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Abstract. In a certain Banach space called an M-type 2 Banach space (including
Hilbert spaces), we consider a set-valued stochastic differential equation with a set-valued
drift term and a single valued diffusion term, under the Lipschitz continuity conditions, and
we prove the existence and uniqueness of strong solutions which are continuous in the Haus-
dorff distance.

1. Introduction. Theory of stochastic differential inclusions, as an important gener-
alization of that of stochastic differential equations, has been received much attention with
general applications to the mathematical economics, the control field, etc. In this area, we
would like to refer to the nice survey [10, 11] written by Kisielewicz et al. In the n-dimensional
Euclidean space Rn, much work has been done on stochastic differential or integral inclusions.
Aubin and Da Prato [2] studied the viability theorem for the following stochastic differential
inclusions

dxt ∈ Ft (xt)dt + gt (xt )dBt , x0 = ξ ,

where F is set-valued, g is single valued and {Bt } is an Rn-valued Brownian motion. Kisiele-
wicz (e.g., [12, 13, 14, 15, 20]) considered the following integral inclusions

xt − x0 ∈ cl

( ∫ t

0
Fτ (xτ )dτ +

∫ t

0
Gτ(xτ )dBτ

)
, t ∈ [0, T ] ,

where both F and G are set-valued.
However there are only a few literatures considering the set-valued stochastic differ-

ential equations or integral equations because of the complexity of derivative of set-valued
functions and the difficulties in defining set-valued stochastic integrals. For instance, in the
1-dimensional Euclidean space R, even if the integrand is Gt(ω) = [−1, 1] a.s., Ogura [21]
pointed out that the integral

∫ t
0 GτdBτ is unbounded a.s. Thus it is difficult to consider the

strong solution of the following stochastic differential equation,

Xt = X0 +
∫ t

0
Fτ (Xτ )dτ +

∫ t

0
Gτ(Xτ )dBτ , t ∈ [0, T ] ,
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where F , G andXt are set-valued. In a separable Banach space, Michta [19] studied compact
convex set-valued random differential equation without the diffusion term, where the deriv-
ative of a set-valued function is the Hukuhara derivative. Michta also discussed in [19] the
relationship between set-valued differential equation and differential inclusion.

In this paper, inspired by Aubin and Da Prato [2], in a separable M-type 2 Banach space
X defined precisely in Section 3, we will study the set-valued stochastic differential equation
with a set-valued drift term and a single valued diffusion term, which is presented as follows:

Xt = X0 +
∫ t

0
a(s,Xs)ds +

∫ t

0
b(s,Xs)dBs , t ∈ [0, T ] ,(1.1)

where bothXs and a(s,Xs) are set-valued, b(s,Xs) is single valued, and {Bt } is a real valued
Brownian motion. The sum of a set X and a single point y is defined as X+ y = {x + y ; x ∈
X}.

There exist quite a few literatures treating stochastic differential or integral inclusions,
and even if there exist, the most of them deal with these subjects in finite dimensional set-
tings. However the set-valued stochastic differential equation of the type (1.1) is a rather new
subject if we compare it with those stochastic inclusions, and further the space, where (1.1) is
considered, belongs to a certain class of Banach spaces including Hilbert spaces.

Under these circumstances, we obtain

THEOREM 1. Suppose a(·, ·) and b(·, ·) are jointly measurable, H -bounded and sat-
isfy Lipschitz conditions in the following sense:

H({0}, a(t,X))+ ‖b(t,X)‖ ≤ C(1 +H({0},X)) , X ⊂ X , t ∈ [0, T ]
for some constant C, and

H(a(t,X), a(t, Y ))+ ‖b(t,X)− b(t, Y )‖ ≤ DH(X, Y ) , X, Y ⊂ X , t ∈ [0, T ]
for some constant D, where H(A,B) is the Hausdorff distance between sets A and B. Then
for any given L2-integrably bounded, weakly compact, set-valued random variable X0, the
equation (1.1) has a unique H -continuous solution.

The paper is organized as follows. Section 2 is for preliminaries of set-valued random
variables and set-valued stochastic processes. Section 3 is devoted to integrals of set-valued
stochastic processes with respect to a Brownian motion and with respect to time t . In Section
4, first we state our set-valued stochastic differential equation, and then prove the existence
and uniqueness of solutions.

2. Preliminaries. Let (Ω,F , P ) be a complete probability space, and {F t }t≥0 a fil-
tration satisfying the usual conditions such that F0 includes all P -null sets in F . The filtration
is non-decreasing and right continuous. Let B(E) be the Borel field of a topological space E,
(X, ‖·‖) a separable Banach space X equipped with the norm ‖·‖, X∗ the dual Banach space of
X and K(X) (resp. Kb(X), Kc(X)) the family of all nonempty closed (resp. closed bounded,
closed convex) subsets of X. Let p be 1 ≤ p < +∞ and Lp(Ω,F , P ; X), denoted briefly
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by Lp(Ω ; X), the Banach space of equivalence classes of X-valued F-measurable functions
f : Ω → X such that the norm

‖f ‖p = {∫
Ω

‖f (ω)‖pdP}1/p

is finite. f is called Lp-integrable if f ∈ Lp(Ω; X).
A set-valued function F : Ω → K(X) is said to be measurable if for any open set

O ⊂ X, the inverse F−1(O) := {ω ∈ Ω ;F(ω) ∩ O 
= ∅} is in F . Such a function F is
called a set-valued random variable. Let M(Ω,F , P ; K(X)) be the family of all set-valued
random variables, briefly denoted by M(Ω ; K(X)).

A mapping g from a measurable space (E1,A1) into another measurable space (E2,A2)

is called A1/A2-measurable if g−1(B) = {x ∈ E ; g(x) ∈ B} is in A1 for all B ∈ A2.
For any open subset O ⊂ X, set

ZO := {E ∈ K(X) ;E ∩O 
= ∅} ,
C := {ZO ;O ⊂ X, O is open} ,

and let σ(C) be the σ -algebra generated by C.

PROPOSITION 2.1. A set-valued function F : Ω → K(X) is measurable if and only if
F is F/σ(C)-measurable.

PROOF. If F : (Ω,F) → (K(X), σ (C)) is F/σ(C)-measurable, then for every open
subset O ⊂ X, we have

F−1(O) = {ω ∈ Ω ;F(ω) ∩O 
= ∅} = {ω ∈ Ω ;F(ω) ∈ ZO} ∈ F ,
so that F is measurable.

Conversely, if F is measurable, then for each open subset O ⊂ X, it holds that {ω ∈
Ω ;F(ω) ∈ ZO} ∈ F , so that for every Z ∈ σ(C), {ω ∈ Ω ;F(ω) ∈ Z} is in F . �

For A,B ∈ K(X), H(A,B) ≥ 0 is defined by

H(A,B) := max

{
sup
x∈A

inf
y∈B ‖x − y‖, sup

y∈B
inf
x∈A ‖x − y‖

}
.

If A,B ∈ Kb(X), thenH(A,B) is called the Hausdorff distance of A and B. It is well known
that Kb(X) equipped with the H -metric, denoted by (Kb(X),H), is a complete metric space.

The following results are also well known (see for example [6], [17]).

PROPOSITION 2.2. (i) For A,B,C,D ∈ K(X), we have

H(A+ B,C +D) ≤ H(A,C)+H(B,D) .

(ii) For A,B ∈ K(X), µ ∈ R, we have

H(µA,µB) = |µ|H(A,B) .
For F ∈ M(Ω,K(X)), the family of all Lp-integrable selections is defined by

S
p
F (F) := {f ∈ Lp(Ω,F, P ; X) ; f (ω) ∈ F(ω) a.s.} .
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In the following, SpF (F) is denoted briefly by SpF . If SpF is nonempty, F is said to be Lp-
integrable. F is called Lp-integrably bounded if there exits a function h ∈ Lp(Ω,F , P ; R)

such that ‖x‖ ≤ h(ω) for any x and ω with x ∈ F(ω). It is equivalent to that ‖F‖K ∈
Lp(Ω ; R), where ‖F(ω)‖K := supa∈F(ω) ‖a‖. The family of all measurable K(X)-valued
(resp. Kc(X)-valued) Lp-integrably bounded functions is denoted by Lp(Ω,F, P ; K(X))
(resp. Lp(Ω,F, P ; Kc(X))). Write them for brevity asLp(Ω ; K(X)) (resp.Lp(Ω ; Kc(X))).

Let Γ be a set of measurable functions f : Ω → X. Γ is called decomposable with
respect to the σ -algebra F if, for any finite F-measurable partition A1, . . . , An and for any
f1, . . . , fn ∈ Γ , χA1f1 + · · · + χAnfn is in Γ , where χA is the indicator function of set A,
i.e.,

χA(ω) :=
{

1 if ω ∈ A ,
0 if ω /∈ A .

PROPOSITION 2.3 (Hiai-Umegaki [6]). Let Γ be a nonempty closed subset of
Lp(Ω,F, P ; X). Then there exists an F ∈ M(Ω ; K(X)) such that Γ = S

p
F if and only

if Γ is decomposable with respect to F .

LEMMA 2.4. Let F be in M (Ω ; K(X)). Then F is Lp-integrably bounded if and
only if SpF is nonempty and bounded in Lp(Ω ; X).

PROOF. The case of p = 1 is due to Hiai-Umegaki [6]. By a manner similar to that of
p = 1, we can also prove the statement for 1 < p < +∞. �

Let R+ be the set of all nonnegative real numbers and B+ = B(R+). An X-valued
stochastic process f = {ft ; t ≥ 0} (or denoted by f = {f (t) ; t ≥ 0}) is defined as a
function f : R+ × Ω → X with F-measurable section ft for each t ≥ 0. We say f is
measurable if f is B+ ⊗F-measurable. The process f = {ft ; t ≥ 0} is called F t -adapted if
ft is F t -measurable for every t ≥ 0.

In a fashion similar to the X-valued stochastic process, a set-valued stochastic process
F = {Ft ; t ≥ 0} is defined as a set-valued function F : R+×Ω → K(X) with F-measurable
section Ft for each t ≥ 0. It is called measurable if it is B+ ⊗F-measurable, and F t -adapted
if for any fixed t , Ft is F t -measurable.

PROPOSITION 2.5. Let F = {Ft ; t ≥ 0} be anF t -adapted and measurable set-valued
stochastic process. Then there exists an F t -adapted and measurable selection f = {ft ; t ≥
0} such that

ft (ω) ∈ Ft (ω) for all (t, ω) ∈ R+ ×Ω .

PROOF. Let Σ := ⋂
t≥0{Z ∈ B+ ⊗ F ;Zt ∈ F t }, where Zt = {ω ; (t, ω) ∈ Z}.

We know that Σ is a σ -algebra on R+ × Ω . A function f : R+ × Ω → X (or a set-
valued function F : R+ × Ω → K(X)) is measurable and F t -adapted if and only if it is
Σ-measurable. Therefore according to Kuratowski-Ryll-Nardzewski Measurable Selection
Theorem (see e.g., [5]), for every F t -adapted and measurable K(X)-valued stochastic process
F = {Ft ; t ≥ 0}, there exists an F t -adapted and measurable X-valued selection f = {ft ; t ≥
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0} such that
ft (ω) ∈ Ft (ω) for all (t, ω) ∈ R+ ×Ω .

�

3. Integrals of set-valued stochastic processes. In this section we describe the defi-
nitions and properties of integrals of set-valued stochastic processes in a Banach space.

Let p be 1≤p<∞, X a separable Banach space, T a positive real number, (Ω,F,Ft , P )
a complete probability space with filtration {Ft ; t ∈ [0, T ]} and λ the Lebesgue measure
on the interval [0, T ]. In the following, the Lebesgue integral

∫
[s,t ] f dλ will be denoted by∫ t

s fτ dτ for [s, t] ⊂ [0, T ], where f is a Lebesgue integrable function. Let Lp(([0, T ] ×
Ω),B([0, T ])⊗ F , λ × P ; X), denoted briefly by Lp([0, T ] ×Ω ; X), be the Banach space
of equivalence classes of X-valued, B([0, T ])⊗F-measurable functions f : [0, T ]×Ω → X

such that ∫
[0,T ]×Ω

‖f (t, ω)‖pdλdP < +∞ .(3.1)

Let Lp(X) be the family of all B([0, T ])⊗F-measurable, F t -adapted, X-valued stochas-
tic processes f ={ft ,Ft ; t ∈[0, T ]} such that E[∫ T0 ‖fs‖pds] :=∫

[0,T ]×Ω‖f (t, ω)‖pdλdP<
+∞, and Lp(K(X)) the family of all B([0, T ])⊗F-measurable, F t -adapted, set-valued sto-
chastic processes F = {Ft ,Ft ; t ∈ [0, T ]} such that {‖Ft‖K}t∈[0,T ] is in Lp(R).

For a B([0, T ]) ⊗ F-measurable set-valued stochastic process {Ft ,Ft ; t ∈ [0, T ]}, a
B([0, T ]) ⊗ F-measurable selection f = {ft ,Ft ; t ∈ [0, T ]} is called Lp-selection if f =
{ft ,Ft ; t ∈ [0, T ]} is in Lp(X). The family of all Lp-selections is denoted by Sp(F (·)).

In fact, letting F be in Lp(K(X)) and setting

ΣT :=
⋂

t∈[0,T ]
{Z ∈ B([0, T ])⊗ F ;Zt ∈ F t } ,

we have, by a manner similar to the proof of Proposition 2.5, that Sp(F (·)) is nonempty and

Sp(F (·)) = {f ∈ Lp([0, T ] ×Ω,ΣT , λ× P ; X) ; ft (ω) ∈ Ft(ω)
for a.e. (t, ω) ∈ [0, T ] ×Ω} ,(3.2)

where Lp([0, T ]×Ω,ΣT , λ×P ; X) is the Banach space of equivalence classes of X-valued,
ΣT -measurable functions f : [0, T ] ×Ω → X satisfying (3.1).

3.1. Stochastic integral with respect to Brownian motion in an M-type 2 Banach space.
Let {Bt,Ft ; t ∈ [0, T ]} be a real valued Ft -Brownian motion, i.e., an Ft -adapted continuous
martingale and for any 0 ≤ t ≤ u ≤ T , E[(Bu − Bt )

2] = u − t (see [16]), with B0(ω) = 0
a.s.

DEFINITION 3.1 ([3]). A Banach space (X, ‖·‖) is called M-type 2 if and only if there
exists a constant CX > 0 such that, for any X-valued martingale {Mk}, the inequality

sup
k

E[‖Mk‖2] ≤ CX

∑
k

E[‖Mk −Mk−1‖2](3.3)

holds.
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The class of M-type 2 Banach spaces is a wider class than that of Hilbert spaces. The
Lebesgue function spacesLp(p ≥ 2) are examples of M-type 2 Banach spaces (see e.g. [23]).

Now, we review briefly about the stochastic integral studied in [25].
Let L2

step(X) be the subspace of those f ∈ L2(X) for which there exists a partition
0 = t0 < t1 < · · · < tn = T for some n ∈ N , such that ft = ftk for each t ∈ [tk, tk+1), 0 ≤
k ≤ n− 1.

For f ∈ L2
step(X), define an X-valued martingale

IT (f ) :=
n−1∑
k=0

ftk (Btk+1 − Btk ) .

In an M-type 2 Banach space, due to the crucial inequality (3.3), for f = {ft ,Ft ; t ∈
[0, T ]} ∈ L2

step(X), we have

LEMMA 3.2. E[‖IT (f )‖2] ≤ CX

∫ T
0 E[‖ft‖2]dt .

Further we proved that every element of L2([0, T ] ; X) is approximated by a sequence of
bounded continuous functions, which, together with the separability of L2([0, T ] ; X), yields
the following lemma.

LEMMA 3.3. L2
step(X) is dense in L2(X).

Lemmata 3.2 and 3.3 enable us to extend the above IT (f ) from L2
step(X) to L2(X). The

extension is the definition of the stochastic integral and has the following properties.

PROPOSITION 3.4. For f ∈ L2(X), we have
(i) E[It (f )] = 0, It (f ) ∈ L2(Ω,F, P ; X) and {It (f ) : t ∈ [0, T ]} is a measurable

F t -martingale,
(ii)

E[‖It (f )‖2] ≤ CXE

[ ∫ t

0
‖fs‖2ds

]
for all t ∈ [0, T ] , and

(iii) there exists a t-continuous (in the norm of X) version of∫ t

0
fs(ω)dBs(ω) for t ∈ [0, T ] ,

that is, there exists a t-continuous X-valued stochastic process Jt on (Ω,F , P ) such that

P

(
Jt =

∫ t

0
fsdBs

)
= 1 for all t , 0 ≤ t ≤ T .

From now on, we always assume that
∫ t

0 fs(ω)dBs(ω) means a t-continuous version of
the integral.

3.2. Set-valued integrals with respect to Lebesgue measure on time interval [s, t]. For
a set-valued stochastic process {Ft ,Ft ; t ∈ [0, T ]} ∈ Lp(K(X)), and for 0 ≤ s ≤ t ≤ T ,
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define

Λs,t :=
{ ∫ t

s

fudu ; (fu)u∈[0,T ] ∈ Sp(F (·))
}
,(3.4)

where
∫ t
s
fu(ω)du is the Bochner integral with respect to the Lebesgue measure λ on the

interval [s, t]. By [5, Theorem 9.41], f is Bochner integrable on the interval [s, t] if and only
if its norm function ‖f ‖ is Lebesgue integrable, that is,

∫ t
s

‖fu‖du < +∞.

For each f ∈ Sp(F (·)), we have
∫ T

0 ‖fu‖pdu < +∞ a.s., which means there is a P -
null set Nf , such that for all ω ∈ Ω \ Nf and for 0 ≤ s < t ≤ T ,

∫ t
s ‖f (u)‖pdu < +∞.

For ω ∈ Nf , we define
∫ t
s
fudu = 0. Then for each f ∈ Sp(F (·)), ∫ t

s
fudu is well defined

for all ω ∈ Ω . Moreover, the process {∫ t0 fudu : t ∈ [0, T ]} is continuous, measurable and
Ft -adapted. Hence Λs,t is a subset of Lp(Ω,F t , P ; X) ⊂ Lp(Ω ; X).

We define the decomposable closed hull of Λs,t with respect to Ft by

deΛs,t :=
{
g ∈ Lp(Ω,F t , P ; X) ; for any ε > 0, there exist a finite Ft-measurable
partition {A1, . . . , An} of Ω and f 1, . . . , f n ∈ Sp(F (·)) such that∥∥∥g −

n∑
i=1

χAi

∫ t

s

f iudu

∥∥∥
Lp(Ω,Ft ,P ;X) < ε

}
.

By Proposition 2.3, deΛs,t determines an F t -measurable set-valued function Is,t (F ) : Ω →
K(X) such that the family of all Lp-integrable selections of Is,t (F ) is

S
p

Is,t (F )
(F t ) = deΛs,t .

Particularly, I0,t (F ) will be denoted by It (F ) for brevity. Therefore {It (F ) ; t ∈ [0, T ]} is an
F t -adapted set-valued stochastic process. The joint measurability of {It (F ) ; t ∈ [0, T ]} will
be discussed in Lemma 3.10.

DEFINITION 3.5. For a set-valued stochastic process {Ft ,Ft ; t ∈[0, T ]}∈Lp(K(X)),
the set-valued random variable Is,t (F ) defined as above is called the set-valued integral of
{Ft ,Ft ; t ∈ [0, T ]} with respect to the Lebesgue measure on the interval [s, t]. We denote it
by

∫ t
s Fudu := Is,t (F ).

THEOREM 3.6. For a set-valued stochastic process {Ft ,Ft ; t ∈ [0, T ]} ∈ Lp(K(X)),
the set-valued integral

∫ T
0 Fs(ω)ds is convex a.s.

PROOF. Obviously, SpIT (F )(FT ) is nonempty. According to [6, Corollary 1.6], it suffices
to prove that

S
p

IT (F )
(FT ) = de

{ ∫ T

0
fsds ; f ∈ Sp(F (·))

}
is convex. It is noticed that if cl{∫ T0 fsds ; f ∈ Sp(F (·))} is convex, then SpIT (F )(FT ) is
convex, where cl denotes the closure in Lp(Ω ; X). In the following, we will show that
cl{∫ T0 fsds ; f ∈ Sp(F (·))} is a convex subset of Lp(Ω ; X). It suffices to prove that, for



424 J. ZHANG, S. LI, I. MITOMA AND Y. OKAZAKI

any g, h ∈ Sp(F (·)), for any α ∈ [0, 1] and any ε > 0, there exists an f ∈ Sp(F (·)) such that∥∥∥α ∫ T

0
gsds + (1 − α)

∫ T

0
hsds −

∫ T

0
fsds

∥∥∥
Lp(Ω ;X) < ε .

Define an (Lp(Ω ; X), Lp(Ω ; X))-valued measure µ on B([0, T ]) by

µ(A) =
( ∫

A

gsds,
∫
A

hsds

)
, A ∈ B([0, T ]) .

The space ([0, T ],B([0, T ]), λ) is non-atomic. Hence by the result in [24, p. 162], the closure
of the range of µ is convex in (Lp(Ω ; X), Lp(Ω ; X)). Since µ(∅) = (0, 0) and µ([0, T ]) =
(
∫ T

0 gsds,
∫ T

0 hsds), for any α ∈ [0, 1] and any ε > 0, there exists an A ∈ B([0, T ]) such that

∥∥∥α ∫ T

0
gsds −

∫
A

gsds
∥∥∥
Lp(Ω ;X) <

ε

2

and ∥∥∥α ∫ T

0
hsds −

∫
A

hsds

∥∥∥
Lp(Ω ;X) <

ε

2
.

We take

fs(ω) = χΩ×A(ω, s)gs (ω)+ χΩ×Ac (ω, s)hs (ω) for all (ω, s) ∈ Ω × [0, T ] ,
where χA denotes the indicator function of the set A. Then we have f ∈ Sp(F (·)) since
{Ω×A,Ω×Ac} is an F0 ⊗B([0, T ])-measurable partition of the product spaceΩ×[0, T ].
Furthermore, ∥∥∥α ∫ T

0
gsds + (1 − α)

∫ T

0
hsds −

∫ T

0
fsds

∥∥∥
Lp(Ω ;X)

≤
∥∥∥α ∫ T

0
gsds −

∫ T

0
χΩ×Agsds

∥∥∥
Lp(Ω ;X)

+
∥∥∥(1 − α)

∫ T

0
hs(ω)ds −

∫ T

0
χΩ×Achsds

∥∥∥
Lp(Ω ;X)

<
ε

2
+

∥∥∥α ∫ T

0
hsds −

∫ T

0
χΩ×Ahsds

∥∥∥
Lp(Ω ;X) < ε ,

which yields that the set SpIT (F )(FT ) is convex. Then the integral IT (F )(ω) is convex a.s. �

REMARK 3.7. For 0 ≤ s ≤ t ≤ T , the integral Is,t (F )(ω) is also convex a.s.
Theorem 3.6 is similar to [6, Theorem 4.2], but it is not a direct result of [6, Theorem

4.2], since in Theorem 3.6, the full space is the product space [0, T ] ×Ω , but the domain of
the integral is just the time interval [0, T ] and not [0, T ] ×Ω .

If F is separable with respect to the probability measure P , then the space Lp(([0, T ] ×
Ω),B([0, T ]) ⊗ F , λ × P ; X) is separable by the same reason as in the proof of the sepa-
rability of Lp (Ω ; X) in [25]. Therefore Sp(F (·)) is separable since it is a closed subset of
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Lp ([0, T ] ×Ω ; X). Hence we can find a sequence {f n = (f nt )t∈[0,T ] ; n ∈ N} ⊂ Sp(F (·))
such that

Sp(F (·)) = cl{f n ; n ∈ N} ,
where cl stands for the closure in Lp ([0, T ] ×Ω ; X). Moreover, for 0 ≤ s ≤ t ≤ T , the
equality

S
p

Is,t (F )
(F t ) = de

{ ∫ t

s

f nu du ; n ∈ N
}

holds.

THEOREM 3.8. Assume F is separable with respect to the probability measure P .
Then for a set-valued stochastic process {Ft ,Ft ; t ∈ [0, T ]} ∈ Lp(K(X)), there exists a
sequence {f n ; n ∈ N} ⊂ Sp(F (·)) such that

Ft (ω) = cl{f nt (ω) ; n ∈ N} for a.e. (t, ω) ,

and, for 0 ≤ s ≤ t ≤ T ,

Is,t (F )(ω) = cl
{ ∫ t

s

f nu (ω)du ; n ∈ N
}

a.s. ,

where cl denotes the closure in X.

PROOF. For 0 ≤ s ≤ t ≤ T , Is,t (F ) is in M(Ω ; K(X)) and Sp
Is,t (F )

(Ft ) is nonempty.

Then by [6, Theorem 1.0], there exists a sequence {g is,t ; i ∈ N} ⊂ S
p

Is,t (F )
(Ft ) such that

Is,t (F )(ω) = cl{g is,t (ω) ; i ∈ N} for all ω ∈ Ω .

Note that in the above equation, the sequence depends on s and t .
Since

S
p

Is,t (F )
(Ft ) = de

{ ∫ t

s

fudu ; f ∈ Sp(F (·))
}
,

by the separability of Sp(F (·)), there exists a dense sequence {f n ; n ∈ N} in Sp(F (·)) such
that

S
p

Is,t (F )
(Ft ) = de

{ ∫ t

s

f nu du ; n ∈ N
}

for 0 ≤ s ≤ t ≤ T .

Since g is,t ∈ SpIs,t (F )(Ft ) for every i ≥ 1, we have

g is,t (ω) ∈ cl
{ ∫ t

s

f nu (ω)du ; n ∈ N
}

a.s. ,

where cl stands for the closure in X. By the countability of the sequence, we can find an
exceptional P -null set N such that for ω ∈ Ω \ N , we have

{g is,t (ω) ; i ∈ N} ⊂ cl
{ ∫ t

s

f nu (ω)du ; n ∈ N
}
.
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Then

Is,t (F )(ω) = cl{g is,t (ω) ; i ∈ N} ⊂ cl
{ ∫ t

s

f nu (ω)du ; n ∈ N
}

a.s.

⊂ Is,t (F )(ω) a.s. ,

i.e.,

Is,t (F )(ω) = cl
{ ∫ t

s

f nu (ω)du ; n ∈ N
}

a.s.

Since f n(t, ω) is in Ft (ω) for a.e. (t, ω), by the countability of the sequence, we have

cl{f nt (ω) ; n ∈ N} ⊂ Ft (ω) for a.e. (t, ω) .(3.5)

On the other hand, by Proposition 2.5, there exists a sequence {gm ∈ Sp(F (·)) ;m ∈ N} such
that

Ft (ω) = cl{gmt (ω) ;m ∈ N} for all t and ω .

Since every gm ∈ cl{f n ; n ∈ N}, we have gm(t, ω) ∈ cl{f n(t, ω) ; n ∈ N} for a.e. (t, ω).
Owing to the countability of the sequence, we obtain

Ft (ω) ⊂ cl{f nt (ω) ; n ∈ N} for a.e. (t, ω) ,

which, together with (3.5), yields

Ft (ω) = cl{f nt (ω) ; n ∈ N} for a.e. (t, ω) .

�

THEOREM 3.9. Assume F is separable with respect to P . Then for a set-valued sto-
chastic process {Ft ,Ft ; t ∈ [0, T ]} ∈ Lp(K(X)), SpIs,t (F )(F t ) is nonempty and bounded in
Lp(Ω,F t , P ; X) for 0 ≤ s ≤ t ≤ T . Furthermore, if X is reflexive, then for 0 ≤ s ≤ t ≤
T , Is,t (F )(ω) is almost surely weakly compact in X and Sp

Is,t (F )
(F t ) is weakly compact in

Lp(Ω,F t , P ; X).

PROOF. Let {Ak ; k = 1, . . . ,m} be an F t -measurable partition of Ω , and {gk ; k =
1, . . . ,m} ⊂ Sp(F (·)). Then for 0 ≤ s ≤ t ≤ T ,

∫ t
s gkudu is F t -measurable, and

E
[∥∥∥ ∫ t

s

gkudu
∥∥∥p] ≤ tp−1E

[ ∫ t

s

‖gku‖pdu
]

≤ T p−1E
[ ∫ T

0
‖Fu‖pKdu

]
< +∞ ,

which implies that SpIs,t (F )(F t ) is nonempty.

In the following, we will show that SpIs,t (F )(F t ) is bounded in Lp(Ω,F t , P ; X). By
Theorem 3.8, there exists a sequence {f n ; n ∈ N} ⊂ Sp(F (·)) such that

Ft (ω) = cl{f nt (ω) ; n ∈ N} a.e. (t, ω)

and for 0 ≤ s ≤ t ≤ T ,

Is,t (F )(ω) = cl
{ ∫ t

s

f nu (ω)du ; n ∈ N
}

a.s.
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Therefore we have

E[‖Is,t (F )‖pK] = E
[

sup
x∈Is,t (F )(ω)

‖x‖p
]

= E
[

sup
n∈N

∥∥∥ ∫ t

s

f nu du

∥∥∥p]

≤ E
[

sup
n∈N

tp−1
∫ t

s

‖f nu ‖pdu
]

≤ T p−1E
[

sup
n∈N

∫ t

s

‖f nu ‖pdu
]

≤ T p−1E
[ ∫ t

s

sup
n∈N

‖f nu ‖pdu
]

= T p−1E
[ ∫ T

0
‖Fu‖pKdu

]
< +∞ ,

which shows Is,t (F ) is Lp-integrably bounded. Therefore, by Lemma 2.4, the family of all
F t -measurable Lp-integrable selections SpIs,t (F )(F t ) is bounded in Lp(Ω,F t , P ; X).

By Theorem 3.6, Is,t (F )(ω) is convex for almost sureω. If X is reflexive, then Is,t (F )(ω)
is weakly compact for almost sure ω since it is almost surely a closed, bounded and convex
subset of X. Similarly, when p > 1, since Lp(Ω,F t , P ; X) is reflexive too, SpIs,t (F )(F t ) is

weakly compact in Lp(Ω,F t , P ; X). When p = 1, S1
Is,t (F )

(F t ) is also weakly compact in

L1(Ω,F t , P ; X) from [6, Theorem 3.7]. �

LEMMA 3.10. Assume F is separable with respect to P . Let a set valued stochastic
process {Ft ,Ft ; t ∈ [0, T ]} be in Lp(K(X)). Then there exists a B([0, T ])⊗ F-measurable
version {Ĩs,t (F ) ; t ∈ [s, T ]} of {Is,t (F ) ; t ∈ [s, T ]} such that Is,t (F )(ω) = Ĩs,t (F )(ω) a.s.
and Ĩs,t (F )(ω) ∈ Kb(X) for all s ≤ t ≤ T and almost sure ω, where s ∈ [0, T ) is arbitrarily
fixed.

PROOF. If F is separable, by Theorem 3.8, there exists a sequence {f n ; n ∈ N} ⊂
Sp(F (·)), such that

Ft (ω) = cl
{
f nt (ω) ; n ∈ N

}
a.e. (t, ω) ,

and for s ∈ [0, T ) being arbitrarily fixed, t ∈ [s, T ],

Is,t (F )(ω) = cl
{ ∫ t

s

f nu (ω)du ; n ∈ N
}

a.s.

For every f n ∈ Sp(F (·)), there exists a P -null set Nn (independent of s and t) such that∫ T

0
‖f ns (ω)‖pds ≤

∫ T

0
‖Fs(ω)‖pKds for ω ∈ Ω \ Nn .

Set N := ⋃
n Nn, then P(N) = 0, so that, for 0 ≤ s ≤ t ≤ T and ω ∈ Ω \ N , we have∫ t

s

‖f nu (ω)‖pdu ≤
∫ T

0
‖f nu (ω)‖pdu ≤

∫ T

0
‖Fu(ω)‖pKdu .

For 0 ≤ s ≤ T , set

Ĩs,t (F )(ω) = cl
{ ∫ t

s

f nu (ω)du ; n ∈ N
}

for all t ∈ [s, T ] and ω .
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Then Is,t (F )(ω) = Ĩs,t (F )(ω) a.s. and Ĩs,t (F )(ω) is in Kb(X) for all t ∈ [s, T ] and ω ∈
Ω \ N . By using the Castaing representation theorem (see e.g., [6, Theorem 1.0]), the set-
valued process {Ĩs,t (F ) ; t ∈ [s, T ]} is B([0, T ])⊗ F-measurable since, for every n,

∫ t
s
f nu du

is B([0, T ])⊗ F-measurable. �

From now on, if F is separable, we will always assume that the set-valued integral of
{Ft ,Ft ; t ∈ [0, T ]} ∈ Lp(K(X)) means the B([0, T ])⊗ F-measurable version {Ĩs,t (F ) ; t ∈
[s, T ]}. For convenience, we still denote Ĩs,t (F )(ω) by Is,t (F )(ω) or

∫ t
s
Fu(ω)du.

THEOREM 3.11. Assume F is separable with respect to P . For set-valued stochastic
processes {Ft ,Ft ; t ∈ [0, T ]} and {Gt,Ft ; t ∈ [0, T ]} ∈ Lp(K(X)), set

φ(t, ω) := H
( ∫ t

0
Fs(ω)ds,

∫ t

0
Gs(ω)ds

)
: [0, T ] ×Ω → R .

Then φ(·, ·) is B([0, T ])⊗ F-measurable.

PROOF. If F is separable with respect to P , assume that {f i ; i ∈ N} is the dense subset
of Sp(F (·)) and {gj ; j ∈ N} the dense subset of Sp(G(·)). By the definition of the Hausdorff
distance and Lemma 3.10 (and its proof), we have

φ(t, ω) = max
{

sup
i

inf
j

∥∥∥ ∫ t

0
(f is (ω)− gjs (ω))ds

∥∥∥, sup
j

inf
i

∥∥∥ ∫ t

0
(f is (ω)− gjs (ω))ds

∥∥∥}

for all t ∈ [0, T ] and ω. For every i, j ,
∫ t

0f
i
s (ω)ds and

∫ t
0 gjs (ω)ds are B([0, T ]) ⊗ F-

measurable. Then φ(·, ·) is B([0, T ])⊗ F-measurable. �

PROPOSITION 3.12. Assume F is separable with respect to P . Then for a set-valued
stochastic process {Ft ,Ft ; t ∈ [0, T ]} ∈ Lp(K(X)), the equality

It (F )(ω) = cl{Is(F )(ω)+ Is,t (F )(ω)}
holds for 0 ≤ s < t ≤ T and almost sure ω, where cl stands for the closure in X.

PROOF. By Theorem 3.8 and Lemma 3.10, it is not difficult to get the desired result. �

LEMMA 3.13. Assume F is separable with respect to P . Then for a set-valued sto-
chastic process {Ft ,Ft ; t ∈ [0, T ]} ∈ Lp(K(X)), the set-valued integral {It (F ) ; t ∈ [0, T ]}
is H -continuous in t a.s.

PROOF. By Theorem 3.8, for a set-valued stochastic process {Ft ,Ft ; t ∈ [0, T ]} ∈
Lp(K(X)), there exists a sequence {f n ; n ∈ N} ⊂ Sp(F (·)) such that

Ft (ω) = cl{f nt (ω) ; n ∈ N} a.e. (t, ω)

and, for each t ∈ [0, T ],

It (F )(ω) = cl
{ ∫ t

0
f ns (ω)ds ; n ∈ N

}
,
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so that, by properties of Hausdorff distance and Proposition 3.12, we have

H
(∫ t

0
Fudu,

∫ s

0
Fudu

)
= H

(∫ s

0
Fudu+

∫ t

s

Fudu,

∫ s

0
Fudu

)

≤ H
( ∫ t

s

Fudu, {0}
)

= sup
n

∥∥∥ ∫ t

s

f nu du

∥∥∥ ≤
∫ t

s

sup
n

‖f nu ‖du .

Since
∫ t
s supn ‖f nu ‖du = ∫ t

s ‖Fu‖Kdu a.s., the latter converges to 0 a.s. as (t − s) goes to
zero, which yields the desired result. �

LEMMA 3.14. Assume F is separable with respect to P . For set-valued stochastic
processes {Ft }t∈[0,T ], {Gt }t∈[0,T ] ∈ Lp(K(X)), and for all t , we have

Hp
( ∫ t

0
Fs(ω)ds,

∫ t

0
Gs(ω)ds

)
≤ tp−1

∫ t

0
Hp(Fs(ω),Gs(ω))ds a.s.

PROOF. WhenF is separable with respect to P , by Theorem 3.8, there exists a sequence
{f i ; i ∈ N} ⊂ Sp(F (·)), such that

Ft (ω) = cl
{
f it (ω) ; i ∈ N

}
a.e. (t, ω)

and, for each t ∈ [0, T ], ∫ t

0
Fs(ω)ds = cl

{ ∫ t

0
f is (ω)ds ; i ∈ N

}
.

For each i ≥ 1, we can choose a sequence {g ij ; j ∈ N} ⊂ Sp (G(·)) (this sequence depends
on i), such that

‖f i − g ij ‖Lp([0,T ]×Ω ;X) ↓ d(f i, Sp(G(·))) (j → +∞) .

By (3.2) and [6, Theorem 2.2], we have

d(f i, Sp (G(·))) = inf
g∈Sp(G(·))‖f

i − g‖Lp([0,T ]×Ω ;X)

= inf
g∈Sp(G(·))

( ∫
Ω

∫ T

0
‖f is (ω)− gs (ω)‖pdsdP

)1/p

=
(

inf
g∈Sp(G(·))

∫
Ω

∫ T

0
‖f is (ω)− gs (ω)‖pdsdP

)1/p

=
( ∫

Ω

∫ T

0
inf

y∈Gs(ω)
‖f is (ω)− y‖pdsdP

)1/p

=
( ∫

Ω

∫ T

0
dp(f is (ω),Gs(ω))dsdP

)1/p
,

so that∫
Ω

∫ T

0
‖f is (ω)− g ijs (ω)‖pdsdP ↓

∫
Ω

∫ T

0
dp(f is (ω),Gs(ω))dsdP (j → ∞) .
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Namely, noticing that ‖f i − g ij‖Lp([0,T ]×Ω ;X) ≥ d
(
f i, Sp (G(·))) and ‖f is (ω)− g ijs (ω)‖ ≥

d(f is (ω),Gs(ω)) for a.e. (s, ω), we have for any ε > 0, there exists a natural number J such
that for any j ≥ J ,

ε >

∣∣∣ ∫
Ω

∫ T

0
‖f is (ω)− g ijs (ω)‖pdsdP −

∫
Ω

∫ T

0
dp(f is (ω),Gs(ω))dsdP

∣∣∣
=

∫
Ω

∫ T

0
‖f is (ω)− g ijs (ω)‖pdsdP −

∫
Ω

∫ T

0
dp(f is (ω),Gs(ω))dsdP

=
∫
Ω

∫ T

0
(‖f is (ω)− g ijs (ω)‖p − dp(f is (ω),Gs(ω)))dsdP

=
∫
Ω

∫ T

0
|‖f is (ω)− g ijs (ω)‖p − dp(f is (ω),Gs(ω))|dsdP .

Hence there exists a subsequence of {g ij ; j ∈ N}, denoted as {g ijk ; k ∈ N} such that

‖f is (ω)− g ijks (ω)‖p → dp(f is (ω),Gs(ω)) (k → +∞) a.e. (s, ω) .

Since {Ft }t∈[0,T ] and {Gt }t∈[0,T ] are in Lp(K(X)), we have

E
[ ∫ T

0
(‖Fs(ω)‖pK + ‖Gs(ω)‖pK)ds

]
< ∞ .(3.6)

Since

‖f is (ω)− g ijks (ω)‖p ≤ 2p(‖Fs(ω)‖pK + ‖Gs(ω)‖pK) for a.e. (s, ω)

and (3.6) yields

∫ T

0
(‖Fs(ω)‖pK + ‖Gs(ω)‖pK)ds < ∞ a.s. ,

by the Lebesgue dominated convergence theorem, for all t and almost sure ω, we have

∫ t

0
‖f is (ω)− g ijks (ω)‖pds →

∫ t

0
dp(f is (ω),Gs(ω))ds (k → +∞) .

Therefore, for all t and almost sure ω

inf
k

∫ t

0
‖f is (ω)− g ijks (ω)‖pds ≤

∫ t

0
dp(f is (ω),Gs(ω))ds .
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Hence, for all t and almost sure ω, we have

sup
x∈∫ t

0Fs(ω)ds

dp
(
x,

∫ t

0
Gs(ω)ds

)
≤ sup

i

inf
j

∥∥∥ ∫ t

0
f is (ω)ds −

∫ t

0
g ijs (ω)ds

∥∥∥p

≤ sup
i

inf
k

∥∥∥ ∫ t

0
f is (ω)ds −

∫ t

0
g ijks (ω)ds

∥∥∥p
≤ tp−1 sup

i

inf
k

∫ t

0
‖f is (ω)− g ijks (ω)‖pds

≤ tp−1 sup
i

∫ t

0
dp(f is (ω),Gs(ω))ds

≤ tp−1
∫ t

0
sup
i

dp(f is (ω),Gs(ω))ds .

Similarly, by Theorem 3.8, there exists a sequence {gm ;m ∈ N} ⊂ Sp(G(·)) such that

Gt(ω) = cl
{
gmt (ω) ;m ∈ N

}
a.e. (t, ω)

and, for each t ∈ [0, T ], ∫ t

0
Gs(ω)ds = cl

{ ∫ t

0
gms (ω)ds ;m ∈ N

}
.

In the same way as above, we obtain that for all t and almost sure ω,

sup
y∈∫ t

0 Gs(ω)ds

dp
(
y,

∫ t

0
Fs(ω)ds

)
≤ tp−1

∫ t

0
sup
m
dp(gms (ω), Fs(ω))ds .

Therefore, the inequality

Hp
( ∫ t

0
Fs(ω)ds,

∫ t

0
Gs(ω)ds

)
≤ tp−1

∫ t

0
Hp(Fs(ω),Gs(ω))ds

holds for all t and almost sure ω. �

THEOREM 3.15. Assume F is separable with respect to P . Let {Ft }t∈[0,T ] and
{Gt }t∈[0,T ] be set-valued stochastic processes in Lp(K(X)). Then for 1 ≤ r ≤ p and all
t , it follows that

Hr
( ∫ t

0
Fs(ω)ds,

∫ t

0
Gs(ω)ds

)
≤ tr−1

∫ t

0
Hr(Fs(ω),Gs(ω))ds a.s.

and then

E
[
Hr

( ∫ t

0
Fsds,

∫ t

0
Gsds

)]
≤ tr−1E

[ ∫ t

0
Hr(Fs,Gs)ds

]
< +∞ .

PROOF. For 1 ≤ r ≤ p, {Ft }t∈[0,T ] and {Gt }t∈[0,T ] are in Lr (K(X)). Hence Lemma
3.14 yields the first inequality immediately. Since we have

Hr(Fs(ω),Gs(ω))≤ (H(Fs(ω), {0})+H({0},Gs(ω)))r
= 2r (‖Fs(ω)‖rK + ‖Gs(ω)‖rK) ∈ Lr(Ω × [0, T ]; R) ,
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for each t ∈ [0, T ], E[∫ t0 Hr(Fs,Gs)ds] is finite. Hence the second result holds. �

4. Set-valued stochastic differential equation. In this section, we mainly study the
solution to a set-valued stochastic differential equation. Assume X is a separable M-type 2
Banach space. Let the functions

a(·, ·) : [0, T ] × K(X) → K(X) be (B([0, T ])⊗ σ(C)) /σ (C)-measurable, and
b(·, ·) : [0, T ] × K(X) → X be (B([0, T ])⊗ σ(C)) /B(X)-measurable.

LEMMA 4.1. Let {Xt ; t ∈ [0, T ]} be an F t -adapted, measurable set-valued stochas-
tic process, then the following statements hold :

(i) a(t,Xt (ω)) : [0, T ] ×Ω → K(X) is (B([0, T ])⊗ F) /σ (C)-measurable and for
fixed t ∈ [0, T ], a(t,Xt(·)) is F t /σ (C)-measurable, and

(ii) b(t,Xt (ω)) ; [0, T ]×Ω → X is (B([0, T ])⊗ F) /B(X)-measurable and for fixed
t ∈ [0, T ], b(t,Xt(·)) is F t /B(X)-measurable.

PROOF. Here we only prove the results for the function a(·, ·), since for the function
b(·, ·), we can prove similarly.

For fixed t ∈ [0, T ], a(t, ·) is σ(C)/σ (C)-measurable. It is noticed that {Xt ; t ∈ [0, T ]}
is F t -adapted. Hence, for every fixed t ∈ [0, T ], the composite function a(t,Xt(·)) is
F t /σ (C)-measurable.

By Proposition 2.1, X : [0, T ] ×Ω → K(X) can be considered as a (B([0, T ])⊗F) /
σ (C)- measurable function. Then the composite function â(·, ·, ·) mapping [0, T ] × ([0, T ] ×
Ω) to K(X) with â(t, s, ω) = a(t,Xs(ω)) is (B([0, T ])⊗ (B([0, T ])⊗ F)) /σ (C)-meas-
urable. Indeed, let (Ω0,B0), (Ω1,B1) and (Ω2,B2) be measurable spaces. Let Id denote the
identity measurable mapping from (Ω1,B1) to itself. Let ϕ be a measurable function from
(Ω1,B1) to (Ω2,B2) and set

ψ := (Id, ϕ) : Ω0 ×Ω1 → Ω0 ×Ω2 .

Taking any A× B ∈ B0 ⊗ B2, we have

ψ−1(A× B) = A× ϕ−1(B) ∈ B0 ⊗ B1 .

Hence,

ψ−1(B0 ⊗ B2) = B0 ⊗ ϕ−1(B2) ⊂ B0 ⊗ B1 ,

which implies thatψ is (B0⊗B1)/B0⊗B2-measurable. Now let (Ω0,B0)=([0, T ],B([0,T ])),
(Ω1,B1) = ([0, T ] × Ω,B([0, T ]) ⊗ F), (Ω2,B2) = (K(X), σ (C)) and ϕ = X, then ψ
is (B([0, T ])⊗ (B([0, T ])⊗ F)) / (B([0, T ])⊗ σ(C))-measurable, so the composition (â ◦
ψ)(t, s, ω) = a(t,Xs(ω)) is (B([0, T ])⊗ (B([0, T ])⊗ F)) /σ (C)-measurable.

Let t = s for â(t, s, ω). Then it is not difficult to obtain that a(t,Xt (ω)) : [0, T ]×Ω →
K(X) is (B([0, T ])⊗ F) /σ (C)-measurable. �

Assume the above functions a(·, ·) and b(·, ·) also satisfy the following conditions:

H({0}, a(t,X))+ ‖b(t,X)‖ ≤ C(1 +H({0},X)) , X ∈ K(X) , t ∈ [0, T ](4.1)



SET-VALUED STOCHASTIC DIFFERENTIAL EQUATIONS 433

for some constant C, and

H(a(t,X), a(t, Y ))+‖b(t,X)−b(t, Y )‖≤DH(X, Y ) , X, Y ∈K(X) , t ∈ [0, T ](4.2)

for some constantD.
Let X0 be an L2-integrably bounded, weakly compact (in the sense of weak topol-

ogy σ(X,X∗)) set-valued random variable. Assume a(·, ·) is (B([0, T ])⊗ σ(C)) /σ (C)-mea-
surable, b(·, ·) is (B([0, T ])⊗ σ(C)) /B(X)-measurable and both a(·, ·) and b(·, ·) satisfy the
conditions (4.1) and (4.2). Then, by Lemma 4.1, it is reasonable to define the set-valued
stochastic differential equation as follows:

DEFINITION 4.2.

Xt = X0 +
∫ t

0
a(s,Xs)ds +

∫ t

0
b(s,Xs)dBs for t ∈ [0, T ] a.s.(4.3)

An F t -adapted, H -continuous in t almost surely and measurable set-valued process {Xt ; t ∈
[0, T ]} is called a strong solution if it satisfies the equation (4.3).

REMARK 4.3. There are three terms on the right hand side of equation (4.3). The first
term is weakly compact a.s. By Theorem 3.6, the second one is convex and closed a.s., then
weakly closed a.s. The third one is a single valued set, then weakly compact a.s. Therefore
the sum is weakly closed a.s., and hence closed a.s. Also, the left hand side Xt is closed. So
it is reasonable and possible to consider a solution to equation (4.3).

In the following, we will study the existence and uniqueness of the solutions to (4.3).

THEOREM 4.4. Assume F is separable with respect to P . Let T > 0, and let a(·, ·) :
[0, T ] × K(X) → K(X) and b(·, ·) : [0, T ] × K(X) → X be measurable functions satisfying
conditions (4.1) and (4.2). Then for any given L2-integrably bounded, weakly compact initial
value X0, there exists a strong solution to (4.3).

PROOF. As a manner similar to that of solving the ordinary stochastic differential equa-
tion, we can use the successive approximation method to construct a solution to equation
(4.3).

Define Y 0
t = X0. Then we can define Y kt = Y kt (ω) inductively as follows:

Y k+1
t = X0 +

∫ t

0
a(s, Y ks )ds +

∫ t

0
b(s, Y ks )dBs .(4.4)

By Theorem 3.15 and condition (4.2), we have

E[H 2(Y k+1
t , Y kt )] =E

[
H 2

(
X0 +

∫ t

0
a(s, Y ks )ds +

∫ t

0
b(s, Y ks )dBs,

X0 +
∫ t

0
a(s, Y k−1

s )ds +
∫ t

0
b(s, Y k−1

s )dBs

)]

≤E
[(
H(X0,X0)+H

(∫ t

0
a(s, Y ks )ds,

∫ t

0
a(s, Y k−1

s )ds
)
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+H
(∫ t

0
b(s, Y ks )dBs,

∫ t

0
b(s, Y k−1

s )dBs

))2]

=E
[(
H

(∫ t

0
a(s, Y ks )ds,

∫ t

0
a(s, Y k−1

s )ds
)

+
∥∥∥ ∫ t

0
b(s, Y ks )dBs −

∫ t

0
b(s, Y k−1

s )dBs

∥∥∥)2]

≤ 2E
[
H 2

( ∫ t

0
a(s, Y ks )ds,

∫ t

0
a(s, Y k−1

s )ds
)]

+ 2E
[∥∥∥ ∫ t

0
b(s, Y ks )dBs −

∫ t

0
b(s, Y k−1

s )dBs

∥∥∥2]

≤ 2tE
[ ∫ t

0
H 2(a(s, Y ks ), a(s, Y

k−1
s ))ds

]

+ 2CXE
[ ∫ t

0
‖(b(s, Y ks )− b(s, Y k−1

s )‖2ds
]

≤ 2tD2E
[ ∫ t

0
H 2(Y ks , Y

k−1
s )ds

]
+ 2CXD

2E
[ ∫ t

0
H 2(Y ks , Y

k−1
s )ds

]

≤ 2D2(T + CX)

∫ t

0
E[H 2(Y ks , Y

k−1
s )]ds for k ≥ 1 , t ∈ [0, T ] ,

and

E[H 2(Y 1
t , Y

0
t )] =E

[
H 2

(
Y 0
t +

∫ t

0
a(s, Y 0

s )ds +
∫ t

0
b(s, Y 0

s )dBs, Y
0
t

)]

≤E
[(
H(Y 0

t , Y
0
t )+H

( ∫ t

0
a(s, Y 0

s )ds, {0}
)

+H
(∫ t

0
b(s, Y 0

s )dBs, {0}
))2]

≤ 2E
[
H 2

( ∫ t

0
a(s, Y 0

s )ds, {0}
)]

+ 2E
[∥∥∥ ∫ t

0
b(s, Y 0

s )dBs

∥∥∥2]

≤ 2tE
[ ∫ t

0
H 2(a(s, Y 0

s ), {0})ds
]

+ 2CXE
[ ∫ t

0
‖b(s, Y 0

s )‖2ds
]

= 2(t + CX)E
[ ∫ t

0
(H 2(a(s, Y 0

s ), {0})+ ‖b(s, Y 0
s )‖2)ds

]

≤ 2(t + CX)E
[ ∫ t

0
C2(1 + ‖X0‖K)

2ds
]

≤ 2C2(T + CX)tE[(1 + ‖X0‖K)
2] = A1t ,
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where A1 := 2C2(T +CX)E[(1+‖X0‖K)
2] < +∞ and is independent of t . So by induction

on k we obtain

E[H 2(Y k+1
t , Y kt )] ≤ 2D2(T + CX)

∫ t

0
E[H 2(Y ks , Y

k−1
s )]ds

≤ (2D2(T + CX))
2
∫ t

0

∫ s

0
E[H 2(Y k−1

τ , Y k−2
τ )]dτds

≤ · · · ≤ Ak+1
2 tk+1

(k + 1)! , k ≥ 0 , t ∈ [0, T ] ,

where A2 := max{1, A1, (2D2(T + CX))}.
For m > n > 0, by the above inequality, we have

(E[H 2(Ymt , Y
n
t )])1/2 = ‖H(Ymt , Y nt )‖L2

≤ ‖H(Ymt , Ym−1
t )+H(Ym−1

t , Ym−2
t )+ · · · +H(Yn+1

t , Y nt )‖L2

=
∥∥∥m−1∑
k=n

H(Y k+1
t , Y kt )

∥∥∥
L2

≤
m−1∑
k=n

‖H(Y k+1
t , Y kt )‖L2

≤
∞∑
k=n

‖H(Y k+1
t , Y kt )‖L2 ≤

∞∑
k=n

(Ak+1
2 tk+1

(k + 1)!
)1/2 → 0 as n → +∞ ,

which means {Ynt ; n ∈ N} is a Cauchy sequence in the complete metric space
L2(Ω ;(Kb(X),H)), so that the sequence {Ynt ; n ∈ N} converges to a limit Ỹt in the sense
that limn→+∞ E

[
H 2(Y nt , Ỹt )

] = 0 for every t ∈ [0, T ]. The convergence is also uniform in
t ∈ [0, T ]. Indeed, by Theorem 3.15, we have

sup
0≤t≤T

H(Y k+1
t , Y kt ) = sup

0≤t≤T
H

(
X0 +

∫ t

0
a(s, Y ks )ds +

∫ t

0
b(s, Y ks )dBs,X0

+
∫ t

0
a(s, Y k−1

s )ds +
∫ t

0
b(s, Y k−1

s )dBs

)

≤ sup
0≤t≤T

(
H

( ∫ t

0
a(s, Y ks )ds,

∫ t

0
a(s, Y k−1

s )ds
)

+
∥∥∥ ∫ t

0
b(s, Y ks )dBs −

∫ t

0
b(s, Y k−1

s )dBs

∥∥∥)

≤
∫ T

0
H(a(s, Y ks ), a(s, Y

k−1
s ))ds

+ sup
0≤t≤T

∥∥∥ ∫ t

0
b(s, Y ks )− b(s, Y k−1

s )dBs

∥∥∥ a.s.
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Therefore, we have

P
(

sup
0≤t≤T

H(Y k+1
t , Y kt ) > 2−k)

≤ P
(( ∫ T

0
H(a(s, Y ks ), a(s, Y

k−1
s ))ds

)2
> 2−2k−2

)

+ P
(

sup
0≤t≤T

∥∥∥ ∫ t

0
(b(s, Y ks )− b(s, Y k−1

s ))dBs

∥∥∥ > 2−k−1
)
.

The first term of the right hand side of the above inequality is dominated as follows:

P
(( ∫ T

0
H(a(s, Y ks ), a(s, Y

k−1
s ))ds

)2
> 2−2k−2

)

≤ 22k+2E
[( ∫ T

0
H(a(s, Y ks , a(s, Y

k−1
s ))ds

)2]
(by Markov’s inequality)

≤ 22k+2T E
[ ∫ T

0
H 2(a(s, Y ks ), a(s, Y

k−1
s ))ds

]
(by Schwarz’s inequality) .

Now we consider the second term. By Proposition 3.4, {∫ t0 b(s, Ys)dBs ; t ∈ [0, T ]} is a t-
continuousL2-bounded Banach-valued martingale, then the norm process {‖∫ t0 b(s, Ys)dBs‖ ;
t ∈ [0, T ]} is t-continuousL2-bounded real valued submartingale, so that, by Doob’s inequal-
ity, the second term is dominated as follows:

P
(

sup
0≤t≤T

∥∥∥ ∫ t

0
(b(s, Y ks )− b(s, Y k−1

s ))dBs

∥∥∥ > 2−k−1
)

≤ 22k+2E
[∥∥∥ ∫ T

0
(b(s, Y ks )− b(s, Y k−1

s ))dBs

∥∥∥2]

≤ 22k+2CXE
[ ∫ T

0
‖b(s, Y ks )− b(s, Y k−1

s )‖2ds
]
.

Then we have

P
(

sup
0≤t≤T

H(Y k+1
t , Y kt ) > 2−k)

≤ 22k+2T E
[ ∫ T

0
H 2(a(s, Y ks ), a(s, Y

k−1
s ))ds

]

+ 22k+2CXE
[ ∫ T

0
‖b(s, Y ks )− b(s, Y k−1

s )‖2ds
]

= 22k+2(T + CX)

∫ T

0
E[H 2(a(s, Y ks ), a(s, Y

k−1
s ))+ ‖b(s, Y ks )− b(s, Y k−1

s )‖2]ds

≤ 22k+2(T + CX)

∫ T

0
E[(H(a(s, Y ks ), a(s, Y k−1

s ))+ ‖b(s, Y ks )− b(s, Y k−1
s )‖)2]ds

≤ 22k+2(T + CX)D
2
∫ T

0
E[H 2(Y ks , Y

k−1
s )]ds
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≤ 22k+2(T + CX)D
2
∫ T

0

Ak2s
k

k! ds = 22k+2(T + CX)D
2A

k
2T

k+1

(k + 1)! ,

which yields that

∞∑
k=1

P
(

sup
0≤t≤T

H(Y k+1
t , Y kt ) > 2−k) < +∞ .

By the Borel-Cantelli Lemma, it follows that

P
( ∞⋂
m=1

∞⋃
k=m

{
ω ; sup

0≤t≤T
H(Y k+1

t , Y kt ) > 2−k})
= 0 ,

which implies, for almost sure ω, there is an integer k0 = k0(ω) such that

sup
0≤t≤T

H(Y k+1
t , Y kt ) ≤ 2−k for k ≥ k0 .

Therefore the sequence {Y kt ; k ∈ N} converges to Yt uniformly in [0, T ] a.s. By Lemma 3.13
and the definition of the stochastic integral, every Y kt is H -continuous in t , so that the limit Yt
is also H -continuous in t a.s. Further, it is clear that, for any fixed t , Yt = Ỹt a.s., so that we
can replace Ỹt by Yt .

It remains to show that Yt satisfies equation (4.3). Indeed, for each integer n ≥ 0,

Yn+1 = X0 +
∫ t

0
a(s, Y ns )ds +

∫ t

0
b(s, Y ns )dBs .(4.5)

Similarly, we have

lim
n→∞E

[
H 2

( ∫ t

0
a(s, Y ns )ds,

∫ t

0
a(s, Ys)ds

)]
= 0

and

lim
n→∞E

[
H 2

( ∫ t

0
b(s, Y ns )dBs,

∫ t

0
b(s, Ys)dBs

)]
= 0 ,

which, together with (4.5), verify the existence of a solution to (4.3). �

THEOREM 4.5. Under the same condition as that in Theorem 4.4, the solution to equa-
tion (4.3) is strongly unique in the sense that P(H(Xt , X̂t ) = 0 for all t ∈ [0, T ]) = 1 if Xt
and X̂t are solutions to (4.3) with the same initial value X0.
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PROOF. Assume thatXt and X̂t are two solutions to equation (4.3) with the same initial
value X0. Then we have

E[H 2(Xt , X̂t )] ≤ E
[(
H(X0,X0)+H

(∫ t

0
a(s,Xs)ds,

∫ t

0
a(s, X̂s)ds

)

+
∥∥∥ ∫ t

0
(b(s,Xs)− b(s, X̂s))dBs

∥∥∥)2]

≤ 2E
[
H 2

( ∫ t

0
a(s,Xs)ds,

∫ t

0
a(s, X̂s)ds

)]

+ 2E
[∥∥∥ ∫ t

0
(b(s,Xs)− b(s, X̂s))dBs

∥∥∥2]

≤ 2tE
[ ∫ t

0
H 2(a(s,Xs), a(s, X̂s))ds

]

+ 2CXE
[ ∫ t

0
‖b(s,Xs)− b(s, X̂s)‖2ds

]

≤ 2tD2E
[ ∫ t

0
H 2(Xs, X̂s)ds

]
+ 2CXD

2E
[ ∫ t

0
H 2(Xs, X̂s)ds

]

= 2D2(t + CX)E
[ ∫ t

0
H 2(Xs, X̂s)ds

]

= 2D2(t + CX)

∫ t

0
E[H 2(Xs, X̂s)]ds .

Set

ν(t) := E[H 2(Xt , X̂t )] for t ∈ [0, T ] ,
then

ν(t) ≤ 2D2(T + CX)

∫ t

0
ν(s)ds ,

which, together with Gronwall’s inequality, implies

ν(t) = E[H 2(Xt , X̂t )] = 0 for all t ∈ [0, T ] .
ThereforeH 2(Xt , X̂t ) = 0 a.s. Since Xt and X̂t areH -continuous in t with probability 1, we
have

P
(
H(Xt, X̂t ) = 0 for all t ∈ [0, T ]) = 1 ,

which completes the proof of the uniqueness. �

REMARK 4.6. If the separable M-type 2 Banach space X is reflexive, and if the initial
valueX0 is L2-integrably bounded and weakly closed, then equation (4.3) also can be defined
well by Theorem 3.9. Similarly, Theorems 4.4 and 4.5 hold too.
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