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Abstract. It is shown that the fixed part of the canonical linear system of a fibre in a
relatively minimal fibred surface supports at most exceptional sets of weakly elliptic singular-
ities.

Introduction. Let S be a non-singular projective surface and f : S → C a surjective
morphism of S onto a non-singular projective curve C with connected fibres. We call f a
relatively minimal fibration of genus g if a general fibre is a non-singular projective curve of
genus g and there are no (−1)-curves contained in fibres. We assume that g ≥ 2 throughout
the paper. Let F be a fibre of f . Then the intersection form is negative semi-definite on
Supp(F ) by Zariski’s lemma. Furthermore, there exist a positive integer m and a 1-connected
curve D such that F = mD. When m is strictly greater than one, F is called a multiple fibre
of multiplicity m and OD(D) is a torsion of order m.

In [8], we considered the canonical linear system on the minimal resolution of a normal
surface singularity and showed that the fixed part supports at most exceptional sets of rational
singular points (cf. [1] and [2]). The present article is an extension of it to the semi-global case
and we study the fixed part of the canonical linear system |KF | which we call the canonical
fixed part in this paper. Recall that the canonical fixed part is closely related to the Horikawa
index (see [3, p. 12]), an analytic invariant of a singular fibre germ. In fact, according to
[6, Lemma 10 and Theorem 3], if g = 2, the canonical fixed part is a chain of (−2)-curves
(of type A) and the Horikawa index is almost equivalent to the number of its irreducible
components.

Let Z be a (non-zero) subcurve of D such that the restriction map H 0(F,KF ) →
H 0(Z,KF ) is the zero map. Then we have pa(Z) ≤ 1 by a result in [9]. Since the inter-
section form is negative semi-definite on fibres, we can expect a stronger assertion. We shall
show in Theorem 3.1 that Supp(Z) contracts to rational singular points when F is a non-
multiple fibre, and to rational or weakly elliptic singular points [17] when F is multiple. The
most delicate part in the proof is to see that the support of the canonical fixed part is strictly
smaller than that of the whole fibre. Though this may sound strange, one should realize that
it do happens when g = 1 as a simple example shows: if F = mD is a multiple fibre in an
elliptic fibration with D being a smooth elliptic curve, then KF is a torsion of order m ≥ 2
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on D, and we have H 0(D,KF ) = 0 implying that D ⊆ Bs|KF |. If such a phenomenon were
happen, then the intersection form would not be negative definite on the fixed part and we
would fail to contract it to normal surface singularities. Another point to be noticed is that we
do not know a priori whether the fundamental cycles on the connected components of Z are
subcurves of Z or not. The proof of Theorem 3.1 goes similarly as in [8] in spirit, looking a
fixed component through a particular curve called a loupe if available. For multiple fibres, we
compare |KF | and |KD| to see how the torsion sheaf OD(D) affects the base locus.

The geometric genus of a weakly elliptic singularity can be arbitrarily big. So, it is an-
other problem to have a bound on h1(Z,OZ). In Theorem 4.6, we shall show that h1(Z,OZ)

≤ m − 1 holds, where m denotes the multiplicity of F . Furthermore, it is shown that, if
H 1(Z,OZ) �= 0, Z contains the unique fundamental cycle of a minimally elliptic singularity
[12], though Z may have several connected components.

In the global situation, our results can be applied to the fixed part of |KS + f ∗d|, where
d is a divisor on C which is ample enough for the restriction map H 0(S,KS + f ∗d) →
H 0(F,KF ) to be surjective. It is a very interesting question to ask whether a similar assertion
holds for the fixed part of the canonical linear system on a projective algebraic surface of
general type with pg � 0, especially when the canonical map is not composed of a pencil.

The author would like to thank Margarida Mendes Lopes for stimulating discussions.

1. Preliminaries. By a curve, we mean a non-zero effective divisor on a smooth sur-
face. If a curve D decomposes as the sum of two curves D1,D2, then pa(D) = pa(D1) +
pa(D2) − 1 + D1D2. A curve D is called (numerically) k-connected, if D1D2 ≥ k holds for
any decomposition D = D1 + D2 with D1,D2 being curves. The following can be found in
[5, (A.4)Lemma] (see also [13]).

LEMMA 1.1. Let D be a k-connected curve and D = D1 + D2 an effective decompo-
sition such that D1D2 = k. Then D1 and D2 are [(k + 1)/2]-connected, where [x] denotes
the integer part of x.

A line bundle L on D is called nef if L is of non-negative degree on any component of D.
We will tacitly use the fact that H 0(D,−L) �= 0 implies L = OD when D is chain-connected
and L is nef. Here, a curve D is called chain-connected [16] if either D is irreducible or
OD−Γ (−Γ ) is not nef for any proper subcurve Γ ≺ D. It is clear that every 1-connected
curve is chain-connected.

As to the base points of linear systems, we have the following fundamental result due to
Catanese and Franciosi [4, Proposition 2.4].

THEOREM 1.2. Let L be a line bundle on a 1-connected curve D with pa(D) > 0
such that L − KD is nef. If p ∈ Bs|L|, then there exists a subcurve ∆ of D satisfying one of
the following.

(1) p is a non-singular point of ∆ and O∆(L) 
 O∆(K∆ + p).
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(2) ∆ = D, L �= KD and p is a non-singular point of D. Furthermore, there exists
another non-singular point q ∈ D such that OD(L) 
 OD(KD + p − q).

(3) ∆ = D, L �= KD , p is a double point of D and O
D̂

(ν∗(L − KD)) 
 O
D̂

, where

ν : D̂ → D denotes the blowing-up of the maximal ideal mp.

The following can be found in [9, Theorem 5.4] (see also [14, Theorem 4.1], [8, Theo-
rem 1.1] and [11, Theorem A]).

THEOREM 1.3. Let L be a line bundle on a 1-connected curve D which is numeri-
cally equivalent to KD , and let Z be a proper subcurve of D such that the restriction map
H 0(D,L) → H 0(Z,L) is the zero map. Then

pa(Z) ≤
{

0 if L = KD ,

1 otherwise .

If the equality holds here, then Z is 1-connected and D decomposes as

D = Z + Γ1 + · · · + Γn ,

where n = Z(D − Z) = h0(D − Z,OD−Z), OD−Z(L) 
 OD−Z(KD), each Γi is a 1-
connected curve with (D − Γi)Γi = ZΓi = 1, OΓj +···+Γn(−Γj−1) is trivial for 2 ≤ j ≤ n

and either Γj � Γi or Supp(Γi) ∩ Supp(Γj ) = ∅ for i < j .

Let A = ⋃
i Ai be a connected bunch of irreducible curves Ai . The intersection form is

negative semi-definite on A if and only if there exists a curve Z such that Supp(Z) = A and
−Z is nef on A. The smallest curve with such a property exists and we call it the numerical
cycle on A according to [15, Chapter 4]. When the intersection form is negative definite, it
is usually called the fundamental cycle (cf. [1], [2]). A numerical cycle is not necessarily
1-connected, but it is chain-connected. If a chain-connected curve D is such that OD(−D) is
nef, then it is the numerical cycle on its support. This is a consequence of the following fact
which can be found in [9, Proposition 1.5].

LEMMA 1.4. Let D1, D2 be curves such that OD1(−D2) is nef. If D1 is chain-
connected, then either Supp(D1) ∩ Supp(D2) = ∅ or D1 � D2.

As for multiple fibres in a fibred surface, we have the following which is an analogue of
Theorem 1.3 (see [9, Corollary 6.2]).

THEOREM 1.5. Let F be a multiple fibre and Z a subcurve of F such that the restric-
tion map H 0(F,KF ) → H 0(Z,KF ) is the zero map. Then pa(Z) ≤ 1. If pa(Z) = 1, then
Z is 0-connected and F decomposes as

F = Z + Γ0 + Γ1 + · · · + Γn ,

where n = −Z2 = h0(F − Z,OF−Z) − 1,
(1) for 1 ≤ i ≤ n, Γi is a 1-connected curve with Γ 2

i = −1, ZΓi = 1, andOΓi (−(Γ0+
· · · + Γi−1)) 
 OΓi , OΓj (−Γi) is numerically trivial when i < j , and

(2) Γ0 is a positive multiple of the numerical cycle D on Supp(F ).
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2. Loupes in fibres. Hereafter, F denotes a fibre in a relatively minimal fibred surface
of genus g ≥ 2. We are interested in the fixed part of |KF |, that is, the biggest subcurve Zcan

of F such that the restriction map H 0(F,KF ) → H 0(Zcan,KF ) is the zero map. We call
Zcan the canonical fixed part of F .

Let D be the numerical cycle on Supp(F ). Then there exists a positive integer m such
that F = mD. When m ≥ 2, F is called a multiple fibre and OD(D) is a torsion of order
m. We have g − 1 = m(pa(D) − 1) and h0(D,KF ) = pa(D) − 1. Recall that D is 1-
connected and that the restriction map H 0(F,KF ) → H 0(D,KF ) is surjective (see, e.g. [7,
Lemma 4.2.1]).

The following easy lemma is useful in the sequel.

LEMMA 2.1. Let D be the numerical cycle of a fibre. Let ∆ be a subcurve of D with
∆2 = −1. Then it is 1-connected and the restriction map H 0(D,KD) → H 0(∆,KD) is
surjective. If ∆1 is another subcurve with ∆2

1 = −1, then either ∆ and ∆1 are disjoint or one
is a subcurve of the other, except in the following cases:

(1) D = ∆ + ∆1.
(2) D = ∆ + ∆1 − gcd(∆,∆1) and gcd(∆,∆1) �= 0.

In particular, if Supp(∆ + ∆1) is strictly smaller than Supp(D), then either Supp(∆) ∩
Supp(∆1) = ∅ or ∆ � ∆1 or ∆1 � ∆.

PROOF. If ∆2 = −1, then ∆(D − ∆) = 1. Hence ∆ and D − ∆ are both 1-connected
by Lemma 1.1, since so is D. The second assertion follows from the cohomology long exact
sequence for

0 → OD−∆(KD−∆) → OD(KD) → O∆(KD) → 0 ,

since H 1(D − ∆,KD−∆) → H 1(D,KD) is an isomorphism as the dual of H 0(D,OD) →
H 0(D − ∆,OD−∆).

Let ∆1 be a subcurve of D with ∆2
1 = −1. If ∆ + ∆1 �= D, then we have 0 >

(∆ + ∆1)
2 = −2 + 2∆∆1. It follows that ∆∆1 ≤ 0, which implies that either ∆ and ∆1

are disjoint, or they have a common component. Assume the latter and put G = gcd(∆,∆1),
B = ∆ − G and B1 = ∆1 − G. Then

(2.1) (G + B + B1)
2 = ∆2 + ∆2

1 + G2 + 2∆∆1 − 2G(∆ + ∆1) = −2 − G2 + 2BB1

and

(2.2) ∆∆1 = G2 + (B + B1)G + BB1 .

Since B and B1 do not have a common component, we have BB1 ≥ 0. If D is not equal
to G + B + B1 = ∆ + ∆1 − gcd(∆,∆1), then (G + B + B1)

2 < 0. It follows G2 = −1
and BB1 = 0, because we have G2 < 0 and BB1 ≥ 0. By ∆∆1 ≤ 0, this implies that
(B + B1)G ≤ 1. Since ∆ and ∆1 are 1-connected, we conclude that either B or B1 must be
zero. �

We apply Theorem 1.2 for L = KF :
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LEMMA 2.2. Let E � Zcan be an irreducible component. Then one of the following
holds:

(1) There exists a strict subcurve ∆ of D with E ≺ ∆ such that O∆(−∆) 
 O∆(p)

holds for any point p ∈ E which is a non-singular point of ∆. Furthermore, E ⊆ Bs|K∆|
and E 
 P 1.

(2) F is a multiple fibre, D is of multiplicity one along E and, for a general p ∈
E which is a non-singular point of D, there exists a non-singular point q ∈ D such that
OD(D) 
 OD(q − p).

PROOF. We take a moving point p on E in such a way that it is a non-singular point
of E as well as that of Dred. Then we can immediately drop the case (3) of Theorem 1.2 and
see that one of (1) and (2) of Theorem 1.2 holds for such general p’s. If (2) of Theorem 1.2
is the case, then we are in (2). So we assume that (1) of Theorem 1.2 is the case. Then ∆ is
1-connected, because ∆2 = −1. Furthermore, we may assume that O∆(−∆) 
 O∆(p) holds
for infinitely many such p’s, since we have only a finite number of choices of ∆’s. It follows
h0(∆,O∆(p)) ≥ 2 and we have h0(∆,K∆ − p) ≥ pa(∆) by the Riemann-Roch theorem.
This implies that p ∈ Bs|K∆| and, therefore, E ⊆ Bs|K∆|. Then E 
 P 1 by Theorem 1.3.
Furthermore, we have h0(∆,O∆(p)) = 2. From the exact sequence of sheaves

0 → O∆−E(−E + p) → O∆(p) → OE(p) → 0 ,

we know that H 0(∆,O∆(p)) 
 H 0(E,OE(p)). Then, for a given point q ∈ E which is a
non-singular point of ∆, we have O∆(−∆) 
 O∆(q), since p and q are linearly equivalent
on ∆. �

An irreducible component E � Zcan will be referred to as a canonical fixed component.
It is said to be of type (I) if there exists a curve ∆ for E as in (1) of Lemma 2.2. In this case,
we call ∆ a loupe for E. It should be noticed, however, that a loupe is not necessarily unique
if exists. If E � Zcan is not of type (I), we call it of type (II). We have pa(E) ≤ 1 for any
component of type (II) by Theorem 1.3.

Let ∆ be a loupe for a type (I) component E � Zcan. Then it is 1-connected by
Lemma 2.1. As one sees from O∆(−∆) 
 O∆(p), ∆ is the numerical cycle on its sup-
port. Since ∆2 = −1 while D2 = 0, the support of ∆ is strictly smaller than that of D. Hence
the intersection form is negative definite on Supp(∆). In other words, any subcurve of ∆

contracts to normal surface singularities. By virtue of Theorem 1.3, the fact that E ⊆ Bs|K∆|
gives us a particular decomposition of ∆:

(2.3) ∆ = E + C1 + · · · + Cn−1

where n = −E2, h0(∆ − E,O∆−E) = n − 1, each Ci is 1-connected and ECi = −C2
i = 1,

OCj +···+Cn−1(−Cj−1) is trivial for j ≥ 2 and, when i < j , either Ci and Cj are disjoint or
Cj ≺ Ci . In particular, any two maximal curves in {Ci}ni=1 are disjoint and the support of a
maximal curve is a connected component of Supp(∆ − E). Furthermore, it is shown in [8,
Lemma 1.4] that each Ci is the fundamental cycle on its support, using the fact that E �� Ci .
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We remark also that we have n ≥ 2, because our fibration is relatively minimal. We know that
D is 1-connected and (D − ∆)∆ = 1. Then D − ∆ is also 1-connected.

LEMMA 2.3. Let ∆ be a loupe for a component E � Zcan of type (I). If E �� D − ∆,
then D − ∆ is the fundamental cycle on its support.

PROOF. Let A be a component of D − ∆. If A ≺ ∆, then A∆ = 0 by O∆−E(∆) 

O∆−E and A �= E, and it follows A(D−∆) = 0. If A �≺ ∆, then A∆ ≥ 0 and A(D−∆) ≤ 0.
Therefore, −(D − ∆) is nef on D − ∆. Since D − ∆ is 1-connected, we see from Lemma 1.4
that D − ∆ is the fundamental cycle on its support. �

LEMMA 2.4. Assume that F is a multiple fibre and let ∆ be a loupe for a component
E � Zcan of type (I). Then the following hold.

(1) For a point p ∈ E which is a non-singular point of ∆, p ∈ Bs|KD| holds if and
only if O∆(D) 
 O∆.

(2) The restriction map H 0(D,KF ) → H 0(∆,KF ) is not surjective if and only if
OD−∆(D) 
 OD−∆.

PROOF. (1) Since ∆2 = −1, the restriction map H 0(D,KD) → H 0(∆,KD) is sur-
jective by Lemma 2.1. Let p ∈ E be a point which is a non-singular point of ∆. Consider the
cohomology long exact sequence for

0 → O∆(KD − p) → O∆(KD) → Op → 0 .

We have H 1(∆,KD) = 0. Hence p ∈ Bs|KD| if and only if H 1(∆,KD − p)∨ 
 H 0(∆,

−D + ∆ + p) �= 0. Since O∆(−∆) 
 O∆(p), the last condition becomes H 0(∆,−D) �=
0. Since ∆ is 1-connected and O∆(D) is numerically trivial, this happens if and only if
O∆(D) 
 O∆. Note that we have shown that the three conditions p ∈ Bs|KD|, E ⊆ Bs|KD|
and O∆(D) 
 O∆ are equivalent.

(2) Consider the cohomology long exact sequence for

0 → OD−∆(KF − ∆) → OD(KF ) → O∆(KF ) → 0 .

We have H 1(D,KF ) = 0, since F is a multiple fibre and OD(D) is a non-trivial torsion on
a 1-connected curve D. Therefore, H 0(D,KF ) → H 0(∆,KF ) is not surjective if and only
if H 1(D − ∆,KF − ∆) 
 H 0(D − ∆,D)∨ �= 0. Since D − ∆ is 1-connected, we have
H 0(D − ∆,D) �= 0 if and only if OD−∆(D) 
 OD−∆. �

LEMMA 2.5. Let ∆ be a loupe for a component E � Zcan of type (I). Put G =
gcd(∆,D − ∆), B = ∆ − G and B1 = D − ∆ − G. If G and B are both non-zero,
then the following hold.

(1) G2 = −1, GB = GB1 = 1 and Supp(B) ∩ Supp(B1) = ∅.
(2) D is of multiplicity one along E, and D−∆ is the fundamental cycle on its support.
(3) If ∆ = E + C1 + · · · + Cn−1 is the decomposition as in (2.3), then G is one of the

maximal curves in {Ci}n−1
i=1 . Furthermore, G is the fundamental cycle on its support.

(4) B is the fundamental cycle on its support and OB−E(D) 
 OB−E .
(5) The restriction map H 0(D,KD) → H 0(E,KD) is of rank at most one.
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PROOF. We have (D − G)2 = G2. On the other hand, we have (D − G)2 = (G + B +
B1)

2 = −2 − G2 + 2BB1 by (2.1). It follows −G2 + BB1 = 1. Then we get G2 = −1 and
BB1 = 0, since BB1 ≥ 0 and G2 < 0. We have G∆ = G2 + GB = −1 + GB ≥ 0 by the
1-connectedness of ∆. Since G∆ ≤ 0, we have GB = 1 and G∆ = 0. From the last, we see
that E � B and E �� G. We know from BB1 = 0 that B and B1 are disjoint. Therefore, D

is of multiplicity one along E. Furthermore, since E �≺ D − ∆, it follows from Lemma 2.3
that D − ∆ is the fundamental cycle on its support. We have G(B + B1) = 2 by (2.2) and
∆(D − ∆) = 1. So GB1 = 1. Since ∆ and D − ∆ are both 1-connected, the condition
GB = GB1 = 1 shows that G, B and B1 are all 1-connected.

It follows from O∆(D −∆) 
 O∆(D +p) that OB(G) 
 OB(D +p) and OB−E(G) 

OB−E(D), since OB(B1) 
 OB and p �∈ B − E. On the other hand, it follows from
O∆(−∆) 
 O∆(p) that OB(−B) 
 OB(G + p). We get OB(−B) 
 OB(D + 2p). This
shows that OB(−B) is nef. Hence, B is the fundamental cycle on its support. Note that we
have OB−E(−B) 
 OB−E(G) 
 OB−E(D).

We claim that G is the fundamental cycle on its support. To see this, let Γ be a component
of G. Then Γ �= E and we have 0 = ∆Γ = GΓ + BΓ . If Γ is a component of B, then
BΓ = 0 which shows GΓ = 0. If Γ is not a component of B, then BΓ ≥ 0 which implies
GΓ ≤ 0. In sum, we see that OG(−G) is nef. Since G is 1-connected, it is the fundamental
cycle on its support. Then, since G2 = −1, we can find an irreducible component G0 of G

such that G0G = −1 and GΓ = 0 for any other components Γ ≺ G. Since G0B = 1 and
OB(−B) is nef, G0 is not a component of B. It follows that G0 is a non-multiple component
of ∆.

Let ∆ = E +C1 +· · ·+Cn−1 be the decomposition as in (2.3), where n = −E2. Recall
that we have ECi = −C2

i = 1 for 1 ≤ i ≤ n − 1 and OCj+···+Cn−1(Cj−1) 
 OCj +···+Cn−1

for 2 ≤ j ≤ n − 1. There exists a Ci which contains G0. Since ∆ is of multiplicity one along
G0, such a Ci is unique and, hence, Ci is a maximal curve in {Cj }n−1

j=1.

We claim that G = Ci . This can be seen as follows. We have G2 = C2
i = −1 and

G + Ci ≺ D. Hence, either G � Ci or Ci � G by Lemma 2.1. Suppose that Ci is a strict
subcurve of G. We have GCi = −1, because G0 � Ci and OG−G0(−G) is numerically
trivial. Then we get (G − Ci)Ci = 0 by C2

i = GCi = −1. This is absurd, because G is 1-
connected. Therefore, we get G � Ci . We have C2

i = (D−∆)2 = −1 and Ci+(D−∆) ≺ D.
Since B1 �= 0, we have Ci � D − ∆ by Lemma 2.1. Then, since G = gcd(∆,D − ∆) and
G � Ci , we conclude that G = Ci .

We have shown that B = E + ∑
j �=i Cj . It follows that OB−E(G) 
 OB−E , since

G = Ci and it is maximal in {Cj }n−1
j=1. Then OB−E(D) 
 OB−E , since we already know that

OB−E(G) 
 OB−E(D).
Consider the restriction map H 0(D,KD) → H 0(E,KD). It is easy to see that its cok-

ernel is of dimension h0(D − E,OD−E) − 1. Recall that E ⊆ Bs|K∆|. Then h0(∆ −
E,O∆−E) = n − 1 by Theorem 1.3. We have h0(B − E,OB−E) = n − 2 from

0 → OB−E(−G) → O∆−E → OG → 0



124 K. KONNO

and OB−E(−G) 
 OB−E . We have the exact sequence

0 → H 0(B − E,−D + ∆ − G) → H 0(D − E,OD−E) → H 0(D − ∆ + G,O)

in which the last map is non-trivial. Hence

h0(D − E,OD−E) − 1 ≥ h0(B − E,−D + ∆ − G) = h0(B − E,OB−E) = n − 2 .

Since h0(E,KD) = deg KD|E + 1 = −E2 − 1 = n − 1, the restriction map in question is of
rank at most one. �

LEMMA 2.6. Let ∆ and ∆1 be loupes for distinct canonical fixed components E and
E1, respectively. Assume that D = ∆ + ∆1 − gcd(∆,∆1) and gcd(∆,∆1) �= 0. Then the
following hold.

(1) D has multiplicity one along E and E1, and E,E1 ≺ gcd(∆,∆1),
(2) OD−∆(D) 
 OD−∆ and OD−∆1(D) 
 OD−∆1 .

PROOF. Put G = gcd(∆,∆1), B = ∆ − G and B1 = ∆1 − G. Then D = ∆ + B1 =
∆1 + B. Since B2 = B2

1 = −1 and they have no common components, it follows from
Lemma 2.1 that B and B1 are disjoint 1-connected curves. We have 0 ≥ B∆ = B2 + BG =
−1 + BG. Since ∆ is 1-connected, we get BG = 1 and B∆ = 0. Then E � G, G2 = −2
and G is 1-connected. We have OB(D) 
 OB(∆ + B1) 
 OB . Quite similarly, B1G = 1,
B1∆1 = 0, E1 � G and OB1(D) 
 OB1 .

Since O∆(−∆) 
 O∆(p) for a general point p ∈ E, restricting it to G, we have
OG(−G) 
 OG(B + p). We have OG(B1) = OG(D − ∆) 
 OG(D + p). Restricting
it to E ≺ G, we get EB1 = 1. Similarly, OG(−G) 
 OG(B1 + p1), OG(B) 
 OG(D + p1)

and E1B = 1 for a general point p1 ∈ E1. Hence OG(−G) 
 OG(D+p+p1), which shows
that G is the fundamental cycle on its support. Furthermore, OG−E(B1) and OG−E1(B) are
numerically trivial. We claim that E1 �� B and E �� B1. This can be seen as follows. If ∆ and
B1 have no common components, then we clearly have E �� B1. If ∆ and B1 have a common
component, then it follows from Lemma 2.5 that E � ∆ − gcd(∆,B1), that is, E �� B1.
Similarly, we get E1 �� B. In particular, we see that D is of multiplicity one along both E and
E1. �

3. Rationality and ellipticity. Let (V , o) be (a germ of) a normal surface singularity
and π : X → V its resolution. The arithmetic genus of (V , o) is defined as pa(V, o) :=
sup{pa(Γ ) ; 0 ≺ Γ, Supp(Γ ) ⊆ π−1(o)}. We call (V , o) a rational (resp. weakly elliptic)
singular point when pa(V, o) = 0 (resp. 1). Let Z be the fundamental cycle on π−1(o). It is
known that pa(Z) = 0 (resp. 1) implies that (V , o) is rational (resp. weakly elliptic). See [2,
Theorem 3], [17, p. 443] and [12, Corollary 4.2] for the detail.

In this section, we shall show our first main result:

THEOREM 3.1. Let F be a fibre in a relatively minimal fibred surface of genus g ≥ 2.
Then the following hold.

(1) When F is a non-multiple fibre, Bs|KF | supports at most exceptional sets of ratio-
nal singular points.
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(2) When F is a multiple fibre, Bs|KF | supports at most exceptional sets of rational or
weakly elliptic singular points.

This theorem has an obvious corollary.

COROLLARY 3.2. Let F be a fibre in a relatively minimal fibred surface of genus
g ≥ 2, and let Z be an arbitrary curve with Supp(Z) ⊆ Bs|KF |. Then χ(Z,OZ) ≥ 0. If F is
a non-multiple fibre, then χ(Z,OZ) ≥ 1.

In order to show Theorem 3.1, we need the following lemma which is a version of the
main result in [8] applied to the present situation:

LEMMA 3.3. Let D be the numerical cycle of the fibre F in a relatively minimal fibred
algebraic surface of genus g ≥ 2. Let L be a line bundle on D such that L − KF is nef and
Γ a strict subcurve of D. If Γ is the fundamental cycle on its support and if the restriction
map H 0(D,L) → H 0(Γ,L) is surjective, then H 1(Z,OZ) = 0 holds for any curve Z with
support in Bs|L| ∩ Supp(Γ ).

Let E = ⋃ν
i=1 Ei be a connected bunch of canonical fixed components Ei � Zcan. We

denote by ZE the numerical cycle on E . By Lemma 1.4, we have ZE � D.
We shall show that h1(ZE ,OZE ) ≤ 1 with several lemmas.

LEMMA 3.4. Let E = ⋃
i Ei and ZE be as above. If each Ei is a multiple component

of D, then h1(ZE ,OZE ) = 0.

PROOF. Since D is of multiplicity one along a canonical fixed component of type (II),
all the Ei’s are of type (I) by the assumption. We take a loupe ∆i for each Ei . Then, for any
two loupes ∆i and ∆j , we have either Supp(∆i) ∩ Supp(∆j ) = ∅ or ∆i � ∆j or ∆j � ∆i .
This can be seen as follows. By Lemma 2.1, we have only to exclude the possibilities that
D = ∆i + ∆j and D = ∆i + ∆j − gcd(∆i,∆j ). In both cases, however, we already know
from Lemmas 2.5 and 2.6 that D should be of multiplicity one along Ei and Ej , which is
forbidden. Then, since E is connected, we can find the biggest loupe, say ∆, in {∆i}. Let E

be the canonical fixed component whose loupe is ∆.
If the restriction map H 0(D,KF ) → H 0(∆,KF ) is surjective, then we get h1(ZE ,OZE )

= 0 by Lemma 3.3 applied to (Γ,L) = (∆,KF ). This allows us to assume that F is a
multiple fibre by Lemma 2.1, and that H 0(D,KF ) → H 0(∆,KF ) is not surjective. Then
OD−∆(D) 
 OD−∆ by Lemma 2.4.

Assume first that E ⊆ Bs|KD|. Then O∆(D) 
 O∆ by Lemma 2.4. Since ∆ is the
biggest, we have ∆i � ∆ and it follows O∆i (D) 
 O∆i for any i. Again by Lemma 2.4, this
implies that Ei ⊆ Bs|KD|. Therefore, E ⊆ Bs|KD|. Since H 0(D,KD) → H 0(∆,KD)

is surjective by Lemma 2.1, we can apply Lemma 3.3 to (Γ,L) = (∆,KD) and obtain
h1(ZE ,OZE ) = 0.

Assume next that E �⊆ Bs|KD|. Then O∆(D) �
 O∆ by Lemma 2.4. Since OD−∆(D) 

OD−∆, we cannot have ∆ � D−∆. Since E is a multiple component of D by the assumption,
we must have E � gcd(∆,D − ∆). However, Lemma 2.5 forbids it. �
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LEMMA 3.5. Let E = ⋃
i Ei and ZE be as above. Assume that one of the following

conditions holds when F is a multiple fibre:
(1) There exists a component Ei along which D is of multiplicity one andOD−Ei (D) 


OD−Ei .
(2) Every Ei along which D is of multiplicity one is a fixed component of |KD|.

Then h1(ZE ,OZE ) ≤ 1 with the equality holding only when F is a multiple fibre.

PROOF. Recall that ZE � D. We may assume that D is of multiplicity one along some
Ei ’s by Lemma 3.4. We denote by A the sum of all such components in E .

Suppose first that Supp(A) = E . Then we have ZE = A by ZE � D. We know that
H 0(F,KF ) → H 0(A,KF ) is the zero map. Since H 0(F,KF ) → H 0(D,KF ) is surjec-
tive and h0(D,KF ) �= 0, we see that A �= D. It follows from Theorem 1.3 that we have
pa(ZE ) = 0 when F is a non-multiple fibre, and pa(ZE ) ≤ 1 when F is a multiple fibre.
Since h0(ZE ,OZE ) = 1, we get h1(ZE ,OZE ) = pa(ZE ) ≤ 1.

Next, suppose that Supp(A) is strictly smaller than E . Then ZE −A consists of canonical
fixed components of type (I) along which D is of multiplicity at least two. Let ZE −A = Γ1 +
· · · + Γk be the decomposition into connected components. We claim that h1(Γi,OΓi ) = 0
for i = 1, . . . , k. This can be seen as follows. Let Zi be the numerical cycle on Supp(Γi).
We have h1(Zi,OZi ) = 0 by Lemma 3.4. Then we also have h1(Γi,OΓi ) = 0 by a result of
Artin, since we now know that Zi is the fundamental cycle of a rational singular point (see,
[1] and [2]).

We have seen that H 1(ZE−A,OZE−A) = 0. Let η be a non-zero section of O([D−ZE ])
defining D − ZE . Since gcd(A,D − ZE ) = 0, we see that η|A is non-zero and defines an
injection OA(−(D − ZE )) ↪→ OA. We consider the commutative diagram

(3.1)

H 0(ZE ,KZE ) −−−−→ H 0(A,KZE )

·η
�

�·η|A

H 0(D,KD) −−−−→ H 0(A,KD) ,

where the vertical maps are injections induced by η and the horizontal maps are the restriction
maps.

We first examine the case that F is a non-multiple fibre. Then D = F and the map at the
bottom row is the zero map by A � Zcan. It follows that the map at the top row is also zero.
Since the kernel of H 0(ZE ,KZE ) → H 0(A,KZE ) is isomorphic to H 0(ZE − A,KZE−A) 

H 1(ZE−A,OZE−A)∨, which is zero as we saw above, we get H 0(ZE ,KZE ) = 0. By duality,
H 1(ZE ,OZE ) = 0.

We next consider the case that F is a multiple fibre. We shall show that the rank of the
restriction map H 0(D,KD) → H 0(A,KD) is at most one. The assertion is obvious when (2)
holds. So, we assume (1) holds. Let E be a component of A satisfying OD−E(D) 
 OD−E .
Then OD−A(D) 
 OD−A. Since we know that H 0(D,KF ) → H 0(A,KF ) is the zero map,
we have h0(D−A,D) = pa(A)+A(D−A)−1, that is, h0(D−A,OD−A) = pa(A)−A2−1.
Since A is a strict subcurve of D, we have h1(A,KD) = 0. Then the dimension of the
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cokernel of H 0(D,KD) → H 0(A,KD) is h1(D − A,KD−A) − h1(D,KD) = h0(D −
A,OD−A) − 1 = pa(A) − A2 − 2. By the Riemann-Roch theorem, we have h0(A,KD) =
deg KA+A(D−A)+1−pa(A) = pa(A)−A2−1. This shows that the rank of H 0(D,KD) →
H 0(A,KD) is one. Then the rank of H 0(ZE ,KZE ) → H 0(A,KZE ) is at most one by (3.1)
and we get h1(ZE ,OZE ) ≤ 1 as in the previous case. �

Recall that any canonical fixed component of type (II) is as in (1) of Lemma 3.5.

LEMMA 3.6. Let F be a multiple fibre. Let E = ⋃
Ei be a connected bunch of canon-

ical fixed components of type (I). Assume that there exists a component E of E along which D

is of multiplicity one, E �⊂ Bs|KD| and OD−E(D) �
 OD−E . Then h1(ZE ,OZE ) ≤ 1 holds
for the numerical cycle ZE on E .

PROOF. Let ∆ be a loupe for E. Then O∆(D) �
 O∆ by Lemma 2.4, since E �⊆
Bs|KD|. We have ∆ �� D − ∆, since D is of multiplicity one along E. Assume that ∆ has
no common components with D − ∆. Since O∆(D − ∆) 
 O∆(D + p) for a general point
p ∈ E, we see that D−∆ meets ∆ at a point q ∈ E which is a non-singular point of ∆. Then,
since O∆(D − ∆) 
 O∆(q), we get O∆(D) 
 O∆(q − p). However, we already know that
p and q are linearly equivalent on ∆. So we get O∆(D) 
 O∆, which is inadequate. Hence
∆ has a common component with D − ∆.

Let ∆ = E + C1 + · · · + Cn−1 be the decomposition as in (2.3). We put C0 = D − ∆.
Then, for 0 ≤ i < j < n, OCj (−Ci) is numerically trivial and it follows from Lemma 1.4

that either Supp(Ci) ∩ Supp(Cj ) = ∅ or Cj ≺ Ci . Then C0 is a maximal element in {Ci}n−1
i=0

and Supp(C0) is a connected component of Supp(D − E). This gives us a decomposition
D − E = D1 + D2 with Supp(D1) ∩ Supp(D2) = ∅, if D1 denotes the sum of all the Ci’s
such that Ci � C0. By Lemma 2.5, we have OD2(D) 
 OD2 . Since D1 is disjoint from D2,
we have OD1(D) �
 OD1 by OD−E(D) �
 OD−E .

We denote by {Ciα }lα=1 the set of all maximal curves in {Ci}n−1
i=0 . Then the Ciα ’s are

mutually disjoint and
⋃l

α=1 Supp(Ciα ) is nothing but the decomposition of Supp(D − E)

into its connected components. Furthermore, we have Ciα � D2 unless Ciα = C0. We
claim that OD−Ciα

(D) �
 OD−Ciα
. This can be seen as follows. If Ciα = C0 = D − ∆,

then the assertion is nothing but the assumption O∆(D) �
 O∆. For the other Ciα , we have
D1 � D − Ciα and, hence, OD−Ciα

(D) 
 OD−Ciα
immediately contradicts OD1(D) �
 OD1 .

Therefore, OD−Ciα
(D) �
 OD−Ciα

for α = 1, 2, . . . , l.

Now, we have E − E ⊆ ⋃l
α=1 Supp(Ciα ), since D is of multiplicity one along E. Put

Eα = (E − E)
⋂

Supp(Ciα ). Note that, when Eα �= ∅, Eα is connected, since so is E and
ECiα = 1. Let Zα be the numerical cycle on Eα. Since Ciα is the fundamental cycle on its sup-
port, we have Zα � Ciα by Lemma 1.4. As we saw above, we have OD−Ciα

(D) �
 OD−Ciα
.

Since C2
iα

= −1, we see that D−Ciα is 1-connected. So, we can show that the restriction map

H 0(D,KF ) → H 0(Ciα ,KF ) is surjective as in Lemma 2.4. Then, by Lemma 3.3 applied to
(Γ,L) = (Ciα ,KF ), we get H 1(Zα,OZα ) = 0 and see that Zα is the fundamental cycle of
a rational singular point. This is sufficient to imply that H 1(ZE − E,OZE−E) = 0. Then,
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because the restriction map H 0(D,KD) → H 0(E,KD) is of rank at most one by Lemma 2.5,
we can show that h1(ZE ,OZE ) ≤ 1 by using (3.1) as in Lemma 3.5. �

PROOF OF THEOREM 3.1. We have shown that pa(ZE ) = h1(ZE ,OZE ) ≤ 1 for the
numerical cycle ZE on a given connected bunch E of canonical fixed components. Since
pa(D) ≥ 2, we see that E is strictly smaller than Supp(D). Therefore, the intersection form
is negative definite on E , and we obtain a normal surface singularity by contracting E . As we
already remarked at the begining of the section, by well-known results due to Artin [2] and
Wagreich [17], see also [12], rational and (weakly) elliptic singularities are characterized by
their fundamental genera, that is, the arithmetic genus of the fundamental cycle. Therefore, by
contracting E , we obtain a rational singularity when pa(ZE ) = 0, and an elliptic singularity
when pa(ZE ) = 1. Note that we have pa(ZE ) = 1 only when F is a multiple fibre. Hence E
contracts to a rational singular point if F is non-multiple. �

4. Further remarks on the fixed part. We give a few comments on Zcan detected
from the considerations in the previous sections.

LEMMA 4.1. Let E be a connected bunch of canonical fixed components. If it supports
an exceptional set of a rational double point, then the dual graph of E is of Dynkin type A or
D.

PROOF. We may assume that it is not of type A. Let E ′ be the subset of E consisting
of all the multiple components of ZE . Then E ′ is connected and any component of E ′ is
also a multiple component of D, since ZE ≺ D. We can find a loupe ∆ for some E ⊂ E ′
such that E ′ ⊂ Supp(∆) as in the proof of Lemma 3.4. Let Z denote the fundamental cycle
on E ′. We know that Z ≺ ∆ and ∆ is of multiplicity one along E. Furthermore, we have
−1 = E∆ = EZ + E(∆ − Z) ≥ EZ. Then Z has to be of type A, because otherwise any
non-multiple component E′ of Z satisfies ZE′ = 0 in view of the A-D-E classification. This
happens only when the dual graph of E is of type D. �

PROPOSITION 4.2. Suppose that |KF | has a fixed component. Then the following
hold.

(1) The numerical cycle D is not 3-connected. If it is 2-connected, then F is a multiple
fibre and the canonical fixed part consists of (−2)-curves of type (II) each of whose connected
component forms a Dynkin diagram of type A.

(2) A canonical fixed component E with pa(E) = 1 is unique if exists. It is either a
non-singular elliptic curve or a rational curve with a node. Furthermore, the other canonical
fixed components, if exist, are of type (I).

(3) If a canonical fixed component of type (II) exists, then D is of hyperelliptic type.

PROOF. (1) If there is a canonical fixed component of type (I), then its loupe ∆ sat-
isfies ∆2 = −1 and D is not 2-connected. So we may assume that any canonical fixed
components are of type (II). Let Z be the fixed part of |KF |. Then it is a reduced curve, since
D is of multiplicity one along any component of type (II) and Z ≺ D. We may assume that
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the support of Z is connected. Then, as we showed in the proof of Lemma 3.5, the restric-
tion map H 0(D,KD) → H 0(Z,KD) is of rank one. Therefore, if there exists a component
E � Z with deg KD|E > 0, then |KD | should have a base point, which implies that D is not
2-connected by Theorem 1.2. This allows us to assume that deg KD |Z = 0. Then Z consists
of (−2)-curves, which in particular shows that D is not 3-connected. Since pa(D) ≥ 2, we
have Z2 < 0. Now, since the fundamental cycle on the support of Z, which is Z itself in the
present case, is reduced, it must be contracted to a rational double point of type An for some
n.

(2) Let E � Zcan be a component such that pa(E) = 1. Then it is of type (II) and is a
non-multiple component of D. Note that the image of H 0(D,KF ) → H 0(E,KF ) contains
that of H 0(E,KF − (D − E)) → H 0(E,KF ). Hence we have H 0(E,KF − (D − E)) = 0.
Since OE(KF − (D−E)) 
 OE(−D), we see that OE(D) �
 OE . If E1 is another canonical
fixed component of type (II), then we have OD(D) 
 OD(q1 − p1) with two points p1, q1 ∈
E1 and we cannot have OE(D) �
 OE . Therefore, there are no other type (II) components.
Furthermore, by OE(D) �
 OE , we see that E is not simply connected. Hence E has a node
if it is singular.

(3) Let E be a component of type (II). Then we can find distinct pairs of points (p, p′)
and (q, q ′) on E such that OD(D) 
 OD(p′ − p) 
 OD(q ′ − q). We have OD(p + q ′) 

OD(q + p′), which gives us a base-point-free g1

2 on D. Hence D is of hyperelliptic type. �

We study the decomposition of Zcan especially when F is a multiple fibre. Recall that, by
Theorem 1.5, it has the property that pa(Z

′) ≤ 1 for any subcurve Z′ � Zcan. The following
lemma can be found in [9, Lemma 5.6].

LEMMA 4.3. Let C be a curve such that pa(C
′) ≤ 1 holds for any 0 ≺ C′ � C.

Assume that pa(C) = 1. Then C is 0-connected and decomposes as C = Γ1 + · · · + Γn,
where each Γi is a chain-connected curve with pa(Γi) = 1 and OΓj (−Γi) is numerically
trivial for i < j . In particular, ΓiΓj = 0 and, either Γj � Γi or Supp(Γi) ∩ Supp(Γj ) = ∅
for i < j . Furthermore, h0(C,OC) ≤ n with equality holding only when OΓi+···+Γn(−Γi−1)

is trivial for 2 ≤ i ≤ n.

The following can be found in [11, Lemma 1.6].

LEMMA 4.4. Let L be a line bundle on a curve C such that deg L|C ′ ≥ 2pa(C
′) − 2

holds for any subcurve C′ � C. If H 1(C,L) �= 0, then there exists a subcurve Γ � C such
that OΓ (L) 
 OΓ (KΓ ) and h0(Γ,OΓ ) = 1.

PROPOSITION 4.5. Let C be a curve such that pa(C
′) ≤ 1 for any 0 ≺ C′ � C. If

h1(C,OC) �= 0, then C decomposes as C = C1 + · · · + Ck + Γ , where
(1) Ci is a 0-connected curve with pa(Ci) = 1 for 1 ≤ i ≤ k,
(2) OCj (−Ci) is nef of positive degree and Cj � Ci for i < j ,

(3) h1(C1,OC1) = h1(C,OC), h1(Ci,OCi ) = h1(C − ∑i−1
j=1 Cj ,O) for 2 ≤ i ≤ k,

and
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(4) either Γ = 0 or Γ is a curve with h1(Γ,OΓ ) = 0 and OΓ (−Ci) is nef for
1 ≤ i ≤ k.

PROOF. By the assumption, we can apply Lemma 4.4 to any nef line bundle on C. By
Lemma 4.4 applied to L = OC , there exists a subcurve of arithmetic genus one. Let C1 be a
maximal subcurve of C with pa(C1) = 1. It is 0-connected by Lemma 4.3. If C1 = C, then
we stop with k = 1 and Γ = 0. So, we assume that C1 �= C.

Take any curve A � C − C1. By the maximality of C1, we have 0 ≥ pa(A + C1) =
pa(A) + pa(C1) − 1 + AC1 = pa(A) + AC1. If h0(A,OA) = 1, then pa(A) ≥ 0 and we
get AC1 ≤ 0. In particular, we have AC1 ≤ 0 for any irreducible component A � C − C1.
Therefore, −C1 is nef on C − C1. We also remark that pa(A) ≤ 0 holds when AC1 = 0.

We claim that h1(C,OC) = h1(C1,OC1). To see this, consider the cohomology long
exact sequence for

0 → OC−C1(−C1) → OC → OC1 → 0 .

Assume that H 1(C−C1,−C1) �= 0. It follows from Lemma 4.4 applied to L = OC−C1(−C1)

that there exists a curve B � C − C1 with h0(B,OB) = 1 and OB(−C1) 
 OB(KB). Note
that OB(−C1) is numerically trivial, because it is nef while deg KB ≤ 0. It follows that
BC1 = 0 and pa(B) = 1, which is impossible as remarked above. Therefore, h1(C −
C1,−C1) = 0 and we get h1(C1,OC1) = h1(C,OC).

If h1(C−C1,OC−C1) = 0, we stop by putting Γ = C−C1. If h1(C−C1,OC−C1) �= 0,
then we repeat the above argument with C − C1 instead of C. If we let C2 be a maximal sub-
curve of C−C1 with pa(C2) = 1, then −C2 is nef on C−C1 −C2 and h1(C−C1,OC−C1) =
h1(C2,OC2). Now, by an obvious inductive argument, we can find curves Ci with pa(Ci) = 1
and h1(Ci,OCi ) = h1(C − ∑i−1

j=1 Cj ,O) for i = 1, . . . , k, until we get H 1(Γ,OΓ ) = 0 for

Γ = C − ∑k
i=1 Ci .

We claim that Cj � Ci when i < j . Recall that −Ci is nef on Cj . But we cannot have
CiCj = 0, since pa(Cj ) = 1. Hence CiCj < 0 and we see that Ci and Cj have a common
component. Put G = gcd(Ci, Cj ) and Bi = Ci − G, Bj = Cj − G. Assume that Bj �= 0.
We have BjG ≥ 0, since Cj is 0-connected. On the other hand, since −Ci is nef on Cj , we
get 0 ≥ CiBj = BiBj + GBj ≥ GBj . Hence GBj = BiBj = 0, implying that CiBj = 0.
Then one should have pa(Bj ) ≤ 0. This leads us to a contradiction, because we would have
pa(G) ≥ 2 from 1 = pa(Cj ) = pa(G) + pa(Bj ) − 1 + GBj . Therefore, Bj = 0 and Cj �
Ci . �

Let Z be a subcurve of Zcan such that E = Supp(Z) is connected. We denote by ZE
the fundamental cycle on E . Then ZE ≺ D. Though we do not know whether ZE is a
subcurve of Z, we shall show that the “essential part” of ZE is in fact a subcurve of Z when
H 1(Z,OZ) �= 0. This can be seen as follows. Assume that h1(Z,OZ) �= 0. Let Z =
C1 + · · · + Ck + Γ be the decomposition as in Proposition 4.5. Then we have pa(Ci) = 1
for each i. If Ci = Γi,1 + · · · + Γi,ni denotes the decomposition as in Lemma 4.3, then
OΓi,j (−ZE ) is nef. Since Γi,j is chain-connected, we have Γi,j � ZE by Lemma 1.4. Since
1 = pa(Γi,j ) ≤ pa(ZE ) ≤ 1, we get pa(Γi,j ) = pa(ZE ) = 1. Hence every Γi,j contains the
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minimal model Z0 of ZE (see [9, §3]), which is the fundamental cycle of a minimally elliptic
singularity (cf. [12]) in the present case. Then Z0 � Γi,ni ≺ Γi,ni−1 ≺ · · · ≺ Γi,1 � ZE for
each i, 1 ≤ i ≤ k. Recall that there exists a reduced subcurve A of ZE along which D is of
multiplicity one, H 0(D,KD) → H 0(A,KD) is of rank one and H 1(ZE − A,O) = 0. The
last condition implies that there exists an irreducible component E of A satisfying E � Z0.
Hence, Z is of multiplicity at least

∑k
i=1 ni along E. Since (

∑k
i=1 ni)Z0 � Z ≺ F = mD,

we have
∑k

i=1 ni ≤ m by comparing the respective multiplicities along E. Since pa(C1) = 1
and H 0(F,KF ) → H 0(C1,KF ) is zero, it follows from Theorem 1.5 that F − C1 contains
a positive multiple of D. Then n1Z0 � C1 � (m − 1)D, which gives us n1 ≤ m − 1. By
Proposition 4.5 and Lemma 4.3, we get h1(Z,OZ) = h1(C1,OC1) = h0(C1,OC1) ≤ n1 ≤
m − 1.

THEOREM 4.6. Let F = mD be a fibre in a relatively minimal fibred surface and
Zcan the fixed part of |KF |. Then h1(Zcan,OZcan) ≤ m − 1. If h1(Zcan,OZcan) �= 0, then Zcan

contains the unique fundamental cycle Z0 of a minimally elliptic singular point.

PROOF. The assertion follows from what we have seen above, when Supp(Zcan) is con-
nected. Suppose that it has several connected components. We let Z and Z′ be connected
subcurves of Zcan with h1(Z,OZ) > 0, h1(Z′,OZ′) > 0 and Supp(Z) ∩ Supp(Z′) = ∅. Let
Z0 and Z′

0 be the fundamental cycles of minimally elliptic singularities such that Z0 � Z

and Z′
0 � Z′. Since Z0 ≺ D, Z′

0 ≺ D and Supp(Z0) ∩ Supp(Z′
0) = ∅, we see that

Z0+Z′
0 ≺ D. We have pa(Z0+Z′

0) = pa(Z0)+pa(Z
′
0)−1+Z0Z

′
0 = 1 and H 0(D,KF ) →

H 0(Z0+Z′
0,KF ) is the zero map. By Theorem 1.3, Z0+Z′

0 must be 1-connected. This is im-
possible, since Z0 and Z′

0 are disjoint. Therefore, Zcan has at most one connected component
Z with h1(Z,OZ) > 0. �

Let Z0 be as above. Recall that −Z2
0 is closely related to the embedded dimension of the

singularity. It is shown in [9, Proposition 6.3] that −Z2
0 ≤ (g − 1)/m = pa(D) − 1.

5. Examples. Here, we give examples of hyperelliptic fibrations f : S → C of odd
genus g > 1 with a double fibre F such that Bs|KF | contains a particular curve, in order to
see actual pictures predicted by results in the previous sections.

We shall use the following notation. Let Σd be the Hirzebruch surface of degree d ≥ 0.
We respectively denote by ∆0 and Γ a minimal section and a fibre of Σd → P 1. Take a
sufficiently large integer m and consider the linear system |(2g + 2)∆0 + 2(m + 1)Γ |, where
g is a positive odd integer. Fix a fibre Γ0 and take a point p1 ∈ Γ0. We can take a reduced
member B0 ∈ |(2g + 2)∆0 + (2m + 1)Γ | such that Γ0 ∩ B0 = {p1}. Put B = Γ0 + B0. We
assume that B is smooth except at p1 which is a (g + 2)-ple point. We consider the minimal
resolution of the surface obtained as the double covering of Σd with branch locus B.

EXAMPLE 5.1. (A (−1)-elliptic curve in the fixed part.) Assume that the local analyt-
ic equation of B around p1 is of the form

b(x, y) = x(x + y2){(x − y2)g − xgy2g} ,



132 K. KONNO

where (x, y) is a system of local coordinates around p1 such that y induces a inhomogeneous
fibre coordinate on Γ0 = {x = 0}.

We take an even resolution of B. Let σ1 : W1 → Σd be the blowing-up at p1. Then we
still have a (g + 2)-ple point on the proper transform of B by σ1. In fact, putting x = uv,
y = u, we have

x(x + y2){(x − y2)g − xgy2g} = ug+2 · v(v + u){(v − u)g − vgu2g } .

Since g is odd, the even transform B1 of B is defined locally by uv(v+u){(v−u)g −vgu2g} =
0. Hence the point p2 corresponding to (u, v) = (0, 0) is a (g + 3)-ple point of B1. Let
σ2 : W2 → W1 be the blowing-up at p2. If we put v = st , u = s, then

uv(v + u){(v − u)g − vgu2g } = sg+3 · t (t + 1){(t − 1)g − tg s2g} .

Hence the even transform B2 of B1 is given locally by t (t + 1){(t − 1)g − tg s2g } = 0, which
has an infinitely near g-ple point p3 at (s, t) = (0, 1) whose local analytic equation is like
xg = y2g . Let σ3 : W3 → W2 be the blowing-up at p3. Since g is odd, the even transform
B3 of B2 is given by w(zg − (wz + 1)gwg ) = 0 locally over p3, where t − 1 = wz, s = w.
Hence B3 has an ordinary (g + 1)-ple point p4 at (w, z) = (0, 0). Let σ4 : W4 → W3 be the
blowing-up at p4. Then the even transform B4 of B3 becomes non-singular, which completes
the even resolution of B.

FIGURE 1. (−1)-elliptic.

Now, the double covering S̃ of W4 with branch locus B4 has a fibration f̃ : S̃ → P 1

of genus g induced by the ruling of Σd . The fibre F̃ of f̃ derived from Γ0 is a double fibre
consisting of 5 irreducible components three of which are (−1)-curves. By contracting them
all, we get a relatively minimal fibration f : S → P 1 with a double fibre F consisting of
two irreducible components meeting transversally at one point. One of them is a (−1)-elliptic
curve and the other is a curve of genus (g − 1)/2 with self-intersection number −1. To be
more precise, we let êi be the inverse image of pi on W4. Since the multiplicity sequence
during the even resolution is {g + 2, g + 3, g, g + 1}, we have

KW4 + 1

2
B4

∼ σ ∗
(

KΣd + 1

2
B

)
−

(
g − 1

2
ê1 + g + 1

2
ê2 + g − 3

2
ê3 + g − 1

2
ê4

)



CANONICAL FIXED PARTS OF FIBRED ALGEBRAIC SURFACES 133

= σ ∗ ((g − 1)∆0 + (m − d − g)Γ ) + (g − 1)e0 + g − 1

2
(ê1 − ê4) + g − 3

2
(ê2 − ê3)

∼ σ ∗ ((g − 1)∆0 + (m − d − g)Γ ) + (g − 1)e0 + g − 1

2
(e1 + e3) + (g − 2)e2

where σ = σ1 ◦ σ2 ◦ σ3 ◦ σ4 and e0 is the proper transform of Γ0 while ei for i > 0 stands
for the proper transform of the exceptional (−1)-curve appeared in σi . We remark that ei

(0 ≤ i ≤ 3) is a (−2)-curve, e0 + e1 + e3 ≺ B4 and e4 = ê4 is a (−1)-curve. Since

(KW4 + (1/2)B4)e0 = (KW4 + (1/2)B4 − e0)e1 = (KW4 + (1/2)B4 − e0 − e1)e3

= (KW4 + (1/2)B4 − e0 − e1 − e3)e2 = −1 ,

we see that e0 + e1 + e2 + e3 ⊆ Bs|KW4 + (1/2)B4|. Hence, if we put ∆ = σ ∗(KW4 +
(1/2)B4) − e0 − e1 − e2 − e3, then

|KS̃ | = π∗|KW4 + (1/2)B4| = π∗|∆| + π∗(e0 + e1 + e2 + e3) ,

where π : S̃ → W4 denotes the covering map.
There are irreducible curves Ẽi , 0 ≤ i ≤ 4, such that π∗ei = 2Ẽi when i = 0, 1, 3, and

π∗ei = Ẽi when i = 2, 4. Among them, Ẽ0, Ẽ1 and Ẽ3 are (−1)-curves which should be
contracted to obtain S. On the other hand, Ẽ2 is an elliptic curve with Ẽ2

2 = −4 and Ẽ4 is a
curve of genus (g − 1)/2 with Ẽ2

4 = −2. We have F̃ = 2(Ẽ0 + Ẽ1 + Ẽ2 + 2Ẽ3 + Ẽ4). If
ρ : S̃ → S denotes the contraction map and Ei = ρ∗Ẽi for i = 2, 4, then F = 2(E2 + E4)

with E2E4 = 1 and E2
2 = E2

4 = −1. We have ρ∗KS ∼ KS̃ − Ẽ0 − Ẽ1 − Ẽ3. Then, by what
we saw above, we get |ρ∗KS | = π∗|∆| + Ẽ0 + Ẽ1 + Ẽ2 + Ẽ3. Hence the (−1)-elliptic curve
E2 is in the fixed part of |KS | as well as in that of |KS +f ∗d| for any sufficiently ample divisor
d. Since the restriction map H 0(S,KS + f ∗d) → H 0(F,KF ) is surjective, we conclude that
E2 ⊆ Bs|KF |. Note that Bs|KD| is only one point E2 ∩ E4. See, [10] for similar examples.

EXAMPLE 5.2. (A (−2)-elliptic curve in the fixed part.) Let h and h′ be odd integers
with h ≥ h′ > 1 and put g = h + h′ − 1. We consider the branch locus B defined locally by

b(x, y) = x{(x − α1y
2)h − β1x

hy2h}{(x − α2y
2)h

′ − β2x
h′

y2h′ } ,

where α1, α2, β1, β2 are suitably chosen complex numbers. Then the double fibre F consists
of three irreducible components, a (−2)-elliptic curve and two non-singular curves with self-
intersection numbers −1 and of respective genus (h − 1)/2 and (h′ − 1)/2. Furthermore, the
elliptic curve is contained in Bs|KF |.

In fact, after two times of blowing-ups at p1 with coordinates (x, y) = (0, 0) and at p2

infinitely near to p1, we get two singular points p3 and p′
3 on the 2nd exceptional (−1)-curve.

Such singular points are locally defined by xh = y2h and xh′ = y2h′
, respectively. Since h, h′

are odd, such singular points can be resolved with two times of blowing-ups, respectively. We
let p4 (resp. p′

4) the singular point infinitely near to p3 (resp. p′
3). Then they are ordinary

(h + 1)-ple and (h′ + 1)-ple points of the even transform, respectively. The multiplicity
sequence is thus {g + 2, g + 3, h, h+ 1, h′, h′ + 1}, and the contribution to K + (1/2)B is the
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FIGURE 2. (−2)-elliptic.

minus of
g − 1

2
ê1 + g + 1

2
ê2 + h − 3

2
ê3 + h′ − 3

2
ê′

3 + h − 1

2
ê4 + h′ − 1

2
ê′

4 .

Hence, assuming h ≥ h′, we see that KS̃ is induced by an effective divisor of the form

σ ∗((g − 1)∆0 + m0Γ ) + g + h − 2

2
e0 + h − 1

2
e1

+ (h − 2)e2 + h − 1

2
e3 + 2h − h′ − 1

2
e′

3 + (h − h′)e′
4

from which we know that e0+e1+e2 +e3+e′
3 is in the fixed part. On the canonical resolution

S̃, e2 induces a (−6)-elliptic curve Ẽ2 which meets four (−1)-curves Ẽ0, Ẽ1, Ẽ3 and Ẽ′
3 lying

respectively over e0, e1, e3 and e′
3. On the relatively minimal model, we have a double fibre

F = 2D with D = E2 + E4 + E′
4, where E2 is a (−2)-elliptic curve which meets each of

E4 and E′
4 transversally at a point. By what we saw above, E2 ⊆ Bs|KF |. On the other hand,

Bs|KD| consists of two points E2 ∩ E4, E2 ∩ E′
4.

EXAMPLE 5.3. (2-connected numerical cycle with A3-type fixed part.) This serves an
example for Proposition 4.2, (1). Here we consider the branch locus locally defined by

b(x, y) = x{(x − y2)g+1 − xg+1y2g+2} .

It has a (g + 2)-ple point p1 at (x, y) = (0, 0). After blowing-up at p1 and p2 infinitely near
to p1, we get a (g + 1)-ple point p3 on the second exceptional curve. This singular point is
given locally by xg+1 − y2g+2 = 0. After blowing-up at p3, it results in an ordinary (g + 1)-
ple point p4. The multiplicity sequence is thus {g + 2, g + 3, g + 1, g + 1} and an effective
expression of KW4 + B4/2 is of the form

σ ∗((g − 1)∆0 + m0Γ ) + ge0 + g + 1

2
e1 + ge2 + g + 1

2
e3 + e4 ,

where e0 and ei , 1 ≤ i ≤ 3, are (−2)-curves coming from Γ and pi , respectively, and e4 is a
(−1)-curve over p4. We see that

(KW4 + B4/2)e0 = (KW4 + B4/2)e1 = (KW4 + B4/2 − e0 − e1)e2

= (KW4 + B4/2 − e0 − e1 − e2)e3 = −1 .
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FIGURE 3. A3 in the fixed part.

Hence e0 + e1 + e2 + e3 is in the fixed part of |KW4 + B4/2|. On the canonical resolution,
e0 and e1 produce (−1)-curves Ẽ0, Ẽ1; e2 gives us a (−4)-curve Ẽ2 which meets Ẽ0 and
Ẽ1; e3 gives us two (−2)-curves Ẽ3, Ẽ

′
3 each of which meets Ẽ2 and Ẽ4 which is a non-

singular curve coming from e4 of genus (g − 1)/2 with self-intersection −2. On the relatively
minimal model, we have a double fibre F = 2D such that D = E2 + E3 + E′

3 + E4 with
E2E3 = E2E

′
3 = E4E3 = E4E

′
3 = 1 and E2E4 = E3E

′
3 = 0. Then D is numerically

2-connected (and hence Bs|KD| = ∅). Here, E3 + E2 + E′
3 is a chain of (−2)-curves of type

A3 contained in Bs|KF |.
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