) = OL(1) (C, β1), as x → ∞, implies
limx→∞ f (x) = γ (C, β) for all β ≥ β1.

PROOF. We may assume that f is real-valued and supp f ⊆ [1,∞). If xf ′(x) = O(1)

(C) is established, we could apply first Corollary 4.5 and then Theorem 3.11 to obtain the de-
sired conclusion. By assumption, there exist K > 0 and k ∈ N such that g(−k) ∈ L∞

loc(R) and
g(−k)(x) ≥ −Kxk for all x ≥ 1, where g(x) = xf ′(x). We consider T (x) = g(−k)(x)/x. If
we show that T (x) = O(xk−1) (C, 1), then it would immediately follow g(x) = O(1) (C, k+
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1), as required. By Lemma 3.8, we have the equality T (x) = f (−k+1)(x) − kf (−k)(x)/x ;
therefore, going to the Laplace transforms,

L {T ; y} = y−kyL {f ; y} − k

∫ ∞

y

u−kL {f ; u} du = γ

yk
− k

γ

kyk
+ o

(
1

yk

)
= o

(
1

yk

)
,

y → 0+. Using now the inequality 0 ≤ Kxk−1 + T (x), we have

T (−1)(x) =
∫ x

1
(T (t) + Ktk−1)dt + O(xk) ≤ e

∫ x

0
e−t/x(T (t) + Ktk−1)dt + O(xk)

≤ eL
{
T ; 1

x

}
+ O(xk) = o(xk) + O(xk) = O(xk) ;

hence T (x) = O(xk−1) (C, 1). The proof is complete. �

We obtain from Theorem 4.7 an extension of a classical important result of Szász [34,
Thm.1].

THEOREM 4.8. Let f ∈ L1
loc[0,∞). Suppose that limx→∞ f (x) = γ (A) in the sense

that it satisfies (20) and (19). Then, the one-sided Tauberian condition

(22)
x�ef (x) −

∫ x

0
�ef (t)dt ≥ −Kx and

x�mf (x) −
∫ x

0
�mf (t)dt ≥ −Kx , x > a ,

for some positive constants K and a, implies that

(23) f (−1)(x) =
∫ x

0
f (t)dt ∼ γ x , x → ∞ .

PROOF. Note that the relations (22) and (23) exactly mean that xf ′(x) = OL(1) (C, 1)

and limx→∞ f (x) = γ (C, 1), respectively. So, Theorem 4.7 yields (23). �

In particular, we have the ensuing corollary.

COROLLARY 4.9 (Szász [34]). Let f ∈ L1
loc[0,∞) satisfy (18) and (19). The one-

sided Tauberian condition (22) implies (23).

REMARK 4.10. If β ≥ 0, we might replace (22) in Theorem 4.8 and Corollary 4.9 by

xf (x) −
∫ x

0
f (t)dt = OL(x) (C, β) , as x → ∞ ,

then the same arguments apply to conclude limx→∞ f (x) = γ (C, β + 1).

We can use Theorem 3.12 to obtain a Tauber type characterization of (C, β) limits; the
next result follows easily from Corollary 4.5 and Theorem 3.12.

THEOREM 4.11. Let f ∈ D′(R) and β ≥ 0. A necessary and sufficient condition for
limx→∞ f (x) = γ (C, β) is limx→∞ f (x) = γ (A) and xf ′(x) = o(1) (C, β + 1).
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4.3. Tauberians for Abel summability of distributional evaluations. In order to
give applications to the classical cases, let us give sense to Abel summability of distributional
evaluations [10]. Let g ∈ D′(R) with the support bounded at the left and φ ∈ E(R). We
say that the distributional evaluation 〈g(x), φ(x)〉 exists and equals γ in the Abel sense if
e−yxφ(x)g(x) ∈ S ′(R) for every y > 0 and

lim
y→0+〈φ(t)g(t), e−yt 〉 = γ .

In such a case we write

(24) 〈g(x), φ(x)〉 = γ (A) .

Notice that (24) holds if and only if limx→∞ G(x) = γ (A), where G is the first order
primitive of φg with the support bounded at the left, that is, G = (φg)(−1) = (φg) ∗ H (here
H is the Heaviside function). So, our theorems from Section 4.2 give at once the following
results.

THEOREM 4.12. Let g ∈ D′(R) with the support bounded at the left and φ ∈ E(R).
Suppose that

(25) 〈g(x), φ(x)〉 = γ (A) .

The Tauberian condition xg(x)φ(x) = OL(1) (C, β1 + 1), as x → ∞, for β1 ≥ 0, implies

(26) 〈g(x), φ(x)〉 = γ (C, β)

for all β ≥ β1+1. Moreover, the stronger Tauberian condition xg(x)φ(x) = O(1) (C, β1+1)

implies that (26) holds for all β > β1.

THEOREM 4.13. Let g ∈ D′(R) with the support bounded at the left and φ ∈ E(R).
A necessary and sufficient condition for (26) is 〈g(x), φ(x)〉 = γ (A) and xg(x)φ(x) = o(1)

(C, β + 1) as x → ∞.

The case when g = f̂ and φ(x) = eix0x is interesting, since it provides the order of
summability in the pointwise Fourier inversion formula for Łojasewicz point values [40].
This is the content of the next corollary.

COROLLARY 4.14. Let f ∈ S ′(R) be such that supp f̂ is bounded at the left and
1

2π
〈f̂ (x), eix0x〉 = γ (A) .

Then xeix0x f̂ (x) = OL(1) (C, β1 + 1), for some β1 ≥ 0, implies that f (x0) = γ , distribu-
tionally. Moreover, the pointwise Fourier inversion formula holds in the (C, β) sense for any
β ≥ β1 + 1, that is,

(27) f (x0) = γ, distributionally, and
1

2π
〈f̂ (x), eix0x〉 = γ (C, β) .

Furthermore, the stronger Tauberian condition xeix0xf̂ (x) = O(1) (C, β1 + 1) implies that
(27) holds for all β > β1.
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4.4. Tauberians for series and Stieltjes integrals. The cases of Stieltjes integrals
and series are also of importance. We obtain directly from Theorem 4.12 the following corol-
lary.

COROLLARY 4.15. Let s be a function of local bounded variation such that s(x) = 0
for x ≤ 0. Suppose that the Cesàro integral

(28) L {ds; y} =
∫ ∞

0
e−yxds(x) (C) exists for each y > 0 ,

and that

lim
y→0+ L {ds; y} = γ .

Let β1 ≥ 0. Then, the Tauberian condition

(29)
∫ x

0
tds(t) = OL(x) (C, β1)

implies that for all β ≥ β1 + 1,

(30) lim
x→∞ s(x) = γ (C, β) .

Moreover, if we replace OL(x) by O(x) in (29), we conclude that (30) holds for all β > β1.

Observe that in particular Corollary 4.15 holds if we replace (28) by the stronger as-
sumption of the existence of the improper integrals

∫ ∞
0 e−yxds(x) = limt→∞

∫ t

0 e−yxds(x)

for each y > 0.
Let λn ↗ ∞ be an increasing sequence of non-negative real numbers. Recall that we

write
∑∞

n=0 cn = γ (A, {λn}) if the Dirichlet series F(z) = ∑∞
n=0 cne

−zλn converges on
�e z > 0 and limy→0+ F(y) = γ (see [12]).

COROLLARY 4.16. Suppose that
∑∞

n=0 cn =γ (A, {λn}). The condition
∑

λn<xλncn =
OL(x) (C, β1), for β1 ≥ 0, implies that

∑∞
n=0 cn = γ (R, {λn} , β) for all β ≥ β1 + 1. The

stronger Tauberian condition
∑

λn<x λncn = O(x) (C, β1) implies the (R, {λn} , β) summa-
bility of the series to γ for all β > β1.

Furthermore, we may formulate a much stronger version of Corollary 4.16 if we assume

F(y) =
∞∑

n=0

cne
−yλn (R, {λn}) exists for each y > 0 ,

and limy→0+ F(y) = γ, instead of the more restrictive hypothesis of (A, {λn}) summability.
On the other hand, if we specialize Corollary 4.16 to power series, we now obtain a general
form of the Theorem 1.3 stated at the introduction.

COROLLARY 4.17. Suppose that
∑∞

n=0 cn = γ (A). The Tauberian condition∑N
n=1 ncn = OL(N) (C, β1), for β1 ≥ 0, implies that

∑∞
n=0 cn = γ (C, β) for all

β ≥ β1 + 1. The stronger Tauberian condition
∑N

n=1 ncn = O(N) (C, β1) implies the
(C, β) summability of the series to γ for all β > β1.
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5. Applications: Tauberian conditions for convergence. This section is devoted
to applications of the distributional method in classical Tauberians for Dirichlet series. Let
f ∈ D′(R) have support bounded at the left. As follows from the results of [10, 40], we have
limx→∞ f (x) = γ (C) if and only if its derivative has the quasiasymptotic behavior

(31) f ′(λx) = γ
δ(x)

λ
+ o

(
1

λ

)
as λ → ∞ in D′(R) .

Let 1 < σ < 2. Throughout this section φσ ∈ D(R) is a fixed test function with the following
properties: 0 ≤ φσ ≤ 1, φσ (x) = 1 for x ∈ [0, 1], and supp φσ ⊆ [−1, σ ].

We first extend a Theorem of Szász [35] (see also [30]) from series to Stieltjes integrals.

THEOREM 5.1. Let s be a function of local bounded variation such that s(x) = 0 for
x ≤ 0. Suppose that limx→∞ s(x) = γ (A). Then, the Tauberian conditions

(32)
∫ x

0
tds(t) = OL(x) (C, β) ,

for some β ≥ 0, and

(33) lim
σ→1+ lim sup

x→∞
1

x

∫ σx

x

t |ds| (t) = 0

imply that limx→∞ s(x) = γ .

PROOF. Corollary 4.15 and (32) imply that limx→∞ s(x) = γ (C). Then s′ has the
quasiasymptotic behavior (31), evaluating the quasiasymptotics at φσ , we obtain

lim sup
λ→∞

|s(λ) − γ | ≤ lim sup
λ→∞

∫ σλ

λ

φσ

(
t

λ

)
|ds| (t)

≤ lim sup
λ→∞

1

λ

∫ σλ

λ

t |ds| (t) .

Since σ is arbitrary, we obtain the convergence from (33). �

We recover the result of Szász mentioned above.

COROLLARY 5.2 (Szász, [35]). Suppose that
∑∞

n=0 cn = γ (A). Then the Tauberian
conditions

(34) VN = 1

N

N∑
n=0

n |cn| = O(1) ,

and

(35) Vm − Vn → 0 , as
m

n
→ 1+ and n → ∞ ,

imply the convergence of the series to γ .

PROOF. We show that (35) implies (33). Indeed, by (34),
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1

x

∑
x<n≤σx

n |cn| = [σx] − [x]
x

V[σx] + [x]
x

(V[σx] − V[x])

<
σx − x − 1

x
O(1) + (V[σx] − V[x]) ,

and the last expression tends to 0 as x → ∞ and σ → 1+. �

The next Tauberian theorem for Dirichlet series belongs to Hardy and Littlewood [14]
(see also [33] and [34, Thm. 6]).

THEOREM 5.3 (Hardy-Littlewood). Suppose that
∞∑

n=0

cn = γ (A, {λn}) .

Then the Tauberian condition

(36)
∞∑

n=1

(
λn

λn − λn−1

)p−1

|cn|p < ∞ ,

where 1 ≤ p < ∞, implies the convergence of the series to γ .

PROOF. Since the case p = 1 is trivial, we assume 1 < p < ∞. Let q = p/(p − 1).
Hölder’s inequality implies (32), with β = 0, for s(x) = ∑

λn≤x cn. So, Corollary 4.16 im-
plies the (R, {λn}), 1) summability. Then

∑∞
n=0 cnδ(x−λn) has the quasiasymptotic behavior

(31), evaluating at φσ and using Hölder’s inequality, we obtain

lim sup
N→∞

∣∣∣∣
N∑

n=0

cn − γ

∣∣∣∣ ≤ lim sup
N→∞

∑
λN<λn≤σλN

φσ

(
λn

λN

)
|cn|

≤ lim sup
N→∞

∑
λN<λn≤σλN

|cn|

≤ lim sup
N→∞

( ∑
λN<λn≤σλN

λn − λn−1

λn

)1/q

O(1)

≤ (σ − 1)1/qO(1) ,

and by taking σ → 1+, we obtain the result. �

We end this article by proving another theorem of Szász [32, 33, 34] (the case for power
series was discovered first by Hardy and Littlewood).

THEOREM 5.4 (Szász, [34]). Suppose that
∑∞

n=0 cn = γ (A, {λn}). Then the Taube-
rian condition

(37)
N∑

n=1

λ
p
n (λn − λn−1)

1−p |cn|p = O(λN) ,

for some 1 < p < ∞, implies the convergence of the series to γ .
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PROOF. Let q = p/(p − 1). Again, Hölder’s inequality implies (32), with β = 0, for
s(x) = ∑

λn≤x cn. So, Corollary 4.16 implies that
∑∞

n=0 cnδ(x −λn) has the quasiasymptotic
behavior (31), and by evaluating at φσ and using Hölder’s inequality, we obtain

lim sup
N→∞

∣∣∣∣
N∑

n=0

cn − γ

∣∣∣∣ ≤ lim sup
N→∞

∑
λN<λn≤σλN

φσ

(
λn

λN

)
|cn|

≤ lim sup
N→∞

λ
1/p
N

( ∑
λN<λn≤σλN

λn − λn−1

λ
q
n

)1/q

O(1)

≤ lim sup
N→∞

(
1

λN

∑
λN<λn≤σλN

(λn − λn−1)

)1/q

O(1)

= (σ − 1)1/qO(1) .

Since σ is arbitrary, we obtain the convergence. �

REMARK 5.5. We have chosen to give direct proofs of Theorems 5.3 and 5.4 to ex-
emplify the distributional method. However, they are easy consequences of Theorem 5.1.
Namely, by applying Hölder’s inequality to

∑
x<λn≤σx λn |cn|, one deduces that (33) is satis-

fied. Indeed, any of the Tauberian hypotheses (36) or (37) yield
1

x

∑
x<λn≤σx

λn |cn| ≤ σ 1/p(σ − 1)1/qO(1) .
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