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UNIQUENESS OF SASAKI-EINSTEIN METRICS
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Abstract. In this paper, we shall prove the uniqueness of Sasaki-Einstein metrics on
compact Sasaki manifolds modulo the action of the identity component of the automorphism
group for the transverse holomorphic structure. This generalizes the result of Cho, Futaki and
Ono [5] for compact toric Sasaki manifolds.

1. Introduction. The aim of this paper is to show the uniqueness of Sasaki-Einstein
metrics up to the action of the identity component of the automorphism group for the trans-
verse holomorphic structure. A Sasaki manifold is a Riemannian manifold (S, g) whose cone
metric ḡ = dr2 + r2g on C(S) = S × R+ is Kählerian. Sasakian geometry sits naturally in
two aspects of Kähler geometry, since for one thing, (S, g) is the base of the cone manifold
(C(S), ḡ) which is Kählerian, and for another thing any Sasaki manifold is contact, and the
one dimensional foliation associated to the characteristic Reeb vector field admits a trans-
verse Kähler structure. A Sasaki-Einstein manifold then admits a one dimensional Reeb foli-
ation with a transverse Kähler-Einstein metric, which is studied from viewpoints of geometry
and mathematical physics. Boyer, Galicki, Kollár and Thomas obtained Sasaki-Einstein met-
rics on a family of the links of hypersurfaces of Brieskorn-Pham type, which include exotic
spheres [3, 4]. Gauntlett, Martelli, Sparks and Waldram discovered that there exist irregu-
lar toric Sasaki-Einstein manifolds which are not obtained as total spaces of line orbibundles
on Kähler-Einstein orbifolds [8, 9]. These toric examples are much explored by Futaki, Ono
and Wang [7], who showed that, for any compact toric Sasaki manifold with positive basic
first Chern class and trivial first Chern class of the contact bundle, one can find a deformed
Sasakian structure on which a Sasaki-Einstein metric exists. Furthermore, Cho, Futaki and
Ono proved in [5] the uniqueness of Sasaki-Einstein metrics on compact toric Sasaki mani-
folds up to the action of the identity component of the automorphism group for the transverse
holomorphic structure by showing that the argument of Guan [10] is valid also for the space
of Kähler potentials for the transverse Kähler structure. In the present paper, we shall prove
such uniqueness without toric assumption:

THEOREM A. Let (S, g) be a compact Sasaki manifold with a Sasakian structure
S = {g, ξ, η,Φ}. Assume that the set E of all Sasaki-Einstein metrics compatible with g
is non-empty. Then the identity component of the automorphism group for the transverse
holomorphic structure acts transitively on E .
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Our proof of Theorem A is based on a generalization of the argument of Bando and
Mabuchi in [1] to Sasakian geometry. The key point is to show an a priori C0-estimate for
solutions of the transverse Monge-Ampère equations (cf. (3.1) and (3.2)) and an intriguing
point is an estimate of the infimum for the solutions (cf. Proposition 3.6). The difficulty which
we encounter is that the transverse Monge-Ampère equations only give lower bounds for the
transverse Ricci curvature, which do not lead lower bounds for the Ricci curvature by positive
constants. Therefore we cannot apply Myers’ theorem directly to obtain an estimate of the
diameter of (S, g). To overcome the difficulty, we introduce a family of Sasakian structures
gϕ,µ whose contact forms are µ−1ηϕ . Under a suitable choice of µ, it follows that the Ricci
curvature of gϕ,µ is bounded from below by a positive constant. Thus we can control their
diameters by Myers’ theorem. The estimate of their volumes together with their diameters
gives rise to the desired estimate of the solutions by using the estimate of the Green functions
(see Proposition 3.6 for more details). Our method of the estimate is simple and effective in
transverse Kähler metrics, which is slightly different from the ordinary argument in Kähler
geometry as basic Kähler classes of the family gϕ,µ are changing.

Acknowledgments. We would like to express our gratitude to Professors Ryushi Goto and Toshiki
Mabuchi for valuable comments and encouragements. Many thanks are due also to the referee for his
careful reading of the paper and for his numerous suggestions.

2. Brief review of Sasakian geometry.

2.1. Sasaki manifolds. We recall the basic theory of Sasaki manifolds. For the de-
tails, see [2] or [7]. Throughout this paper, we assume that all manifolds are connected. Let
(S, g) be a Riemannian manifold and (C(S), ḡ) = (S×R+, dr2 + r2g) be its cone manifold,
where R+ = {x ∈ R ; x > 0} and r is the standard coordinate on R+.

DEFINITION 2.1. (S, g) is called a Sasaki manifold if the cone manifold (C(S), ḡ) is
a Kähler manifold.

A Sasaki manifold S is often identified with the submanifold {r = 1} ⊂ (C(S), ḡ) and
hence the dimension of S must be odd. Let dim S = 2n+ 1. Then, of course, dimC C(S) =
n + 1. Let J be a complex structure of the cone C(S) such that the triple (C(S), J, ḡ) is a
Kähler manifold, and define ξ̃ := J (r∂/∂r). Then the restriction ξ := ξ̃ |{r=1} of ξ̃ to the
submanifold {r = 1} gives a vector field on S. The vector field ξ is called the Reeb vector
field. The 1-dimensional foliation Fξ generated by ξ is called the Reeb foliation. Define a
differential 1-form η on S by η := g(ξ, ·). Then, one can see that

(1) ξ̃ is a Killing vector field and satisfies Lξ̃J = 0,
(2) ∇ξ ξ = 0,
(3) η(ξ) = 1, ιξ dη = 0.

In particular, ξ is a Killing vector field on S. The 1-form η gives a 2n-dimensional subbundle
D of the tangent bundle T S by

D = ker η .
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The subbundle D is a contact structure of S and there is an orthogonal decomposition

T S = D ⊕ Rξ ,

where Rξ is the 1-dimensional trivial bundle generated by ξ .
Next we define a section Φ of the endomorphism bundle End(T S) of the tangent bundle

T S by Φ = ∇ξ . Then it satisfies

Φ2 = −id + η⊗ ξ

and g(ΦX,ΦY) = g(X, Y ) − η(X)η(Y ). Furthermore, we have Φ|D = J |D and Φ|Rξ = 0,
and this shows thatΦ gives a complex structure ofD. We call the quadruple S = {g, ξ, η,Φ}
a Sasakian structure of S. From these description, the restriction gD := g|D×D of the metric
g to D is a Hermitian metric onD and the associated 2-form of the Hermitian metric is equal
to (1/2)dη|D×D, that is,

dη(X, Y ) = 2g(ΦX, Y )

for eachX,Y ∈ D. Since η is a contact form, ((1/2)dη)n∧η is a non-vanishing (2n+1)-form.
The covariant differentiation of Φ can be written as, in the language of curvature,

(∇XΦ)(Y ) = R(X, ξ)Y = g(ξ, Y )X − g(X, Y )ξ

for any X,Y ∈ T S. The Ricci curvature along the Reeb foliation is given by

Ric(X, ξ) = 2nη(X)(2.1)

for each X ∈ T S.
2.2. Transverse holomorphic structures and transverse Kähler structures. As we

saw in the last subsection, ξ̃ − √−1J ξ̃ is a holomorphic vector field on C(S). Hence there is
an action of the holomorphic flow generated by ξ̃ − √−1J ξ̃ on C(S). The local orbits of this
action define a transverse holomorphic structure on the Reeb foliation Fξ in the following
sense. There is an open covering {Uα}α∈A of S and submersions πα : Uα → Vα ⊂ Cn from
Uα onto an open subset Vα in Cn such that

πα ◦ π−1
β : πβ(Uα ∩ Uβ) → πα(Uα ∩ Uβ)

is biholomorphic whenever Uα ∩Uβ �= ∅. Let (z1, z2, . . . , zn) be the local holomorphic coor-
dinates on Vα. We pull back these to Uα and still write them as (z1, z2, . . . , zn). Let x be the
coordinate along the leaves with ξ = ∂/∂x. Then (x, z1, z2, . . . , zn) forms a local coordinate
system on Uα . We call the coordinate system given above a foliation chart. On each open
set Vα ⊂ Cn we can give a Kähler structure as follows. First note that there is a canonical
isomorphism ((πα)∗)p|Dp : Dp → Tπα(p)Vα for any p ∈ Uα. Since ξ generates isometries
of (S, g), the restriction gD of the Sasaki metric g toD gives a well-defined Hermitian metric
gTα on Vα . This Hermitian structure is in fact Kählerian because the pull-back of the funda-
mental 2-form ωTα of gTα to Uα is the same as the restriction of (1/2)dη to Uα . Hence we
see that πα ◦ π−1

β : πβ(Uα ∩ Uβ) → πα(Uα ∩ Uβ) gives an isometry of Kähler manifolds.

The collection of Kähler metrics {gTα }α∈A on {Vα}α∈A is called a transverse Kähler metric.
Since they are isometric over the overlaps we simply denote by gT . The collection of Kähler
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forms {ωTα }α∈A is called a transverse Kähler form. We also write ∇T , RT ,RicT , sT for its
Levi-Civita connection, the curvature, the Ricci tensor and the scalar curvature, respectively.
By identifying Dp with Tπα(p)Vα, we have formulas for curvature

R(X, Y,Z,W) = RT (X, Y,Z,W) + g(Φ(X),Z)g(Φ(Y ),W)(2.2)

− g(Φ(X),W)g(Φ(Y ), Z) + 2g(Φ(X), Y )g(Φ(Z),W) ,

RicT (X, Y ) = Ric(X, Y )+ 2g(X, Y )(2.3)

for any local sections X,Y,Z,W of D.
2.3. Basic forms. In this subsection, we assume that the Sasaki manifold (S, g) is

compact.

DEFINITION 2.2. A differential k-form α on S is said to be basic if

ιξ α = 0 and Lξα = 0.

Let ΛkB be the sheaf of germs of basic k-forms and Ωk
B the set of all basic k-forms.

Consider a complex basic form α which can be written as

α =
∑

αi1,...,ip,j1,...,jq dz
i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq

for a foliation chart (x, z1, . . . , zn). We call such α a basic (p, q)-form. It is easy to see that
the definition of basic (p, q)-forms is independent of choice of foliation charts. Let Λp,qB be
the sheaf of germs of basic (p, q)-forms and Ωp,q

B the set of all basic (p, q)-forms. Then for
each k, ΛkB ⊗ C (resp. Ωk

B ⊗ C) can be decomposed as

ΛkB ⊗ C =
⊕
p+q=k

Λ
p,q
B

(
resp. Ωk

B ⊗ C =
⊕
p+q=k

Ω
p,q
B

)
.

Since the exterior derivative d preserves basic forms, we have the basic exterior derivative
dB := d|ΛkB : ΛkB → Λk+1

B . Then dB can be decomposed into dB = ∂B + ∂̄B by well-defined
operators

∂B : Λp,qB → Λ
p+1,q
B and ∂̄B : Λp,qB → Λ

p,q+1
B .

Then it is clear that

d2
B = 0 , ∂2

B = 0 and ∂̄2
B = 0 .

Let d∗
B, ∂

∗
B and ∂̄∗

B be the formal adjoint operators of dB, ∂B and ∂̄B , respectively, and define


B := d∗
BdB + dBd

∗
B , �B := ∂∗

B∂B + ∂B∂
∗
B , �̄B := ∂̄∗

B∂̄B + ∂̄B ∂̄
∗
B .

As in the cases of compact Kähler manifolds, both �B and �̄B are real operators and sat-
isfy 2
B = �B = �̄B (see [6]). Moreover, as shown later 
B coincides with Riemannian
Laplacian 
 on the space of basic functions. Now we can consider the basic de Rham com-
plex (Ω∗

B, dB) and the basic Dolbeault complex (Ωp,∗
B , ∂̄B). Their cohomology groups are

called the basic cohomology groups. Similarly, we can consider the basic harmonic forms.
El-Kacimi-Alaoui showed in [6] that there is an isomorphism between the basic cohomology
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groups and the space of basic harmonic forms. Moreover, it was proved in [6] a Sasakian ge-
ometry analogue of the ∂∂̄-lemma still holds. We denote by C∞

B (S) the set of all real-valued
smooth basic functions on S.

PROPOSITION 2.3 ([6]). Let α be a real dB-exact basic form of type (1, 1) on a com-
pact Sasaki manifold (S, g). Then there exists a basic function ϕ ∈ C∞

B (S) such that

α = √−1∂B ∂̄Bϕ ,

which is unique up to an additive constant.

For arbitrary basic function ϕ ∈ C∞
B (S), define

ηϕ := η + 2dcBϕ ,

where dcB = (
√−1/2)(∂̄B − ∂B). Then we have

1

2
dηϕ = 1

2
dη + dBd

c
Bϕ = 1

2
dη + √−1∂B ∂̄Bϕ .(2.4)

Thus, for small ϕ, ((1/2)dηϕ)n ∧ ηϕ is nowhere vanishing and the 1-form ηϕ gives a new
Sasakian structure Sϕ = {gϕ, ξ, ηϕ,Φϕ}, where

Φϕ = Φ − ξ ⊗ (2dcBϕ) ◦Φ , gϕ = 1

2
dηϕ ◦ (id ⊗Φϕ)+ ηϕ ⊗ ηϕ

(see [2]). By construction, Sϕ defines the same transverse holomorphic structure with that of
S. Note that the contact bundle may be changed under the deformation. As we saw in the last
subsection, the transverse Kähler form {ωTα }α∈A satisfies

π∗
αω

T
α = 1

2
dη|Uα .

Thus they are glued together and give a dB-closed basic (1, 1)-form (1/2)dη on S. We also
call ωT = (1/2)dη the transverse Kähler form. Under such a deformation, the transverse
Kähler form is deformed in the same basic (1, 1)-class [(1/2)dη]B by (2.4). We call this class
the basic Kähler class. Similarly, we see that the Ricci forms of the transverse Kähler metric
{ρTα }α∈A,

ρTα = −√−1∂B ∂̄B log det(gTα ) ,

are glued together and give a dB-closed basic (1, 1)-form ρT on S. ρT is called the transverse
Ricci form. Of course, the transverse Ricci form ρT depends on Sasaki metrics g . Never-
theless, its basic de Rham cohomology class is invariant under deformations of the Sasakian
structure by basic functions. The basic de Rham cohomology class [ρT /2π]B is called the
basic first Chern class and denoted by cB1 (S).

2.4. Basic first Chern classes and the transverse Monge-Ampère equations. Let
(S, g) be a (2n+ 1)-dimensional compact Sasaki manifold.

DEFINITION 2.4. A Sasaki-Einstein manifold is a Sasaki manifold (S, g) with Ric =
2ng .
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The Einstein condition of a Sasaki manifold is translated into Einstein conditions of the
Riemannian cone (C(S), ḡ) and the transverse Kähler structure. In fact, it is known that the
following conditions are equivalent (see [2]):

(1) g is a Sasaki-Einstein metric.
(2) The cone metric ḡ on C(S) is a Ricci-flat Kähler metric.
(3) The transverse Kähler metric gT satisfies RicT = (2n+ 2)gT .
We say that the basic first Chern class cB1 (S) is positive if cB1 (S) is represented by a

transverse Kähler form, and we express this condition by cB1 (S) > 0. If there exists a Sasaki-
Einstein metric g , then the transverse Kähler metric gT satisfies RicT = (2n + 2)gT . Hence
the basic Kähler class satisfies 2πcB1 (S) = (2n + 2)[ωT ]B and, in particular, the basic first
Chern class is positive. It is known that there is a further necessary condition for the existence
of positive or negative transverse Kähler-Einstein metric.

PROPOSITION 2.5 (Futaki-Ono-Wang [7]). The basic first Chern class is represented
by τdη for some constant τ if and only if c1(D) = 0.

We now consider a condition for the existence of Sasaki-Einstein metrics and set up
the transverse Monge-Ampère equation. Let (S, g) be a compact Sasaki manifold with
2πcB1 (S) = (2n + 2)[ωT ]B (in particular cB1 (S) > 0 and c1(D) = 0). Then there is a
unique basic function h ∈ C∞

B (S) such that

ρT − (2n+ 2)ωT = √−1∂B∂̄Bh ,
∫
S

(eh − 1)

(
1

2
dη

)n
∧ η = 0 .

Assume that we can get a Sasaki-Einstein metric gϕ for some basic function ϕ. Then the
associated transverse Kähler form ωTϕ = (1/2)dη+ √−1∂B ∂̄Bϕ satisfies

ρTϕ = (2n+ 2)ωTϕ .

This leads the transverse Kähler-Einstein (or equivalently Sasaki-Einstein) equation

det(gT
ij̄

+ ϕij̄ )

det(gT
ij̄
)

= exp(−(2n+ 2)ϕ + h)(2.5)

with (gT
ij̄

+ ϕij̄ ) positive definite, where ϕij̄ := ∂2ϕ/∂zi∂z̄j for i, j ∈ {1, 2, . . . , n}.
In [5] and [7], the existence and the uniqueness of Sasaki-Einstein metrics on compact

toric Sasaki manifolds are studied. In [7], it was proved that for any compact toric Sasaki man-
ifold (S, g) with cB1 (S) > 0 and c1(D) = 0, one can get a Sasaki-Einstein metric by deform-
ing the Sasakian structure varying the Reeb vector field (cf. [7, Theorem 1.2]). Uniqueness of
such Einstein metrics up to a connected group action was proved in [5]. Given a Sasaki mani-
fold (S, g), we say that another Sasaki metric g ′ on S is compatible with g if g and g ′ have the
same Reeb vector field and the transverse holomorphic structure. Note that g and g ′ have the
same basic Kähler class. Indeed, for corresponding Sasakian structure S ′ = {g ′, ξ ′, η′,Φ ′},
ζ := η − η′ is basic because ξ = ξ ′. This shows that dη − dη′ = dζ and in particular
[dη]B = [dη′]B .
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DEFINITION 2.6. The automorphism group of a transverse holomorphic structure of
(S, g) is the set of all biholomorphic automorphisms of C(S) which commute with the holo-
morphic flow generated by ξ̃ − √−1J ξ̃ .

We denote by Aut(C(S), ξ̃ ) the group of automorphisms of the transverse holomor-
phic structure and by G its identity component Aut(C(S), ξ̃ )0. It is known that the action
of Aut(C(S), ξ̃ ) on C(S) descends to an action on S preserving the Reeb vector field and the
transverse holomorphic structure of the Reeb foliation. In particular,G acts on the space of all
Sasaki metrics on S which is compatible with g . The Lie algebra of Aut(C(S), ξ̃ ) is explained
as follows.

DEFINITION 2.7 (Futaki-Ono-Wang, [7]). A complex vector field X on S is called a
Hamiltonian holomorphic vector field if

(1) for each α ∈ A, (πα)∗X is a holomorphic vector field on Vα ,
(2) the complex valued function uX := √−1η(X) satisfies

∂̄BuX = −
√−1

2
ιXdη .

By definition, every Hamiltonian holomorphic vector field is supposed to commute with
ξ . We denote by h the set of all Hamiltonian holomorphic vector fields. One can check easily
that h is in fact a Lie algebra. Then it was proved in [5] that the Lie algebra of Aut(C(S), ξ̃ ) is
isomorphic to h (for detailed descriptions, see also [7]). Under the notations and conventions,
it was proved in [5] that, for toric cases, G acts transitively on the space of all Sasaki-Einstein
metrics compatible with g .

2.5. Basic Laplacians for Sasaki manifolds. In Subsection 2.3, we introduced the
notion of a basic Laplacian, which is defined on the space of basic forms. Here we shall show
that the basic Laplacian 
B and the Riemannian Laplacian 
 coincide on the space C∞

B (S)

of basic functions. Let T ⊂ Isom(S, g) be the compact torus defined as the closure of the
one-parameter subgroup generated by ξ in Isom(S, g), and let dθ be the normalized Haar
measure on T . For any smooth function ϕ ∈ C∞(S), define

B(ϕ) :=
∫
T

θ∗ϕdθ .

ThenB defines a linear operator onC∞(S). It is clear thatB(ϕ) ∈ C∞
B (S) for any ϕ ∈ C∞(S)

and that B(ϕ) = ϕ if and only if ϕ ∈ C∞
B (S). Furthermore, one can show that B is symmetric

with respect to the L2-inner product on C∞(S) by Fubini theorem and the symmetry of T .
Hence we obtain a orthogonal decomposition

C∞(S) = C∞
B (S)⊕ C∞

B (S)
⊥ ,

where C∞
B (S)

⊥ is the orthogonal complement of C∞
B (S) with respect to L2-inner product.

Under the description, B coincides with the orthogonal projection from C∞(S) onto C∞
B (S).
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We denote by d∗ the formal adjoint operator of d . For each ϕ ∈ C∞
B (S) and α ∈ Ω1

B(S),
we have

(dBϕ, α) = (dϕ, α) = (ϕ, d∗α) = (ϕ, Bd∗α) ,

where (·, ·) is the L2-inner product on the space of smooth differential forms. This shows that
d∗
B = B ◦ d∗ and hence


Bϕ = d∗
BdBϕ = Bd∗dϕ = B
ϕ .(2.6)

Furthermore, for each ϕ ∈ C∞
B (S) and θ ∈ T , θ∗
ϕ = 
θ∗ϕ = 
ϕ since θ acts on (S, g) as

an isometry. Therefore we obtain

B
ϕ =
∫
T

θ∗
ϕdθ =
∫
T


ϕdθ = 
ϕ .(2.7)

By combining the equalities (2.6) and (2.7), we have the following proposition.

PROPOSITION 2.8. For each ϕ ∈ C∞
B (S) we have 
Bϕ = 
ϕ.

Using a foliation chart, we obtain an explicit formula for the basic complex Laplacian
�B = (1/2)
B by a similar calculation in Kähler geometry.

PROPOSITION 2.9. Let U be an open neighborhood of S and (x, z1, . . . , zn) a folia-
tion chart on U . Then

�Bϕ = −(gT )ij̄ ϕij̄ on U

for any ϕ ∈ C∞
B (S).

3. A proof of Theorem A.

3.1. Generalized Aubin’s equations. In this section, we shall give a proof of Theo-
rem A. Our proof of Theorem A is based on a generalization of the argument of Bando and
Mabuchi [1] to Sasakian geometry. The celebrated result on a basic version of Hodge theory
due to El-Kacimi-Alaoui [6] (including the basic ∂∂̄-lemma) allows us to imitate Kähler ge-
ometry on Sasaki manifolds. Hence we can translate the language of analysis for the complex
Monge-Ampère equation on Kähler manifolds into that for the transverse Monge-Ampère
equation (2.5) for smooth basic functions on Sasaki manifolds. In particular, by replacing the
geometry of Kähler manifolds with the transverse Kähler geometry of Sasaki manifolds, the
most of the arguments and techniques in [1] can be generalized directly to our settings (except
for Proposition 3.6, as described later) as follows.

Throughout this section, we denote by (S, g) a (2n + 1)-dimensional compact Sasaki
manifold with Sasakian structure S = {g, ξ, η,Φ}. By assumption, it follows that 2πcB1 (S) =
(2n+ 2)[ωT ]B . Define S (g) to be the set of all Sasaki metric on S which is compatible with
g , and set H := {ϕ ∈ C∞

B (S) ; (gT
ij̄

+ ϕij̄ ) is positive definite}. Then gϕ ∈ S (g) for any

ϕ ∈ H .
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Let V be the volume of S with respect to ((1/2)dη)n ∧ η, and define the functionals Lη,
Mη, Iη and Jη on H by

Lη(ϕ) := 1

V

∫ b

a

dt

∫
S

ϕ̇t

(
1

2
dηϕt

)n
∧ ηϕt ,

Mη(ϕ) := − 1

V

∫ b

a

dt

∫
S

ϕ̇t (s
T (ϕt )− n(2n+ 2))

(
1

2
dηϕt

)n
∧ ηϕt ,

Iη(ϕ) := 1

V

∫
S

ϕ

((
1

2
dη

)n
∧ η −

(
1

2
dηϕ

)n
∧ ηϕ

)
,

Jη(ϕ) := 1

V

∫ b

a

dt

∫
S

ϕ̇t

((
1

2
dη

)n
∧ η −

(
1

2
dηϕt

)n
∧ ηϕt

)
,

where {ϕt ; t ∈ [a, b]} is an arbitrary piecewise smooth path in H such that ϕa = 0 and
ϕb = ϕ. These are the “Sasakian geometry version” of the functionals defined on the space of
Kähler potentials in [1] and have the similar properties to those. The precise definitions and
basic properties can be seen in [11, Appendix A].

Since [ρT ]B = (2n + 2)[ωT ]B , there exists a unique basic function h ∈ C∞
B (S) which

satisfies ρT − (2n+ 2)ωT = √−1∂B ∂̄Bh and
∫
S
(eh − 1)((1/2)dη)n ∧ η = 0. Consider one-

parameter families of equations, which are Sasakian geometry analogues of (generalized)
Aubin’s equations,

det(gT
ij̄

+ (ψt )ij̄ )

det(gT
ij̄
)

= exp(−t (2n+ 2)ψt + h) ; t ∈ [0, 1] ,(3.1)

det(gT
ij̄

+ (ϕt )ij̄ )

det(gT
ij̄
)

= exp(−t (2n+ 2)ϕt − Lη(ϕt )+ h) ; t ∈ [0, 1] ,(3.2)

where solutions ψt and ϕt are both required to belong to H . Note that, for both equations,
these are just the transverse Kähler-Einstein equations at t = 1. As a remark in [1], there is
no difference between (3.1) and (3.2) in finding solutions for t �= 0.

REMARK 3.1. Choose an arbitrary t ∈ [0, 1]. Let ψt (resp. ϕt ) be a solution of (3.1)
(resp. (3.2)) and gt be the Sasaki metric corresponding to the Sasakian structure ηψt (resp. ηϕt ).
Then gt satisfies ρTt = t (2n+2)ωTt +(1−t)(2n+2)ωT , and in particular ρTt −t (2n+2)ωTt ≥
0. Furthermore, if t �= 1, then ρTt − t (2n+ 2)ωTt is strictly positive.

We first discuss the existence and uniqueness of the solutions of the equation (3.2) for
t ∈ [0, 1). For the equation (3.1), a result of El-Kacimi-Alaoui [6] guarantees the existence
of a solution at t = 0. Then the existence and uniqueness of a solution of the equation (3.2)
follows immediately, which corresponds to [1, Corollary (4.3.2)].

THEOREM 3.2 (El Kacimi-Alaoui [6]). If t = 0, then the equation (3.1) has a solu-
tion which is unique up to an additive constant.
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COROLLARY 3.3. The equation (3.2) has a unique solution ϕ0 at t = 0. The solution
ϕ0 satisfies Lη(ϕ0) = 0.

The local extension property of solutions of (3.2) for t ∈ [0, 1) can be represented as
follows (cf. [1, Proposition (4.4.1)]).

PROPOSITION 3.4. Let 0 ≤ τ < 1. Suppose that the equation (3.2) has a solution
ϕτ at t = τ . Then for some ε > 0, ϕτ uniquely extends to a smooth one parameter family
{ϕt ; t ∈ [0, 1] ∩ [τ − ε, τ + ε]} of solutions of (3.2).

REMARK 3.5. A Hamiltonian holomorphic vector field X is said to be normalized if
the Hamiltonian function uX satisfies∫

S

uXe
h

(
1

2
dη

)n
∧ η = 0 .

For any X ∈ h, there exists a constant c such that X + cξ is a normalized Hamiltonian
holomorphic vector field. We denote by h0 the set of all normalized Hamiltonian holomorphic
vector fields. If h0 = {0} and τ = 1, the result of Futaki, Ono and Wang (cf. [7]) tells us that
ker(�ϕ1 − (2n+2)) ∼= h0 = {0} and the first positive eigenvalue of �ϕ1 is greater than 2n+2,
where �ϕ1 is the basic complex Laplacian with respect to g1. This shows that Proposition 3.4
still holds when h0 = {0} and τ = 1.

Next we discuss a bound for solutions of (3.2). Choose α ∈ (0, 1) arbitrary. Then,
by El Kacimi-Alaoui’s generalization of Yau’s estimate [12] for transverse Monge-Ampère
equations, the C0-estimate for solutions of (3.2) implies the C2,α-estimate for them.

First of all, we give a bound of the oscillation oscSϕ := supS ϕ − infS ϕ for ϕ ∈ H

in terms of the functional Iη (cf. [1, Proposition (3.6)]). There is a difficulty to translate the
techniques in [1] to our cases. Their proof of [1, Proposition (3.6)] is based on the estimate
of a lower bound of the Green function, which follows from a lower bound of the Ricci
curvature. The (generalized) Aubin’s equation (cf. [1, (4.1.1)]) gives a lower bound of the
Ricci curvature by a positive constant. By applying Myers’ theorem, we can obtain a lower
bound of the Green function by a universal constant. However, in our cases, the equation (3.2)
only gives a lower bound of the transverse Ricci curvature (cf. Remark 3.1), which does not
lead a lower bound of the Ricci curvature by a positive constant. Hence we cannot obtain a
lower bound of the Green function directly.

Later in Subsection 3.3, we shall overcome such difficulty and show the following propo-
sition.

PROPOSITION 3.6. Let G be the Green function of the initial metric g and K a real
constant which satisfies infG ≥ −K . Let ϕ ∈ H be a basic function which satisfies ρTϕ ≥
t (2n + 2)ωTϕ for some t ∈ (0, 1]. Then there exists a positive constant C > 0 which is
independent of t and satisfies

oscSϕ ≤ Iη(ϕ)+ 2n

(
KV

n! + C

t

)
.
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Proposition 3.6 tells us that a bound of Iη for solutions of (3.2) implies a priori C0-
estimate for solutions of (3.2) (see [1, Step 1 of the proof of Theorem (5.3)]).

PROPOSITION 3.7. If there exists a positive constant A > 0 which satisfies

Iη(ϕt ) ≤ A

for each solution ϕt of (3.2) at t , then there exists a positive constant B > 0 depending only
on A, n and the initial metric g which satisfies

sup
S

|ϕt | ≤ B .

By combining [11, Lemma 4.9, Proposition A.3] and Proposition 3.7, we can general-
ize the argument of Bando and Mabuchi to Sasakian geometry to obtain the uniqueness of
solutions of the equation (3.2) for t ∈ [0, 1).

THEOREM 3.8. Let τ ∈ (0, 1). Then any solution ϕτ of (3.2) at t = τ uniquely
extends to a smooth family {ϕt ; t ∈ [0, τ ]} of solutions of (3.2). In particular the equation
(3.2) admits at most one solution at t = τ .

As a straightforward consequence of Theorem 3.8 and Remark 3.5, we have the follow-
ing corollary.

COROLLARY 3.9. Let (S, g) be a compact Sasaki manifold with h0 = {0}. Then there
exists at most one Sasaki-Einstein metric on S which is compatible with g .

3.2. Solutions at t = 1. In order to complete the proof of Theorem A, we next refer
to the solutions of the equation (3.1) at t = 1. By assumption, E �= ∅ and hence the equation
(3.1) has a solution at t = 1. Consider the G-action on E . Let O be an arbitrary G-orbit in
E . For each gSE ∈ E , we can uniquely associate a function ψ = ψ(gSE) ∈ H such that
gSE = gψ and ψ satisfies the equation (3.1) at t = 1. Hence we can regard O as a subset of
the set of all solutions of the equation (3.1) at t = 1. By the identification, we endow O with
the topology induced from the C2,α-norm on C∞

B (S) for fixed α ∈ (0, 1). Then the G-action
on O is clearly continuous. Hence the topology on O coincides with the natural topology of
the homogeneous space O ∼= G/KgSE , whereKgSE is the isotropic subgroup of G at gSE. Let
�SE be the basic complex Laplacian with respect to gSE. For each ϕ ∈ ker(�SE − (2n+ 2)),
we have the associated normalized Hamiltonian holomorphic vector field

Xϕ = ϕξ + ∇iϕ
∂

∂zi
− η

(
∇iϕ

∂

∂zi

)
ξ

for any foliation chart (x, z1, . . . , zn) (see [7, Theorem 5.1]). Let fϕ,t be the corresponding
one-parameter group exp(tXR

ϕ ). Here we denote byXR
ϕ the real part ofXϕ . We put gSE(t) :=

f ∗
ϕ,t gSE andψ(t) := ψ(gSE(t)). Then we can check easily that ψ̇(0) = ϕ+C for someC ∈ R.

On the other hand, since ψ(t) satisfies the equation (3.1) at t = 1, we have �SEψ̇(0) =
(2n+2)ψ̇(0) by differentiating the equality (3.1). This shows thatC = 0 and hence ψ̇(0) = ϕ.
Conversely, for each smooth curve g(t) ∈ O with g(0) = gSE, take the corresponding smooth
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functions ψ(t) ∈ H . Then we have �SEψ̇(0) = (2n+ 2)ψ̇(0) by differentiating the equality
(3.1). Thus we obtain

TgSEO
∼= ker(�SE − (2n+ 2)) .

Under the notations and conventions we described above, we can completely generalize
the arguments in [1] to Sasakian geometry. At first, the lemmas presented in [1, Section 6]
can be translated to Sasakian geometry as follows (cf. [1, Lemmas (6.2), (6.3) and (6.4)]).

LEMMA 3.10. Define ι := (Iη − Jη)|O (≥ 0) : O → R, and let gSE ∈ O . Put
ψ := ψ(gSE) and ηSE := ηψ . Then the following are equivalent.

(1) gSE is a critical point of ι,

(2)
∫
S

ϕψ
( 1

2dηSE
)n ∧ ηSE = 0 for any ϕ ∈ ker(�SE − (2n+ 2)).

LEMMA 3.11. The function ι is proper. In particular, its minimum is always attained
at some point of the orbit O .

LEMMA 3.12. Let gSE ∈ O be a critical point of ι. Then the Hessian (Hess ι)gSE of ι
at gSE is given by

(Hess ι)gSE(ϕ
′, ϕ′′) = 2n+ 2

V

∫
S

(
1 − 1

2
�SEψ

)
ϕ′ϕ′′

(
1

2
dηψ

)n
∧ ηψ

for each ϕ′, ϕ′′ ∈ ker(�SE − (2n+ 2)) ∼= TgSEO , where ψ := ψ(gSE).

By Lemma 3.12 and using bifurcation technique (see [1, Section 7]), we can prove the lo-
cal extension property of solutions of (3.1) at t = 1 for critical points of ι with non-degenerate
Hessian (cf. [1, Theorem (7.3)]). Here we use a Sasakian geometry version of [1, Lemma
(7.2)], which can be generalized immediately.

PROPOSITION 3.13. For each critical point gSE ∈ O of ι with non-degenerate Hes-
sian, ψ1 := ψ(gSE) can be extended to a smooth family {ψt ; t ∈ [1 − ε, 1]} of solutions of
(3.1) for some ε > 0.

REMARK 3.14. Fix a G-orbit O in E arbitrary and consider the function ι : O → R.
By Lemma 3.11, ι always has a minimizer gSE ∈ O , which is a critical point of ι with positive
semi-definite Hessian. Then, we can realize a critical point gδSE ∈ O with positive definite
Hessian by a small change gδ of the initial metric g , as described in [1, (8.1)]. We denote
by ψδ1 the smooth basic function defined by gδSE = gδ

ψδ1
. Then ψδ1 satisfies the equation (3.1)

at t = 1 with respect to the initial metric gδ . By Proposition 3.13, ψδ1 can be extended to a
smooth family {ψδt ; t ∈ [1 − ε, 1]} of solutions of (3.1) with respect to the initial metric gδ .

In view of Remark 3.14, Theorem 3.8 and Proposition 3.13 now enable us to generalize
the argument in [1] to complete our proof of Theorem A.

3.3. A proof of Proposition 3.6. Finally in this subsection, we give a proof of Propo-
sition 3.6. As we described before, a difficulty for our proof of Proposition 3.6 is that the
positivity of the transverse Ricci curvature does not lead that of the Ricci curvature in general.
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This obstructs us to apply Myers’ theorem for an estimate of the diameter of (S, g). To over-
come the difficulty, we consider the following deformation of the Sasakian structure, which is
called the D-homothetic deformation. Choose a basic function ϕ ∈ H which satisfies

ρTϕ ≥ t (2n+ 2)ωTϕ(3.3)

for some t > 0. Then, for any positive constant µ > 0, define

ηϕ,µ := µ−1ηϕ ,(3.4)

ξµ := µξ and(3.5)

gϕ,µ := µ−1gTϕ + ηϕ,µ ⊗ ηϕ,µ .(3.6)

It is known that Sϕ,µ := {gϕ,µ, ξµ, ηϕ,µ,Φϕ} gives a Sasakian structure on S (see [2] for
example). The transverse metric gTϕ,µ is then given by gTϕ,µ = µ−1gTϕ , and the contact form
ηϕ,µ satisfies (

1

2
dηϕ,µ

)n
∧ ηϕ,µ = µ−(n+1)

(
1

2
dηϕ

)n
∧ ηϕ .(3.7)

Let Ricϕ,µ be the Ricci tensor of gϕ,µ. To obtain the bound for the oscillation, we need
the following estimate on the volume and the diameter of (S, gϕ,µ). We denote by Vϕ,µ the
volume of S with respect to ((1/2)dηϕ,µ)n ∧ ηϕ,µ and by Dϕ,µ the diameter of (S, gϕ,µ).

PROPOSITION 3.15. Let (S, g) be a (2n + 1)-dimensional compact Sasaki manifold
and ϕ ∈ H a basic function satisfying (3.3) for some t > 0. Put µ = t−1. Then we have the
estimates of the volume and the diameter of (S, gϕ,µ)

Vϕ,µ = tn+1V,(3.8)

Dϕ,µ ≤ π .(3.9)

PROOF. Since µ = t−1, we have

Vϕ,µ =
∫
S

(
1

2
dηϕ,µ

)n
∧ ηϕ,µ

=µ−(n+1)
∫
S

(
1

2
dηϕ

)n
∧ ηϕ

= tn+1
∫
S

(
1

2
dη

)n
∧ η

= tn+1V .

Furthermore, for each X,Y ∈ ker ηϕ,µ we have

Ricϕ,µ(X, Y ) = RicTϕ,µ(X, Y )− 2gϕ,µ(X, Y )

and

µgϕ,µ(X, Y ) = gϕ(X, Y ) .
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Since the transverse Ricci curvature is invariant under the multiplication by positive constant
of a transverse metric, RicTϕ,µ = RicTϕ on ker ηϕ,µ (= ker ηϕ). Then it follows that

RicTϕ,µ(X, Y )= RicTϕ (X, Y )

≥ t (2n+ 2)gTϕ (X, Y )

= t (2n+ 2)µgTϕ,µ(X, Y )

= (2n+ 2)gϕ,µ(X, Y ) .

Therefore,

Ricϕ,µ(X, Y )≥ (2n+ 2)gϕ,µ(X, Y )− 2gϕ,µ(X, Y )

= 2ngϕ,µ(X, Y ).

On the other hand, by (2.1) we have

Ricϕ,µ(X, ξµ)= 2nηϕ,µ(X)

= 2ngϕ,µ(X, ξµ)

for any X ∈ T S. Hence we obtain

Ricϕ,µ ≥ 2ngϕ,µ .(3.10)

Finally, we have Dϕ,µ ≤ π by Myers’ theorem. �

By Proposition 3.15, we can now give a proof of Proposition 3.6 as follows. First we
observe that, by the identity (1/2)dηϕ = (1/2)dη+ √−1∂B∂̄Bϕ, we have

�ϕ ≤ n and �ϕϕ ≥ −n,
where � and �ϕ are the basic complex Laplacians with respect to g and gϕ , respectively. Since
the basic Laplacian coincides with the restriction of the Riemannian Laplacian to C∞

B (S) (cf.
Proposition 2.8), we have

ϕ(p)= 1

V

∫
S

ϕ

(
1

2
dη

)n
∧ η + 1

n!
∫
S

(G(p, q)+K)(
ϕ)(q)

(
1

2
dη

)n
∧ η

= 1

V

∫
S

ϕ

(
1

2
dη

)n
∧ η + 1

n!
∫
S

(G(p, q)+K)(2�ϕ)(q)

(
1

2
dη

)n
∧ η

≤ 1

V

∫
S

ϕ

(
1

2
dη

)n
∧ η + 2nK

V

n!
for any p ∈ S. This leads the estimate for ϕ

sup
S

ϕ ≤ 1

V

∫
S

ϕ

(
1

2
dη

)n
∧ η + 2n

KV

n! .(3.11)

To obtain an estimate for the infimum of ϕ, let
ϕ,µ be the Laplacian andGϕ,µ the Green
function with respect to the Sasaki metric gϕ,µ defined by (3.6). Put µ := t−1. Then, since
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Ricϕ,µ ≥ 2ngϕ,µ > 0, there is a constant γ > 0 depending only on n such that

Gϕ,µ ≥ −γ D
2
ϕ,µ

Vϕ,µ
≥ −γ π2

tn+1V
(3.12)

by (3.9) (see also [1, Theorem (3.2)]). We denote by �ϕ,µ the basic complex Laplacian with
respect to the transverse Kähler form (1/2)dηϕ,µ. Then it follows that 
ϕ,µϕ = 2�ϕ,µϕ.
Since (1/2)dηϕ,µ = µ−1((1/2)dη+ √−1∂B∂̄Bϕ), we have

�ϕ,µϕ = µ�ϕ,µ(µ
−1ϕ) ≥ −nt−1 .(3.13)

Now the equality (3.8) gives us that

ϕ(p)= 1

tn+1V

∫
S

ϕ

(
1

2
dηϕ,µ

)n
∧ ηϕ,µ + 1

n!
∫
S

Gϕ,µ(p, q)
ϕ,µϕ

(
1

2
dηϕ,µ

)n
∧ ηϕ,µ

= 1

tn+1V

∫
S

ϕ

(
1

2
dηϕ,µ

)n
∧ ηϕ,µ

+ 1

n!
∫
S

(
Gϕ,µ(p, q)+ γ

π2

tn+1V

)
(
ϕ,µϕ)

(
1

2
dηϕ,µ

)n
∧ ηϕ,µ.

The first term is then given by

1

tn+1V

∫
S

ϕ

(
1

2
dηϕ,µ

)n
∧ ηϕ,µ = 1

V

∫
S

ϕ

(
1

2
dηϕ

)n
∧ ηϕ.

For the second term, we have

1

n!
∫
S

(
Gϕ,µ(p, q)+ γ

π2

tn+1V

)
(
ϕ,µϕ)

(
1

2
dηϕ,µ

)n
∧ ηϕ,µ

= 1

n!
∫
S

(
Gϕ,µ(p, q)+ γ

π2

tn+1V

)
(2�ϕ,µϕ)

(
1

2
dηϕ,µ

)n
∧ ηϕ,µ

≥ −2n

t
γ

π2

tn+1V

tn+1V

n!
= −2nγ

π2

t (n!)
by the inequalities (3.12) and (3.13). Thus we obtain

ϕ ≥ 1

V

∫
S

ϕ

(
1

2
dηϕ

)n
∧ ηϕ − 2nγ

π2

t (n!) .(3.14)

This gives the desired inequality

oscSϕ = sup
S

ϕ − inf
S
ϕ

≤ Iη(ϕ)+ 2n

(
KV

n! + C

t

)
,(3.15)

where C = γπ2/n!.
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