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Abstract. We study complete non-compact stable constant mean curvature hypersur-
faces in a Riemannian manifold of bounded geometry, and prove that there are no nontrivial
L2 harmonic 1-forms on such hypersurfaces. We also show that any smooth map with finite
energy from such a hypersurface to a compact manifold with non-positive sectional curvature
is homotopic to constant on each compact set. In particular, we obtain some one-end theorems
of complete non-compact weakly stable constant mean curvature hypersurfaces in the space
forms.

1. Introduction. In [4], Cao, Shen and Zhu proved that a complete immersed stable
minimal hypersurfaceMn of Rn+1 with n ≥ 3 must have only one end. Its strategy was to uti-
lize a result of Schoen and Yau [19] asserting that a complete stable minimal hypersurface of
Rn+1 can not admit a non-constant harmonic function with finite Dirichlet integral. Assum-
ing that Mn has more than one end, they constructed in [4] a non-constant harmonic function
with finite Dirichlet integral. According to the work of Li and Tam [15], Li and Wang [16]
modified this proof to show that each end of a complete immersed minimal submanifold in
Rn+p with n ≥ 3 must be non-parabolic. Due to this connection with harmonic functions, this
allows one to estimate the number of ends of the above hypersurface by estimating the dimen-
sion of the space of bounded harmonic functions with finite Dirichlet integral [15]. Following
the work of Li and Wang [16], Cheng, Cheung and Zhou [8] studied the global behavior of
weakly stable hypersurfaces with constant mean curvature, and proved some one-end theo-
rems. In particular, a complete oriented weakly stable minimal hypersurface in Rn+1(n ≥ 3)
must have only one end. Since the exterior differential form of a harmonic function with fi-
nite Dirichlet integral is an L2 harmonic 1-form, the theory of L2 harmonic forms gives one
to study submanifolds in Euclidean space [12, 16, 23]. In this direction related with stable
hypersurfaces, there are some known results. For instance, if M is a complete immersed sta-
ble minimal hypersurface in Rn+1, then there exist no nontrivial L2 harmonic 1-forms on M
[17, 18]. Also, Cheng [6] proved that a complete non-compact oriented strongly stable hy-
persurface Mn with constant mean curvature H in a complete oriented manifold Nn+1 with
bi-Ricci curvature b-RicN , satisfying alongM

b-RicN(u, v) = RicN(u)+ RicN(v)−KN(u, v) ≥ n2(n− 5)H 2/4 ,
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admits no nontrivial L2 harmonic 1-forms.
Let Nn+1 be an oriented (n+1)-dimensional Riemannian manifold and i : Mn → Nn+1

be an isometric immersion of a connected orientable n-dimensional manifoldM with constant
mean curvatureH . Denote by H and A the mean curvature and the second fundamental form
on M , respectively. It is convenient to introduce the trace-free second fundamental form on
M , i.e., φ := A−HI , where I denotes the identity. Thus |A|2 = |φ|2 + nH 2. For Nn+1, we
say the (n− 1)-th Ricci curvature of N satisfies Ric(n−1)(N) ≥ c if, for all points x ∈ N and
for all n-dimensional subspaces V ⊂ Tx(N), the curvature tensor R satisfies

n∑
i=1

〈R(ei, v)v, ei 〉 ≥ c, v ∈ V ,

where {e1, . . . , en} is an orthonormal basis for V . A manifold is called of bounded geometry
if its sectional curvatures are not more than some positive constant and its injectivity radius is
not less than some positive constant. Obviously, Euclidean space Rn, the standard sphere Sn

and the hyperbolic space H n are of bounded geometry.
Let H 1(L2(M)) denote the space of L2 harmonic 1-forms on M , H 1

0 (M) the first de
Rham’s cohomology group with compact support ofM and� the Laplacian onM . Through-
out this article, we always assume thatM is a complete, non-compact, connected Riemannian
manifold without boundary. In this case, we will simply say that M is a complete manifold.

Our main results in this paper are stated as follows:

THEOREM 1.1. Let Nn+1 be a Riemannian manifold of bounded geometry with
Ric(n−1)(N) ≥ (n− 1)c andMn a complete strongly stable hypersurface with constant mean
curvature H in Nn+1. If

(n3 − 5n2 − 8n− 4)H 2 ≤ 16nc ,

then H 1(L2(M)) = 0, andM has only one non-parabolic end.

THEOREM 1.2. Let Nn+1 be a Riemannian manifold of bounded geometry with
Ric(n−1)(N) ≥ (n− 1)c and Mn a complete weakly stable hypersurface with constant mean
curvature H in Nn+1. If

(n3 − 5n2 − 8n− 4)H 2 ≤ 16nc ,

then M does not admit non-constant bounded harmonic functions with finite Dirichlet inte-
gral, andM has only one non-parabolic end.

When Nn+1 is a space form (i.e., a simply connected complete Riemannian manifold
with constant sectional curvature), Theorems 1.1 and 1.2 are extensions of the main results of
[6, 8] (see Remark 3.8). In Theorems 1.1 and 1.2, the case n = 6 is critical for c ≥ 0 and
differs from the case n ≥ 7. The reason of the above phenomenon may be that Theorems 1.1
and 1.2 seem to be related to the generalized Bernstein’s problem.

THEOREM 1.3. LetMn be a complete strongly stable hypersurface with constant mean
curvatureH in an (n+ 1)-dimensional manifoldN with Ric(n−1)(N) ≥ (n− 1)c ≥ 0 andW
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be a compact manifold with non-positive curvature. Let f : M → W be a smooth map with
finite energy. If

(n3 − 5n2)H 2 ≤ 4(2n− 1)c ,

then f is homotopic to constant on each compact set.

REMARK 1.4. When M is a complete stable minimal hypersurface in a manifold of
non-negative curvature, Theorem 1.3 corresponds to [19, Theorem 2].

The authors would like to thank the referee for some valuable suggestions.

2. Preliminary. Let i : Mn → Nn+1 be an isometric immersion of an orientable
manifold M with constant mean curvature H . We denote by ν the unit normal vector field of
M .

DEFINITION 2.1. The immersion i is called weakly stable if∫
M

[|∇f |2 − (Ric(ν, ν)+ |A|2)f 2] ≥ 0(1)

for any f ∈ C∞
0 (M) satisfying

∫
M
f = 0,where ∇f is the gradient of f in the induced metric

of M , while i is called strongly stable if (1) holds for any f ∈ C∞
0 (M). The immersion i is

simply called stable if H 
= 0 and i is weakly stable or if H = 0 (i.e., M is minimal) and i is
strongly stable.

Obviously, a strongly stable constant mean curvature hypersurface is weakly stable. But
the converse may not be true. For example, the standard sphere Sn ⊂ Rn+1 is weakly stable,
but not strongly stable [3].

For the stable hypersurfaces with constant mean curvatureH , the stability inequality (1)
becomes ∫

M

[|∇f |2 − (Ric(ν, ν)+ |φ|2 + nH 2)f 2] ≥ 0 .(2)

In this paper, we will discuss the number of ends of hypersurfaces. Now we give some
related definitions and results.

DEFINITION 2.2. LetD ⊂ M be a compact subset ofM . An endE ofM with respect
to D is a connected unbounded component of M\D. When we say that E is an end, it is
implicitly assumed that E is an end with respect to some compact subset D ⊂ M .

DEFINITION 2.3. A manifold is said to be parabolic if it does not admit a positive
Green’s function. Conversely, a non-parabolic manifold is one which admits a positive Green’s
function. An end E of a manifold is said to be non-parabolic if it admits a positive Green’s
function with Neumann boundary condition on ∂E. Otherwise, it is said to be parabolic.

THEOREM 2.4 ([15]). LetM be a complete manifold. Let H0
D(M) denote the space of

bounded harmonic functions with finite Dirichlet integral. Then the number of non-parabolic
ends of M is at most the dimension of H0

D(M).
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THEOREM 2.5 ([16]). LetE be an end of a complete manifold. Suppose that, for some
ν ≥ 1, E satisfies a Sobolev type inequality of the form

( ∫
E

|f |2ν
)1/ν

≤ C

∫
E

|∇f |2 for any f ∈ C1
0 (E) .

Then E is of finite volume or non-parabolic.

3. Proofs of the theorems. For each ω ∈ H 1(L2(M)), the Bochner formula

�|ω|2 = 2(|∇ω|2 + Ric(ω, ω))(3)

is well-known. On the other hand, we have

�|ω|2 = 2(|ω|�|ω| + |∇|ω||2) .(4)

From (3), (4) and the generalized Kato’s inequality (n/(n− 1))|∇|ω||2 ≤ |∇ω|2, we obtain

|ω|�|ω| ≥ Ric(ω, ω) + 1

n− 1
|∇|ω||2 .(5)

In [21], Shiohama and Xu proved the following estimate for the Ricci curvature of a
hypersurface M in a Riemannian manifold Nn+1 with Ric(n−1)(N) ≥ (n− 1)c:

Ric(M) ≥ n− 1

n

(
nc + 2nH 2 − n(n− 2)√

n(n− 1)
|H |

√
|A|2 − nH 2 − |A|2

)
.

Applying the above inequality to the traceless second fundamental form φ and using the iden-
tity |A|2 = |φ|2 + nH 2, we get

Ric(M) ≥ (n− 1)c + (n− 1)H 2 − (n− 2)
√
n(n− 1)|φ||H |
n

− (n− 1)|φ|2
n

.(6)

Combining with (5), we obtain

|ω|�|ω| ≥ 1

n− 1
|∇|ω||2 + (n− 1)c|ω|2

−
[
(n− 2)

√
n(n− 1)|φ||H |
n

+ (n− 1)|φ|2
n

− (n− 1)H 2
]
|ω|2 .

(7)

Observe that if f is a harmonic function with finite Dirichlet integral then its exterior df
is an L2 harmonic 1-form. Moreover, df = 0 if and only if f is identically constant. Hence

1 ≤ dimH0
D(M) ≤ dimH 1(L2(M))+ 1 .

So we are going to prove dimH0
D(M) = 1 by showing H 1(L2(M)) = 0.

PROOF OF THEOREM 1.1. Let ω ∈ H 1(L2(M)). For a fixed point p ∈ M and for
r > 0, we choose a C1 cut-off function η satisfying 0 ≤ η ≤ 1, η ≡ 1 on Br(p) ⊂ M , η ≡ 0
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onM\B2r (p), and |∇η| ≤ 1/r onB2r (p)\Br(p) ⊂ M . Multiplying (7) by η2 and integrating
by parts overM , we get

0 ≤
∫
M

(
η2|ω|�|ω| − 1

n− 1
η2|∇|ω||2 − (n− 1)cη2|ω|2

)

+
∫
M

η2
(
(n− 2)

√
n(n− 1)|φ||H |
n

+ (n− 1)|φ|2
n

− (n− 1)H 2
)

|ω|2

= −2
∫
M

η〈∇η,∇|ω|〉|ω| − n

n− 1

∫
M

η2|∇|ω||2 + n− 1

n

∫
M

η2|φ|2|ω|2

+ (n− 2)
√
n(n− 1)

n

∫
M

|φ||H |η2|ω|2 − (n− 1)
∫
M

(H 2 + c)η2|ω|2

≤ −2
∫
M

η〈∇η,∇|ω|〉|ω| − n

n− 1

∫
M

η2|∇|ω||2 + n+ 1

n

∫
M

η2|φ|2|ω|2

+
[
(n− 2)2(n− 1)

8
− (n− 1)

]∫
M

H 2η2|ω|2 − (n− 1)c
∫
M

η2|ω|2

= −2
∫
M

η〈∇η,∇|ω|〉|ω| − n

n− 1

∫
M

η2|∇|ω||2

+ n+ 1

n

∫
M

(nc + nH 2 + |φ|2)η2|ω|2

+
[
(n− 2)2(n− 1)− 16n

8
H 2 − 2nc

]∫
M

η2|ω|2 ,

(8)

where we use the generalized AM-GM inequality.
Choosing f = η|ω| in the stability inequality (2), we obtain∫
M

(nc + nH 2 + |φ|2)η2|ω|2 ≤
∫
M

[Ric(ν, ν)+ |φ|2 + nH 2]η2|ω|2 ≤
∫
M

|∇(η|ω|)|2 ,
where we use that Ric(n−1)(N) ≥ (n − 1)c implies Ric(N) ≥ nc. Combining the above
inequality with (8), we have

0 ≤ −2
∫
M

η〈∇η,∇|ω|〉|ω| − n

n− 1

∫
M

η2|∇|ω||2 + n+ 1

n

∫
M

|∇(η|ω|)|2

+
[
(n− 2)2(n− 1)− 16n

8
H 2 − 2nc

]∫
M

η2|ω|2

≤ −2
∫
M

η〈∇η,∇|ω|〉|ω| +
[
(n− 2)2(n− 1)− 16n

8
H 2 − 2nc

]∫
M

η2|ω|2

+ n+ 1

n

∫
M

(
|ω|2|∇η|2 + η2|∇|ω||2

)
+ 2(n+ 1)

n

∫
M

η〈∇η,∇|ω|〉|ω|(9)

− n

n− 1

∫
M

η2|∇|ω||2

≤ 2

n

∫
M

η〈∇η,∇|ω|〉|ω| +
[
(n− 2)2(n− 1)− 16n

8
H 2 − 2nc

]∫
M

η2|ω|2
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− 1

n(n− 1)

∫
M

η2|∇|ω||2 + n+ 1

n

∫
M

|ω|2|∇η|2 .
Using Schwarz inequality, we get

2

∣∣∣∣
∫
M

η〈∇η,∇|ω|〉|ω|
∣∣∣∣ ≤ ε

∫
M

η2|∇|ω||2 + 1

ε

∫
M

|ω|2|∇η|2 .(10)

From (9), (10) and the inequality (n3 − 5n2 − 8n− 4)H 2 ≤ 16nc, we obtain

1 − (n− 1)ε

n(n− 1)

∫
M

η2|∇|ω||2 ≤ (n3 − 5n2 − 8n− 4)H 2 − 16nc

8

∫
M

η2|ω|2

+1 + (n+ 1)ε

nε

∫
M

|ω|2|∇η|2

≤ 1 + (n+ 1)ε

nε

∫
M

|ω|2|∇η|2

≤ 1 + (n+ 1)ε

nε

1

r2

∫
B2r (p)

|ω|2 .
Choosing ε > 0 sufficiently small and letting r → ∞, from the above inequality, we get
∇|ω| = 0 on M , i.e., |ω| is constant. Since

∫
M |ω|2 < ∞ and the volume of M is infinite

by [8, Proposition 2.1] (that is, each end of M has infinite volume), we have ω = 0. Hence
H 1(L2(M)) = 0, and dimH0

D(M) = 1. Due to Theorem 2.4, we conclude that M has only
one non-parabolic end. �

PROOF OF THEOREM 1.2. Suppose that f : M → R is a non-constant bounded har-
monic function with finite Dirichlet integral. From the proof of [8, Theorem 3.1], we know∫
M |∇f | = ∞ and can choose a compactly supported piecewise smooth function ϕ =
ψ(t0, a, R)|∇f | satisfying

∫
M ϕ = 0, where

ψ(t0, a, R) =




1 on Bp(a) ,

(a + R − x)/R on Bp(a + R)\Bp(a) ,
t0(a + R − x)/R on Bp(a + 2R)\Bp(a + R) ,

−t0 on Bp(a + 2R + b)\Bp(a + 2R) ,
t0(x − (a + 3R + b))/R on Bp(a + 3R + b)\Bp(a + 2R + b) ,

0 on M\Bp(a + 3R + b) ,

a, b are positive constants and t0 is a constant satisfying 0 ≤ t0 ≤ 1.
For any harmonic function f , we have

|∇f |�|∇f | ≥ Ric(∇f,∇f )+ 1

n− 1
|∇|∇f ||2 .(11)

Multiplying (11) by ψ(t0, a, R)2 and using the same argument as Theorem 1.1, one can
show that M does not admit non-constant bounded harmonic functions with finite Dirichlet
integral, and that M has only one non-parabolic end. �

REMARK 3.1. The assertions of Theorems 1.1 and 1.2 still hold when Nn+1 is a Rie-
mannian manifold with Ric(n−1)(N) ≥ (n−1)c ≥ 0 and the assumption of bounded geometry
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in Theorems 1.1 and 1.2 is removed. In the proofs of Theorems 1.1 and 1.2, the assumption of
bounded geometry is used to guarantee that the volume of M is infinite. The condition c ≥ 0
implies that the volume of M is infinite, i.e., vol(M) = ∞. In fact, choosing f = η in the
stability inequality (2), we obtain∫

M

|A|2η2 ≤
∫
M

[Ric(ν, ν)+ |A|2]η2 ≤
∫
M

|∇η|2 ,

which gives ∫
M

|A|2 ≤ vol(M)

r2 .(12)

If vol(M) < ∞, by letting r → ∞, we obtain that M is totally geodesic. Thus the Ricci
curvatures of M are non-negative. Since every complete non-compact Riemannian manifold
with non-negative Ricci curvature has infinite volume [22, Theorem 7], we get vol(M) = ∞,
a contraction.

COROLLARY 3.2. Let Mn(n ≤ 6) be a complete strongly stable constant mean cur-
vature hypersurface in the hyperbolic space H n+1. If

H 2 ≥ 16n

5n2 + 8n+ 4 − n3
,

then H 1(L2(M)) = 0, andM has only one end. Moreover H 1
0 (M) = 0.

PROOF. When 3 ≤ n ≤ 6, for each end E of M , we have

0 < C′
∫
E

f 2 ≤
∫
E

(−n+ |φ|2 + nH 2)f 2 ≤
∫
E

|∇f |2 ,

i.e., ∫
E

f 2 ≤ C

∫
E

|∇f |2.

By Theorem 2.5 and [8, Proposition 2.1], E must be non-parabolic. According to Theorem
1.1, M has only one end. When n = 2, from [9, Theorem 1.4], we see that M has only one
end. Hence H 1

0 (M) = 0 by [5, Lemma 2.3]. �

REMARK 3.3. Corollary 3.2 extends the result of [8] that any complete non-compact
weakly stable hypersurface with constant mean curvature H in the hyperbolic space
H n+1, n = 3, 4, with H 2 ≥ 10/9, 7/4, respectively, has only one end.

COROLLARY 3.4. IfM is a complete stable minimal immersed hypersurface in Rn+1,
then H 1(L2(M)) = 0, andM has only one end. Moreover H 1

0 (M) = 0.

PROOF. When n ≥ 3, by using the Sobolev inequality of [13], we have

( ∫
E

f 2n/(n−2)
)(n−2)/n

≤ C

∫
E

|∇f |2 .
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By Theorem 2.5 and [8, Proposition 2.1], E must be non-parabolic. According to Theorem
1.1, M has only one end. When n = 2, from [10, Theorem 1.2], M has only one end. Hence
H 1

0 (M) = 0 by [5, Lemma 2.3]. �

Note that Palmer [18] proved the first part of Corollary 3.4. Applying the arguments as
in the proofs of Corollaries 3.2 and 3.4, we get the following corollary.

COROLLARY 3.5. If Mn(n ≤ 6) is a complete strongly stable constant mean cur-
vature hypersurface in Rn+1, then H 1(L2(M)) = 0, and M has only one end. Moreover
H 1

0 (M) = 0.

REMARK 3.6. It is known that there is no complete non-compact weakly stable hy-
persurfaces with nonzero constant mean curvature in Rn+1 for n ≤ 4 [7, 9].

It is known that any 3- and 4-dimensional complete weakly stable hypersurface with
constant mean curvature in a manifold of non-negative sectional curvature must be compact
[7, 8]. Hence by Theorem 1.1, we obtain the following corollary.

COROLLARY 3.7. Let Mn be a complete strongly stable hypersurface with constant
mean curvatureH in the standard sphere Sn+1. If

(1) 5 ≤ n ≤ 6, or
(2) n ≥ 7 and H 2 ≤ 16n/(n3 − 5n2 − 8n− 4),

then H 1(L2(M)) = 0, andM has only one end. Moreover H 1
0 (M) = 0.

REMARK 3.8. If “strongly stable” is replaced by “weakly stable” in Corollaries 3.2,
3.5 and 3.7, then M does not admit non-constant bounded harmonic functions with finite
Dirichlet integral, and M has only one end. Corollaries 3.2, 3.5 and 3.7 can be considered as
generalizations of some main results in [6, 8, 17, 18].

From the main theorem in [20], we see that if M is an oriented complete hypersurface
with constant mean curvature and finite total curvature in Rn+1, then M must be minimal. A
theorem due to Anderson [1] says that the n-dimensional complete minimal submanifold with
only one end and finite total curvature in Rn+p for n ≥ 3 is an affine space. Hence by the
above results, [9, Theorem 1.3] and Remark 3.8, we have the following corollary.

COROLLARY 3.9. If Mn is a complete weakly stable constant mean curvature hyper-
surface in Rn+1 with finite total curvature, then M is a hyperplane.

THEOREM 3.10. Let Mn be a complete strongly stable hypersurface with constant
mean curvature H in an (n + 1)-dimensional manifold N of bounded geometry with
Ric(n−1)(N) ≥ (n− 1)c. If

(n3 − 5n2)H 2 ≤ 4(2n− 1)c ,

then any harmonic map with finite energy from M to a manifold with non-positive curvature
is constant.
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PROOF. Let W be an m-dimensional Riemannian manifold and let f : M → W be a
harmonic map. Take local orthonormal frames {ei}ni=1 and {ēα}mα=1 ofM andW , respectively,
and denote by {ωi}ni=1 and {θα}mα=1 the corresponding dual frames and by {ωij }ni,j=1 and
{θαβ}mα,β=1 the corresponding connection forms, respectively. Then define fαi by f ∗(θα) =∑
i fαiωi and the energy density e(f ) by e(f ) = ∑

α,i f
2
αi . By the Bochner type formula for

harmonic maps between Riemannian manifolds [11] and the non-positivity of the sectional
curvature ofW , we have

1

2
�e ≥

∑
α,i,j

f 2
αij + Ric(M)e ,(13)

where fαij is defined by
∑
j fαijωj = dfαi+∑

β fβif
∗(θβα)+∑

j fαjωji . Schoen and Yau
[19] gave the following estimate:

∑
α,i,j

f 2
αij ≥

(
1 + 1

2nm

)
|∇√

e|2 .(14)

It follows from (13) and (14) that

1

2
�e ≥

(
1 + 1

2nm

)
|∇√

e|2 + Ric(M)e.(15)

Multiplying (15) by η2 and integrating by parts over M , we get(
1 + 1

2nm

) ∫
M

|∇√
e|2η2 +

∫
M

Ric(M)eη2 ≤ −2
∫
M

√
eη〈∇√

e,∇η〉 .

Combining with (6) and using the same argument as Theorem 1.1, one can prove that any
harmonic map with finite energy from M to a manifold with non-positive curvature is con-
stant. �

REMARK 3.11. By Remark 3.1, the assertion of Theorem 3.10 still holds when Nn+1

is a Riemannian manifold with Ric(n−1)(N) ≥ (n− 1)c ≥ 0.

Combining the existence theorem of harmonic map [19] with Remark 3.11, we obtain
Theorem 1.3.
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