CANONICAL FIXED PARTS OF FIBRED ALGEBRAIC SURFACES

Dedicated to Professor Sampei Usui on his sixtieth birthday

Kazuhiro Konno

(Received December 3, 2008, revised October 15, 2009)

Abstract

It is shown that the fixed part of the canonical linear system of a fibre in a relatively minimal fibred surface supports at most exceptional sets of weakly elliptic singularities.

Introduction. Let S be a non-singular projective surface and $f: S \rightarrow C$ a surjective morphism of S onto a non-singular projective curve C with connected fibres. We call f a relatively minimal fibration of genus g if a general fibre is a non-singular projective curve of genus g and there are no (-1)-curves contained in fibres. We assume that $g \geq 2$ throughout the paper. Let F be a fibre of f. Then the intersection form is negative semi-definite on $\operatorname{Supp}(F)$ by Zariski's lemma. Furthermore, there exist a positive integer m and a 1-connected curve D such that $F=m D$. When m is strictly greater than one, F is called a multiple fibre of multiplicity m and $\mathcal{O}_{D}(D)$ is a torsion of order m.

In [8], we considered the canonical linear system on the minimal resolution of a normal surface singularity and showed that the fixed part supports at most exceptional sets of rational singular points (cf. [1] and [2]). The present article is an extension of it to the semi-global case and we study the fixed part of the canonical linear system $\left|K_{F}\right|$ which we call the canonical fixed part in this paper. Recall that the canonical fixed part is closely related to the Horikawa index (see [3, p. 12]), an analytic invariant of a singular fibre germ. In fact, according to [6, Lemma 10 and Theorem 3], if $g=2$, the canonical fixed part is a chain of (-2)-curves (of type A) and the Horikawa index is almost equivalent to the number of its irreducible components.

Let Z be a (non-zero) subcurve of D such that the restriction map $H^{0}\left(F, K_{F}\right) \rightarrow$ $H^{0}\left(Z, K_{F}\right)$ is the zero map. Then we have $p_{a}(Z) \leq 1$ by a result in [9]. Since the intersection form is negative semi-definite on fibres, we can expect a stronger assertion. We shall show in Theorem 3.1 that $\operatorname{Supp}(Z)$ contracts to rational singular points when F is a nonmultiple fibre, and to rational or weakly elliptic singular points [17] when F is multiple. The most delicate part in the proof is to see that the support of the canonical fixed part is strictly smaller than that of the whole fibre. Though this may sound strange, one should realize that it do happens when $g=1$ as a simple example shows: if $F=m D$ is a multiple fibre in an elliptic fibration with D being a smooth elliptic curve, then K_{F} is a torsion of order $m \geq 2$

2000 Mathematics Subject Classification. Primary 14J29; Secondary 14J17.
Key words and phrases. Fixed components, relative canonical system, fibred surface.
on D, and we have $H^{0}\left(D, K_{F}\right)=0$ implying that $D \subseteq \mathrm{Bs}\left|K_{F}\right|$. If such a phenomenon were happen, then the intersection form would not be negative definite on the fixed part and we would fail to contract it to normal surface singularities. Another point to be noticed is that we do not know a priori whether the fundamental cycles on the connected components of Z are subcurves of Z or not. The proof of Theorem 3.1 goes similarly as in [8] in spirit, looking a fixed component through a particular curve called a loupe if available. For multiple fibres, we compare $\left|K_{F}\right|$ and $\left|K_{D}\right|$ to see how the torsion sheaf $\mathcal{O}_{D}(D)$ affects the base locus.

The geometric genus of a weakly elliptic singularity can be arbitrarily big. So, it is another problem to have a bound on $h^{1}\left(Z, \mathcal{O}_{Z}\right)$. In Theorem 4.6, we shall show that $h^{1}\left(Z, \mathcal{O}_{Z}\right)$ $\leq m-1$ holds, where m denotes the multiplicity of F. Furthermore, it is shown that, if $H^{1}\left(Z, \mathcal{O}_{Z}\right) \neq 0, Z$ contains the unique fundamental cycle of a minimally elliptic singularity [12], though Z may have several connected components.

In the global situation, our results can be applied to the fixed part of $\left|K_{S}+f^{*} \mathfrak{d}\right|$, where \mathfrak{d} is a divisor on C which is ample enough for the restriction map $H^{0}\left(S, K_{S}+f^{*} \mathfrak{d}\right) \rightarrow$ $H^{0}\left(F, K_{F}\right)$ to be surjective. It is a very interesting question to ask whether a similar assertion holds for the fixed part of the canonical linear system on a projective algebraic surface of general type with $p_{g} \gg 0$, especially when the canonical map is not composed of a pencil.

The author would like to thank Margarida Mendes Lopes for stimulating discussions.

1. Preliminaries. By a curve, we mean a non-zero effective divisor on a smooth surface. If a curve D decomposes as the sum of two curves D_{1}, D_{2}, then $p_{a}(D)=p_{a}\left(D_{1}\right)+$ $p_{a}\left(D_{2}\right)-1+D_{1} D_{2}$. A curve D is called (numerically) k-connected, if $D_{1} D_{2} \geq k$ holds for any decomposition $D=D_{1}+D_{2}$ with D_{1}, D_{2} being curves. The following can be found in [5, (A.4)Lemma] (see also [13]).

Lemma 1.1. Let D be a k-connected curve and $D=D_{1}+D_{2}$ an effective decomposition such that $D_{1} D_{2}=k$. Then D_{1} and D_{2} are $[(k+1) / 2]$-connected, where $[x]$ denotes the integer part of x.

A line bundle L on D is called nef if L is of non-negative degree on any component of D. We will tacitly use the fact that $H^{0}(D,-L) \neq 0$ implies $L=\mathcal{O}_{D}$ when D is chain-connected and L is nef. Here, a curve D is called chain-connected [16] if either D is irreducible or $\mathcal{O}_{D-\Gamma}(-\Gamma)$ is not nef for any proper subcurve $\Gamma \prec D$. It is clear that every 1-connected curve is chain-connected.

As to the base points of linear systems, we have the following fundamental result due to Catanese and Franciosi [4, Proposition 2.4].

THEOREM 1.2. Let L be a line bundle on a 1-connected curve D with $p_{a}(D)>0$ such that $L-K_{D}$ is nef. If $p \in \mathrm{Bs}|L|$, then there exists a subcurve Δ of D satisfying one of the following.
(1) p is a non-singular point of Δ and $\mathcal{O}_{\Delta}(L) \simeq \mathcal{O}_{\Delta}\left(K_{\Delta}+p\right)$.
(2) $\Delta=D, L \neq K_{D}$ and p is a non-singular point of D. Furthermore, there exists another non-singular point $q \in D$ such that $\mathcal{O}_{D}(L) \simeq \mathcal{O}_{D}\left(K_{D}+p-q\right)$.
(3) $\Delta=D, L \neq K_{D}, p$ is a double point of D and $\mathcal{O}_{\hat{D}}\left(\nu^{*}\left(L-K_{D}\right)\right) \simeq \mathcal{O}_{\hat{D}}$, where $\nu: \hat{D} \rightarrow D$ denotes the blowing-up of the maximal ideal \mathfrak{m}_{p}.

The following can be found in [9, Theorem 5.4] (see also [14, Theorem 4.1], [8, Theorem 1.1] and [11, Theorem A]).

THEOREM 1.3. Let L be a line bundle on a 1-connected curve D which is numerically equivalent to K_{D}, and let Z be a proper subcurve of D such that the restriction map $H^{0}(D, L) \rightarrow H^{0}(Z, L)$ is the zero map. Then

$$
p_{a}(Z) \leq \begin{cases}0 & \text { if } L=K_{D}, \\ 1 & \text { otherwise } .\end{cases}
$$

If the equality holds here, then Z is 1-connected and D decomposes as

$$
D=Z+\Gamma_{1}+\cdots+\Gamma_{n}
$$

where $n=Z(D-Z)=h^{0}\left(D-Z, \mathcal{O}_{D-Z}\right), \mathcal{O}_{D-Z}(L) \simeq \mathcal{O}_{D-Z}\left(K_{D}\right)$, each Γ_{i} is a $1-$ connected curve with $\left(D-\Gamma_{i}\right) \Gamma_{i}=Z \Gamma_{i}=1, \mathcal{O}_{\Gamma_{j}+\cdots+\Gamma_{n}}\left(-\Gamma_{j-1}\right)$ is trivial for $2 \leq j \leq n$ and either $\Gamma_{j} \preceq \Gamma_{i}$ or $\operatorname{Supp}\left(\Gamma_{i}\right) \cap \operatorname{Supp}\left(\Gamma_{j}\right)=\emptyset$ for $i<j$.

Let $\mathcal{A}=\bigcup_{i} A_{i}$ be a connected bunch of irreducible curves A_{i}. The intersection form is negative semi-definite on \mathcal{A} if and only if there exists a curve Z such that $\operatorname{Supp}(Z)=\mathcal{A}$ and $-Z$ is nef on \mathcal{A}. The smallest curve with such a property exists and we call it the numerical cycle on \mathcal{A} according to [15, Chapter 4]. When the intersection form is negative definite, it is usually called the fundamental cycle (cf. [1], [2]). A numerical cycle is not necessarily 1 -connected, but it is chain-connected. If a chain-connected curve D is such that $\mathcal{O}_{D}(-D)$ is nef, then it is the numerical cycle on its support. This is a consequence of the following fact which can be found in [9, Proposition 1.5].

Lemma 1.4. Let D_{1}, D_{2} be curves such that $\mathcal{O}_{D_{1}}\left(-D_{2}\right)$ is nef. If D_{1} is chainconnected, then either $\operatorname{Supp}\left(D_{1}\right) \cap \operatorname{Supp}\left(D_{2}\right)=\emptyset$ or $D_{1} \preceq D_{2}$.

As for multiple fibres in a fibred surface, we have the following which is an analogue of Theorem 1.3 (see [9, Corollary 6.2]).

THEOREM 1.5. Let F be a multiple fibre and Z a subcurve of F such that the restriction map $H^{0}\left(F, K_{F}\right) \rightarrow H^{0}\left(Z, K_{F}\right)$ is the zero map. Then $p_{a}(Z) \leq 1$. If $p_{a}(Z)=1$, then Z is 0 -connected and F decomposes as

$$
F=Z+\Gamma_{0}+\Gamma_{1}+\cdots+\Gamma_{n},
$$

where $n=-Z^{2}=h^{0}\left(F-Z, \mathcal{O}_{F-Z}\right)-1$,
(1) for $1 \leq i \leq n, \Gamma_{i}$ is a 1-connected curve with $\Gamma_{i}^{2}=-1, Z \Gamma_{i}=1$, and $\mathcal{O}_{\Gamma_{i}}\left(-\left(\Gamma_{0}+\right.\right.$ $\left.\left.\cdots+\Gamma_{i-1}\right)\right) \simeq \mathcal{O}_{\Gamma_{i}}, \mathcal{O}_{\Gamma_{j}}\left(-\Gamma_{i}\right)$ is numerically trivial when $i<j$, and
(2) Γ_{0} is a positive multiple of the numerical cycle D on $\operatorname{Supp}(F)$.
2. Loupes in fibres. Hereafter, F denotes a fibre in a relatively minimal fibred surface of genus $g \geq 2$. We are interested in the fixed part of $\left|K_{F}\right|$, that is, the biggest subcurve $Z_{\text {can }}$ of F such that the restriction map $H^{0}\left(F, K_{F}\right) \rightarrow H^{0}\left(Z_{\text {can }}, K_{F}\right)$ is the zero map. We call $Z_{\text {can }}$ the canonical fixed part of F.

Let D be the numerical cycle on $\operatorname{Supp}(F)$. Then there exists a positive integer m such that $F=m D$. When $m \geq 2, F$ is called a multiple fibre and $\mathcal{O}_{D}(D)$ is a torsion of order m. We have $g-1=m\left(p_{a}(D)-1\right)$ and $h^{0}\left(D, K_{F}\right)=p_{a}(D)-1$. Recall that D is 1connected and that the restriction map $H^{0}\left(F, K_{F}\right) \rightarrow H^{0}\left(D, K_{F}\right)$ is surjective (see, e.g. [7, Lemma 4.2.1]).

The following easy lemma is useful in the sequel.
Lemma 2.1. Let D be the numerical cycle of a fibre. Let Δ be a subcurve of D with $\Delta^{2}=-1$. Then it is 1 -connected and the restriction map $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(\Delta, K_{D}\right)$ is surjective. If Δ_{1} is another subcurve with $\Delta_{1}^{2}=-1$, then either Δ and Δ_{1} are disjoint or one is a subcurve of the other, except in the following cases:
(1) $D=\Delta+\Delta_{1}$.
(2) $D=\Delta+\Delta_{1}-\operatorname{gcd}\left(\Delta, \Delta_{1}\right)$ and $\operatorname{gcd}\left(\Delta, \Delta_{1}\right) \neq 0$.

In particular, if $\operatorname{Supp}\left(\Delta+\Delta_{1}\right)$ is strictly smaller than $\operatorname{Supp}(D)$, then either $\operatorname{Supp}(\Delta) \cap$ $\operatorname{Supp}\left(\Delta_{1}\right)=\emptyset$ or $\Delta \preceq \Delta_{1}$ or $\Delta_{1} \preceq \Delta$.

Proof. If $\Delta^{2}=-1$, then $\Delta(D-\Delta)=1$. Hence Δ and $D-\Delta$ are both 1-connected by Lemma 1.1, since so is D. The second assertion follows from the cohomology long exact sequence for

$$
0 \rightarrow \mathcal{O}_{D-\Delta}\left(K_{D-\Delta}\right) \rightarrow \mathcal{O}_{D}\left(K_{D}\right) \rightarrow \mathcal{O}_{\Delta}\left(K_{D}\right) \rightarrow 0
$$

since $H^{1}\left(D-\Delta, K_{D-\Delta}\right) \rightarrow H^{1}\left(D, K_{D}\right)$ is an isomorphism as the dual of $H^{0}\left(D, \mathcal{O}_{D}\right) \rightarrow$ $H^{0}\left(D-\Delta, \mathcal{O}_{D-\Delta}\right)$.

Let Δ_{1} be a subcurve of D with $\Delta_{1}^{2}=-1$. If $\Delta+\Delta_{1} \neq D$, then we have $0>$ $\left(\Delta+\Delta_{1}\right)^{2}=-2+2 \Delta \Delta_{1}$. It follows that $\Delta \Delta_{1} \leq 0$, which implies that either Δ and Δ_{1} are disjoint, or they have a common component. Assume the latter and put $G=\operatorname{gcd}\left(\Delta, \Delta_{1}\right)$, $B=\Delta-G$ and $B_{1}=\Delta_{1}-G$. Then

$$
\begin{equation*}
\left(G+B+B_{1}\right)^{2}=\Delta^{2}+\Delta_{1}^{2}+G^{2}+2 \Delta \Delta_{1}-2 G\left(\Delta+\Delta_{1}\right)=-2-G^{2}+2 B B_{1} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \Delta_{1}=G^{2}+\left(B+B_{1}\right) G+B B_{1} . \tag{2.2}
\end{equation*}
$$

Since B and B_{1} do not have a common component, we have $B B_{1} \geq 0$. If D is not equal to $G+B+B_{1}=\Delta+\Delta_{1}-\operatorname{gcd}\left(\Delta, \Delta_{1}\right)$, then $\left(G+B+B_{1}\right)^{2}<0$. It follows $G^{2}=-1$ and $B B_{1}=0$, because we have $G^{2}<0$ and $B B_{1} \geq 0$. By $\Delta \Delta_{1} \leq 0$, this implies that $\left(B+B_{1}\right) G \leq 1$. Since Δ and Δ_{1} are 1-connected, we conclude that either B or B_{1} must be zero.

We apply Theorem 1.2 for $L=K_{F}$:

Lemma 2.2. Let $E \preceq Z_{\text {can }}$ be an irreducible component. Then one of the following holds:
(1) There exists a strict subcurve Δ of D with $E \prec \Delta$ such that $\mathcal{O}_{\Delta}(-\Delta) \simeq \mathcal{O}_{\Delta}(p)$ holds for any point $p \in E$ which is a non-singular point of Δ. Furthermore, $E \subseteq \mathrm{Bs}\left|K_{\Delta}\right|$ and $E \simeq \boldsymbol{P}^{1}$.
(2) F is a multiple fibre, D is of multiplicity one along E and, for a general $p \in$ E which is a non-singular point of D, there exists a non-singular point $q \in D$ such that $\mathcal{O}_{D}(D) \simeq \mathcal{O}_{D}(q-p)$.

Proof. We take a moving point p on E in such a way that it is a non-singular point of E as well as that of $D_{\text {red }}$. Then we can immediately drop the case (3) of Theorem 1.2 and see that one of (1) and (2) of Theorem 1.2 holds for such general p 's. If (2) of Theorem 1.2 is the case, then we are in (2). So we assume that (1) of Theorem 1.2 is the case. Then Δ is 1-connected, because $\Delta^{2}=-1$. Furthermore, we may assume that $\mathcal{O}_{\Delta}(-\Delta) \simeq \mathcal{O}_{\Delta}(p)$ holds for infinitely many such p 's, since we have only a finite number of choices of Δ 's. It follows $h^{0}\left(\Delta, \mathcal{O}_{\Delta}(p)\right) \geq 2$ and we have $h^{0}\left(\Delta, K_{\Delta}-p\right) \geq p_{a}(\Delta)$ by the Riemann-Roch theorem. This implies that $p \in \mathrm{Bs}\left|K_{\Delta}\right|$ and, therefore, $E \subseteq \mathrm{Bs}\left|K_{\Delta}\right|$. Then $E \simeq \boldsymbol{P}^{1}$ by Theorem 1.3. Furthermore, we have $h^{0}\left(\Delta, \mathcal{O}_{\Delta}(p)\right)=2$. From the exact sequence of sheaves

$$
0 \rightarrow \mathcal{O}_{\Delta-E}(-E+p) \rightarrow \mathcal{O}_{\Delta}(p) \rightarrow \mathcal{O}_{E}(p) \rightarrow 0
$$

we know that $H^{0}\left(\Delta, \mathcal{O}_{\Delta}(p)\right) \simeq H^{0}\left(E, \mathcal{O}_{E}(p)\right)$. Then, for a given point $q \in E$ which is a non-singular point of Δ, we have $\mathcal{O}_{\Delta}(-\Delta) \simeq \mathcal{O}_{\Delta}(q)$, since p and q are linearly equivalent on Δ.

An irreducible component $E \preceq Z_{\text {can }}$ will be referred to as a canonical fixed component. It is said to be of type (I) if there exists a curve Δ for E as in (1) of Lemma 2.2. In this case, we call Δ a loupe for E. It should be noticed, however, that a loupe is not necessarily unique if exists. If $E \preceq Z_{\text {can }}$ is not of type (I), we call it of type (II). We have $p_{a}(E) \leq 1$ for any component of type (II) by Theorem 1.3.

Let Δ be a loupe for a type (I) component $E \preceq Z_{\text {can }}$. Then it is 1-connected by Lemma 2.1. As one sees from $\mathcal{O}_{\Delta}(-\Delta) \simeq \mathcal{O}_{\Delta}(p), \Delta$ is the numerical cycle on its support. Since $\Delta^{2}=-1$ while $D^{2}=0$, the support of Δ is strictly smaller than that of D. Hence the intersection form is negative definite on $\operatorname{Supp}(\Delta)$. In other words, any subcurve of Δ contracts to normal surface singularities. By virtue of Theorem 1.3, the fact that $E \subseteq \mathrm{Bs}\left|K_{\Delta}\right|$ gives us a particular decomposition of Δ :

$$
\begin{equation*}
\Delta=E+C_{1}+\cdots+C_{n-1} \tag{2.3}
\end{equation*}
$$

where $n=-E^{2}, h^{0}\left(\Delta-E, \mathcal{O}_{\Delta-E}\right)=n-1$, each C_{i} is 1 -connected and $E C_{i}=-C_{i}^{2}=1$, $\mathcal{O}_{C_{j}+\cdots+C_{n-1}}\left(-C_{j-1}\right)$ is trivial for $j \geq 2$ and, when $i<j$, either C_{i} and C_{j} are disjoint or $C_{j} \prec C_{i}$. In particular, any two maximal curves in $\left\{C_{i}\right\}_{i=1}^{n}$ are disjoint and the support of a maximal curve is a connected component of $\operatorname{Supp}(\Delta-E)$. Furthermore, it is shown in [8, Lemma 1.4] that each C_{i} is the fundamental cycle on its support, using the fact that $E \npreceq C_{i}$.

We remark also that we have $n \geq 2$, because our fibration is relatively minimal. We know that D is 1 -connected and $(D-\Delta) \Delta=1$. Then $D-\Delta$ is also 1-connected.

Lemma 2.3. Let Δ be a loupe for a component $E \preceq Z_{\text {can }}$ of type (I). If $E \npreceq D-\Delta$, then $D-\Delta$ is the fundamental cycle on its support.

Proof. Let A be a component of $D-\Delta$. If $A \prec \Delta$, then $A \Delta=0$ by $\mathcal{O}_{\Delta-E}(\Delta) \simeq$ $\mathcal{O}_{\Delta-E}$ and $A \neq E$, and it follows $A(D-\Delta)=0$. If $A \nprec \Delta$, then $A \Delta \geq 0$ and $A(D-\Delta) \leq 0$. Therefore, $-(D-\Delta)$ is nef on $D-\Delta$. Since $D-\Delta$ is 1-connected, we see from Lemma 1.4 that $D-\Delta$ is the fundamental cycle on its support.

Lemma 2.4. Assume that F is a multiple fibre and let Δ be a loupe for a component $E \preceq Z_{\text {can }}$ of type (I). Then the following hold.
(1) For a point $p \in E$ which is a non-singular point of $\Delta, p \in \mathrm{Bs}\left|K_{D}\right|$ holds if and only if $\mathcal{O}_{\Delta}(D) \simeq \mathcal{O}_{\Delta}$.
(2) The restriction map $H^{0}\left(D, K_{F}\right) \rightarrow H^{0}\left(\Delta, K_{F}\right)$ is not surjective if and only if $\mathcal{O}_{D-\Delta}(D) \simeq \mathcal{O}_{D-\Delta}$.

Proof. (1) Since $\Delta^{2}=-1$, the restriction map $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(\Delta, K_{D}\right)$ is surjective by Lemma 2.1. Let $p \in E$ be a point which is a non-singular point of Δ. Consider the cohomology long exact sequence for

$$
0 \rightarrow \mathcal{O}_{\Delta}\left(K_{D}-p\right) \rightarrow \mathcal{O}_{\Delta}\left(K_{D}\right) \rightarrow \mathcal{O}_{p} \rightarrow 0
$$

We have $H^{1}\left(\Delta, K_{D}\right)=0$. Hence $p \in \mathrm{Bs}\left|K_{D}\right|$ if and only if $H^{1}\left(\Delta, K_{D}-p\right)^{\vee} \simeq H^{0}(\Delta$, $-D+\Delta+p) \neq 0$. Since $\mathcal{O}_{\Delta}(-\Delta) \simeq \mathcal{O}_{\Delta}(p)$, the last condition becomes $H^{0}(\Delta,-D) \neq$ 0 . Since Δ is 1-connected and $\mathcal{O}_{\Delta}(D)$ is numerically trivial, this happens if and only if $\mathcal{O}_{\Delta}(D) \simeq \mathcal{O}_{\Delta}$. Note that we have shown that the three conditions $p \in \mathrm{Bs}\left|K_{D}\right|, E \subseteq \mathrm{Bs}\left|K_{D}\right|$ and $\mathcal{O}_{\Delta}(D) \simeq \mathcal{O}_{\Delta}$ are equivalent.
(2) Consider the cohomology long exact sequence for

$$
0 \rightarrow \mathcal{O}_{D-\Delta}\left(K_{F}-\Delta\right) \rightarrow \mathcal{O}_{D}\left(K_{F}\right) \rightarrow \mathcal{O}_{\Delta}\left(K_{F}\right) \rightarrow 0
$$

We have $H^{1}\left(D, K_{F}\right)=0$, since F is a multiple fibre and $\mathcal{O}_{D}(D)$ is a non-trivial torsion on a 1-connected curve D. Therefore, $H^{0}\left(D, K_{F}\right) \rightarrow H^{0}\left(\Delta, K_{F}\right)$ is not surjective if and only if $H^{1}\left(D-\Delta, K_{F}-\Delta\right) \simeq H^{0}(D-\Delta, D)^{\vee} \neq 0$. Since $D-\Delta$ is 1-connected, we have $H^{0}(D-\Delta, D) \neq 0$ if and only if $\mathcal{O}_{D-\Delta}(D) \simeq \mathcal{O}_{D-\Delta}$.

Lemma 2.5. Let Δ be a loupe for a component $E \preceq Z_{\text {can }}$ of type (I). Put $G=$ $\operatorname{gcd}(\Delta, D-\Delta), B=\Delta-G$ and $B_{1}=D-\Delta-G$. If G and B are both non-zero, then the following hold.
(1) $G^{2}=-1, G B=G B_{1}=1$ and $\operatorname{Supp}(B) \cap \operatorname{Supp}\left(B_{1}\right)=\emptyset$.
(2) D is of multiplicity one along E, and $D-\Delta$ is the fundamental cycle on its support.
(3) If $\Delta=E+C_{1}+\cdots+C_{n-1}$ is the decomposition as in (2.3), then G is one of the maximal curves in $\left\{C_{i}\right\}_{i=1}^{n-1}$. Furthermore, G is the fundamental cycle on its support.
(4) B is the fundamental cycle on its support and $\mathcal{O}_{B-E}(D) \simeq \mathcal{O}_{B-E}$.
(5) The restriction map $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(E, K_{D}\right)$ is of rank at most one.

Proof. We have $(D-G)^{2}=G^{2}$. On the other hand, we have $(D-G)^{2}=(G+B+$ $\left.B_{1}\right)^{2}=-2-G^{2}+2 B B_{1}$ by (2.1). It follows $-G^{2}+B B_{1}=1$. Then we get $G^{2}=-1$ and $B B_{1}=0$, since $B B_{1} \geq 0$ and $G^{2}<0$. We have $G \Delta=G^{2}+G B=-1+G B \geq 0$ by the 1 -connectedness of Δ. Since $G \Delta \leq 0$, we have $G B=1$ and $G \Delta=0$. From the last, we see that $E \preceq B$ and $E \npreceq G$. We know from $B B_{1}=0$ that B and B_{1} are disjoint. Therefore, D is of multiplicity one along E. Furthermore, since $E \nprec D-\Delta$, it follows from Lemma 2.3 that $D-\Delta$ is the fundamental cycle on its support. We have $G\left(B+B_{1}\right)=2$ by (2.2) and $\Delta(D-\Delta)=1$. So $G B_{1}=1$. Since Δ and $D-\Delta$ are both 1 -connected, the condition $G B=G B_{1}=1$ shows that G, B and B_{1} are all 1-connected.

It follows from $\mathcal{O}_{\Delta}(D-\Delta) \simeq \mathcal{O}_{\Delta}(D+p)$ that $\mathcal{O}_{B}(G) \simeq \mathcal{O}_{B}(D+p)$ and $\mathcal{O}_{B-E}(G) \simeq$ $\mathcal{O}_{B-E}(D)$, since $\mathcal{O}_{B}\left(B_{1}\right) \simeq \mathcal{O}_{B}$ and $p \notin B-E$. On the other hand, it follows from $\mathcal{O}_{\Delta}(-\Delta) \simeq \mathcal{O}_{\Delta}(p)$ that $\mathcal{O}_{B}(-B) \simeq \mathcal{O}_{B}(G+p)$. We get $\mathcal{O}_{B}(-B) \simeq \mathcal{O}_{B}(D+2 p)$. This shows that $\mathcal{O}_{B}(-B)$ is nef. Hence, B is the fundamental cycle on its support. Note that we have $\mathcal{O}_{B-E}(-B) \simeq \mathcal{O}_{B-E}(G) \simeq \mathcal{O}_{B-E}(D)$.

We claim that G is the fundamental cycle on its support. To see this, let Γ be a component of G. Then $\Gamma \neq E$ and we have $0=\Delta \Gamma=G \Gamma+B \Gamma$. If Γ is a component of B, then $B \Gamma=0$ which shows $G \Gamma=0$. If Γ is not a component of B, then $B \Gamma \geq 0$ which implies $G \Gamma \leq 0$. In sum, we see that $\mathcal{O}_{G}(-G)$ is nef. Since G is 1-connected, it is the fundamental cycle on its support. Then, since $G^{2}=-1$, we can find an irreducible component G_{0} of G such that $G_{0} G=-1$ and $G \Gamma=0$ for any other components $\Gamma \prec G$. Since $G_{0} B=1$ and $\mathcal{O}_{B}(-B)$ is nef, G_{0} is not a component of B. It follows that G_{0} is a non-multiple component of Δ.

Let $\Delta=E+C_{1}+\cdots+C_{n-1}$ be the decomposition as in (2.3), where $n=-E^{2}$. Recall that we have $E C_{i}=-C_{i}^{2}=1$ for $1 \leq i \leq n-1$ and $\mathcal{O}_{C_{j}+\cdots+C_{n-1}}\left(C_{j-1}\right) \simeq \mathcal{O}_{C_{j}+\cdots+C_{n-1}}$ for $2 \leq j \leq n-1$. There exists a C_{i} which contains G_{0}. Since Δ is of multiplicity one along G_{0}, such a C_{i} is unique and, hence, C_{i} is a maximal curve in $\left\{C_{j}\right\}_{j=1}^{n-1}$.

We claim that $G=C_{i}$. This can be seen as follows. We have $G^{2}=C_{i}^{2}=-1$ and $G+C_{i} \prec D$. Hence, either $G \preceq C_{i}$ or $C_{i} \preceq G$ by Lemma 2.1. Suppose that C_{i} is a strict subcurve of G. We have $G C_{i}=-1$, because $G_{0} \preceq C_{i}$ and $\mathcal{O}_{G-G_{0}}(-G)$ is numerically trivial. Then we get $\left(G-C_{i}\right) C_{i}=0$ by $C_{i}^{2}=G C_{i}=-1$. This is absurd, because G is 1connected. Therefore, we get $G \preceq C_{i}$. We have $C_{i}^{2}=(D-\Delta)^{2}=-1$ and $C_{i}+(D-\Delta) \prec D$. Since $B_{1} \neq 0$, we have $C_{i} \preceq D-\Delta$ by Lemma 2.1. Then, since $G=\operatorname{gcd}(\Delta, D-\Delta)$ and $G \preceq C_{i}$, we conclude that $G=C_{i}$.

We have shown that $B=E+\sum_{j \neq i} C_{j}$. It follows that $\mathcal{O}_{B-E}(G) \simeq \mathcal{O}_{B-E}$, since $G=C_{i}$ and it is maximal in $\left\{C_{j}\right\}_{j=1}^{n-1}$. Then $\mathcal{O}_{B-E}(D) \simeq \mathcal{O}_{B-E}$, since we already know that $\mathcal{O}_{B-E}(G) \simeq \mathcal{O}_{B-E}(D)$.

Consider the restriction map $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(E, K_{D}\right)$. It is easy to see that its cokernel is of dimension $h^{0}\left(D-E, \mathcal{O}_{D-E}\right)-1$. Recall that $E \subseteq \mathrm{Bs}\left|K_{\Delta}\right|$. Then $h^{0}(\Delta-$ $\left.E, \mathcal{O}_{\Delta-E}\right)=n-1$ by Theorem 1.3. We have $h^{0}\left(B-E, \mathcal{O}_{B-E}\right)=n-2$ from

$$
0 \rightarrow \mathcal{O}_{B-E}(-G) \rightarrow \mathcal{O}_{\Delta-E} \rightarrow \mathcal{O}_{G} \rightarrow 0
$$

and $\mathcal{O}_{B-E}(-G) \simeq \mathcal{O}_{B-E}$. We have the exact sequence

$$
0 \rightarrow H^{0}(B-E,-D+\Delta-G) \rightarrow H^{0}\left(D-E, \mathcal{O}_{D-E}\right) \rightarrow H^{0}(D-\Delta+G, \mathcal{O})
$$

in which the last map is non-trivial. Hence

$$
h^{0}\left(D-E, \mathcal{O}_{D-E}\right)-1 \geq h^{0}(B-E,-D+\Delta-G)=h^{0}\left(B-E, \mathcal{O}_{B-E}\right)=n-2 .
$$

Since $h^{0}\left(E, K_{D}\right)=\left.\operatorname{deg} K_{D}\right|_{E}+1=-E^{2}-1=n-1$, the restriction map in question is of rank at most one.

LEMMA 2.6. Let Δ and Δ_{1} be loupes for distinct canonical fixed components E and E_{1}, respectively. Assume that $D=\Delta+\Delta_{1}-\operatorname{gcd}\left(\Delta, \Delta_{1}\right)$ and $\operatorname{gcd}\left(\Delta, \Delta_{1}\right) \neq 0$. Then the following hold.
(1) D has multiplicity one along E and E_{1}, and $E, E_{1} \prec \operatorname{gcd}\left(\Delta, \Delta_{1}\right)$,
(2) $\mathcal{O}_{D-\Delta}(D) \simeq \mathcal{O}_{D-\Delta}$ and $\mathcal{O}_{D-\Delta_{1}}(D) \simeq \mathcal{O}_{D-\Delta_{1}}$.

Proof. Put $G=\operatorname{gcd}\left(\Delta, \Delta_{1}\right), B=\Delta-G$ and $B_{1}=\Delta_{1}-G$. Then $D=\Delta+B_{1}=$ $\Delta_{1}+B$. Since $B^{2}=B_{1}^{2}=-1$ and they have no common components, it follows from Lemma 2.1 that B and B_{1} are disjoint 1-connected curves. We have $0 \geq B \Delta=B^{2}+B G=$ $-1+B G$. Since Δ is 1 -connected, we get $B G=1$ and $B \Delta=0$. Then $E \preceq G, G^{2}=-2$ and G is 1-connected. We have $\mathcal{O}_{B}(D) \simeq \mathcal{O}_{B}\left(\Delta+B_{1}\right) \simeq \mathcal{O}_{B}$. Quite similarly, $B_{1} G=1$, $B_{1} \Delta_{1}=0, E_{1} \preceq G$ and $\mathcal{O}_{B_{1}}(D) \simeq \mathcal{O}_{B_{1}}$.

Since $\mathcal{O}_{\Delta}(-\Delta) \simeq \mathcal{O}_{\Delta}(p)$ for a general point $p \in E$, restricting it to G, we have $\mathcal{O}_{G}(-G) \simeq \mathcal{O}_{G}(B+p)$. We have $\mathcal{O}_{G}\left(B_{1}\right)=\mathcal{O}_{G}(D-\Delta) \simeq \mathcal{O}_{G}(D+p)$. Restricting it to $E \prec G$, we get $E B_{1}=1$. Similarly, $\mathcal{O}_{G}(-G) \simeq \mathcal{O}_{G}\left(B_{1}+p_{1}\right), \mathcal{O}_{G}(B) \simeq \mathcal{O}_{G}\left(D+p_{1}\right)$ and $E_{1} B=1$ for a general point $p_{1} \in E_{1}$. Hence $\mathcal{O}_{G}(-G) \simeq \mathcal{O}_{G}\left(D+p+p_{1}\right)$, which shows that G is the fundamental cycle on its support. Furthermore, $\mathcal{O}_{G-E}\left(B_{1}\right)$ and $\mathcal{O}_{G-E_{1}}(B)$ are numerically trivial. We claim that $E_{1} \npreceq B$ and $E \npreceq B_{1}$. This can be seen as follows. If Δ and B_{1} have no common components, then we clearly have $E \npreceq B_{1}$. If Δ and B_{1} have a common component, then it follows from Lemma 2.5 that $E \preceq \Delta-\operatorname{gcd}\left(\Delta, B_{1}\right)$, that is, $E \npreceq B_{1}$. Similarly, we get $E_{1} \npreceq B$. In particular, we see that D is of multiplicity one along both E and E_{1}.
3. Rationality and ellipticity. Let (V, o) be (a germ of) a normal surface singularity and $\pi: X \rightarrow V$ its resolution. The arithmetic genus of (V, o) is defined as $p_{a}(V, o):=$ $\sup \left\{p_{a}(\Gamma) ; 0 \prec \Gamma, \operatorname{Supp}(\Gamma) \subseteq \pi^{-1}(o)\right\}$. We call (V, o) a rational (resp. weakly elliptic) singular point when $p_{a}(V, o)=0$ (resp. 1). Let Z be the fundamental cycle on $\pi^{-1}(o)$. It is known that $p_{a}(Z)=0$ (resp. 1) implies that (V, o) is rational (resp. weakly elliptic). See [2, Theorem 3], [17, p. 443] and [12, Corollary 4.2] for the detail.

In this section, we shall show our first main result:
THEOREM 3.1. Let F be a fibre in a relatively minimal fibred surface of genus $g \geq 2$. Then the following hold.
(1) When F is a non-multiple fibre, $\mathrm{Bs}\left|K_{F}\right|$ supports at most exceptional sets of rational singular points.
(2) When F is a multiple fibre, $\mathrm{Bs}\left|K_{F}\right|$ supports at most exceptional sets of rational or weakly elliptic singular points.

This theorem has an obvious corollary.
COROLLARY 3.2. Let F be a fibre in a relatively minimal fibred surface of genus $g \geq 2$, and let Z be an arbitrary curve with $\operatorname{Supp}(Z) \subseteq \mathrm{Bs}\left|K_{F}\right|$. Then $\chi\left(Z, \mathcal{O}_{Z}\right) \geq 0$. If F is a non-multiple fibre, then $\chi\left(Z, \mathcal{O}_{Z}\right) \geq 1$.

In order to show Theorem 3.1, we need the following lemma which is a version of the main result in [8] applied to the present situation:

LEMMA 3.3. Let D be the numerical cycle of the fibre F in a relatively minimal fibred algebraic surface of genus $g \geq 2$. Let L be a line bundle on D such that $L-K_{F}$ is nef and Γ a strict subcurve of D. If Γ is the fundamental cycle on its support and if the restriction map $H^{0}(D, L) \rightarrow H^{0}(\Gamma, L)$ is surjective, then $H^{1}\left(Z, \mathcal{O}_{Z}\right)=0$ holds for any curve Z with support in $\mathrm{Bs}|L| \cap \operatorname{Supp}(\Gamma)$.

Let $\mathcal{E}=\bigcup_{i=1}^{\nu} E_{i}$ be a connected bunch of canonical fixed components $E_{i} \preceq Z_{\text {can }}$. We denote by $Z_{\mathcal{E}}$ the numerical cycle on \mathcal{E}. By Lemma 1.4, we have $Z_{\mathcal{E}} \preceq D$.

We shall show that $h^{1}\left(Z_{\mathcal{E}}, \mathcal{O}_{Z_{\mathcal{E}}}\right) \leq 1$ with several lemmas.
LEMMA 3.4. Let $\mathcal{E}=\bigcup_{i} E_{i}$ and $Z_{\mathcal{E}}$ be as above. If each E_{i} is a multiple component of D, then $h^{1}\left(Z_{\mathcal{E}}, \mathcal{O}_{Z_{\mathcal{E}}}\right)=0$.

PROOF. Since D is of multiplicity one along a canonical fixed component of type (II), all the E_{i} 's are of type (I) by the assumption. We take a loupe Δ_{i} for each E_{i}. Then, for any two loupes Δ_{i} and Δ_{j}, we have either $\operatorname{Supp}\left(\Delta_{i}\right) \cap \operatorname{Supp}\left(\Delta_{j}\right)=\emptyset$ or $\Delta_{i} \preceq \Delta_{j}$ or $\Delta_{j} \preceq \Delta_{i}$. This can be seen as follows. By Lemma 2.1, we have only to exclude the possibilities that $D=\Delta_{i}+\Delta_{j}$ and $D=\Delta_{i}+\Delta_{j}-\operatorname{gcd}\left(\Delta_{i}, \Delta_{j}\right)$. In both cases, however, we already know from Lemmas 2.5 and 2.6 that D should be of multiplicity one along E_{i} and E_{j}, which is forbidden. Then, since \mathcal{E} is connected, we can find the biggest loupe, say Δ, in $\left\{\Delta_{i}\right\}$. Let E be the canonical fixed component whose loupe is Δ.

If the restriction map $H^{0}\left(D, K_{F}\right) \rightarrow H^{0}\left(\Delta, K_{F}\right)$ is surjective, then we get $h^{1}\left(Z_{\mathcal{E}}, \mathcal{O}_{Z_{\mathcal{E}}}\right)$ $=0$ by Lemma 3.3 applied to $(\Gamma, L)=\left(\Delta, K_{F}\right)$. This allows us to assume that F is a multiple fibre by Lemma 2.1, and that $H^{0}\left(D, K_{F}\right) \rightarrow H^{0}\left(\Delta, K_{F}\right)$ is not surjective. Then $\mathcal{O}_{D-\Delta}(D) \simeq \mathcal{O}_{D-\Delta}$ by Lemma 2.4.

Assume first that $E \subseteq \mathrm{Bs}\left|K_{D}\right|$. Then $\mathcal{O}_{\Delta}(D) \simeq \mathcal{O}_{\Delta}$ by Lemma 2.4. Since Δ is the biggest, we have $\Delta_{i} \preceq \Delta$ and it follows $\mathcal{O}_{\Delta_{i}}(D) \simeq \mathcal{O}_{\Delta_{i}}$ for any i. Again by Lemma 2.4, this implies that $E_{i} \subseteq \mathrm{Bs}\left|K_{D}\right|$. Therefore, $\mathcal{E} \subseteq \mathrm{Bs}\left|K_{D}\right|$. Since $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(\Delta, K_{D}\right)$ is surjective by Lemma 2.1, we can apply Lemma 3.3 to $(\Gamma, L)=\left(\Delta, K_{D}\right)$ and obtain $h^{1}\left(Z_{\mathcal{E}}, \mathcal{O}_{Z_{\mathcal{E}}}\right)=0$.

Assume next that $E \nsubseteq \mathrm{Bs}\left|K_{D}\right|$. Then $\mathcal{O}_{\Delta}(D) \nsubseteq \mathcal{O}_{\Delta}$ by Lemma 2.4. Since $\mathcal{O}_{D-\Delta}(D) \simeq$ $\mathcal{O}_{D-\Delta}$, we cannot have $\Delta \preceq D-\Delta$. Since E is a multiple component of D by the assumption, we must have $E \preceq \operatorname{gcd}(\Delta, D-\Delta)$. However, Lemma 2.5 forbids it.

Lemma 3.5. Let $\mathcal{E}=\bigcup_{i} E_{i}$ and $Z_{\mathcal{E}}$ be as above. Assume that one of the following conditions holds when F is a multiple fibre:
(1) There exists a component E_{i} along which D is of multiplicity one and $\mathcal{O}_{D-E_{i}}(D) \simeq$ $\mathcal{O}_{D-E_{i}}$.
(2) Every E_{i} along which D is of multiplicity one is a fixed component of $\left|K_{D}\right|$. Then $h^{1}\left(Z_{\mathcal{E}}, \mathcal{O}_{Z_{\mathcal{E}}}\right) \leq 1$ with the equality holding only when F is a multiple fibre.

Proof. Recall that $Z_{\mathcal{E}} \preceq D$. We may assume that D is of multiplicity one along some E_{i} 's by Lemma 3.4. We denote by A the sum of all such components in \mathcal{E}.

Suppose first that $\operatorname{Supp}(A)=\mathcal{E}$. Then we have $Z_{\mathcal{E}}=A$ by $Z_{\mathcal{E}} \preceq D$. We know that $H^{0}\left(F, K_{F}\right) \rightarrow H^{0}\left(A, K_{F}\right)$ is the zero map. Since $H^{0}\left(F, K_{F}\right) \rightarrow H^{0}\left(D, K_{F}\right)$ is surjective and $h^{0}\left(D, K_{F}\right) \neq 0$, we see that $A \neq D$. It follows from Theorem 1.3 that we have $p_{a}\left(Z_{\mathcal{E}}\right)=0$ when F is a non-multiple fibre, and $p_{a}\left(Z_{\mathcal{E}}\right) \leq 1$ when F is a multiple fibre. Since $h^{0}\left(Z_{\mathcal{E}}, \mathcal{O}_{Z_{\mathcal{E}}}\right)=1$, we get $h^{1}\left(Z_{\mathcal{E}}, \mathcal{O}_{Z_{\mathcal{E}}}\right)=p_{a}\left(Z_{\mathcal{E}}\right) \leq 1$.

Next, suppose that $\operatorname{Supp}(A)$ is strictly smaller than \mathcal{E}. Then $Z_{\mathcal{E}}-A$ consists of canonical fixed components of type (I) along which D is of multiplicity at least two. Let $Z_{\mathcal{E}}-A=\Gamma_{1}+$ $\cdots+\Gamma_{k}$ be the decomposition into connected components. We claim that $h^{1}\left(\Gamma_{i}, \mathcal{O}_{\Gamma_{i}}\right)=0$ for $i=1, \ldots, k$. This can be seen as follows. Let Z_{i} be the numerical cycle on $\operatorname{Supp}\left(\Gamma_{i}\right)$. We have $h^{1}\left(Z_{i}, \mathcal{O}_{Z_{i}}\right)=0$ by Lemma 3.4. Then we also have $h^{1}\left(\Gamma_{i}, \mathcal{O}_{\Gamma_{i}}\right)=0$ by a result of Artin, since we now know that Z_{i} is the fundamental cycle of a rational singular point (see, [1] and [2]).

We have seen that $H^{1}\left(Z_{\mathcal{E}}-A, \mathcal{O}_{Z_{\mathcal{E}}-A}\right)=0$. Let η be a non-zero section of $\mathcal{O}\left(\left[D-Z_{\mathcal{E}}\right]\right)$ defining $D-Z_{\mathcal{E}}$. Since $\operatorname{gcd}\left(A, D-Z_{\mathcal{E}}\right)=0$, we see that $\left.\eta\right|_{A}$ is non-zero and defines an injection $\mathcal{O}_{A}\left(-\left(D-Z_{\mathcal{E}}\right)\right) \hookrightarrow \mathcal{O}_{A}$. We consider the commutative diagram

where the vertical maps are injections induced by η and the horizontal maps are the restriction maps.

We first examine the case that F is a non-multiple fibre. Then $D=F$ and the map at the bottom row is the zero map by $A \preceq Z_{\text {can }}$. It follows that the map at the top row is also zero. Since the kernel of $H^{0}\left(Z_{\mathcal{E}}, K_{Z_{\mathcal{E}}}\right) \rightarrow H^{0}\left(A, K_{Z_{\mathcal{E}}}\right)$ is isomorphic to $H^{0}\left(Z_{\mathcal{E}}-A, K_{Z_{\mathcal{E}}-A}\right) \simeq$ $H^{1}\left(Z_{\mathcal{E}}-A, \mathcal{O}_{Z_{\mathcal{E}}-A}\right)^{\vee}$, which is zero as we saw above, we get $H^{0}\left(Z_{\mathcal{E}}, K_{Z_{\mathcal{E}}}\right)=0$. By duality, $H^{1}\left(Z_{\mathcal{E}}, \mathcal{O}_{Z_{\mathcal{E}}}\right)=0$.

We next consider the case that F is a multiple fibre. We shall show that the rank of the restriction map $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(A, K_{D}\right)$ is at most one. The assertion is obvious when (2) holds. So, we assume (1) holds. Let E be a component of A satisfying $\mathcal{O}_{D-E}(D) \simeq \mathcal{O}_{D-E}$. Then $\mathcal{O}_{D-A}(D) \simeq \mathcal{O}_{D-A}$. Since we know that $H^{0}\left(D, K_{F}\right) \rightarrow H^{0}\left(A, K_{F}\right)$ is the zero map, we have $h^{0}(D-A, D)=p_{a}(A)+A(D-A)-1$, that is, $h^{0}\left(D-A, \mathcal{O}_{D-A}\right)=p_{a}(A)-A^{2}-1$. Since A is a strict subcurve of D, we have $h^{1}\left(A, K_{D}\right)=0$. Then the dimension of the
cokernel of $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(A, K_{D}\right)$ is $h^{1}\left(D-A, K_{D-A}\right)-h^{1}\left(D, K_{D}\right)=h^{0}(D-$ $\left.A, \mathcal{O}_{D-A}\right)-1=p_{a}(A)-A^{2}-2$. By the Riemann-Roch theorem, we have $h^{0}\left(A, K_{D}\right)=$ $\operatorname{deg} K_{A}+A(D-A)+1-p_{a}(A)=p_{a}(A)-A^{2}-1$. This shows that the rank of $H^{0}\left(D, K_{D}\right) \rightarrow$ $H^{0}\left(A, K_{D}\right)$ is one. Then the rank of $H^{0}\left(Z_{\mathcal{E}}, K_{Z_{\mathcal{E}}}\right) \rightarrow H^{0}\left(A, K_{Z_{\mathcal{E}}}\right)$ is at most one by (3.1) and we get $h^{1}\left(Z_{\mathcal{E}}, \mathcal{O}_{Z_{\mathcal{E}}}\right) \leq 1$ as in the previous case.

Recall that any canonical fixed component of type (II) is as in (1) of Lemma 3.5.
Lemma 3.6. Let F be a multiple fibre. Let $\mathcal{E}=\bigcup E_{i}$ be a connected bunch of canonical fixed components of type (I). Assume that there exists a component E of \mathcal{E} along which D is of multiplicity one, $E \not \subset \mathrm{Bs}\left|K_{D}\right|$ and $\mathcal{O}_{D-E}(D) \nsucceq \mathcal{O}_{D-E}$. Then $h^{1}\left(Z_{\mathcal{E}}, \mathcal{O}_{Z_{\mathcal{E}}}\right) \leq 1$ holds for the numerical cycle $Z_{\mathcal{E}}$ on \mathcal{E}.

Proof. Let Δ be a loupe for E. Then $\mathcal{O}_{\Delta}(D) \not \approx \mathcal{O}_{\Delta}$ by Lemma 2.4, since $E \nsubseteq$ $\mathrm{Bs}\left|K_{D}\right|$. We have $\Delta \npreceq D-\Delta$, since D is of multiplicity one along E. Assume that Δ has no common components with $D-\Delta$. Since $\mathcal{O}_{\Delta}(D-\Delta) \simeq \mathcal{O}_{\Delta}(D+p)$ for a general point $p \in E$, we see that $D-\Delta$ meets Δ at a point $q \in E$ which is a non-singular point of Δ. Then, since $\mathcal{O}_{\Delta}(D-\Delta) \simeq \mathcal{O}_{\Delta}(q)$, we get $\mathcal{O}_{\Delta}(D) \simeq \mathcal{O}_{\Delta}(q-p)$. However, we already know that p and q are linearly equivalent on Δ. So we get $\mathcal{O}_{\Delta}(D) \simeq \mathcal{O}_{\Delta}$, which is inadequate. Hence Δ has a common component with $D-\Delta$.

Let $\Delta=E+C_{1}+\cdots+C_{n-1}$ be the decomposition as in (2.3). We put $C_{0}=D-\Delta$. Then, for $0 \leq i<j<n, \mathcal{O}_{C_{j}}\left(-C_{i}\right)$ is numerically trivial and it follows from Lemma 1.4 that either $\operatorname{Supp}\left(C_{i}\right) \cap \operatorname{Supp}\left(C_{j}\right)=\emptyset$ or $C_{j} \prec C_{i}$. Then C_{0} is a maximal element in $\left\{C_{i}\right\}_{i=0}^{n-1}$ and $\operatorname{Supp}\left(C_{0}\right)$ is a connected component of $\operatorname{Supp}(D-E)$. This gives us a decomposition $D-E=D_{1}+D_{2}$ with $\operatorname{Supp}\left(D_{1}\right) \cap \operatorname{Supp}\left(D_{2}\right)=\emptyset$, if D_{1} denotes the sum of all the C_{i} 's such that $C_{i} \preceq C_{0}$. By Lemma 2.5, we have $\mathcal{O}_{D_{2}}(D) \simeq \mathcal{O}_{D_{2}}$. Since D_{1} is disjoint from D_{2}, we have $\mathcal{O}_{D_{1}}(D) \not \not \not \mathcal{O}_{D_{1}}$ by $\mathcal{O}_{D-E}(D) \not \not \not \mathcal{O}_{D-E}$.

We denote by $\left\{C_{i_{\alpha}}\right\}_{\alpha=1}^{l}$ the set of all maximal curves in $\left\{C_{i}\right\}_{i=0}^{n-1}$. Then the $C_{i_{\alpha}}$'s are mutually disjoint and $\bigcup_{\alpha=1}^{l} \operatorname{Supp}\left(C_{i_{\alpha}}\right)$ is nothing but the decomposition of $\operatorname{Supp}(D-E)$ into its connected components. Furthermore, we have $C_{i_{\alpha}} \leq D_{2}$ unless $C_{i_{\alpha}}=C_{0}$. We claim that $\mathcal{O}_{D-C_{i \alpha}}(D) \nsucceq \mathcal{O}_{D-C_{i \alpha}}$. This can be seen as follows. If $C_{i_{\alpha}}=C_{0}=D-\Delta$, then the assertion is nothing but the assumption $\mathcal{O}_{\Delta}(D) \nsucceq \mathcal{O}_{\Delta}$. For the other $C_{i_{\alpha}}$, we have $D_{1} \preceq D-C_{i_{\alpha}}$ and, hence, $\mathcal{O}_{D-C_{i \alpha}}(D) \simeq \mathcal{O}_{D-C_{i \alpha}}$ immediately contradicts $\mathcal{O}_{D_{1}}(D) \nsucceq \mathcal{O}_{D_{1}}$. Therefore, $\mathcal{O}_{D-C_{i \alpha}}(D) \nsimeq \mathcal{O}_{D-C_{i \alpha}}$ for $\alpha=1,2, \ldots, l$.

Now, we have $\mathcal{E}-E \subseteq \bigcup_{\alpha=1}^{l} \operatorname{Supp}\left(C_{i_{\alpha}}\right)$, since D is of multiplicity one along E. Put $\mathcal{E}_{\alpha}=(\mathcal{E}-E) \bigcap \operatorname{Supp}\left(C_{i_{\alpha}}\right)$. Note that, when $\mathcal{E}_{\alpha} \neq \emptyset, \mathcal{E}_{\alpha}$ is connected, since so is \mathcal{E} and $E C_{i_{\alpha}}=1$. Let Z_{α} be the numerical cycle on \mathcal{E}_{α}. Since $C_{i_{\alpha}}$ is the fundamental cycle on its support, we have $Z_{\alpha} \preceq C_{i_{\alpha}}$ by Lemma 1.4. As we saw above, we have $\mathcal{O}_{D-C_{i_{\alpha}}}(D) \nsucceq \mathcal{O}_{D-C_{i_{\alpha}}}$. Since $C_{i_{\alpha}}^{2}=-1$, we see that $D-C_{i_{\alpha}}$ is 1-connected. So, we can show that the restriction map $H^{0}\left(D, K_{F}\right) \rightarrow H^{0}\left(C_{i_{\alpha}}, K_{F}\right)$ is surjective as in Lemma 2.4. Then, by Lemma 3.3 applied to $(\Gamma, L)=\left(C_{i_{\alpha}}, K_{F}\right)$, we get $H^{1}\left(Z_{\alpha}, \mathcal{O}_{Z_{\alpha}}\right)=0$ and see that Z_{α} is the fundamental cycle of a rational singular point. This is sufficient to imply that $H^{1}\left(Z_{\mathcal{E}}-E, \mathcal{O}_{Z_{\mathcal{E}}-E}\right)=0$. Then,
because the restriction map $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(E, K_{D}\right)$ is of rank at most one by Lemma 2.5, we can show that $h^{1}\left(Z_{\mathcal{E}}, \mathcal{O}_{Z_{\mathcal{E}}}\right) \leq 1$ by using (3.1) as in Lemma 3.5.

Proof of Theorem 3.1. We have shown that $p_{a}\left(Z_{\mathcal{E}}\right)=h^{1}\left(Z_{\mathcal{E}}, \mathcal{O}_{Z_{\mathcal{E}}}\right) \leq 1$ for the numerical cycle $Z_{\mathcal{E}}$ on a given connected bunch \mathcal{E} of canonical fixed components. Since $p_{a}(D) \geq 2$, we see that \mathcal{E} is strictly smaller than $\operatorname{Supp}(D)$. Therefore, the intersection form is negative definite on \mathcal{E}, and we obtain a normal surface singularity by contracting \mathcal{E}. As we already remarked at the begining of the section, by well-known results due to Artin [2] and Wagreich [17], see also [12], rational and (weakly) elliptic singularities are characterized by their fundamental genera, that is, the arithmetic genus of the fundamental cycle. Therefore, by contracting \mathcal{E}, we obtain a rational singularity when $p_{a}\left(Z_{\mathcal{E}}\right)=0$, and an elliptic singularity when $p_{a}\left(Z_{\mathcal{E}}\right)=1$. Note that we have $p_{a}\left(Z_{\mathcal{E}}\right)=1$ only when F is a multiple fibre. Hence \mathcal{E} contracts to a rational singular point if F is non-multiple.
4. Further remarks on the fixed part. We give a few comments on $Z_{\text {can }}$ detected from the considerations in the previous sections.

Lemma 4.1. Let \mathcal{E} be a connected bunch of canonical fixed components. If it supports an exceptional set of a rational double point, then the dual graph of \mathcal{E} is of Dynkin type A or D.

Proof. We may assume that it is not of type A . Let \mathcal{E}^{\prime} be the subset of \mathcal{E} consisting of all the multiple components of $Z_{\mathcal{E}}$. Then \mathcal{E}^{\prime} is connected and any component of \mathcal{E}^{\prime} is also a multiple component of D, since $Z_{\mathcal{E}} \prec D$. We can find a loupe Δ for some $E \subset \mathcal{E}^{\prime}$ such that $\mathcal{E}^{\prime} \subset \operatorname{Supp}(\Delta)$ as in the proof of Lemma 3.4. Let Z denote the fundamental cycle on \mathcal{E}^{\prime}. We know that $Z \prec \Delta$ and Δ is of multiplicity one along E. Furthermore, we have $-1=E \Delta=E Z+E(\Delta-Z) \geq E Z$. Then Z has to be of type A, because otherwise any non-multiple component E^{\prime} of Z satisfies $Z E^{\prime}=0$ in view of the A-D-E classification. This happens only when the dual graph of \mathcal{E} is of type D .

Proposition 4.2. Suppose that $\left|K_{F}\right|$ has a fixed component. Then the following hold.
(1) The numerical cycle D is not 3 -connected. If it is 2-connected, then F is a multiple fibre and the canonical fixed part consists of (-2)-curves of type (II) each of whose connected component forms a Dynkin diagram of type A .
(2) A canonical fixed component E with $p_{a}(E)=1$ is unique if exists. It is either a non-singular elliptic curve or a rational curve with a node. Furthermore, the other canonical fixed components, if exist, are of type (I).
(3) If a canonical fixed component of type (II) exists, then D is of hyperelliptic type.

Proof. (1) If there is a canonical fixed component of type (I), then its loupe Δ satisfies $\Delta^{2}=-1$ and D is not 2 -connected. So we may assume that any canonical fixed components are of type (II). Let Z be the fixed part of $\left|K_{F}\right|$. Then it is a reduced curve, since D is of multiplicity one along any component of type (II) and $Z \prec D$. We may assume that
the support of Z is connected. Then, as we showed in the proof of Lemma 3.5, the restriction map $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(Z, K_{D}\right)$ is of rank one. Therefore, if there exists a component $E \preceq Z$ with $\left.\operatorname{deg} K_{D}\right|_{E}>0$, then $\left|K_{D}\right|$ should have a base point, which implies that D is not 2 -connected by Theorem 1.2. This allows us to assume that $\left.\operatorname{deg} K_{D}\right|_{Z}=0$. Then Z consists of (-2)-curves, which in particular shows that D is not 3 -connected. Since $p_{a}(D) \geq 2$, we have $Z^{2}<0$. Now, since the fundamental cycle on the support of Z, which is Z itself in the present case, is reduced, it must be contracted to a rational double point of type A_{n} for some n.
(2) Let $E \preceq Z_{\text {can }}$ be a component such that $p_{a}(E)=1$. Then it is of type (II) and is a non-multiple component of D. Note that the image of $H^{0}\left(D, K_{F}\right) \rightarrow H^{0}\left(E, K_{F}\right)$ contains that of $H^{0}\left(E, K_{F}-(D-E)\right) \rightarrow H^{0}\left(E, K_{F}\right)$. Hence we have $H^{0}\left(E, K_{F}-(D-E)\right)=0$. Since $\mathcal{O}_{E}\left(K_{F}-(D-E)\right) \simeq \mathcal{O}_{E}(-D)$, we see that $\mathcal{O}_{E}(D) \nsucceq \mathcal{O}_{E}$. If E_{1} is another canonical fixed component of type (II), then we have $\mathcal{O}_{D}(D) \simeq \mathcal{O}_{D}\left(q_{1}-p_{1}\right)$ with two points $p_{1}, q_{1} \in$ E_{1} and we cannot have $\mathcal{O}_{E}(D) \not \not \mathcal{O}_{E}$. Therefore, there are no other type (II) components. Furthermore, by $\mathcal{O}_{E}(D) \not \not \mathcal{O}_{E}$, we see that E is not simply connected. Hence E has a node if it is singular.
(3) Let E be a component of type (II). Then we can find distinct pairs of points (p, p^{\prime}) and $\left(q, q^{\prime}\right)$ on E such that $\mathcal{O}_{D}(D) \simeq \mathcal{O}_{D}\left(p^{\prime}-p\right) \simeq \mathcal{O}_{D}\left(q^{\prime}-q\right)$. We have $\mathcal{O}_{D}\left(p+q^{\prime}\right) \simeq$ $\mathcal{O}_{D}\left(q+p^{\prime}\right)$, which gives us a base-point-free g_{2}^{1} on D. Hence D is of hyperelliptic type.

We study the decomposition of $Z_{\text {can }}$ especially when F is a multiple fibre. Recall that, by Theorem 1.5 , it has the property that $p_{a}\left(Z^{\prime}\right) \leq 1$ for any subcurve $Z^{\prime} \leq Z_{\text {can }}$. The following lemma can be found in [9, Lemma 5.6].

LEMmA 4.3. Let C be a curve such that $p_{a}\left(C^{\prime}\right) \leq 1$ holds for any $0 \prec C^{\prime} \preceq C$. Assume that $p_{a}(C)=1$. Then C is 0 -connected and decomposes as $C=\Gamma_{1}+\cdots+\Gamma_{n}$, where each Γ_{i} is a chain-connected curve with $p_{a}\left(\Gamma_{i}\right)=1$ and $\mathcal{O}_{\Gamma_{j}}\left(-\Gamma_{i}\right)$ is numerically trivial for $i<j$. In particular, $\Gamma_{i} \Gamma_{j}=0$ and, either $\Gamma_{j} \preceq \Gamma_{i}$ or $\operatorname{Supp}\left(\Gamma_{i}\right) \cap \operatorname{Supp}\left(\Gamma_{j}\right)=\emptyset$ for $i<j$. Furthermore, $h^{0}\left(C, \mathcal{O}_{C}\right) \leq n$ with equality holding only when $\mathcal{O}_{\Gamma_{i}+\cdots+\Gamma_{n}}\left(-\Gamma_{i-1}\right)$ is trivial for $2 \leq i \leq n$.

The following can be found in [11, Lemma 1.6].
Lemma 4.4. Let L be a line bundle on a curve C such that $\left.\operatorname{deg} L\right|_{C^{\prime}} \geq 2 p_{a}\left(C^{\prime}\right)-2$ holds for any subcurve $C^{\prime} \preceq C$. If $H^{1}(C, L) \neq 0$, then there exists a subcurve $\Gamma \preceq C$ such that $\mathcal{O}_{\Gamma}(L) \simeq \mathcal{O}_{\Gamma}\left(K_{\Gamma}\right)$ and $h^{0}\left(\Gamma, \mathcal{O}_{\Gamma}\right)=1$.

PROPOSITION 4.5. Let C be a curve such that $p_{a}\left(C^{\prime}\right) \leq 1$ for any $0 \prec C^{\prime} \leq C$. If $h^{1}\left(C, \mathcal{O}_{C}\right) \neq 0$, then C decomposes as $C=C_{1}+\cdots+C_{k}+\Gamma$, where
(1) C_{i} is a 0 -connected curve with $p_{a}\left(C_{i}\right)=1$ for $1 \leq i \leq k$,
(2) $\mathcal{O}_{C_{j}}\left(-C_{i}\right)$ is nef of positive degree and $C_{j} \preceq C_{i}$ for $i<j$,
(3) $h^{1}\left(C_{1}, \mathcal{O}_{C_{1}}\right)=h^{1}\left(C, \mathcal{O}_{C}\right), h^{1}\left(C_{i}, \mathcal{O}_{C_{i}}\right)=h^{1}\left(C-\sum_{j=1}^{i-1} C_{j}\right.$, $\left.\mathcal{O}\right)$ for $2 \leq i \leq k$, and
(4) either $\Gamma=0$ or Γ is a curve with $h^{1}\left(\Gamma, \mathcal{O}_{\Gamma}\right)=0$ and $\mathcal{O}_{\Gamma}\left(-C_{i}\right)$ is nef for $1 \leq i \leq k$.

Proof. By the assumption, we can apply Lemma 4.4 to any nef line bundle on C. By Lemma 4.4 applied to $L=\mathcal{O}_{C}$, there exists a subcurve of arithmetic genus one. Let C_{1} be a maximal subcurve of C with $p_{a}\left(C_{1}\right)=1$. It is 0 -connected by Lemma 4.3. If $C_{1}=C$, then we stop with $k=1$ and $\Gamma=0$. So, we assume that $C_{1} \neq C$.

Take any curve $A \preceq C-C_{1}$. By the maximality of C_{1}, we have $0 \geq p_{a}\left(A+C_{1}\right)=$ $p_{a}(A)+p_{a}\left(C_{1}\right)-1+A C_{1}=p_{a}(A)+A C_{1}$. If $h^{0}\left(A, \mathcal{O}_{A}\right)=1$, then $p_{a}(A) \geq 0$ and we get $A C_{1} \leq 0$. In particular, we have $A C_{1} \leq 0$ for any irreducible component $A \leq C-C_{1}$. Therefore, $-C_{1}$ is nef on $C-C_{1}$. We also remark that $p_{a}(A) \leq 0$ holds when $A C_{1}=0$.

We claim that $h^{1}\left(C, \mathcal{O}_{C}\right)=h^{1}\left(C_{1}, \mathcal{O}_{C_{1}}\right)$. To see this, consider the cohomology long exact sequence for

$$
0 \rightarrow \mathcal{O}_{C-C_{1}}\left(-C_{1}\right) \rightarrow \mathcal{O}_{C} \rightarrow \mathcal{O}_{C_{1}} \rightarrow 0
$$

Assume that $H^{1}\left(C-C_{1},-C_{1}\right) \neq 0$. It follows from Lemma 4.4 applied to $L=\mathcal{O}_{C-C_{1}}\left(-C_{1}\right)$ that there exists a curve $B \preceq C-C_{1}$ with $h^{0}\left(B, \mathcal{O}_{B}\right)=1$ and $\mathcal{O}_{B}\left(-C_{1}\right) \simeq \mathcal{O}_{B}\left(K_{B}\right)$. Note that $\mathcal{O}_{B}\left(-C_{1}\right)$ is numerically trivial, because it is nef while $\operatorname{deg} K_{B} \leq 0$. It follows that $B C_{1}=0$ and $p_{a}(B)=1$, which is impossible as remarked above. Therefore, $h^{1}(C-$ $\left.C_{1},-C_{1}\right)=0$ and we get $h^{1}\left(C_{1}, \mathcal{O}_{C_{1}}\right)=h^{1}\left(C, \mathcal{O}_{C}\right)$.

If $h^{1}\left(C-C_{1}, \mathcal{O}_{C-C_{1}}\right)=0$, we stop by putting $\Gamma=C-C_{1}$. If $h^{1}\left(C-C_{1}, \mathcal{O}_{C-C_{1}}\right) \neq 0$, then we repeat the above argument with $C-C_{1}$ instead of C. If we let C_{2} be a maximal subcurve of $C-C_{1}$ with $p_{a}\left(C_{2}\right)=1$, then $-C_{2}$ is nef on $C-C_{1}-C_{2}$ and $h^{1}\left(C-C_{1}, \mathcal{O}_{C-C_{1}}\right)=$ $h^{1}\left(C_{2}, \mathcal{O}_{C_{2}}\right)$. Now, by an obvious inductive argument, we can find curves C_{i} with $p_{a}\left(C_{i}\right)=1$ and $h^{1}\left(C_{i}, \mathcal{O}_{C_{i}}\right)=h^{1}\left(C-\sum_{j=1}^{i-1} C_{j}, \mathcal{O}\right)$ for $i=1, \ldots, k$, until we get $H^{1}\left(\Gamma, \mathcal{O}_{\Gamma}\right)=0$ for $\Gamma=C-\sum_{i=1}^{k} C_{i}$.

We claim that $C_{j} \preceq C_{i}$ when $i<j$. Recall that $-C_{i}$ is nef on C_{j}. But we cannot have $C_{i} C_{j}=0$, since $p_{a}\left(C_{j}\right)=1$. Hence $C_{i} C_{j}<0$ and we see that C_{i} and C_{j} have a common component. Put $G=\operatorname{gcd}\left(C_{i}, C_{j}\right)$ and $B_{i}=C_{i}-G, B_{j}=C_{j}-G$. Assume that $B_{j} \neq 0$. We have $B_{j} G \geq 0$, since C_{j} is 0 -connected. On the other hand, since $-C_{i}$ is nef on C_{j}, we get $0 \geq C_{i} B_{j}=B_{i} B_{j}+G B_{j} \geq G B_{j}$. Hence $G B_{j}=B_{i} B_{j}=0$, implying that $C_{i} B_{j}=0$. Then one should have $p_{a}\left(B_{j}\right) \leq 0$. This leads us to a contradiction, because we would have $p_{a}(G) \geq 2$ from $1=p_{a}\left(C_{j}\right)=p_{a}(G)+p_{a}\left(B_{j}\right)-1+G B_{j}$. Therefore, $B_{j}=0$ and $C_{j} \preceq$ C_{i}.

Let Z be a subcurve of $Z_{\text {can }}$ such that $\mathcal{E}=\operatorname{Supp}(Z)$ is connected. We denote by $Z_{\mathcal{E}}$ the fundamental cycle on \mathcal{E}. Then $Z_{\mathcal{E}} \prec D$. Though we do not know whether $Z_{\mathcal{E}}$ is a subcurve of Z, we shall show that the "essential part" of $Z_{\mathcal{E}}$ is in fact a subcurve of Z when $H^{1}\left(Z, \mathcal{O}_{Z}\right) \neq 0$. This can be seen as follows. Assume that $h^{1}\left(Z, \mathcal{O}_{Z}\right) \neq 0$. Let $Z=$ $C_{1}+\cdots+C_{k}+\Gamma$ be the decomposition as in Proposition 4.5. Then we have $p_{a}\left(C_{i}\right)=1$ for each i. If $C_{i}=\Gamma_{i, 1}+\cdots+\Gamma_{i, n_{i}}$ denotes the decomposition as in Lemma 4.3, then $\mathcal{O}_{\Gamma_{i, j}}\left(-Z_{\mathcal{E}}\right)$ is nef. Since $\Gamma_{i, j}$ is chain-connected, we have $\Gamma_{i, j} \leq Z_{\mathcal{E}}$ by Lemma 1.4. Since $1=p_{a}\left(\Gamma_{i, j}\right) \leq p_{a}\left(Z_{\mathcal{E}}\right) \leq 1$, we get $p_{a}\left(\Gamma_{i, j}\right)=p_{a}\left(Z_{\mathcal{E}}\right)=1$. Hence every $\Gamma_{i, j}$ contains the
minimal model Z_{0} of $Z_{\mathcal{E}}$ (see $[9, \S 3]$), which is the fundamental cycle of a minimally elliptic singularity (cf. [12]) in the present case. Then $Z_{0} \preceq \Gamma_{i, n_{i}} \prec \Gamma_{i, n_{i}-1} \prec \cdots \prec \Gamma_{i, 1} \preceq Z_{\mathcal{E}}$ for each $i, 1 \leq i \leq k$. Recall that there exists a reduced subcurve A of $Z_{\mathcal{E}}$ along which D is of multiplicity one, $H^{0}\left(D, K_{D}\right) \rightarrow H^{0}\left(A, K_{D}\right)$ is of rank one and $H^{1}\left(Z_{\mathcal{E}}-A, \mathcal{O}\right)=0$. The last condition implies that there exists an irreducible component E of A satisfying $E \preceq Z_{0}$. Hence, Z is of multiplicity at least $\sum_{i=1}^{k} n_{i}$ along E. Since $\left(\sum_{i=1}^{k} n_{i}\right) Z_{0} \preceq Z \prec F=m D$, we have $\sum_{i=1}^{k} n_{i} \leq m$ by comparing the respective multiplicities along E. Since $p_{a}\left(C_{1}\right)=1$ and $H^{0}\left(F, K_{F}\right) \rightarrow H^{0}\left(C_{1}, K_{F}\right)$ is zero, it follows from Theorem 1.5 that $F-C_{1}$ contains a positive multiple of D. Then $n_{1} Z_{0} \preceq C_{1} \preceq(m-1) D$, which gives us $n_{1} \leq m-1$. By Proposition 4.5 and Lemma 4.3, we get $h^{1}\left(Z, \mathcal{O}_{Z}\right)=h^{1}\left(C_{1}, \mathcal{O}_{C_{1}}\right)=h^{0}\left(C_{1}, \mathcal{O}_{C_{1}}\right) \leq n_{1} \leq$ $m-1$.

Theorem 4.6. Let $F=m D$ be a fibre in a relatively minimal fibred surface and $Z_{\text {can }}$ the fixed part of $\left|K_{F}\right|$. Then $h^{1}\left(Z_{\text {can }}, \mathcal{O}_{Z_{\text {can }}}\right) \leq m-1$. If $h^{1}\left(Z_{\text {can }}, \mathcal{O}_{Z_{\text {can }}}\right) \neq 0$, then $Z_{\text {can }}$ contains the unique fundamental cycle Z_{0} of a minimally elliptic singular point.

Proof. The assertion follows from what we have seen above, when $\operatorname{Supp}\left(Z_{\text {can }}\right)$ is connected. Suppose that it has several connected components. We let Z and Z^{\prime} be connected subcurves of $Z_{\text {can }}$ with $h^{1}\left(Z, \mathcal{O}_{Z}\right)>0, h^{1}\left(Z^{\prime}, \mathcal{O}_{Z^{\prime}}\right)>0$ and $\operatorname{Supp}(Z) \cap \operatorname{Supp}\left(Z^{\prime}\right)=\emptyset$. Let Z_{0} and Z_{0}^{\prime} be the fundamental cycles of minimally elliptic singularities such that $Z_{0} \leq Z$ and $Z_{0}^{\prime} \preceq Z^{\prime}$. Since $Z_{0} \prec D, Z_{0}^{\prime} \prec D$ and $\operatorname{Supp}\left(Z_{0}\right) \cap \operatorname{Supp}\left(Z_{0}^{\prime}\right)=\emptyset$, we see that $Z_{0}+Z_{0}^{\prime} \prec D$. We have $p_{a}\left(Z_{0}+Z_{0}^{\prime}\right)=p_{a}\left(Z_{0}\right)+p_{a}\left(Z_{0}^{\prime}\right)-1+Z_{0} Z_{0}^{\prime}=1$ and $H^{0}\left(D, K_{F}\right) \rightarrow$ $H^{0}\left(Z_{0}+Z_{0}^{\prime}, K_{F}\right)$ is the zero map. By Theorem 1.3, $Z_{0}+Z_{0}^{\prime}$ must be 1 -connected. This is impossible, since Z_{0} and Z_{0}^{\prime} are disjoint. Therefore, $Z_{\text {can }}$ has at most one connected component Z with $h^{1}\left(Z, \mathcal{O}_{Z}\right)>0$.

Let Z_{0} be as above. Recall that $-Z_{0}^{2}$ is closely related to the embedded dimension of the singularity. It is shown in [9, Proposition 6.3] that $-Z_{0}^{2} \leq(g-1) / m=p_{a}(D)-1$.
5. Examples. Here, we give examples of hyperelliptic fibrations $f: S \rightarrow C$ of odd genus $g>1$ with a double fibre F such that $\mathrm{Bs}\left|K_{F}\right|$ contains a particular curve, in order to see actual pictures predicted by results in the previous sections.

We shall use the following notation. Let Σ_{d} be the Hirzebruch surface of degree $d \geq 0$. We respectively denote by Δ_{0} and Γ a minimal section and a fibre of $\Sigma_{d} \rightarrow \boldsymbol{P}^{1}$. Take a sufficiently large integer m and consider the linear system $\left|(2 g+2) \Delta_{0}+2(m+1) \Gamma\right|$, where g is a positive odd integer. Fix a fibre Γ_{0} and take a point $p_{1} \in \Gamma_{0}$. We can take a reduced member $B_{0} \in\left|(2 g+2) \Delta_{0}+(2 m+1) \Gamma\right|$ such that $\Gamma_{0} \cap B_{0}=\left\{p_{1}\right\}$. Put $B=\Gamma_{0}+B_{0}$. We assume that B is smooth except at p_{1} which is a $(g+2)$-ple point. We consider the minimal resolution of the surface obtained as the double covering of Σ_{d} with branch locus B.

Example 5.1. (A (-1)-elliptic curve in the fixed part.) Assume that the local analytic equation of B around p_{1} is of the form

$$
b(x, y)=x\left(x+y^{2}\right)\left\{\left(x-y^{2}\right)^{g}-x^{g} y^{2 g}\right\}
$$

where (x, y) is a system of local coordinates around p_{1} such that y induces a inhomogeneous fibre coordinate on $\Gamma_{0}=\{x=0\}$.

We take an even resolution of B. Let $\sigma_{1}: W_{1} \rightarrow \Sigma_{d}$ be the blowing-up at p_{1}. Then we still have a $(g+2)$-ple point on the proper transform of B by σ_{1}. In fact, putting $x=u v$, $y=u$, we have

$$
x\left(x+y^{2}\right)\left\{\left(x-y^{2}\right)^{g}-x^{g} y^{2 g}\right\}=u^{g+2} \cdot v(v+u)\left\{(v-u)^{g}-v^{g} u^{2 g}\right\} .
$$

Since g is odd, the even transform B_{1} of B is defined locally by $u v(v+u)\left\{(v-u)^{g}-v^{g} u^{2 g}\right\}=$ 0 . Hence the point p_{2} corresponding to $(u, v)=(0,0)$ is a $(g+3)$-ple point of B_{1}. Let $\sigma_{2}: W_{2} \rightarrow W_{1}$ be the blowing-up at p_{2}. If we put $v=s t, u=s$, then

$$
u v(v+u)\left\{(v-u)^{g}-v^{g} u^{2 g}\right\}=s^{g+3} \cdot t(t+1)\left\{(t-1)^{g}-t^{g} s^{2 g}\right\} .
$$

Hence the even transform B_{2} of B_{1} is given locally by $t(t+1)\left\{(t-1)^{g}-t^{g} s^{2 g}\right\}=0$, which has an infinitely near g-ple point p_{3} at $(s, t)=(0,1)$ whose local analytic equation is like $x^{g}=y^{2 g}$. Let $\sigma_{3}: W_{3} \rightarrow W_{2}$ be the blowing-up at p_{3}. Since g is odd, the even transform B_{3} of B_{2} is given by $w\left(z^{g}-(w z+1)^{g} w^{g}\right)=0$ locally over p_{3}, where $t-1=w z, s=w$. Hence B_{3} has an ordinary $(g+1)$-ple point p_{4} at $(w, z)=(0,0)$. Let $\sigma_{4}: W_{4} \rightarrow W_{3}$ be the blowing-up at p_{4}. Then the even transform B_{4} of B_{3} becomes non-singular, which completes the even resolution of B.

Figure 1. (-1)-elliptic.

Now, the double covering \tilde{S} of W_{4} with branch locus B_{4} has a fibration $\tilde{f}: \tilde{S} \rightarrow \boldsymbol{P}^{1}$ of genus g induced by the ruling of Σ_{d}. The fibre \tilde{F} of \tilde{f} derived from Γ_{0} is a double fibre consisting of 5 irreducible components three of which are (-1)-curves. By contracting them all, we get a relatively minimal fibration $f: S \rightarrow \boldsymbol{P}^{1}$ with a double fibre F consisting of two irreducible components meeting transversally at one point. One of them is a (-1)-elliptic curve and the other is a curve of genus $(g-1) / 2$ with self-intersection number -1 . To be more precise, we let \hat{e}_{i} be the inverse image of p_{i} on W_{4}. Since the multiplicity sequence during the even resolution is $\{g+2, g+3, g, g+1\}$, we have

$$
\begin{aligned}
& K_{W_{4}}+\frac{1}{2} B_{4} \\
& \quad \sim \sigma^{*}\left(K_{\Sigma_{d}}+\frac{1}{2} B\right)-\left(\frac{g-1}{2} \hat{e}_{1}+\frac{g+1}{2} \hat{e}_{2}+\frac{g-3}{2} \hat{e}_{3}+\frac{g-1}{2} \hat{e}_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sigma^{*}\left((g-1) \Delta_{0}+(m-d-g) \Gamma\right)+(g-1) e_{0}+\frac{g-1}{2}\left(\hat{e}_{1}-\hat{e}_{4}\right)+\frac{g-3}{2}\left(\hat{e}_{2}-\hat{e}_{3}\right) \\
& \sim \sigma^{*}\left((g-1) \Delta_{0}+(m-d-g) \Gamma\right)+(g-1) e_{0}+\frac{g-1}{2}\left(e_{1}+e_{3}\right)+(g-2) e_{2}
\end{aligned}
$$

where $\sigma=\sigma_{1} \circ \sigma_{2} \circ \sigma_{3} \circ \sigma_{4}$ and e_{0} is the proper transform of Γ_{0} while e_{i} for $i>0$ stands for the proper transform of the exceptional (-1)-curve appeared in σ_{i}. We remark that e_{i} $(0 \leq i \leq 3)$ is a (-2)-curve, $e_{0}+e_{1}+e_{3} \prec B_{4}$ and $e_{4}=\hat{e}_{4}$ is a (-1)-curve. Since

$$
\begin{aligned}
& \left(K_{W_{4}}+(1 / 2) B_{4}\right) e_{0}=\left(K_{W_{4}}+(1 / 2) B_{4}-e_{0}\right) e_{1}=\left(K_{W_{4}}+(1 / 2) B_{4}-e_{0}-e_{1}\right) e_{3} \\
& \quad=\left(K_{W_{4}}+(1 / 2) B_{4}-e_{0}-e_{1}-e_{3}\right) e_{2}=-1,
\end{aligned}
$$

we see that $e_{0}+e_{1}+e_{2}+e_{3} \subseteq \mathrm{Bs}\left|K_{W_{4}}+(1 / 2) B_{4}\right|$. Hence, if we put $\Delta=\sigma^{*}\left(K_{W_{4}}+\right.$ $\left.(1 / 2) B_{4}\right)-e_{0}-e_{1}-e_{2}-e_{3}$, then

$$
\left|K_{\tilde{S}}\right|=\pi^{*}\left|K_{W_{4}}+(1 / 2) B_{4}\right|=\pi^{*}|\Delta|+\pi^{*}\left(e_{0}+e_{1}+e_{2}+e_{3}\right)
$$

where $\pi: \tilde{S} \rightarrow W_{4}$ denotes the covering map.
There are irreducible curves $\tilde{E}_{i}, 0 \leq i \leq 4$, such that $\pi^{*} e_{i}=2 \tilde{E}_{i}$ when $i=0,1,3$, and $\pi^{*} e_{i}=\tilde{E}_{i}$ when $i=2,4$. Among them, $\overline{\tilde{E}}_{0}, \tilde{E}_{1}$ and \tilde{E}_{3} are (-1)-curves which should be contracted to obtain S. On the other hand, \tilde{E}_{2} is an elliptic curve with $\tilde{E}_{2}^{2}=-4$ and \tilde{E}_{4} is a curve of genus $(g-1) / 2$ with $\tilde{E}_{4}^{2}=-2$. We have $\tilde{F}=2\left(\tilde{E}_{0}+\tilde{E}_{1}+\tilde{E}_{2}+2 \tilde{E}_{3}+\tilde{E}_{4}\right)$. If $\rho: \tilde{S} \rightarrow S$ denotes the contraction map and $E_{i}=\rho_{*} \tilde{E}_{i}$ for $i=2,4$, then $F=2\left(E_{2}+E_{4}\right)$ with $E_{2} E_{4}=1$ and $E_{2}^{2}=E_{4}^{2}=-1$. We have $\rho^{*} K_{S} \sim K_{\tilde{S}}-\tilde{E}_{0}-\tilde{E}_{1}-\tilde{E}_{3}$. Then, by what we saw above, we get $\left|\rho^{*} K_{S}\right|=\pi^{*}|\Delta|+\tilde{E}_{0}+\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}$. Hence the (-1)-elliptic curve E_{2} is in the fixed part of $\left|K_{S}\right|$ as well as in that of $\left|K_{S}+f^{*} \mathfrak{d}\right|$ for any sufficiently ample divisor \mathfrak{d}. Since the restriction map $H^{0}\left(S, K_{S}+f^{*} \mathfrak{d}\right) \rightarrow H^{0}\left(F, K_{F}\right)$ is surjective, we conclude that $E_{2} \subseteq \mathrm{Bs}\left|K_{F}\right|$. Note that $\mathrm{Bs}\left|K_{D}\right|$ is only one point $E_{2} \cap E_{4}$. See, [10] for similar examples.

Example 5.2. (A (-2)-elliptic curve in the fixed part.) Let h and h^{\prime} be odd integers with $h \geq h^{\prime}>1$ and put $g=h+h^{\prime}-1$. We consider the branch locus B defined locally by

$$
b(x, y)=x\left\{\left(x-\alpha_{1} y^{2}\right)^{h}-\beta_{1} x^{h} y^{2 h}\right\}\left\{\left(x-\alpha_{2} y^{2}\right)^{h^{\prime}}-\beta_{2} x^{h^{\prime}} y^{2 h^{\prime}}\right\}
$$

where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are suitably chosen complex numbers. Then the double fibre F consists of three irreducible components, a (-2)-elliptic curve and two non-singular curves with selfintersection numbers -1 and of respective genus $(h-1) / 2$ and $\left(h^{\prime}-1\right) / 2$. Furthermore, the elliptic curve is contained in $\mathrm{Bs}\left|K_{F}\right|$.

In fact, after two times of blowing-ups at p_{1} with coordinates $(x, y)=(0,0)$ and at p_{2} infinitely near to p_{1}, we get two singular points p_{3} and p_{3}^{\prime} on the 2 nd exceptional (-1)-curve. Such singular points are locally defined by $x^{h}=y^{2 h}$ and $x^{h^{\prime}}=y^{2 h^{\prime}}$, respectively. Since h, h^{\prime} are odd, such singular points can be resolved with two times of blowing-ups, respectively. We let p_{4} (resp. p_{4}^{\prime}) the singular point infinitely near to p_{3} (resp. p_{3}^{\prime}). Then they are ordinary $(h+1)$-ple and $\left(h^{\prime}+1\right)$-ple points of the even transform, respectively. The multiplicity sequence is thus $\left\{g+2, g+3, h, h+1, h^{\prime}, h^{\prime}+1\right\}$, and the contribution to $K+(1 / 2) B$ is the

Figure 2. (-2)-elliptic.
minus of

$$
\frac{g-1}{2} \hat{e}_{1}+\frac{g+1}{2} \hat{e}_{2}+\frac{h-3}{2} \hat{e}_{3}+\frac{h^{\prime}-3}{2} \hat{e}_{3}^{\prime}+\frac{h-1}{2} \hat{e}_{4}+\frac{h^{\prime}-1}{2} \hat{e}_{4}^{\prime} .
$$

Hence, assuming $h \geq h^{\prime}$, we see that $K_{\tilde{S}}$ is induced by an effective divisor of the form

$$
\begin{aligned}
& \sigma^{*}\left((g-1) \Delta_{0}+m_{0} \Gamma\right)+\frac{g+h-2}{2} e_{0}+\frac{h-1}{2} e_{1} \\
& \quad+(h-2) e_{2}+\frac{h-1}{2} e_{3}+\frac{2 h-h^{\prime}-1}{2} e_{3}^{\prime}+\left(h-h^{\prime}\right) e_{4}^{\prime}
\end{aligned}
$$

from which we know that $e_{0}+e_{1}+e_{2}+e_{3}+e_{3}^{\prime}$ is in the fixed part. On the canonical resolution \tilde{S}, e_{2} induces a (-6)-elliptic curve \tilde{E}_{2} which meets four (-1)-curves $\tilde{E}_{0}, \tilde{E}_{1}, \tilde{E}_{3}$ and \tilde{E}_{3}^{\prime} lying respectively over e_{0}, e_{1}, e_{3} and e_{3}^{\prime}. On the relatively minimal model, we have a double fibre $F=2 D$ with $D=E_{2}+E_{4}+E_{4}^{\prime}$, where E_{2} is a (-2)-elliptic curve which meets each of E_{4} and E_{4}^{\prime} transversally at a point. By what we saw above, $E_{2} \subseteq \mathrm{Bs}\left|K_{F}\right|$. On the other hand, $\mathrm{Bs}\left|K_{D}\right|$ consists of two points $E_{2} \cap E_{4}, E_{2} \cap E_{4}^{\prime}$.

Example 5.3. (2-connected numerical cycle with A3-type fixed part.) This serves an example for Proposition 4.2, (1). Here we consider the branch locus locally defined by

$$
b(x, y)=x\left\{\left(x-y^{2}\right)^{g+1}-x^{g+1} y^{2 g+2}\right\} .
$$

It has a $(g+2)$-ple point p_{1} at $(x, y)=(0,0)$. After blowing-up at p_{1} and p_{2} infinitely near to p_{1}, we get a $(g+1)$-ple point p_{3} on the second exceptional curve. This singular point is given locally by $x^{g+1}-y^{2 g+2}=0$. After blowing-up at p_{3}, it results in an ordinary $(g+1)$ ple point p_{4}. The multiplicity sequence is thus $\{g+2, g+3, g+1, g+1\}$ and an effective expression of $K_{W_{4}}+B_{4} / 2$ is of the form

$$
\sigma^{*}\left((g-1) \Delta_{0}+m_{0} \Gamma\right)+g e_{0}+\frac{g+1}{2} e_{1}+g e_{2}+\frac{g+1}{2} e_{3}+e_{4},
$$

where e_{0} and $e_{i}, 1 \leq i \leq 3$, are (-2)-curves coming from Γ and p_{i}, respectively, and e_{4} is a (-1)-curve over p_{4}. We see that

$$
\begin{aligned}
& \left(K_{W_{4}}+B_{4} / 2\right) e_{0}=\left(K_{W_{4}}+B_{4} / 2\right) e_{1}=\left(K_{W_{4}}+B_{4} / 2-e_{0}-e_{1}\right) e_{2} \\
& \quad=\left(K_{W_{4}}+B_{4} / 2-e_{0}-e_{1}-e_{2}\right) e_{3}=-1 .
\end{aligned}
$$

Figure 3. A_{3} in the fixed part.

Hence $e_{0}+e_{1}+e_{2}+e_{3}$ is in the fixed part of $\left|K_{W_{4}}+B_{4} / 2\right|$. On the canonical resolution, e_{0} and e_{1} produce (-1)-curves $\tilde{E}_{0}, \tilde{E}_{1} ; e_{2}$ gives us a (-4)-curve \tilde{E}_{2} which meets \tilde{E}_{0} and $\tilde{E}_{1} ; e_{3}$ gives us two (-2)-curves $\tilde{E}_{3}, \tilde{E}_{3}^{\prime}$ each of which meets \tilde{E}_{2} and \tilde{E}_{4} which is a nonsingular curve coming from e_{4} of genus $(g-1) / 2$ with self-intersection -2 . On the relatively minimal model, we have a double fibre $F=2 D$ such that $D=E_{2}+E_{3}+E_{3}^{\prime}+E_{4}$ with $E_{2} E_{3}=E_{2} E_{3}^{\prime}=E_{4} E_{3}=E_{4} E_{3}^{\prime}=1$ and $E_{2} E_{4}=E_{3} E_{3}^{\prime}=0$. Then D is numerically 2-connected (and hence $\mathrm{Bs}\left|K_{D}\right|=\emptyset$). Here, $E_{3}+E_{2}+E_{3}^{\prime}$ is a chain of (-2)-curves of type A_{3} contained in $\mathrm{Bs}\left|K_{F}\right|$.

References

[1] M. Artin, Some numerical criteria for contractibility of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485-496.
[2] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136.
[3] T. ASHIKAGA AND K. KonNo, Global and local properties of pencils of algebraic curves, Algebraic geometry 2000, Azumino (Hotaka), 1-49, Adv. Stud. Pure Math. 36, Math. Soc. Japan, Tokyo, 2002.
[4] F. Catanese and M. Franciosi, Divisors of small genus on algebraic surfaces and projective embeddings, Proceedings of the Hirzebruch 65 conference on algebraic geometry (Ramat Gan, 1993), 109-140, Israel. Math. Conf. Proc. 9, Bar-Ilan Univ., Ramat Gan, 1996.
[5] C. Ciliberto, P. Francia and M. Mendes Lopes, Remarks on the bicanonical map for surfaces of general type, Math. Z. 224 (1997), 137-166.
[6] E. Horikawa, On algebraic surfaces with pencils of curves of genus 2, in Complex Analysis and Algebraic Geometry, a volume dedicated to K. Kodaira (W. Baily and T. Shioda eds.), 79-90, Iwanami Shoten Publishers and Cambridge Univ. Press, Tokyo and Cambridge, 1977.
[7] K. Konno, 1-2-3 theorem for curves on algebraic surface, J. Reine. Angew. Math. 533 (2001), 171-205.
[8] K. Konno, On the fixed loci of the canonical systems over normal surface singularities, Asian J. Math. 12 (2008), 449-464.
[9] K. Konno, Chain-connected component decomposition of curves on algebraic surfaces, to appear in J. Math. Soc. Japan.
[10] K. Konno and M. Mendes Lopes, On a question of Miles Reid, Manuscripta Math. 100 (1999), 81-86.
[11] K. Konno and M. Mendes Lopes, The base components of the dualizing sheaf of a curve on a surface, Arch. Math. (Basel) 90 (2008), 395-400.
[12] H. B. LAUFER, On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295.
[13] M. Mendes Lopes, The relative canonical algebra for genus 3 fibrations, Warwick Ph. D. Thesis, 1988.
[14] M. Mendes Lopes, Adjoint systems on surfaces, Boll. Un. Mat. Ital. A (7) 10 (1996), 169-179.
[15] M. REID, Chapters on algebraic surfaces, Complex algebraic geometry (Park City, UT, 1993), 3-159, IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997.
[16] M. REID, 1-2-3, unpublished note written around 1990.
[17] Ph. Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419-454.

Department of Mathematics
Graduate School of Science
Osaka University
TOYONAKA, OSAKA 560-0043
JAPAN
E-mail address: konno@math.sci.osaka-u.ac.jp

