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Abstract. In this paper we completely classify parallel non-degenerate surfaces in 4-
dimensional Lorentzian space forms. In addition, we also completely classify non-degenerate
surfaces with parallel mean curvature vector in 4-dimensional Lorentzian space forms.

1. Introduction. By a Lorentzian manifold we mean a pseudo-Riemannian manifold
with index one. A Lorentzian space form is by definition a Lorentzian manifold of constant
sectional curvature.

Let E
n
s denote the pseudo-Euclidean n-space with metric tensor given by

g0 = −
s∑
i=1

dx2
i +

n∑
j=s+1

dx2
j ,(1.1)

where (x1, . . . , xn) is the rectangular coordinate system of E
n
s . We put

(1.2)
Sks (x0, c) = {x ∈ E

k+1
s ; 〈x − x0, x − x0〉 = c−1 > 0} ,

H k
s (x0,−c) = {x ∈ E

k+1
s+1; 〈x − x0, x − x0〉 = −c−1 < 0} ,

where 〈 , 〉 is the indefinite inner product on E
n
s . Then Sks (x0, c) andHk

s (x0,−c) are complete
pseudo-Riemannian manifolds with index s of constant curvature c and −c, respectively. We
simply denote Sks (x0, c) and Hk

s (x0,−c) by Sks (c) and Hk
s (−c) when x0 is the origin.

The Lorentzian manifolds E
k
1, S

k
1 (x0, c) and Hk

1 (x0,−c) are complete Lorentzian space
forms, which are known as the Minkowski, de Sitter, and anti-de Sitter spaces, respectively.

A vector v is called space-like (resp. time-like) if 〈v, v〉 > 0 (resp. 〈v, v〉 < 0). A vector
v is called light-like if it is nonzero and it satisfies 〈v, v〉 = 0. A curve is called a null curve if
its tangent vector is light-like at each point.

A submanifold of a pseudo-Riemannian manifold (in particular, in a Riemannian man-
ifold) is called a parallel submanifold if it has parallel second fundamental form. Parallel
submanifolds are one of the most fundamental submanifolds. Parallel submanifolds in real
(resp. complex) space forms have been classified in [8, 18] (resp. in [14, 15]). Some special
classes of parallel submanifolds in Lorentzian space forms have been studied in [1, 9, 10, 12].
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In this article, we completely classify non-degenerate surfaces with parallel second fun-
damental form in 4-dimensional Lorentzian space forms. In addition, we completely clas-
sify non-degenerate surfaces with parallel mean curvature vector in 4-dimensional Lorentzian
space forms.

2. Preliminaries.
2.1. Basic notation, formulas and definitions. Let L4

1(c) denote a Lorentzian space
form of constant sectional curvature c. Then the Riemann curvature tensor R̃ of L4

1(c) is given
by

R̃(X, Y )Z = c{〈Y,Z〉X − 〈X,Z〉Y } .
Throughout the paper, we assume that M is a non-degenerate surface in L4

1(c), i.e., the
induced metric on M is non-degenerate. So, M is either space-like or Lorentzian. We put
δ = 1 or δ = −1, according to M being space-like or Lorentzian, respectively.

Denote by ∇ and ∇̃ the Levi Civita connections onM and L4
1(c), respectively. LetX and

Y denote vector fields tangent to M and let ξ be a normal vector field. Then the formulas of
Gauss and Weingarten give a decomposition of the vector fields ∇̃XY and ∇̃Xξ into a tangent
and a normal component (cf. [2, 3, 16]):

∇̃XY = ∇XY + h(X, Y ) ,(2.1)

∇̃Xξ = −AξX +DXξ .(2.2)

These formulae define h, A and D, which are called the second fundamental form, the shape
operator and the normal connection respectively.

The mean curvature vector is defined by H = (1/2)traceh. For each ξ ∈ T ⊥
x M , the

shape operator Aξ is a symmetric endomorphism of the tangent space TxM at x ∈ M . The
shape operator and the second fundamental form are related by

〈h(X, Y ), ξ〉 = 〈AξX, Y 〉(2.3)

for X,Y tangent to M and ξ normal to M .
The equations of Gauss, Codazzi and Ricci are given respectively by

〈R(X, Y )Z,W 〉 = 〈Ah(Y,Z)X,W 〉 − 〈Ah(X,Z)Y,W 〉(2.4)

+c (〈X,W 〉〈Y,Z〉 − 〈X,Z〉〈Y,W 〉) ,
(∇Xh)(Y,Z) = (∇Y h)(X,Z) ,(2.5)

〈RD(X, Y )ξ, η〉 = 〈[Aξ,Aη]X,Y 〉(2.6)

for X,Y,Z,W tangent to M and ξ, η normal to M , where ∇h is defined by

(2.7) (∇Xh)(Y,Z) = DXh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ) .
The surface M is said to be totally geodesic if h = 0 holds identically; and parallel

if we have ∇h = 0. The surface is said to have parallel mean curvature vector if we have
DH = 0 identically. It is called totally umbilical if its second fundamental form satisfies
h(X, Y ) = 〈X,Y 〉H .
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The light cone LCn−1(x0) with vertex x0 in E
n
s is defined to be

LCn−1(x0) = {x ∈ E
n
s ; 〈x − x0, x − x0〉 = 0} .(2.8)

We simply denote LCn−1(x0) ⊂ E
n
s by LC ⊂ E

n
s if x0 is the origin.

A surface in a pseudo-Riemannian 3-manifold (or in a light cone) is called a CMC surface
if its mean curvature vector H satisfies 〈H,H 〉 = constant �= 0.

2.2. Moving frames. Let M be a space-like or a Lorentzian surface in a Lorentzian
space form L4

1(c). Put δ = 1 if M is space-like and put δ = −1 if M is Lorentzian. Let
{e1, e2} be a local tangent frame and let {e3, e4} be a local normal frame, such that

〈e1, e1〉 = δ , 〈e1, e2〉 = 0 , 〈e2, e2〉 = 1 ,(2.9)

〈e3, e3〉 = −δ , 〈e3, e4〉 = 0 , 〈e4, e4〉 = 1 .(2.10)

We define the one-forms ω2
1, ω1

2, ω4
3 and ω3

4 by the following equations:

∇Xe1 = ω2
1(X)e2 , ∇Xe2 = ω1

2(X)e1 , DXe3 = ω4
3(X)e4 , DXe4 = ω3

4(X)e3 .(2.11)

Then ω1
2 = −δω2

1 and ω3
4 = δω4

3.
If M is space-like, sometimes we use a local normal frame {e3, e4} on M satisfying

〈e3, e3〉 = 〈e4, e4〉 = 0 , 〈e3, e4〉 = −1 .(2.12)

We may put

(2.13) DXe3 = θ(X)e3 , DXe4 = −θ(X)e4

for some one-form θ .
2.3. Isothermal coordinates and lemmas. Locally, there exists an isothermal coordi-

nate system (u, v) on a space-like (or Lorentzian) surface M so that the metric tensor of M
takes the following form:

g = E(u, v)(δdu2 + dv2) ,(2.14)

where δ = 1 if M is space-like; and δ = −1 if M is Lorentzian (see [11, page 111] for
Lorentzian surfaces).

The following lemmas are obtained in [5].

LEMMA 2.1. Let M be a non-degenerate surface in a Lorentzian space form L4
1(c). If

M has parallel mean curvature vector, then with respect to the isothermal coordinates (u, v)
satisfying (2.14) we have

(2.15)
1

2
D∂v (δl − n) = D∂u(δm) ,

1

2
D∂u(δl − n) = −D∂vm ,

where l = h(∂u, ∂u), m = h(∂u, ∂v), n = h(∂v, ∂v).

LEMMA 2.2. Let M be a non-degenerate surface with parallel nonzero mean curva-
ture vector in a Lorentzian space form L4

1(c). Then we have:
(1) RD = 0, i.e., M has flat normal connection;
(2) [Aξ ,Aη] = 0 for ξ, η ∈ T ⊥

p M .
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2.4. Marginally trapped surfaces. The concept of trapped surfaces, introduced by
Penrose in [17] plays a very important role in general relativity. In the theory of cosmic black
holes, if there is a massive source inside the surface, then close enough to a massive enough
source, the outgoing light rays may also be converging; a trapped surface. Everything inside
is trapped. Nothing can escape, not even light. It is believed that there is a marginally trapped
surface, separating the trapped surfaces from the untrapped ones, where the outgoing light
rays are instantaneously parallel. The surface of a black hole is located by the marginally
trapped surface.

In terms of the mean curvature vector, a codimension-two space-like surface is future
trapped if its mean curvature vector is time-like and future-pointing at each point (similarly,
for passed trapped); and it is marginally trapped if the mean curvature vector is light-like at
each point on the surface.

3. Space-like surfaces withDH = 0. In this section we classify space-like surfaces
in L4

1(c) with DH = 0.

THEOREM 3.1. A space-like surface M with parallel mean curvature vector in the 4-
dimensional Minkowski space-time E

4
1 is congruent to one of the following twelve types of

surfaces:
(1) a minimal surface of E

4
1;

(2) a CMC surface of the light cone LC ⊂ E
4
1;

(3) a CMC surface of a Euclidean 3-space E
3 ⊂ E

4
1;

(4) a CMC surface of a 3-dimensional Minkowski space-time E
3
1 ⊂ E

4
1;

(5) a CMC surface of a 3-dimensional de Sitter space-time S3
1 (c) ⊂ E

4
1;

(6) a CMC surface of a 3-dimensional hyperbolic space H 3(−c) ⊂ E
4
1;

(7) a flat parallel surface given by L = a(coshu, sinh u, cos v, sin v), a > 0;
(8) a flat parallel surface given by

L = 1

2
((1 − b)u2 + (1 + b)v2, (1 − b)u2 + (1 + b)v2, 2u, 2v) , b ∈ R ;

(9) a flat non-parallel surface with constant light-like mean curvature vector, which
lies in the hyperplane H0 = {(t, t, x3, x4) ∈ E

4
1}, but not in any light cone;

(10) a non-parallel flat marginally trapped surface lying in the light cone LC;
(11) a non-parallel surface lying in the de Sitter space-time S3

1 (c) for some c > 0 such
that the mean curvature vectorH ′ of M in S3

1 (c) satisfies 〈H ′,H ′〉 = −c;
(12) a non-parallel surface lying in the hyperbolic spaceH 3(−c) for some c > 0 such

that the mean curvature vectorH ′ of M in H 3(−c) satisfies 〈H ′,H ′〉 = c.
Surfaces of types (7)–(12) are marginally trapped in E

4
1.

PROOF. Let M be a space-like surface in E
4
1. Assume that M has parallel mean curva-

ture vector. Then 〈H,H 〉 is constant. So, one of the following three cases occurs:
(i) H = 0,

(ii) H is light-like,
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(iii) 〈H,H 〉 is a nonzero constant.
If H = 0, we obtain case (1). If H is light-like, then according to Theorem 3.1 of [6], M

is one of the surfaces given by cases (7)–(12).
Now, let us assume that 〈H,H 〉 is a nonzero constant. Let (u, v) be isothermal coordi-

nates on M satisfying (2.14). Let us choose e3, e4 to be an orthonormal normal frame with
H = be3 for a positive number b. Let us put ε3 = 〈e3, e3〉, ε4 = 〈e4, e4〉. We have ε4 = −ε3.
From DH = 0, we also have De3 = De4 = 0. Let us put

α = 1

2
〈l − n, e3〉 , β = 〈m, e3〉 ,(3.1)

where l,m, n are defined as in Lemma 2.1. It follows from Lemma 2.1 and De3 = 0 that α
and β satisfy the Cauchy-Riemann condition:

∂α

∂v
= ∂β

∂u
,

∂α

∂u
= −∂β

∂v
.(3.2)

Thus, the function φ1 = α + iβ is a holomorphic function in z = u+ iv.
Similarly, if we put

γ = 1

2
〈l − n, e4〉 , δ = 〈m, e4〉 ,(3.3)

then φ2 = γ + iδ is also holomorphic by the same argument. From the definitions of φ1, φ2,
we get

(3.4)
φ2

φ1
= αγ + βδ + i(αδ − βγ )

α2 + β2 .

Let us put

h(ej , ek) = h3
jke3 + h4

jke4 ,(3.5)

for j, k = 1, 2, where e1 = ∂u/
√
E, e2 = ∂v/

√
E. With respect to e1, e2, (2.3) and (3.5) give

Ae3 = ε3

(
h3

11 h3
12

h3
12 h3

22

)
, Ae4 = ε4

(
h4

11 h4
12

h4
12 h4

22

)
.(3.6)

Since H = be3, we find 2b = h3
11 + h3

22 and h4
11 + h4

22 = 0.
After applying [Ae3, Ae4] = 0 from Lemma 2.2 and using (3.6), we obtain

h4
12(h

3
11 − h3

22) = (h4
11 − h4

22)h
3
12 .(3.7)

It is easy to see that (3.7) is equivalent to βγ = αδ. Thus, (3.4) implies that the meromorphic
function φ2/φ1 is real; hence, it is constant. A straightforward computation yields φ2/φ1 =
−h4

12/h
3
12 = δ/β. Let us put

(3.8) η1 = (sin r)e3 − (cos r)e4 , η2 = (cos r)e3 − (sin r)e4 , r = arctan

(
φ2

φ1

)
.

By applying (3.6)–(3.8), we find

Aη1 = ζ I , traceAη2 = ε3b cos r ,(3.9)
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where ζ = ε3b sin r is constant. SinceDe3 = De4 = 0 and r , trace Ae3 are constant, we have
Dη1 = Dη2 = 0.

If ζ = 0, then sin r = 0. In this case, e4 is a constant unit vector which implies that
〈L, e4〉 is constant. Hence, after choosing suitable Minkowskian coordinates we obtain case
(3) or case (4) depending on e4 being time-like or space-like, respectively.

Now, assume that ζ �= 0. Let us consider the following map:

ψ : M → E
4
1 : p �→ L(p)+ ζ−1η1(p) .(3.10)

Then, we have ∇̃Xψ = X − ζ−1Aη1X = 0 for X ∈ TM . Thus, ψ is constant, say c0 ∈ E
4
1.

We may assume c0 = 0 by choosing suitable Minkowskian coordinates. Thus, we obtain from
(3.8) that

〈L,L〉 = ε4

b2 (cot2 r − 1) .(3.11)

If cot2 r = 1, then M is a CMC surface of the light cone LC. This gives case (2).
If c = ε4b

2/(cot2 r − 1) > 0, M is a CMC surface of S3
1 (c), which gives case (5).

Finally, if c = ε4b
2/(cot2 r−1) < 0, thenM is a CMC surface ofH 3(−c), which gives

case (6) of the theorem. �

THEOREM 3.2. A space-like surface with parallel mean curvature vector in the de
Sitter space-time S4

1 (1) ⊂ E
5
1 is congruent to one of the following twelve types of surfaces:

(1) a minimal surface of S4
1 (1);

(2) a CMC surface in S4
1 (1) ∩ E , where E is a space-like hyperplane in E

5
1;

(3) a CMC surface in S4
1 (1) ∩ E1, where E1 is a Minkowskian hyperplane in E

5
1;

(4) a surface M which lies in S4
1 (1) ∩ H, where H is a degenerate hyperplane in E

5
1

such that the normal vector ofM in S4
1 (1) ∩ H is light-like;

(5) a parallel surface of curvature one given by L=(1, sin u, cosu cos v,
cosu sin v, 1) with a, b, c ∈ R;

(6) a flat parallel surface defined by L = (1/2)(2u2 − 1, 2u2 − 2, 2u, sin 2v, cos 2v);
(7) a flat parallel surface defined by

L =
(

b√
4 − b2

,
cos(

√
2 − bu)√

2 − b

sin(
√

2 − bu)√
2 − b

,
cos(

√
2 + bv)√

2 + b
,

cos(
√

2 + bv)√
2 + b

)
with |b| < 2.

(8) a flat parallel surface defined by

L =
(

cosh(
√
b − 2u)√
b − 2

,
sinh(

√
b − 2u)√
b − 2

,
cos(

√
2 + bv)√

2 + b
,

cos(
√

2 + bv)√
2 + b

,
b√
b2 − 4

)
with b > 2.

(9) a non-parallel surface of curvature one with constant light-like mean curvature
vector, and it lies in Ka ∩ S4

1 (1), with Ka = {(x1, x2, x3, x4, x5) ∈ E
5
1; x5 = x1 + a} for some

a ∈ R, but not in any light cone in E
5
1;

(10) a non-parallel marginally trapped surface of curvature one in S4
1 (1) which lies in

LC1 := {(y, 1) ∈ E
5
1; 〈y, y〉 = 0, y ∈ E

4
1} ⊂ S4

1 (1);
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(11) a non-parallel surface of S4
1 (1) which lies in S4

1 (1) ∩ S4
1 (x0, c) with x0 �= 0 and

c > 0 such that the mean curvature vectorH ′ of M in S4
1 (1) ∩ S4

1 (x0, c) satisfies 〈H ′,H ′〉 =
−c;

(12) a non-parallel surface of S4
1 (1) which lies in S4

1 (1) ∩ H 4(x0,−c) with x0 �= 0
and c > 0 such that the mean curvature vector H ′ of M in S4

1 (1) ∩ H 4(x0,−c) satisfies
〈H ′,H ′〉 = c.

Surfaces of types (5)–(12) are marginally trapped in S4
1 (1).

PROOF. Let M be a space-like surface in S4
1 (1) with parallel mean curvature vector.

Then 〈H,H 〉 is constant. So, one of the following three cases occurs: (i) H = 0, (ii) H is
light-like, (iii) 〈H,H 〉 is a nonzero constant.

IfH = 0, we get case (1) of the theorem. IfH is light-like, then [6, Theorem 6.1] implies
that M is one of the surfaces given by cases (5)–(12).

Now, assume 〈H,H 〉 is a nonzero constant. Let us put ε3 = 〈e3, e3〉, ε4 = 〈e4, e4〉. Then
we have ε4 = −ε3. From DH = 0, we get De3 = De4 = 0. Let us put

(3.12) η1 = (sin r)e3 − (cos r)e4 , η2 = (cos r)e3 − (sin r)e4 , r = arctan

(
φ2

φ1

)
,

exactly in the same way as in the proof of Theorem 3.1. Then, by applying the same argument
as in the proof of Theorem 3.1, we have

Dη1 = Dη2 = 0 , Aη1 = ζ I , traceAη2 = ε3b cos r ,(3.13)

where ζ = ε3b sin r is a constant.
If ζ = 0, then sin r = 0. So, e4 is a constant unit vector which implies that 〈L, e4〉 is

constant. Hence, after choosing suitable Minkowskian coordinates, we obtain case (2) or case
(3) depending on e4 being time-like or space-like, respectively.

Next, assume that ζ �= 0. Let us consider the map:

ψ : M → E
5
1 : p �→ L(p)+ ζ−1η1(p) .(3.14)

We have ∇̃Xψ = 0,X ∈ TM . Thus, ψ is constant, say c0 ∈ E
5
1. Thus, we obtain

〈L− c0, L− c0〉 = ε4

b2 (cot2 r − 1) .(3.15)

Combining this with 〈L,L〉 = 1 gives

〈L, c0〉 = 1

2

{
1 + 〈c0, c0〉 − ε4

b2 (cot2 r − 1)

}
.(3.16)

Thus, we obtain cases (2), (3) or (4) depending on whether c0 is time-like, space-like or light-
like. �

THEOREM 3.3. A space-like surface with parallel mean curvature vector in the anti de
Sitter space-timeH 4

1 (−1) ⊂ E
5
2 is congruent to one of the following twelve types of surfaces:

(1) a minimal surface of H 4
1 (−1);

(2) a CMC surface in H 4
1 (−1) ∩ E1, where E1 a Minkowskian hyperplane in E

5
2;

(3) a CMC surface in H 4
1 (−1) ∩ E2, where E2 is a hyperplane with index 2 in E

5
2;
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(4) a surfaceM which lies inH 4
1 (−1)∩H, where H is a degenerate hyperplane such

that the normal vector of M in H 4
1 (−1) ∩ H is light-like;

(5) a parallel surface of curvature −1 given by L=(1, coshu cosh v, sinh u,
coshu sinh v, 1);

(6) a flat parallel surface defined by L = (1/2)(2u2 + 2, cosh 2v, 2u, sinh 2v, 2u2 +
1);

(7) a flat parallel surface defined by

L=
(

cosh(
√

2−bu)√
2 − b

,
cosh(

√
2+bv)√

2 + b
,

sinh(
√

2−bu)√
2 − b

,
sinh(

√
2+bv)√

2 + b
,

b√
4−b2

)
,

|b| < 2;
(8) a flat parallel surface defined by

L =
(

b√
b2 − 4

,
cosh(

√
b + 2v)√
b + 2

,
sinh(

√
b + 2v)√
b + 2

,
cos(

√
b − 2u)√
b − 2

,
sin(

√
b − 2u)√
b − 2

)
,

b > 2;
(9) a non-parallel surface with curvature −1 and constant light-like mean curvature

vector, which lies in Gb ∩ H 4
1 (−1), with Gb = {(x1, x2, x3, x4, x5) ∈ E

5
2; x3 = x1 + b} for

some b ∈ R, but not in any light cone of E
5
2;

(10) a non-parallel marginally trapped surface of H 4
1 (−1) with curvature −1, and it

lies in LC2 := {(1, y) ∈ E
5
2; 〈y, y〉 = 0, y ∈ E

4
1} ⊂ H 4

1 (−1);
(11) a non-parallel surface lying in H 4

1 (−1) ∩ S4
2 (x0, c) with x0 �= 0 and c > 0 such

that the mean curvature vectorH ′ in H 4
1 (−1) ∩ S4

2 (x0, c) satisfies 〈H ′,H ′〉 = −c;
(12) a non-parallel surface lying in H 4

1 (−1) ∩ H 4
1 (x0,−c) with x0 �= 0 and c > 0

such that mean curvature vectorH ′ in H 4
1 (−1) ∩H 4

1 (x0,−c) satisfies 〈H ′,H ′〉 = c.
Surfaces of types (5)–(12) are marginally trapped in H 4

1 (−1).

REMARK 3.1. For the existence and examples of surfaces of types (9)–(12) of Theo-
rem 3.1, Theorem 3.2 and Theorem 3.3, see [6].

4. Lorentzian surfaces with DH = 0.

LEMMA 4.1. Let A be a linear operator on a two-dimensional vector space V , which
is symmetric with respect to a Lorentzian inner product 〈 , 〉 on V . Then there exists a basis
{e1, e2} of V with 〈e1, e1〉 = −1, 〈e1, e2〉 = 0 and 〈e2, e2〉 = 1 such that, with respect to
{e1, e2}, A takes one of the following forms:

A =
(
α 0
0 β

)
,(4.1)

A =
(
α β

−β α

)
, β �= 0,(4.2)

A =
(
α 1
−1 α + 2

)
or A =

(
α 1

−1 α − 2

)
.(4.3)
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PROOF. Let {u1, u2} be a basis of V with 〈u1, u1〉 = −1, 〈u1, u2〉 = 0 and 〈u2, u2〉 = 1.
Since A is symmetric, it takes the form A = (

a b−b c
)

with respect to {u1, u2}. Notice that, for
a fixed real number t , the basis {e1, e2} given by

(4.4) e1 = (cosh t)u1 + (sinh t)u2 , e2 = (sinh t)u1 + (cosh t)u2

also satisfies 〈e1, e1〉 = −1, 〈e1, e2〉 = 0 and 〈e2, e2〉 = 1.
If b = 0, we are in case (4.1).
Now, suppose that b �= 0. We distinguish three cases.
If |(c − a)/2b| > 1, we can choose the t in (4.4) so that 2b/(c− a) = tanh(2t), and we

obtain (4.1).
If |(c−a)/2b| < 1, we can choose t in (4.4) so that (c−a)/2b = tanh(2t), and we obtain

(4.2). Notice that we may assume β �= 0 for (4.2), since otherwise, it reduces to a special case
of (4.1).

Finally, if c − a = ±2b, we can choose t = ± ln |b| in (4.4) and we obtain either

(4.5) A =
(
α 1

−1 β

)
or A =

(
α −1
1 β

)
.

By changing e2 into −e2, we can transform the second matrix of (4.5) into the first matrix of
(4.5). If β − α = ±2, we have obtained the form (4.3). If β − α �= ±2, we can do another
transformation to obtain either (4.1) or (4.2). �

REMARK 4.1. With respect to the null-basis {v1 = (e1+e2)/
√

2, v2 = (e1−e2)/
√

2},
the matrices of (4.3) become respectively

A =
(
α + 1 −2

0 α + 1

)
and A =

(
α − 1 0

2 α − 1

)
.

THEOREM 4.1. Let M be a Lorentzian surface in the Minkowski space-time E
4
1. Then

M has parallel mean curvature vector if and only if, up to suitable choice of Minkowskian
coordinates,M is one of the following surfaces:

(1) a minimal surface of E
4
1;

(2) a CMC surface of a Minkowski space-time E
3
1 ⊂ E

4
1;

(3) a CMC surface of a de Sitter space-time S3
1 (c) ⊂ E

4
1.

PROOF. Let L : M → E
4
1 be a Lorentzian surface with DH = 0 in E

4
1. If H = 0, we

obtain case (1). Next, assume H �= 0 and choose an orthonormal normal frame {e3, e4} with
H = κe3. Then κ is a nonzero constant and De3 = De4 = 0.

Since Ae4 is a symmetric operator with trace zero, it follows from Lemma 4.1 that we
can choose {e1, e2} which satisfies (2.9) and

(4.6) Ae4 =
(−γ 0

0 γ

)
, Ae4 =

(
0 γ

−γ 0

)
or Ae4 =

(±1 1
−1 ∓1

)
.
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Case (a): Ae4 takes the first form of (4.6). From Lemma 2.2 we get [Ae3, Ae4] = 0 and
hence we have

Ae3 =
(−α 0

0 β

)
, Ae4 =

(−γ 0
0 γ

)
(4.7)

for some functions α, β, γ . Since H = κe3 �= 0, we get that

β − α = 2κ(4.8)

is a nonzero constant. From (2.3), (2.9) and (4.7), we obtain

h(e1, e1) = αe3 + γ e4 , h(e1, e2) = 0 , h(e2, e2) = βe3 + γ e4 .(4.9)

By applying (2.11), (4.9) and the equation of Codazzi, we find

(4.10)
e1γ = −2γω2

1(e2) , e1β = −(α + β)ω2
1(e2) ,

e2γ = −2γω2
1(e1) , e2α = −(α + β)ω2

1(e1) ,

which imply ej (ln γ ) = ej (ln(α + β)) for j = 1, 2 and thus γ /(α + β) is constant.
Let us put

ê3 = (cos t)e3 + (sin t)e4 , ê4 = (sin t)e3 − (cos t)e4 , t = arctan

(
2γ

α + β

)
.(4.11)

Then ê3, ê4 are orthonormal parallel normal vector fields such that

traceAê3 = 2κ cos t , Aê4 = (κ sin t)I .(4.12)

Hence, traceAê3
and κ sin t are constant.

If γ = 0, we get ê4 = e4 and Ae4 = 0. Combining this with De4 = 0 shows that e4 is
a constant vector. Thus, 〈L, e4〉 is constant, where L is the immersion of M in E

4
1. So, after

choosing a suitable Minkowskian coordinate system we get case (2).
Next, let us assume that γ �= 0. It follows from (4.12), the constancy of κ sin t and

Dê4 = 0 that ∇̃Xê4 = −(κ sin t)X for any X ∈ TM . Hence

ψ : M → E
4
1 : p �→ L(p)+ ê4(p)

κ sin t
(4.13)

is a constant map. So, after choosing ψ to be the origin we obtain

〈L,L〉 = κ−2 csc2 t = constant .(4.14)

Thus, M is a CMC surface of a de Sitter space-time. So, we obtain case (3).
Case (b): Ae4 takes the second form of (4.6). Since [Ae3, Ae4] = 0 from Lemma 2.2,

we have

Ae3 =
(−α β

−β −α
)
, Ae4 =

(
0 γ

−γ 0

)
(4.15)

for some functions α, β, γ . Hence

h(e1, e1) = αe3 , h(e1, e2) = −βe3 − γ e4 , h(e2, e2) = −αe3 .(4.16)
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This implies that 2H = −2αe3 and hence α = −κ is constant. The equation of Codazzi gives

(4.17)
e1β = −2βω2

1(e2) , e1γ = −2γω2
1(e2) ,

e2β = −2βω2
1(e1) , e2γ = −2γω2

1(e1) .

These equations imply that β/γ is constant. Remark that we may assume γ �= 0, because the
case γ = 0 was already solved above. Let us put

ê3 = (cos t)e3 + (sin t)e4 , ê4 = (sin t)e3 − (cos t)e4 , t = arctan

(
β

γ

)
.(4.18)

Then ê3, ê4 are orthonormal normal vector fields, which are parallel in the normal bundle,
such that Aê3

and Aê4
satisfy (4.12). We can now proceed as in case (a).

Case (c): Ae4 takes the third form of (4.6). Since [Ae3, Ae4] = 0 from Lemma 2.2, we
have

Ae3 =

 α ±α − β

2
∓α − β

2
β


 , Ae4 =

(±1 1
−1 ∓1

)
(4.19)

for some functions α, β. Hence

h(e1, e1) = −αe3 ∓ e4 , h(e1, e2) = α − β

2
e3 − e4 , h(e2, e2) = βe3 ∓ e4 .(4.20)

Remark that 2H = (α + β)e3 = 2κe3 and hence (α + β)/2 = κ is a nonzero constant.
From the equation of Codazzi, we obtain that ω2

1 = 0 and that α and β are constant. Now
put

ê3 = (cos t)e3 + (sin t)e4 , ê4 = (sin t)e3 − (cos t)e4 , t = arctan

(
β

γ

)
.(4.21)

Then ê3, ê4 are orthonormal parallel normal vector fields such that Aê3
and Aê4

satisfy (4.12).
We can now proceed as in the previous cases.

The converse is easy to verify. �

THEOREM 4.2. Let M be a Lorentzian surface in S4
1 (1) ⊂ E

5
1. Then M has parallel

mean curvature vector if and only if M is one of the following surfaces:
(1) a minimal Lorentzian surface in S4

1 (1);
(2) a CMC surface in S4

1 (1) ∩ E1, where E1 is a Lorentzian hyperplane in E
5
1.

PROOF. Under the hypothesis, if H = 0, we get case (1). So, we assume H �= 0 and
choose an orthonormal normal frame {e3, e4} with H = κe3. Then, κ is a nonzero constant,
De3 = De4 = 0 and [Ae3, Ae4] = 0.

Since traceAe4 = 0, it follows from Lemma 4.1 that there exist e1 and e2 satisfying (2.9)
and that Ae4 is given by one the three forms in (4.6).

Case (a): Ae4 takes the first form of (4.6). From [Ae3, Ae4] = 0 we have

Ae3 =
(−α 0

0 β

)
, Ae4 =

(−γ 0
0 γ

)
(4.22)



12 B.-Y. CHEN AND J. VAN DER VEKEN

for some functions α, β, γ . Since H = κe3 �= 0, we get β − α = 2κ is a nonzero constant.
From (2.3), (2.9) and (4.22), we obtain

h(e1, e1) = αe3 + γ e4 , h(e1, e2) = 0 , h(e2, e2) = βe3 + γ e4 .(4.23)

By applying (2.11), (4.23) and the equation of Codazzi, we may prove that γ /(α + β) is
constant.

If γ = 0, we get Ae4 = 0. Combining this with De4 = 0 shows that e4 is a constant
space-like vector. So, 〈L, e4〉 is constant, say b. Hence, M lies the Lorentzian hyperplane E1

given by 〈L, e4〉 = b. This gives case (2).
If γ �= 0, let us put ê4 = (sin t)e3 − (cos t)e4 with t = arctan(2γ /(α + β)). Then ê4 is

a space-like parallel unit normal vector fields with Aê4
= (κ sin t)I. Hence, it follows from

(4.12), the constancy of κ sin t and Dê4 = 0 that L + κ−1(csc t)ê4 is a constant vector, say
c0. So, we have

〈L− c0, L− c0〉 = κ−2 csc2 t = constant .(4.24)

If c0 = 0, then we have L = −κ−1(csc t)ê4, which is impossible since ê4 is tangent to
S4

1 (1). Thus, we must have c0 �= 0. So, it follows from 〈L,L〉 = 1 and (4.24) that M lies
in the hyperplane E given by 2〈L, c0〉 = 1 + 〈c0, c0〉 − κ2 csc2 t . Since M is Lorentzian, the
hyperplane E must be Lorentzian. Thus, we obtain case (2) again.

Case (b): Ae4 takes the second form of (4.6). This can be reduced to case (a) just like
case (b) in the proof of Theorem 4.1.

Case (c):Ae4 takes the third form of (4.6). Similarly, one can proceed as in the previous
cases.

The converse is easy to verify. �

THEOREM 4.3. LetM be a Lorentzian surface inH 4
1 (−1) ⊂ E

5
2. ThenM has parallel

mean curvature vector if and only if M is one of the following surfaces:
(1) a minimal Lorentzian surface in H 4

1 (−1);
(2) a CMC surface in H 4

1 (−1) ∩ E1, where E1 is a Lorentzian hyperplane in E
5
2;

(3) a CMC surface in H 4
1 (−1) ∩ E2, where E2 is a hyperplane of index 2 in E

5
2;

(4) a CMC surface in H 4
1 (−1) ∩ H, where H is a degenerate hyperplane in E

5
2.

5. Parallel surfaces in 3-dimensional Lorentzian space forms. Now, we classify
parallel surfaces in 3-dimensional Lorentzian space forms. These classifications serve as aux-
iliary results for the classification in 4-dimensional Lorentzian space forms.

THEOREM 5.1. A non-degenerate parallel surface in E
3
1 is congruent to an open part

of one of the following eight types of surfaces:
(1) a Euclidean plane E

2 in E
3
1 given by L = (0, u, v);

(2) a totally umbilical hyperbolic plane H 2 in E
3
1 given by

L = b(coshu cosh v, cosh u sinh v, sinh u) , b > 0;
(3) a flat cylinder H 1 × E

1 in E
3
1 defined by L = (a coshu, a sinhu, v) with a > 0;
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(4) a Lorentzian plane E
2
1 in E

3
1 given by L = (u, v, 0);

(5) a totally umbilical de Sitter space S2
1 in E

3
1 given by

L = b(sinhu, cosh u cos v, cosh u sin v) , b > 0;
(6) a flat cylinder E

1
1 × S1 in E

3
1 given by L = (u, a cos v, a sin v) with a > 0;

(7) a flat cylinder S1
1 × E

1 given by L = (a sinhu, a coshu, v) with a > 0;
(8) a flat minimal Lorentzian surface in E

3
1 given by

L =
(

1

6
(u− v)3 + u,

1

6
(u− v)3 + v,

1

2
(u− v)2

)
.

PROOF. We distinguish the cases that M is space-like and that M is Lorentzian.
Case (a): M is a space-like parallel surface in E

3
1. Let e3 be a unit time-like normal

vector field and {e1, e2} an orthonormal frame field on M which diagonalizes the shape op-
erator associated to e3, say Ae1 = αe1 and Ae2 = βe2. A direct computation shows that the
surface is parallel if and only if α and β are constant and (α − β)ω2

1 = 0.
If α = β = 0, thenM is totally geodesic which gives case (1) of the theorem.
If α = β = a �= 0, then the second fundamental form of M in E

3
1 satisfies

h(e1, e1) = −ae3 , h(e1, e2) = 0 , h(e2, e2) = −ae3 .(5.1)

Thus, if follows from the equation of Gauss that K = −a2. If we choose coordinates (x, y)
with g = dx2 + cosh2(ax)dy2. Then, we have

Lxx = −ae3 , Lxy = a tanh(ax)Ly , Lyy = −a cosh2(ax)e3 − a

2
sinh(2ax)Lx ,

∇̃∂x e3 = −aLx , ∇̃∂y e3 = −aLy .
The solution of this system is

L(u, v) = c1 cosh(ax) cosh(ay)+ c2 cosh(ax) sinh(ay)+ c3 sinh(ax)+ c4 ,

with c1, c2, c3, c4 ∈ E
3
1. After choosing suitable Minkowskian coordinates and making a

suitable reparametrization, we obtain case (2) of the theorem.
If α �= β, then ω2

1 = 0. So, M is flat and it follows from the equation of Gauss that
αβ = 0. Without loss of generality, we may assume β = 0. Now, choose coordinates (u, v)
on M with ∂u = e1 and ∂v = e2. Then, the immersion L satisfies

Luu = −αe3 , Luv = 0 , Lvv = 0 , ∇̃∂ue3 = −αLu , ∇̃∂v e3 = 0 .

The solution of this system of equations is, up to a translation, given by

L(u, v) = c1 cosh(αu)+ c2 sinh(αu)+ c3v ,

with c1, c2, c3 ∈ E
3
1. After reparametrizing and choosing suitable Minkowskian coordinates,

we obtain case (3) of the theorem.
Case (b): M is a Lorentzian parallel surface in E

3
1. Let e3 be a unit space-like normal

vector field. In general, the shape operator Ae3 cannot be diagonalized, but it follows from
Lemma 4.1 that, after a suitable choice of a frame {e1, e2} with 〈e1, e1〉 = −1, 〈e1, e2〉 = 0
and 〈e2, e2〉 = 1, there are three cases to consider.
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Case (b.1): A takes the form (4.1). In this case, we have K = αβ and

h(e1, e1) = −αe3 , h(e1, e2) = 0 , h(e2, e2) = βe3 .(5.2)

From (5.2) and (2.7) we know that ∇h = 0 if and only if

dα = dβ = (α − β)ω2
1 = 0 .(5.3)

In particular, α, β are constant if ∇h = 0 holds.
Case (b.1.i): α = β = 0. In this case, we obtain case (4).
Case (b.1.ii): α = β = a �= 0. In this case, M is a totally umbilical surface with

K = a2. By choosing coordinates (x, y) with g = −dx2 + cosh2(ax)dy2, we obtain

Lxx = −ae3 , Lxy = a tanh(ax)Ly , Lyy = a cosh2(ax)e3 + a

2
sinh(2ax)Lx ,

∇̃∂x e3 = −aLx , ∇̃∂y e3 = −aLy .
Solving this system leads, after a suitable reparametrization, to case (5).

Case (b.1.iii): α �= β. In this case, we have ω2
1 = 0 and the surface is flat; so αβ = 0.

A similar calculation as in the space-like case yields case (6) of the theorem if α = 0 and case
(7) if β = 0.

Case (b.2): A takes the form (4.2). The second fundamental form satisfies

h(e1, e1) = −αe3 , h(e1, e2) = −βe3 , h(e2, e2) = αe3(5.4)

for some functions α, β with β �= 0. Hence, by applying the assumption ∇h = 0, (2.7) and
(2.11), we have

dα = dβ = ω2
1 = 0 .(5.5)

Thus, α, β are constant and the surface is flat.
On the other hand, equation (2.4) of Gauss together with (5.4) givesK = α2 +β2, which

is a contradiction since β �= 0.
Case (b.3): A takes one of the forms (4.3). Since the surface is parallel, we obtain that

α is constant and ω2
1 = 0. Hence the surface is flat. But from the equation of Gauss, we obtain

that the Gaussian curvature is given by K = (α ± 1)2.
Case (b.3.i): A takes the first form of (4.3) with α = −1. If we take coordinates (u, v)

with ∂u = e1 and ∂v = e2, g = −du2 +dv2, then the formulas of Gauss and Weingarten yield
the following system of equations:

Luu = e3 , Luv = −e3 , Lvv = e3 , ∇̃∂ue3 = Lu + Lv , ∇̃∂v e3 = −Lu − Lv .

Solving this system leads, after a reparametrization, to case (8) of the theorem.
Case (b.3.ii):A takes the second form of (4.3) with α = 1. Proceeding in the same way

as in the previous case, we obtain a surface congruent to case (8). �

REMARK 5.1. The flat minimal Lorentzian surface given in case (8) of Theorem 5.1
is a B-scroll in the sense of [10] since it has degenerate relative nullity (see [10, page 391];
see also [13]).
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THEOREM 5.2. A non-degenerate parallel surface in S3
1 (c) ⊂ E

4
1, c > 0, is congruent

to an open part of one of the following six types of surfaces:
(1) a totally umbilical sphere S2 in S3

1 (c) locally given by

L = (a, b sin u, b cosu cos v, b cosu sin v) , b2 − a2 = c−1 ;
(2) a totally umbilical Euclidean plane E

2 in S3
1 (c) given by

L = 1√
c

(
u2 + v2 − 3

4
, u2 + v2 − 5

4
, u, v

)
;

(3) a totally umbilical hyperbolic plane H 2 in S3
1 (c) given by

L = (a coshu cosh v, a coshu sinh v, a sinhu, b) , b2 − a2 = c−1 ;
(4) a flat surface H 1 × S1 in S3

1 (c) defined by

L = (a coshu, a sinhu, b cos v, b sin v) , b2 − a2 = c−1 ;
(5) a totally umbilical de Sitter space S2

1 in S3
1 (c) given by

L = (a sinhu, a coshu cos v, a coshu sin v, b) , a2 + b2 = c−1 ;
(6) a flat surface S1

1 × S1 in S3
1 (c) given by

L = (a sinhu, a coshu, b cos v, b sin v) , a2 + b2 = c−1 .

PROOF. First, we classify non-degenerate parallel surfaces in S3
1 (1) and then we apply

the dilation L �→ L/
√
c on E

4
1 to obtain the desired results.

Case (a): M is a space-like parallel surface in S3
1 (1). Let e3 be a normal vector field

of M in S3
1 (1) with 〈e3, e3〉 = −1 and let {e1, e2} be an orthonormal frame field on the

surface which diagonalizes the shape operator A associated to e3 so that Ae1 = αe1 and
Ae2 = βe2. A straightforward computation shows that the surface is parallel if and only if
dα = dβ = (α − β)ω2

1 = 0.
Case (a.1). If α = β = 0, the surface is a totally geodesic unit 2-sphere. Hence, we get

case (1) of the theorem with a = 0.
Case (a.2). If α = β = a �= 0, the surface is totally umbilical. So, the second funda-

mental form of M in S3
1 (1) satisfies

h(e1, e1) = −ae3 , h(e1, e2) = 0 , h(e2, e2) = −ae3 .(5.6)

From (5.6) and the equation of Gauss, we obtain K = 1 − a2.
If a2 = 1, then M is flat. In this case, we may choose coordinates (u, v) with g =

du2 + dv2. Then, we obtain from (5.6) that

Luu = −e3 − L , Luv = 0 , Lvv = −e3 − L , ∇̃∂ue3 = −Lu , ∇̃∂v e3 = −Lv .
After solving this system, choosing suitable Minkowskian coordinates and making a suitable
reparametrization, we obtain case (2).
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If a2 < 1, thenM is of positive curvature 1−a2. In this case, we may choose coordinates
(x, y) with g = dx2 + cos2(

√
1 − a2x)dy2. Then, we have

Lxx = −ae3 − L , Lxy = −
√

1 − a2 tan(
√

1 − a2x)Ly ,

Lyy = − cos2(
√

1 − a2x)(ae3 + L)+
√

1 − a2

2
sin(2

√
1 − a2x)Lx ,

∇̃∂x e3 = −aLx , ∇̃∂y e3 = −aLy .
Solving this system leads, after a reparametrization, to case (1) with a �= 0.

Similarly, for a2 > 1, we may obtain case (3) of the theorem.
Case (a.3). If the surface is not totally umbilical, we have ω2

1 = 0. So,M is flat and we
find β = α−1 from the equation of Gauss. Without loss of generality, we may assume α > 0.
By taking coordinates (x, y) with ∂x = e1, ∂y = e2, we have

Lxx = −(αe3 + L) , Lxy = 0 , Lyy = −(α−1e3 + L) ,

∇̃∂x e3 = −αLx , ∇̃∂y e3 = −α−1Ly .
(5.7)

If ϕ = α2 − 1 > 0, then solving (5.7) gives

L = c1 cosh(
√
ϕx)+ c2 sinh(

√
ϕx)+ c3 cos(

√
ϕy/α)+ c4 sin(

√
ϕy/α) ,

with c1, c2, c3, c4 ∈ E
4
1. After choosing suitable Minkowskian coordinates and making a

suitable reparametrization, we obtain case (4).
If ϕ = α2 − 1 < 0, with a similar approach, we also obtain case (4).
Case (b): M is a Lorentzian parallel surface in S3

1 (1). Let e1, e2 be as in Lemma 4.1,
and e3 be a unit normal vector field in S3

1 (1) with associated shape operatorA. Then it follows
from Lemma 4.1 that there are three cases to consider.

Case (b.1): A takes the form (4.1). In this case, we have K = 1 + αβ and

h(e1, e1) = −αe3 , h(e1, e2) = 0 , h(e2, e2) = βe3 .(5.8)

From (5.8) and (2.7) we know that ∇h = 0 if and only if dα = dβ = (α − β)ω2
1 = 0. In

particular, α, β are constant if ∇h = 0 holds.
Case (b.1.i): α = β = a. The surface is totally umbilical withK = 1+a2. By choosing

coordinates (x, y) with g = −dx2 + cosh2(
√

1 + a2x)dy2, we obtain

Lxx = −ae3 + L , Lxy =
√

1 + a2 tanh(
√

1 + a2x)Ly ,

Lyy = cosh2(
√

1 + a2x)(ae3 − L)+
√

1 + a2

2
sinh(2

√
1 + a2x)Lx ,

∇̃∂x e3 = −aLx , ∇̃∂y e3 = −aLy .
Solving this system leads, after a reparametrization, to case (5) of the theorem.

Case (b.1.ii): α �= β. In this case, we have ω2
1 = 0. Thus, M is flat. So, we get β =

−α−1. If we choose coordinates (x, y) with ∂x = e1, ∂y = e2, we have

Lxx = −αe3 + L , Lxy = 0 , Lyy = −α−1e3 − L , ∇̃∂x e3 = −αLx , ∇̃∂y e3 = α−1Ly .
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Solving this system leads, after a reparametrization, to case (6).
Case (b.2): A takes the form (4.2). In this case, we also have (5.4) and (5.5). Thus,

the surface is flat. On the other hand, equation (2.4) of Gauss together with (5.2) gives K =
1 + α2 + β2, which contradictsK = 0.

Case (b.3): A takes one of the forms (4.3). If the surface is not totally umbilical, we
obtain a contradiction similarly as in case (b.2). �

REMARK 5.2. It was proved in [7] that cases (2) and (4) of Theorem 5.2 are the only
isometric immersions of E

2 into S3
1 and case (6) is the only isometric immersion of E

2
1 into

S3
1 .

THEOREM 5.3. A non-degenerate parallel surface in H 3
1 (−c) ⊂ E

4
2, c > 0, is con-

gruent to an open part of one of the following ten types of surfaces:
(1) a totally umbilical hyperbolic planeH 2 in H 3

1 (−c) given by

L = (b, a coshu cosh v, a coshu sinh v, a sinhu) , a2 + b2 = c−1 ;
(2) a surface H 1 ×H 1 in H 3

1 (−c) given by

L = (a coshu, b cosh v, a sinh u, b sinh v) , a2 + b2 = c−1 ;
(3) a totally umbilical de Sitter space S2

1 in H 3
1 (−c) given by

L = (b, a sinhu, a coshu sin v, a coshu cos v) , b2 − a2 = c−1 ;
(4) a totally umbilical Lorentzian plane E

2
1 in H 3

1 (−c) given by

L = 1√
c

(
u2 − v2 − 5

4
, u, v, u2 − v2 − 3

4

)
;

(5) a totally umbilical anti-de Sitter spaceH 2
1 in H 3

1 (−c) given by

L = (a sin u, a cosu cosh v, a cosu sinh v, b) , a2 − b2 = c−1 ;
(6) a surface S1

1 ×H 1 in H 3
1 (−c) given by

L = (a sinhu, b cosh v, a coshu, b sinh v) , b2 − a2 = c−1 ;
(7) a flat surface H 1

1 × S1 in H 3
1 (−c) defined by

L = (a cosu, a sin u, b cos v, b sin v) , a2 − b2 = c−1 ;
(8) a Lorentzian plane E

2
1 immersed in H 3

1 (−c) by

L = 1√
c
(cosu cosh v − tan k sin u sinh v, sec k sin u cosh v,

cosu sinh v − tan k sin u cosh v, sec k sinu sinh v) , k ∈ R ;
(9) a Lorentzian plane E

2
1 immersed in H 3

1 (−c) by

L = 1√
c

(
cos v − u− v

2
sin v, sin v + u− v

2
cos v,

u− v

2
sin v,

u− v

2
cos v

)
;
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(10) a Lorentzian plane E
2
1 immersed in H 3

1 (−c) by

L = 1√
c

(
cosh v − u+ v

2
sinh v,

u+ v

2
cosh v, sinh v − u+ v

2
cosh v,

u+ v

2
sinh v

)
.

PROOF. Just like the proof of Theorem 5.2, we may first classify non-degenerate paral-
lel surfaces in H 3

1 (−1) and then apply the dilation L �→ L/
√
c on E

4
2 to obtain the desired

results.
Case (a): M is a space-like parallel surface in H 3

1 (−1). Let e3 be a time-like unit
normal vector field in S3

1 (1) with associated shape operator A and let {e1, e2} be an orthonor-
mal tangent frame diagonalizing A, say Ae1 = αe1 and Ae2 = βe2. In this case, we have
K = −αβ − 1 and the second fundamental form satisfies

h(e1, e1) = −αe3 , h(e1, e2) = 0 , h(e2, e2) = −βe3 .(5.9)

From (5.9) and (2.7) we know that ∇h = 0 if and only if dα = dβ = (α − β)ω2
1 = 0. In

particular, α, β are constant if ∇h = 0 holds.
Case (a.1): α = β = a. In this case, we get K = −(1 + a2). By choosing coordinates

(x, y) with g = dx2 + cosh2(
√

1 + a2x)dy2, we obtain

Lxx = L− ae3 , Lxy =
√

1 + a2 tanh(
√

1 + a2x)Ly ,

Lyy = cosh2(
√

1 + a2x)(L− ae3)−
√

1 + a2

2
sinh(2

√
1 + a2x)Lx ,

∇̃∂x e3 = −aLx , ∇̃∂y e3 = −aLy .

After solving this system, choosing suitable Minkowskian coordinates, and making a suitable
reparametrization, we obtain case (1) of the theorem.

Case (a.2): α �= β. We have ω2
1 = 0. So,M is flat and we find β = −α−1. By applying

a similar method as before, we obtain case (2).
Case (b): M is Lorentzian. We take a unit normal e3 on M tangent to H 3

1 (−1) and we
consider the three possibilities for the shape operator A associated to e3.

Case (b.1): A takes the form (4.1). In this case, we have K = αβ − 1 and the second
fundamental form satisfies

h(e1, e1) = −αe3 , h(e1, e2) = 0 , h(e2, e2) = βe3 .(5.10)

From (5.10) and (2.7) we know that ∇h = 0 if and only if dα = dβ = (α − β)ω2
1 = 0.

Case (b.1.i): α = β = a. In this case,M is a totally umbilical surface withK = a2 −1.
So, we divide this into 3 cases.
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Case (b.1.i.α): a2 > 1. In this case, if we choose coordinates (x, y) such that g =
−dx2 + cosh2(

√
a2 − 1x)dy2, then we obtain

Lxx = −ae3 − L , Lxy =
√
a2 − 1 tanh(

√
a2 − 1x)Ly ,

Lyy = cosh2(
√
a2 − 1x)(ae3 + L)+

√
a2 − 1

2
sinh(2

√
a2 − 1x)Lx ,

∇̃∂x e3 = −aLx , ∇̃∂y e3 = −aLy .
Solving this system leads, after a reparametrization, to case (3).

Case (b.1.i.β): a2 = 1. Without loss of generality, we may assume a = 1. If we choose
coordinates (x, y) such that g = −dx2 + dy2, then we obtain

Lxx = −e3 − L , Lxy = 0 , Lyy = e3 + L , ∇̃∂x e3 = −Lx , ∇̃∂y e3 = −Ly .
After solving this system and choosing suitable initial conditions, we get case (4).

Case (b.1.i.γ ): a2 < 1. With an analogous computation as (b.1.i.α), we obtain case (5)
of the theorem.

Case (b.1.ii): α �= β. In this case, we have ω2
1 = 0. Thus, M is flat. So, we get β =

−α−1. With an analogous computation as above, we obtain cases (6) and (7).
Case (b.2): A takes the form (4.2). In this case, we have (5.4) and (5.5). Thus, the

surface is flat and α, β are constant with β �= 0.
On the other hand, equation (2.4) of Gauss and (5.4) giveK = −α2 − β2 − 1. Thus, we

have α2 + β2 = 1. Thus, we may put α = sin k, β = cos k for some k ∈ R.
Since ω2

1 = 0, there exist coordinates (x, y) with ∂x = e1, ∂y = e2. So, the metric tensor
is g = −dx2 + dy2. Thus, we obtain

Lxx = −(sin k)e3 − L , Lxy = −(cos k)e3 , Lyy = (sin k)e3 + L ,

∇̃e1e3 = − sin ke1 + cos ke2 , ∇̃e2e3 = − cos ke1 − sin ke2 , cos k �= 0 .

Solving this system leads to case (8) of the theorem after the reparametrization

u = √
cos k

(
x cos

k

2
− y sin

k

2

)
, v = √

cos k

(
y cos

k

2
+ x sin

k

2

)
.

Case (b.3): A takes one of the forms (4.3).
Case (b.3.i):A takes the first form of (4.3). Then the second fundamental form ofM in

H 3
1 (−1) satisfies

h(e1, e1) = −αe3 , h(e1, e2) = −e3 , h(e2, e2) = (α + 2)e3 .(5.11)

Hence, by applying ∇h = 0, (2.7), (2.11) and (5.11), we have dα = ω2
1 = 0. Thus, K = 0

and we can choose coordinates (x, y) with ∂x = e1, ∂y = e2. So, the metric tensor is g =
−dx2 + dy2.

On the other hand, from the equation of Gauss and (5.11) we findK = α(α+ 2). Hence,
we have either α = 0 or α = −2.
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Case (b.3.i.α): α = 0. The immersion L : M → H 3(−1) ⊂ E
4
2 satisfies

Lxx = −L , Lxy = −e3 , Lyy = 2e3 + L , ∇̃e1e3 = e2 , ∇̃e2e3 = −e1 − 2e2 .

Solving this system yields case (9) of the theorem.
Case (b.3.i.β): α = −2. In this case, L : M → H 3(−1) ⊂ E

4
2 satisfies

Lxx = 2e3 − L , Lxy = −e3 , Lyy = L , ∇̃e1e3 = 2e1 + e2 , ∇̃e2e3 = −e1 .

Solving this system gives case (10) of the theorem.
Case (b.3.ii): A takes the second form of (4.3). Then we have

h(e1, e1) = −αe3 , h(e1, e2) = −e3 , h(e2, e2) = (α − 2)e3 .

As before, the equations of and Gauss and Codazzi, and ∇h = 0 yield ω2
1 = 0 and α(α−2) =

0. Thus, after choosing (x, y) as before, we have one of the following:
Lxx = −L , Lxy = −e3 , Lyy = −2e3 + L ,

∇̃∂x e3 = e2 , ∇̃∂y e3 = −e1 + 2e2 ;
Lxx = −2Lx − L , Lxy = −e3 , Lyy = L ,

∇̃∂x e3 = −2e1 + e2 , ∇̃∂y e3 = −e1 .

After solving these systems, choosing suitable Minkowskian coordinates and replacing y and
x by −y and −x, respectively, we obtain cases (9) and (10) as well. �

REMARK 5.3. It was proved in [7, page 93] that if φ : E
2
1 → H 3

1 (−1) is an isometric
immersion with parallel shape operator, then φ is the B-scroll of a complete curve of torsion
1 and constant curvature (see [7] for details). Consequently, for c = 1 case (4) and cases
(6)–(10) of Theorem 5.3 are such B-scrolls.

6. Parallel surfaces in the light cone.

THEOREM 6.1. Let M be a non-degenerate parallel surface of E
4
1. If M lies in the

light cone LC = {x ∈ E
4
1; 〈x, x〉 = 0}, then M is space-like and the immersion is congruent

to an open part of one of the following four types of surfaces:
(1) a totally umbilical surface of positive curvature defined by

L = a(1, cosu cos v, cosu sin v, sin u) , a > 0 ;
(2) a totally umbilical surface of negative curvature defined by

L = a(coshu cosh v, cosh u sinh v, sinh u, 1) , a > 0 ;
(3) a flat totally umbilical surface defined by

L =
(
u2 + v2 + 1

4
, u2 + v2 − 1

4
, u, v

)
;

(4) a flat surface defined by L = a(coshu, sinh u, cos v, sin v), a > 0.
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PROOF. Let L : M → E
4
1 be a non-degenerate parallel surface. If M is immersed in

LC, we can regardM as a parallel surface of H 4
1 (−1) via the following inclusion:

ι : LC → H 4
1 (−1) ⊂ E

5
2 : x �→ (1, x) .(6.1)

Since M admits a light-like normal vector in H 4
1 (−1), each normal space is a Lorentzian

plane. Thus,M is a space-like surface.
Let L̂ = ι ◦ L : M → LC → H 4

1 (−1) ⊂ E
5
2 be the composition of L and ι. Put

e3 = L̂− (1, 0, 0, 0, 0) .(6.2)

Then e3 is a light-like normal vector of M in H 4
1 (−1). Let e4 be another light-like normal

vector of M in H 4
1 (−1) such that 〈e3, e4〉 = −1.

It follows from (2.13) and (6.2) that Ae3 = −I and De3 = De4 = 0. Thus, we may
choose an orthonormal frame {e1, e2} such that

Ae3 = −I , Ae4 =
(
γ 0
0 ε

)
.(6.3)

Then the second fundamental form of M in H 4
1 (−1) satisfies

h(e1, e1) = −γ e3 + e4 , h(e1, e2) = 0 , h(e2, e2) = −εe3 + e4 .(6.4)

Since M is a parallel surface in H 4
1 (−1), it follows from (6.4) that

dγ = dε = (γ − ε)ω2
1 = 0 .

From the equation of Gauss and (6.4) we find K = γ + ε − 1.
Case (a): γ = ε. We have Ae3 = −I,Ae4 = γ I andK = 2γ − 1.
Case (a.1): 2γ > 1. In this case, we shall choose coordinates (u, v) on M with g =

du2 + cos2(
√

2γ − 1u)dv2, then the immersion L̂ of M in E
5
2 satisfies

L̂uu = −γ e3 + e4 + L̂ , L̂uv = −√2γ − 1 tan(
√

2γ − 1u)L̂v ,

L̂vv = 1

2

√
2γ − 1 sin(2

√
2γ − 1u)L̂u + cos2(

√
2γ − 1u)(−γ e3 + e4 + L̂) ,

∇̃∂ue3 = L̂u , ∇̃∂v e3 = L̂v , ∇̃∂ue4 = −γ L̂u , ∇̃∂v e4 = −γ L̂v .
After solving this system and choosing suitable Minkowskian coordinates, we obtain

L̂ = 1√
2γ − 1

(
√

2γ − 1, 1, cosu cos v, cosu sin v, sin u) ,

which gives rise to case (1) of the theorem for L.
Case (a.2): 2γ < 1. Similarly, we obtain case (2) for L.
Case (a.3): 2γ = 1. We choose coordinates (u, v) onM with g = du2 + dv2, then the

immersion L̂ of M in E
5
2 satisfies

L̂uu = −e3

2
+ e4 + L̂ , L̂uv = 0 , L̂vv = −e3

2
+ e4 + L̂ ,

∇̃∂ue3 = L̂u , ∇̃∂v e3 = L̂v , ∇̃∂ue4 = −1

2
L̂u , ∇̃∂v e4 = −1

2
L̂v .
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Solving this system leads, after a reparametrization, to case (3) of the theorem.
Case (b): γ �= ε. We get ω2

1 = 0. Thus,M is flat and ε = 1 − γ . Since γ �= ε, we have
γ �= 1/2. If we choose coordinates (u, v) with ∂u = e1, ∂v = e2, we obtain

L̂uu = −γ e3 + e4 + L̂ , L̂uv = 0 , L̂vv = (γ − 1)e3 + e4 + L̂ ,

∇̃∂ue3 = L̂u , ∇̃∂v e3 = L̂v , ∇̃∂ue4 = −γ L̂u , ∇̃∂v e4 = (γ − 1)L̂v .

Solving this system leads, after a reparametrization, to case (4) of the theorem. �

THEOREM 6.2. Let M be a non-degenerate parallel surface of E
4
2. If M lies in the

light cone LC = {x ∈ E
4
2; 〈x, x〉 = 0}, then M is Lorentzian and the immersion is congruent

to an open part of one of the following eight types of surfaces:
(1) a totally umbilical surface of positive curvature defined by

L = a(sinhu, 1, coshu cos v, cosh u sin v) , a > 0 ;
(2) a totally umbilical surface of negative curvature defined by

L = a(sinu, cosu cosh v, 1, cosu sinh v) , a > 0 ;
(3) the flat totally umbilical surface defined by

L =
(
u, u2 − v2 − 1

4
, u2 − v2 + 1

4
, v

)
;

(4) a flat surface defined by L = a(sinhu, cosh v, cosh u, sinh v), a > 0;
(5) a flat surface defined by L = a(sinu, cosu, cos v, sin v), a > 0;
(6) a flat surface defined by

L = a(sinhu cos v + sinhu sin v, cosh u sin v − sinhu cos v ,

coshu cos v − sinhu sin v, cosh u sin v + sinhu cos v) , a > 0;
(7) a flat surface defined by

L = a(cosv − u sin v, sin v + u cos v, cos v + u sin v, sin v − u cos v) , a > 0;
(8) a flat surface defined by

L = a(coshu− v sinh u, sinhu+ v coshu, coshu+ v sinhu, sinhu− v coshu)

with a > 0.

PROOF. Let L : M → E
4
2 be a non-degenerate parallel surface. Assume that M is

immersed in LC. Then M is immersed in S4
2 (1) ⊂ E

5
2 via the following inclusion:

ι : LC → S4
2 (1) ⊂ E

5
2 : x �→ (x, 1) .(6.5)

Since M admits a light-like normal vector in S4
2 , each normal space is a Lorentzian plane.

Hence, the surface M is Lorentzian.
Let L̂ = ι ◦ L : M → LC → S4

2 (1) ⊂ E
5
2 be the composition of L and ι. Put

e3 = L̂− (0, 0, 0, 0, 1) .(6.6)
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Then e3 is a light-like normal vector in S4
2 (1). Let e4 be another light-like normal vector ofM

in S4
2 (1) with 〈e3, e4〉 = −1. It follows from (2.13) and (6.6) that

Ae3 = −I , De3 = De4 = 0(6.7)

Let e1, e2 be a frame on M with 〈e1, e1〉 = −1, 〈e2, e2〉 = 1 and 〈e1, e2〉 = 0 as in
Lemma 4.1. Then it follows from Lemma 4.1 that there are three cases to consider.

Case (a): Ae4 takes the form (4.1). In this case, we obtain

h(e1, e1) = αe3 − e4 , h(e1, e2) = 0 , h(e2, e2) = −βe3 + e4 ,(6.8)

which implies K = 1 + α + β. Since M is a parallel surface in S4
2 (1), (6.8) implies that

dα = dβ = (α − β)ω2
1 = 0.

Case (a.i): α = β. We have Ae3 = −I,Ae4 = αI andK = 1 + 2α.
Case (a.i.1): 2α > −1. In this case, we shall choose coordinates (u, v) on M with

g = −du2 + cosh2(
√

1 + 2αu)dv2. Then the immersion L̂ of M in E
5
2 satisfies

L̂uu = αe3 − e4 + L̂ , L̂uv = √
1 + 2α tanh(

√
1 + 2αu)L̂v ,

L̂vv = 1

2

√
1 + 2α sinh(2

√
1 + 2αu)L̂u + cosh2(

√
1 + 2αu)(e4 − αe3 − L̂) ,

∇̃∂ue3 = L̂u , ∇̃∂v e3 = L̂v , ∇̃∂ue4 = −αL̂u , ∇̃∂v e4 = −αL̂v .
After solving this system, choosing suitable Minkowskian coordinates and making a suitable
reparametrization, we obtain case (1) of the theorem for L.

Case (a.i.2): 2α < −1. Similarly, we obtain case (2).
Case (a.i.3): 2α = −1. We choose coordinates (u, v) with g = du2 + dv2. Then the

immersion L̂ of M in E
5
2 satisfies

L̂uu = −e3

2
− e4 + L̂ , L̂uv = 0 , L̂vv = e3

2
+ e4 − L̂ ,

∇̃∂ue3 = L̂u , ∇̃∂v e3 = L̂v , ∇̃∂ue4 = 1

2
L̂u , ∇̃∂v e4 = 1

2
L̂v .

Solving this system leads, after a reparametrization, to case (3) of the theorem.
Case (a.ii): α �= β. We get ω2

1 = 0. So, M is flat and β = −1 − α. Since α �= β, we
find α �= −1/2. If we choose coordinates (u, v) with ∂u = e1, ∂v = e2, we get

L̂uu = αe3 − e4 + L̂ , L̂uv = 0 , L̂vv = (1 + α)e3 + e4 − L̂ ,

∇̃∂ue3 = L̂u , ∇̃∂v e3 = L̂v , ∇̃∂ue4 = −αL̂u , ∇̃∂v e4 = (1 + α)L̂v .

Solving this system leads, after a reparametrization, to case (4) or case (5) depending on
whether 1 + 2α > 0 or 1 + 2α < 0.

Case (b): Ae4 takes the form (4.2). In this case, we have

h(e1, e1) = αe3 − e4 , h(e1, e2) = βe3 , h(e2, e2) = −αe3 + e4 .(6.9)

SinceM is a parallel surface, (6.9) yields dα = dβ = ω2
1 = 0. Thus, we have 0 = K = 1+2α

and hence α = −1/2.
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If we choose coordinates (x, y) with ∂x = e1, ∂y = e2, we obtain

L̂xx = 1

2
(L̂+ c0)− e4 , L̂xy = β(L̂− c0) , L̂yy = e4 − 1

2
(L̂+ c0) ,

∇̃∂x e4 = 1

2
L̂x + βL̂y , ∇̃∂y e4 = −βL̂x + 1

2
L̂y , c0 = (0, 0, 0, 0, 1) .

If β = k2 > 0, then after solving this system, we obtain

L̂ = c0 + coshu(c1 cos v + c2 sin v)+ sinhu(c3 cos v + c4 sin v)

with c1, c2, c3, c4 ∈ E
5
2 and u = k(x + y)/

√
2, v = k(x − y)/

√
2. After choosing suitable

Minkowskian coordinates we obtain case (6) of the theorem.
Similarly, if β = −k2 < 0, we also obtain case (6) of the theorem.
Case (c): Ae4 takes one of the forms (4.3).
Case (c.1): Ae4 takes the first form of (4.3). In this case, we have

h(e1, e1) = αe3 − e4 , h(e1, e2) = e3 , h(e2, e2) = −(α + 2)e3 + e4 .(6.10)

Because M is a parallel surface, (6.10) yields dα = ω2
1 = 0. Thus, it follows from (6.10) that

0 = K = 3 + 2α. Thus, α = −3/2.
If we choose coordinates (x, y) with ∂x = e1, ∂y = e2, we obtain

L̂xx = 3

2
c0 − e4 − 1

2
L̂ , L̂xy = L̂− c0 , L̂yy = 1

2
c0 + e4 − 3

2
L̂ ,

∇̃∂x e4 = 3

2
L̂x + L̂y , ∇̃∂y e4 = −L̂x + 1

2
L̂y ,

with c0 = (0, 0, 0, 0, 1). Solving this system gives

L̂ = c0 + (c1 + c2(x + y)) cos(x − y)+ (c3 + c4(x + y)) sin(x − y) ,

with c1, c2, c3, c4 ∈ E
5
2. After choosing suitable Minkowskian coordinates and a reparame-

trization, we get case (7).
Case (c.2): Ae4 takes the second form of (4.3). In this case, we have

h(e1, e1) = αe3 − e4 , h(e1, e2) = e3 , h(e2, e2) = (2 − α)e3 + e4 .(6.11)

Because M is a parallel surface, (6.11) yields dα = ω2
1 = 0. Thus, it follows from (6.11) that

0 = K = 2α − 1. Thus, α = 1/2.
If we choose coordinates (x, y) with ∂x = e1, ∂y = e2, we obtain

L̂xx = 3

2
L̂− 1

2
c0 − e4 , L̂xy = L̂− c0 , L̂yy = 1

2
L̂− 3

2
c0 + e4 ,

∇̃∂x e4 = −1

2
L̂x + L̂y , ∇̃∂y e4 = −L̂x + 3

2
L̂y , c0 = (0, 0, 0, 0, 1) .

Solving this system leads, after a reparametrization, to case (8). �

7. Classification of space-like parallel surfaces in L4
1(c). Now, we classify space-

like parallel surfaces in 4-dimensional Lorentzian space forms.
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LEMMA 7.1. Suppose thatM is a space-like surface in a Lorentzian space formL4
1(c).

Let {e3, e4} be a normal frame satisfying 〈e3, e3〉 = −1, 〈e3, e4〉 = 0, 〈e4, e4〉 = 1 and let
{e1, e2} be an orthonormal tangent frame with respect to which the shape operators are given
by

Ae3 =
(
α 0
0 β

)
, Ae4 =

(
γ δ

δ ε

)
.

Define ω2
1 = −ω1

2 and ω4
3 = ω3

4 as in (2.11). We have
(1) M is parallel if and only if the following equations hold:

dα = γω4
3 , dβ = εω4

3 , dγ = αω4
3 + 2δω2

1 ,

dδ = (ε − γ )ω2
1 , dε = βω4

3 − 2δω2
1 , δω4

3 = (α − β)ω2
1 .

(2) The Gaussian curvature ofM is given by K = c − αβ + γ ε − δ2.

(3) The normal curvature of the immersion is given by

K⊥ = 〈RD(e1, e2)e3, e4〉 = δ(β − α) .

PROOF. The first statement follows by direct computation of the vectors (∇Xh)(e1, e1),
(∇Xh)(e1, e2) and (∇Xh)(e2, e2) for an arbitrary vectorX. The second and the third statement
follow from the equations of Gauss and Ricci, respectively. �

Now, we classify parallel space-like surfaces in E
4
1.

THEOREM 7.1. If M is a space-like parallel surface in E
4
1, then M is congruent to an

open part of one of the following nine types of surfaces:
(1) the totally geodesic plane E

2 given by L = (0, u, v, 0);
(2) a totally umbilical sphere S2 given locally by

L = a(0, cosu cos v, cosu sin v, sin u) , a > 0 ;
(3) a flat cylinder E

1 × S1 given by

L = (0, u, a cos v, a sin v) , a > 0 ;
(4) a flat cylinder H 1 × E

1 given by

L(u, v) = (a coshu, a sinhu, v, 0) , a > 0 ;
(5) a flat surface H 1 × S1 given by

L = (a coshu, a sinhu, b cos v, b sin v) , a, b > 0 ;
(6) a totally umbilical hyperbolic plane H 2 given by

L = a(coshu cosh v, cosh u sinh v, sinh u, 0) , a > 0 ;
(7) the minimal flat surface given by

L = (u2 − v2, u2 − v2, u, v) ;
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(8) the flat totally umbilical surface defined by

L =
(
u2 + v2 + 1

4
, u2 + v2 − 1

4
, u, v

)
;

(9) the flat surface given by

L = 1

2
((1 − b)u2 + (1 + b)v2, (1 − b)u2 + (1 + b)v2, 2u, 2v) , b ∈ R .

Conversely, each surface of the nine types given above is space-like and parallel.

PROOF. Since M is a parallel surface, we have DH = 0. Hence, Theorem 3.1 im-
plies that M is a marginally trapped surface or one of the following non-marginally trapped
surfaces:

(a) a parallel minimal surface;
(b) a parallel surface lying in the light cone LC ⊂ E

4
1;

(c) a parallel surface in a 3-dimensional Euclidean space E
3 ⊂ E

4
1;

(d) a parallel surface in a 3-dimensional Minkowski space-time E
3
1 ⊂ E

4
1;

(e) a parallel surface in a 3-dimensional de Sitter space-time in E
4
1;

(f) a parallel surface in a 3-dimensional hyperbolic space in E
4
1.

If M is marginally trapped, then it is congruent to case (5) with a = b or to case (9)
according to Theorem 3.1.

Now, assume that M is non-marginally trapped.
Case (a):M is minimal and parallel. Let {e3, e4} be a normal frame such that 〈e3, e3〉 =

−1, 〈e3, e4〉 = 0 and 〈e4, e4〉 = 1. Choose an orthonormal tangent frame {e1, e2} such that
Ae3 is diagonal. Hence, with respect to the basis {e1, e2}, we have

Ae3 =
(
α 0
0 −α

)
, Ae4 =

(
γ δ

δ −γ
)

(7.1)

for some functions α, γ and δ. Thus, we obtain

h(e1, e1) = −h(e2, e2) = −αe3 + γ e4 , h(e1, e2) = δe4 .(7.2)

From Lemma 7.1 we know that ∇h = 0 if and only if the following equalities hold:

(7.3) dα = γω4
3 , dγ = αω4

3 + 2δω2
1 , dδ = −2γω2

1 , δω4
3 = 2αω2

1 .

Case (a.1): α = 0. We have Ae3 = 0 and βω4
3 = γω4

3 = 0.
If β = γ = 0, then M is totally geodesic. So, it is congruent to case (1).
If β, γ are not both zero, then we have ω4

3 = 0. So, the equation of Weingarten implies
that e3 is parallel in E

4
1 and hence, if L : M → E

4
1 denotes the immersion, then 〈L, e3〉 is

constant. Thus, M lies in a Euclidean 3-space E
3 ⊂ E

4
1. Since M is parallel and minimal in

E
4
1, M must be parallel and minimal in E

3. Hence, M is totally geodesic in E
3, which gives

case (1).
Case (a.2): α �= 0. In this case, (7.3) can be written as

dα = γω4
3 , dγ = α2 + δ2

α
ω4

3 , dδ = −γ δ
α
ω4

3 , ω2
1 = δ

2α
ω4

3 .(7.4)
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Differentiating both sides of the last equation in (7.4) and using the others give

(7.5) δdω4
3 = 2αdω2

1 ,

which implies δK⊥ = −2αK . Thus, from Lemma 7.1 we find

(7.6) α2 − γ 2 − 2δ2 = 0 .

Combining the equations in (7.4) yields that

(7.7) αδ = C1 , α2 − γ 2 − δ2 = C2

are both constant. From (7.6) and (7.7) we obtain δ2 = C2, which is constant.
Case (a.2.i): δ = 0. From (7.6) we get α2 = γ 2. We may assume α = γ �= 0 by

changing the orientation of e4 if necessary. From (7.4) we have ω2
1 = 0. Thus, there exist

local coordinates (u, v) onM with ∂u = e1, ∂v = e2. Then

Luu = α(e4 − e3) , Luv = 0 , Lvv = 2α(e3 − e4) ,

∇̃∂ue3 = −αLu + αu

α
e4 , ∇̃∂v e3 = αLv + αv

α
e4 ,

∇̃∂ue4 = −αLu + αu

α
e3 , ∇̃∂v e4 = αLv + αv

α
e3 .

After solving this system, choosing suitable Minkowskian coordinates and making a suitable
reparametrization, we obtain case (7), which is a flat and minimal surface, that is not totally
geodesic.

Case (a.2.ii): δ �= 0. Since δ is constant, (7.7) implies that α and γ are constant. Using
(7.4)–(7.7), we get ω2

1 = 0. So, the surface is flat and thus Lemma 7.1 yields α2−γ 2−δ2 = 0.
Combining this with (7.6) gives δ = 0, which is a contradiction.

Case (b): M is a parallel surface in LC. In this case, Theorem 6.1 implies that M is
congruent to cases (2), (5), (6) or (8).

Case (c):M is a non-minimal parallel surface in E
3. In this case,M is an open portion

of a round sphere or a circular cylinder. So, M is congruent to (2) or (3).
Case (d):M is a non-minimal parallel surface in E

3
1. From Theorem 5.1 we know that

it is congruent to either case (4) or case (6).
Case (e): M is a non-minimal parallel surface in a de Sitter space. By Theorem 5.2,

the surface is congruent to cases (2), (5), (6) or (8) .
Case (f):M is a parallel surface in a hyperbolic space. We may prove again that either

M is totally umbilical in H 3(−c) orM is flat, but not totally umbilical in H 3(−c). In the first
case, it is congruent to (2), (6) or (8). In the second case, we proceed as in S3

1 (c) to obtain that
M is congruent to (5).

The converse can be easily verified. �

THEOREM 7.2. If M is a space-like parallel surface in S4
1 (1) ⊂ E

5
1, then M is con-

gruent to an open part of one of the following ten types of surfaces:
(1) a totally umbilical sphere S2 given locally by

L = (c, b cosu cos v, b cosu sin v, b sinu, a) , a2 + b2 − c2 = 1 ;
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(2) a totally umbilical hyperbolic planeH 2 given by

L = (a coshu cosh v, a coshu sinh v, a sinh u, b, c) , b2 + c2 − a2 = 1 ;
(3) a torus S1 × S1 given by

L = (a, b cosu, b sin u, c cos v, c sin v) , b2 + c2 − a2 = 1 ;
(4) a flat surface H 1 × S1 given by

L = (b coshu, b sinhu, c cos v, c sin v, a) , a2 + c2 − b2 = 1 ;
(5) a flat totally umbilical surface defined by

L =
(
u2 + v2 + a2 + 1

4
, u2 + v2 + a2 − 1

4
, u, v,

√
1 + a2

)
;

(6) a flat surface defined by

L =
(
v2 − 3

4
+ a2, a cosu, a sin u, v, v2 − 5

4
+ a2

)
, a > 0 ;

(7) a flat surface defined by

L = 1√
1 + a2

(
u2 + v2 − 3

4
, u2 + v2 − 5

4
, u, v, a

)
, a ∈ R ;

(8) the flat marginally trapped surface defined by

L = 1

2
(2u2 − 1, 2u2 − 2, 2u, sin v, cos v) ;

(9) a flat marginally trapped surface defined by

L =
(

b√
4 − b2

,
cosu√
2 − b

,
sin u√
2 − b

,
cos v√
2 + b

,
sin v√
2 + b

)
, |b| < 2 ;

(10) a flat marginally trapped surface defined by

L =
(

coshu√
b − 2

,
sinhu√
b − 2

,
cos v√
2 + b

,
sin v√
2 + b

,
b√
b2 − 4

)
, b > 2 .

Conversely, each surface of the ten types given above is space-like and parallel.

PROOF. Let M be a parallel space-like surface in S4
1 (1) ⊂ E

5
1. Then DH = 0 and so,

Theorem 3.2 implies that M is either a marginally trapped surface given by cases (8)–(10) or
(7) with a = 1, or M is non-marginally trapped given by one of the following:

(a) M is a parallel minimal surface of S4
1 (1);

(b) M is a parallel surface in S4
1 (1) ∩ E , where E is a space-like hyperplane;

(c) M is a parallel surface in S4
1 (1) ∩ E1, where E1 is a Lorentzian hyperplane;

(d) M is a parallel surface in S4
1 (1) ∩ H, where H is a degenerate hyperplane.

Now, assume that M is non-marginally trapped.
Case (a):M is a minimal parallel surface of S4

1 (1). As in the proof of Theorem 7.1, we
choose {e3, e4} as in Lemma 7.1 and let {e1, e2} be an orthonormal tangent frame such that
(7.1) and (7.2) hold. Thus, from Lemma 7.1, we have (7.3).



PARALLEL SURFACES IN LORENTZIAN SPACE FORMS 29

Case (a.1): α = 0. We choose {e1, e2} so that δ = 0. Thus, (7.1) and (7.3) give

Ae3 = 0 , Ae4 =
(
γ 0
0 −γ

)
, dγ = 0 , γω2

1 = 0 .(7.8)

If γ = 0, the surface is totally geodesic, which gives a special case of (1).
If γ �= 0, then (7.8) gives ω2

1 = 0. Hence, M is flat. Lemma 7.1 then yields that K =
1 −γ 2 = 0. After replacing e4 by −e4 if necessary, we have γ = 1. We can choose Euclidean
coordinates (u, v) with e1 = ∂u and e2 = ∂v . Then we have

Luu = e4 − L , Luv = 0 , Lvv = −e4 − L , ∇̃∂ue4 = −Lu , ∇̃∂v e4 = −Lv .
After solving this system, choosing suitable Minkowskian coordinates, and making a suitable
reparametrization, we obtain a special case of case (3).

Case (a.2): α �= 0. From (7.3), we have (7.4), which implies that

(7.9) αδ = C1 , α2 − γ 2 − δ2 = C2

are both constant. Applying the de Rham operator to both sides of the last equation of (7.4)
gives −2αK = δK⊥. Thus, from Lemma 7.1, we obtain

(7.10) 1 + α2 − γ 2 − 2δ2 = 0 .

Combining (7.9) and (7.10) shows that δ is constant. A direct computation using (7.4), (7.10)
and the expression for K in Lemma 7.1 yields ω2

1 = δ = 0. So, (7.10) gives γ 2 = 1 + α2.
After choosing coordinates (u, v) as in case (A.1), we obtain

Luu = −αe3 + γ e4 − L , Luv = 0 , Lvv = αe3 − γ e4 − L ,

∇̃∂ue3 = −αLu + αu

γ
e4 , ∇̃∂v e3 = αLv + αv

γ
e4 ,

∇̃∂ue4 = −γLu + αu

γ
e3 , ∇̃∂v e4 = γLv + αv

γ
e3 .

After solving this system, we obtain the same solution as in case (a.1). Thus, we obtain a
special case of (3) again.

Now, let us assume that M is non-minimal in S4
1 (1).

Case (b):M is a parallel surface in S4
1 (1)∩E, where E is a space-like hyperplane. We

may assume that E is defined by x1 = a. Then S4
1 (1)∩ E = S3(c) with c = 1/(1 + a2). Since

M is a parallel surface of S4
1 (1), M is also a parallel surface in S3(c) = {(a, x2, x3, x4, x5) ∈

E
5
1; x2

2 + · · · + x2
5 = 1 + a2}. Thus,M is either a totally umbilical surface or a torus in S3(c).

In the first case, we obtain case (1). In the second case, we obtain case (3).
Case (c): M is a parallel surface in S4

1 (1) ∩ E1, where E1 is a Lorentzian hyperplane.
We may assume that E1 is defined by x5 = a with a ≥ 0. There are three possibilities for
S4

1 (1) ∩ E1; namely,

(1) if a ∈ [0, 1), then S4
1 (1) ∩ E1 = S3

1 (c), c = 1/(1 − a2);
(2) if a > 1, then S4

1 (1) ∩ E1 = H 3(−c), c = 1/(1 − a2), and
(3) if a = 1, then S4

1 (1) ∩ E1 is the light cone in E1 = E
4
1.
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Case (c.1): a ∈ [0, 1). In this case,M is a parallel surface in S3
1 (c). Thus, Theorem 5.2

implies that M is congruent to (7) or special cases of (1), (2) and (4).
Case (c.2): a > 1. In this case, M is either totally umbilical in H 3(−c) or flat. In the

first case, we obtain special cases of (1), (2) and (5). The second case gives a special case of
(4).

Case (c.3): a = 1. In this case, S4
1 (1) ∩ E1 is the light cone LC in E1 = E

4
1. Hence,

Theorem 6.1 implies thatM is congruent to special cases of (1), (2), (4) or (5).
Case (d): M is a parallel surface in S4

1 (1) ∩ H, where H is a degenerate hyperplane.
We may assume that H is the hyperplane Ka = {(x1, . . . , x5) ∈ E

5
1; x5 = x1 + a}.

Case (d.1): a = 0. Since M lies in K0, we have x5 = x1. Then e3 = (1, 0, 0, 0, 1)
is a light-like normal vector of M in S4

1 (1). Let e4 be a light-like normal vector field with
〈e3, e4〉 = −1. Then there is an orthonormal frame field {e1, e2} such that

(7.11)
Ae3 = 0 , Ae4 =

(
γ 0
0 ε

)
,

h(e1, e1) = −γ e3 , h(e1, e2) = 0 , h(e2, e2) = −εe3 .

On the other hand, it follows from (7.11) and the equation of Gauss that K = 1. Thus,
ω2

1 �= 0. Now (7.11) and ∇h = 0 imply that γ = ε is a constant, say r . Thus, if we choose
coordinates (u, v) with g = du2 + cos2 udv2, then we obtain

Luu = −re3 − L , Luv = − tanuLv , Lvv = Lu

2
sin 2u− cos2 u(re3 + L) , ∇̃e3 = 0 .

Solving this system leads, after a reparametrization, to special case of case (1).
Case (d.2): a �= 0. Put e3 = L − a−1(1, 0, 0, 0, 1). Then we have 〈e3, L〉 = 0 and

〈e3, e3〉 = −1. Thus, e3 is a time-like unit normal vector field of M in S4
1 (1) with De3 = 0.

Let e4 be a unit space-like normal vector field in S4
1 (1) with 〈e3, e4〉 = 0. With respect to a

suitable orthonormal tangent frame {e1, e2}, we have

Ae3 = −I , Ae4 =
(
γ 0
0 ε

)
.

Since De3 = 0, ∇h = 0 implies that dγ = dε = (ε − γ )ω2
1 = 0.

Case (d.2.i): ε = γ = 0. In this case, M is totally umbilical with K = 0. Thus, if we
choose coordinates (u, v) with g = du2 + dv2, then we obtain

Luu = e3 − L , Luv = 0 , Lvv = e3 − L , ∇̃∂ue3 = Lu , ∇̃∂v e3 = Lv .

Solving this system gives case (7) with a = 1.
Case (d.2.ii): ε = γ = r �= 0. In this case, M is totally umbilical with K = γ 2. So, if

we choose coordinates (x, y) with g = dx2 + cos2(rx)dy2, then we obtain

Lxx = e3 + re4 − L , Lxy = −r tan(rx)Ly ,

Lyy = r sin(rx) cos(rx)Lx + cos2(rx)(e3 + re4 − L) ,

∇̃∂x e3 = Lx , ∇̃∂y e3 = Ly , ∇̃∂x e4 = −rLx , ∇̃∂y e4 = −rLy .
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After solving this system, choosing suitable Minkowskian coordinates and making a suitable
reparametrization, we obtain a special case of (1).

Case (d.2.iii): ε �= γ . In this case, we have ω2
1 = 0. Thus, M is flat and we get

K = γ ε = 0. Without loss of generality, we may assume ε = 0, γ �= 0. So, after choosing
Euclidean coordinates (u, v) with e1 = ∂u, e2 = ∂v , we obtain

Luu = e3 + γ e4 − L , Luv = 0 , Lvv = e3 − L ,

∇̃∂ue3 = Lu , ∇̃∂v e3 = Lv , ∇̃∂ue4 = −γLu , ∇̃∂v e4 = 0 .

Solving this system leads, after a reparametrization, to case (6) of the theorem.
The converse can be verified by a straightforward computation. �

The following result completely classifies space-like parallel surface in H 4
1 (−1).

THEOREM 7.3. If M is a space-like parallel surface in H 4
1 (−1) ⊂ E

5
2, then M is

congruent to an open part of one of the following ten types of surfaces:
(1) a totally umbilical sphere S2 given locally by

L = (a, c, b sin u, b cosu cos v, b cosu sin v) , a2 − b2 + c2 = 1 ;
(2) a totally umbilical hyperbolic planeH 2 given locally by

L = (a, b coshu cosh v, b coshu sinh v, b sinhu, c) , a2 + b2 − c2 = 1 ;
(3) a flat surface H 1 × S1 given by

L = (a, b coshu, b sinhu, c cos v, c sin v) , a2 + b2 − c2 = 1 ;
(4) a flat surface H 1 ×H 1 given by

L = (b coshu, c cosh v, b sinhu, c sinh v, a) , b2 + c2 − a2 = 1 ;
(5) a flat totally umbilical surface defined by

L =
(√

1 − a2, u2 + v2 + a2 + 1

4
, u2 + v2 + a2 − 1

4
, u, v

)
;

(6) a flat surface defined by

L =
(
a, b

(
u2 + v2 − 3

4

)
, b

(
u2 + v2 − 5

4

)
, bu, bv

)
, a2 = 1 + b2 > 1 ;

(7) a flat surface defined by

L =
(
v2 + 5

4
− a2, a coshu, a sinhu, v, v2 + 3

4
− a2

)
, a �= 0 ;

(8) the flat marginally trapped surface defined by

L =
(
u2 + 1,

1

2
cosh v, u,

1

2
sinh v, u2 + 1

2

)
;

(9) a flat marginally trapped surface defined by

L =
(

coshu√
2 − b

,
cosh v√

2 + b
,

sinhu√
2 − b

,
sinh v√
2 + b

,
b√

4−b2

)
, |b| < 2 ;
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(10) a flat marginally trapped surface defined by

L =
(

b√
b2 − 4

,
cosh v√
b + 2

,
sinh v√
b + 2

,
cosu√
b − 2

,
sin u√
b − 2

)
, b > 2 .

Conversely, each surface of the ten types given above is space-like and parallel.

PROOF. Let M be a parallel space-like surface in H 4
1 (−1). Then DH = 0 and accord-

ing to Theorem 3.3, M is either a marginally trapped surface given by cases (8)–(10) or a
special case of (2), orM is non-marginally trapped and one of the following:

(a) M is a parallel minimal surface of H 4
1 (−1);

(b) M is a parallel surface in H 4
1 (−1) ∩ E1, where E1 is a Lorentzian hyperplane;

(c) M is a parallel surface in H 4
1 (−1) ∩ E2, where E2 is an index 2 hyperplane;

(d) M is a parallel surface in H 4
1 (−1) ∩ H, where H is a degenerate hyperplane.

Now, assume that M is non-marginally trapped.
Case (a):M is a minimal parallel surface of H 4

1 (−1). As in the proof of Theorem 7.1,
we may choose {e3, e4} as in Lemma 7.1 and let {e1, e2} be an orthonormal tangent frame
such that (7.1) and (7.2) hold. Thus, from Lemma 7.1, we have (7.3).

Case (a.1): α = 0. Choose {e1, e2} such that δ = 0. Then (7.1) and (7.3) give

Ae3 = 0 , Ae4 =
(
γ 0
0 −γ

)
, dγ = 0 , γω2

1 = 0 .(7.12)

If γ = 0, the surface is totally geodesic, which gives case (2).
If γ �= 0, then (7.13) gives ω2

1 = 0. Hence the surface is flat. Lemma 7.1 then yields that
K = −1 − γ 2 = 0, which is impossible.

Case (a.2): α �= 0. By similar arguments as in case (A.2) of the proof of Theorem 7.2,
we obtain ω2

1 = δ = 0 and γ 2 = α2 − 1. After choosing Euclidean coordinates (u, v) with
e1 = ∂u, e2 = ∂v , we have

Luu = −αe3 + γ e4 + L , Luv = 0 , Lvv = αe3 − γ e4 + L ,

∇̃∂ue3 = −αLu + αu

γ
e4 , ∇̃∂v e3 = αLv + αv

γ
e4 ,

∇̃∂ue4 = −γLu + αu

γ
e3 , ∇̃∂v e4 = γLv + αv

γ
e3 .

Solving this system yields case (4) of the theorem with a = 0 and b = c = 1/
√

2.
Case (b): M lies in H 4

1 (−1) ∩ E1, E1 is a Lorentzian hyperplane. We may assume that
E1 is defined by x1 = a with a ≥ 0. Then,H 4

1 (−1) ∩ E1 is given by

{(a, x2, . . . , x5) ∈ E
5
2 ; −x2

2 + x2
3 + x2

4 + x2
5 = a2 − 1} .

Case (b.1): a2 > 1. In this case, H 4
1 (−1) ∩ E1 = S3

1 (c) with c = 1/(a2 − 1). Thus, M
is a parallel surface of S3

1 (c). Hence, by applying Theorem 5.2, we obtain special cases of (1),
(2), (3) or (6).

Case (b.2): a2 < 1. In this case,H 4
1 (−1)∩ E1 = H 3(−c) with c = 1/(1 − a2). So, M

is a parallel surface of a hyperbolic 3-space H 3(−c). Hence, M is either totally umbilical in
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H 3(−c) or flat. In the first case, we obtain special cases of (1), (2) and (5). The second case
gives a special case of (3).

Case (b.3): a = 1. In this case,H 4
1 (−1)∩E1 = LC ⊂ E

4
1 (= E1). Thus,M is a parallel

surface lying in the light cone LC ⊂ E
4
1. Hence, by Theorem 6.1, we obtain special cases of

(1), (2), (3) and (5).
Case (c): M is a parallel surface in H 4

1 (−1) ∩ E2, where E2 is a hyperplane of index 2.
We may assume that E2 is given by x5 = a, a ≥ 0. Thus,H 4

1 (−1)∩ E2 = H 3
1 (−c) ⊂ E

4
1 with

c = 1/(1 + a2) defined by −x1 − x2
2 + x2

3 + x2
4 = −(1 + a2) < 0. Hence, we may apply

Theorem 5.3 to obtain special cases of (2) and (4).
Case (d):M is a parallel surface inH 4

1 (−1)∩H, H a degenerate hyperplane. We may
assume that H is the hyperplane Ga = {(x1, . . . , x5) ∈ E

5
2; x5 = x1 + a}.

Case (d.1): a = 0. SinceM lies in G0, we have x5 = x1. Put e3 = (1, 0, 0, 0, 1) and let
e4 be another light-like normal vector field ofM in H 4

1 (−1) with 〈e3, e4〉 = −1, 〈e4, e4〉 = 0.
With respect to a suitable orthonormal frame field {e1, e2}, we have

Ae3 = 0 , Ae4 =
(
γ 0
0 ε

)
,

h(e1, e1) = −γ e3 , h(e1, e2) = 0 , h(e2, e2) = −εe3 .

(7.13)

From the equation of Gauss and (7.13), we get K = −1. Thus, ω2
1 �= 0. Since De3 = 0, it

follows from ∇h = 0 that γ = ε which is constant, say r .
If we choose coordinates (u, v) with g = du2 + cosh2 udv2, then we obtain

Luu = L− re3 , Luv = tanhuLv , Lvv = cosh2 u(L− re3)− Lx

2
sinh 2u , ∇̃e3 = 0 .

Solving this system leads, after a reparametrization, to a special case of case (2).
Case (d.2): a �= 0. Put e3 = L + a−1(1, 0, 0, 0, 1). Then, by applying 〈L,L〉 = −1,

we find 〈e3, L〉 = 0 and 〈e3, e3〉 = 1. Thus, e3 is a space-like unit normal vector field of
M in H 4

1 (−1) with De3 = 0. Let e4 be a unit time-like normal vector field in H 4
1 (−1) with

〈e3, e4〉 = 0. With respect to a suitable orthonormal tangent frame {e1, e2}, we haveAe3 = −I
and Ae4 =

(
γ 0
0 ε

)
. Hence, we obtain K = −γ ε and

(7.14) h(e1, e1) = −e3 − γ e4 , h(e1, e2) = 0 , h(e2, e2) = −e3 − εe4 .

From De3 = De4 = 0, (7.14) and ∇h = 0, we find (ε − γ )ω2
1 = dγ = dε = 0.

Case (d.2.i): ε = γ = 0. In this case, M is totally umbilical with K = 0. Thus, if we
choose coordinates (u, v) with g = du2 + dv2, then we obtain

Luu = −e3 + L , Luv = 0 , Lvv = −e3 + L , ∇̃∂ue3 = Lu , ∇̃∂v e3 = Lv .

Solving this system leads to a special case of case (5) .
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Case (d.2.ii). If ε = γ = r �= 0, then M is totally umbilical with K = −γ 2. So, if we
choose coordinates (x, y) with g = dx2 + cosh2(γ x)dy2, then we obtain

Lxx = −e3 − re4 + L , Lxy = r tanh(rx)Ly ,

Lyy = cosh2(rx)(L− e3 − re4)− sinh(rx) cosh(rx)Lx ,

∇̃∂x e3 = Lx , ∇̃∂y e3 = rLy , ∇̃∂x e4 = −rLx , ∇̃∂y e4 = −rLy .
Solving this system leads, after a reparametrization, to a special case of case (2).

Case (d.2.iii): If ε �= γ . In this case, we have ω2
1 = 0. Thus, M is flat and the equation

of Gauss yields K = −γ ε = 0. We may assume ε = 0, γ �= 0. So, after choosing Euclidean
coordinates (u, v) with e1 = ∂u, e2 = ∂v , we obtain

Luu = −e3 − γ e4 + L , Luv = 0 , Lvv = −e3 + L ,

∇̃∂ue3 = Lu , ∇̃∂v e3 = Lv , ∇̃∂ue4 = −γLu , ∇̃∂v e4 = 0 .

Solving this system leads, after a reparametrization, to case (7) of the theorem
The converse can be verified by a straightforward computation. �

REMARK 7.1. Cases (8), (9) and (10) of Theorem 7.2 are special cases of Cases (6),
(3) and (4), respectively.

REMARK 7.2. Cases (8), (9) and (10) of Theorem 7.3 are special cases of Cases (6),
(4) and (3), respectively.

8. Classification of Lorentzian parallel surfaces in L4
1(c). In this section, we clas-

sify Lorentzian parallel surfaces in Lorentzian space forms.

LEMMA 8.1. Let M be a Lorentzian minimal parallel surface in a Lorentzian space
form L4

1(c). ThenM is a Lorentzian minimal parallel surface of a totally geodesic Lorentzian
L3

1(c) ⊂ L4
1(c).

PROOF. Assume that M is a Lorentzian minimal parallel surface in a Lorentzian space
form L4

1(c). Choose an orthonormal normal frame {e3, e4} such that

Ae3 =
(
α 0
0 −α

)
, Ae4 =

(
β −γ
γ −β

)
,

with respect to a pseudo-orthonormal tangent frame {e1, e2}, satisfying 〈e1, e1〉=−1,
〈e1, e2〉 = 0 and 〈e2, e2〉 = 1. We have

h(e1, e1) = −αe3 , h(e1, e2) = γ e4 , h(e2, e2) = −αe3 − βe4 .

A straightforward computation shows that the surface is parallel if and only if

(8.1) dα = βω4
3 , dβ = −2γω2

1 − αω4
3 , dγ = −2βω2

1 , 2αω2
1 = γω4

3 .

Differentiating both sides of the last equality of (8.1) gives 2αdω2
1 = γ dω4

3, and combining
this with the equations of Gauss and Ricci yields

α(α2 + β2 − 2γ 2 − c) = 0 .
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Case (a): α = 0. From (8.1), we have βω4
3 = γω4

3 = 0.
Case (a.1): ω4

3 = 0. In this case, e3 is parallel in L4
1(c), and hence we obtain from the

reduction theorem that the surface lies in a totally geodesic subspace L3
1(c).

Case (a.2): ω4
3 �= 0. In this case, we have β = γ = 0 and hence the surface is totally

geodesic, which implies the result.
Case (b): α2 + β2 − 2γ 2 = c. It follows from (8.1) that α2 + β2 − γ 2 is constant and

hence γ is constant. From the third equation of (8.1), we obtain βω2
1 = 0.

Case (b.1): β = 0. From (8.1), we obtain 2γω2
1 + αω4

3 = 0 and 2αω2
1 − γω4

3 = 0.
Combining these equalities with α2 − 2γ 2 = c yields (c − 3α2)ω2

1 = 0. For ω2
1 = 0, we

refer to case (B.2). If c = 3α2, then c ≥ 0 and it follows from α2 − 2γ 2 = c that c = −3γ 2.
Hence, c = α = γ = 0 and the surface is totally geodesic.

Case (b.2): ω2
1 = 0. Since the surface is flat, we have K = 0, or, equivalently, α2 +

β2 − γ 2 − c = 0. Together with α2 + β2 − 2γ 2 − c = 0, we obtain γ = 0 and hence both
Ae3 and Ae4 are diagonal. After a suitable rotation of {e3, e4} in the normal plane, we may
assume that α = 0. It follows from the first equality of (8.1) that βω4

3 = 0. If β = 0, the
surface is totally geodesic. If ω4

3 = 0, then e3 is parallel in L4
1(c) and the result follows form

the reduction theorem. �

Making use of Lemma 4.1 and similar techniques as in the previous section, we can
prove the following theorems.

THEOREM 8.1. IfM is a Lorentzian parallel surface in E
4
1, thenM is congruent to an

open part of one of the following six types of surfaces:
(1) the totally geodesic plane E

2
1 given by L = (u, v, 0, 0);

(2) a totally umbilical de Sitter space S2
1 given by

L = b(sinhu, coshu cos v, cosh u sin v, 0) , b > 0 ;
(3) a flat cylinder E

1
1 × S1 given by

L = (u, a cos v, a sin v, 0) , a > 0 ;
(4) a flat cylinder S1

1 × E
1 given by

L = (a sinh u, a coshu, v, 0) , a > 0 ;
(5) a flat surface S1

1 × S1 defined by

L = (a sinh u, a coshu, b cos v, b sin v) , a, b > 0 ;
(6) the flat minimal surface in E

3
1 ⊂ E

4
1 given by

L =
(

1

6
(u− v)3 + u,

1

6
(u− v)3 + v,

1

2
(u− v)2, 0

)
.

Conversely, each surface defined above is a Lorentzian parallel surface in E
4
1.

PROOF. Since M is a parallel surface, we have DH = 0. Hence, Theorem 4.1 implies
that M is one of the following:
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(a) a parallel surface of a Minkowski space-time E
3
1 ⊂ E

4
1;

(b) a parallel surface of a de Sitter space-time S3
1 (c) ⊂ E

4
1 for some c > 0;

(c) a minimal parallel surface of E
4
1.

Case (a):M is parallel surface of E
3
1 ⊂ E

4
1. According to Theorem 5.1,M is congruent

to cases (1), (2), (3), (4) or (6).
Case (b): M is parallel surface S3

1 (c) ⊂ E
4
1. Theorem 5.2 implies that M is congruent

to case (2) or (5).
Case (c): M is minimal and parallel. This reduces to case (a) by Lemma 8.1 �

THEOREM 8.2. If M is a Lorentzian parallel surface in S4
1 (1) ⊂ E

5
1, then M is con-

gruent to an open part of one of the following two types of surfaces:
(1) a totally umbilical de Sitter space S2

1 in S4
1 (1) given by

L = (a sinhu, a coshu cos v, a coshu sin v, b, 0) , a2 + b2 = 1 ;
(2) a flat surface S1 × S1 given by

L = (a sinhu, a coshu, b cos v, b sin v, 0) , a2 + b2 = 1 .

Conversely, each surface defined above is a Lorentzian parallel surface in S4
1 (1).

PROOF. Since M is a parallel surface, we have DH = 0. Hence, Theorem 4.2 implies
that M is one of the following:

(a) a parallel surface of S4
1 (1) ∩ E1, where E1 is a Lorentzian hyperplane in E

5
1;

(b) a minimal parallel surface of S4
1 (1).

If M is a parallel surface of S4
1 (1) ∩ E1, we may assume E1 is defined by x5 = 0. Then

S4
1 (1) ∩ E1 = S3

1 (1). Thus, by Theorem 5.2, we obtain case (1) or (2).
If M is minimal and parallel, this reduces to the first case according to Lemma 8.1. �

THEOREM 8.3. If M is a Lorentzian parallel surface in H 4
1 (−1) ⊂ E

5
2, then M is

congruent to an open part of one of the following twelve types of surfaces:
(1) a totally umbilical de Sitter space S2

1 given by

L = (c, a sinhu, a coshu cos v, a coshu sin v, b) , c2 − a2 − b2 = 1 ;
(2) a totally umbilical anti-de Sitter spaceH 2

1 given by

L = (a sin u, a cosu cosh v, a cosu sinh v, 0, b) , a2 − b2 = 1 ;
(3) a flat surface S1

1 ×H 1 given by

L = (a sinhu, b cosh v, a coshu, b sinh v, c) , a2 − b2 + c2 = −1 ;
(4) a flat surface H 1

1 × S1 given by

L = (a cosu, a sin u, b cos v, b sin v, c) , a2 + b2 − c2 = 1 ;
(5) a flat surface S1

1 × S1 given by

L = (a, b sinhu, b coshu, c cos v, c sin v) , a2 − b2 − c2 = 1 ;
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(6) a totally umbilical flat surface defined by

L =
((
u2 − v2 − 5

4

)
, au, av, a

(
u2 − v2 − 3

4

)
, b

)
, a2 − b2 = 1 ;

(7) a flat surface defined by

L =
(
a cos v − a(u− v)

2
sin v, a sin v + a(u− v)

2
cos v,

a(u− v)

2
sin v ,

a(u− v)

2
cos v, b

)
, a2 − b2 = 1 ;

(8) a flat surface defined by

L =
(
a cosh v − a(u+ v)

2
sinh v,

a(u+ v)

2
cosh v, a sinh v − a(u+ v)

2
cosh v ,

a(u+ v)

2
sinh v, b

)
, a2 − b2 = 1 ;

(9) a surface defined by

L = (a cosu cosh v − a tan k sin u sinh v, a sec k sinu cosh v,

a cosu sinh v − a tan k sinu cosh v, a sec k sinu sinh v, b) , a2 − b2 = 1, cos k �= 0 ;
(10) a flat surface defined by

L =
(
b2(u2 − k2 − 1)− 1

2b2k
, u,

cos bv

b
,

sin bv

b
,
b2(u2 + k2 − 1)− 1

2b2k

)
, b, k �= 0 ;

(11) a flat surface defined by

L =
(

− a2(v2 + k2 + 1)+ 1

2a2k
,

sinh au

a
,

cosh au

a
, v,

a2(k2 − v2 − 1)− 1

2a2k

)
, a, k �= 0 ;

(12) a flat surface defined by

L =
(
(u− v)4

24k
+ u2 − v2 − k2 − 1

2k
,

1

6
(u− v)3 + u,

1

2
(u− v)2,

1

6
(u− v)3 + v,

(u− v)4

24k
+ u2 − v2 + k2 − 1

2k

)
, k �= 0 .

Conversely, each surface defined above is a Lorentzian parallel surface in H 4
1 (−1).

PROOF. Since M is a parallel Lorentzian surface, we have DH = 0. Hence, Theorem
4.3 implies that M is one of the following:

(a) a parallel surface ofH 4
1 (−1) ∩ E1, where E1 is a Lorentzian hyperplane in E

5
2;

(b) a parallel surface of H 4
1 (−1) ∩ E2, where E2 is a hyperplane of index 2 in E

5
2;

(c) a parallel surface ofH 4
1 (−1) ∩ H, where H is a degenerate hyperplane in E

5
2;

(d) a minimal parallel surface of H 4
1 (−1).
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Case (a): M is a parallel surface of H 4
1 (−1) ∩ E1. We may assume E1 is defined by

x1 = a ≥ 0. Then the intersectionH 4
1 (−1) ∩ E1 is given by

{(a, x2, . . . , x5) ∈ E
5
2 ; −x2

2 + x2
3 + x2

4 + x2
5 = a2 − 1} .

If a < 1, M is Lorentzian and lies in a hyperbolic 3-space, which is impossible.
If a > 1, M lies in H 4

1 (−1) ∩ E1 = S3
1 (1/(a

2 − 1)). Since M is also parallel in this de
Sitter space, Theorem 5.2 implies thatM is congruent to case (1) or (5).

If a = 1, thenM lies in a light cone in an E
4
1, which is impossible (Theorem 6.1).

Case (b): M is a parallel surface of H 4
1 (−1) ∩ E2. We may assume E2 is given by

x5 = b ≥ 0. Thus, H 4
1 (−1) ∩ E2 = H 3

1 (−1/(1 + b2)) ⊂ E
4
1 is defined by

−x1 − x2
2 + x2

3 + x2
4 = −(1 + b2) < 0 .

Hence, we may applying Theorem 5.3 to obtain special cases of (1), (2), (3), (4), (6), (7), (8)
or (9).

Case (c):M is a parallel surface ofH 4
1 (−1)∩H. We may assume that H is the hyper-

plane Gk = {(x1, . . . , x5) ∈ E
5
2; x5 = x1 + k}.

Case (c.1): k = 0. In this case, we have x5 = x1. If e3 = (1, 0, 0, 0, 1), then 〈L, e3〉 =
〈Lx, e3〉 = 〈Ly, e3〉 = 0, which implies that e3 is a light-like normal vector of M orthogonal
to L. But this is impossible since M is Lorentzian.

Case (c.2): k �= 0. Since M lies in Gk , we get x5 = x1 + k. So, if we put e3 =
L + k−1(1, 0, 0, 0, 1), then by applying 〈L,L〉 = −1 we know that e3 is a space-like unit
normal vector field of M in H 4

1 (−1) satisfying De3 = 0. Let e4 be another unit space-like
normal vector field of M in H 4

1 (−1) with 〈e3, e4〉 = 0. Then, from the definition of e3, we
have Ae3 = −I .

Now, by applying Lemma 4.1, we know that there exists a basis {e1, e2} satisfying
〈e2, e2〉 = −〈e1, e1〉 = 1, 〈e1, e2〉 = 0 such that Ae4 takes one of forms given by (4.1),
(4.2) or (4.3) with respect to {e1, e2}.

Case (c.2.i): Ae4 takes the form (4.1). In this case we have

(8.2) h(e1, e1) = e3 − αe4 , h(e1, e2) = 0 , h(e2, e2) = −e3 + βe4 .

Thus, it follows from De3 = De4 = ∇h = 0 that α, β are constant and ω2
1 = 0. Thus, M is

flat, and hence, the equation of Gauss gives αβ = 0.
Case (c.2.i.1): α = 0 and β = b �= 0. If we choose coordinates (u, v) with ∂u =

e1, ∂v = e2, then we obtain from (8.2) that

Luu = e3 − L , Luv = 0 , Lvv = −e3 + be4 + L ,

∇̃∂ue3 = Lu , ∇̃∂v e3 = Lv , ∇̃∂ue4 = 0 , ∇̃∂v e4 = −bLv .(8.3)

After solving this system and choosing suitable Minkowskian coordinates, we obtain case
(10).

Case (c.2.i.2): α = a �= 0 and β = 0. In this case we obtain case (11) in a similar way
as (c.2.i.1).
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Case (c.2.ii): Ae4 takes the form (4.2), β �= 0. In this case we have

(8.4) h(e1, e1) = e3 − αe4 , h(e1, e2) = βe4 , h(e2, e2) = −e3 + αe4 .

Thus, it follows from De3 = De4 = ∇h = 0 that α, β are constant and ω2
1 = 0. Hence, the

equation of Gauss gives 0 = K = α2 + β2 which is impossible.
Case (c.2.iii): Ae4 takes one of the forms (4.3). In this case we have

(8.5) h(e1, e1) = e3 − αe4 , h(e1, e2) = −e4 , h(e2, e2) = −e3 + (α ± 2)e4 .

Thus, it follows from De3 = De4 = ∇h = 0 that α is a constant and ω2
1 = 0. Hence, M is

flat. Moreover, we may choose coordinates (u, v) such that ∂u = e1, ∂v = e2. Also, it follows
from (8.5) and the equation of Gauss that 0 = K = (1 ± α)2. Thus, Ae4 takes one of the
following two forms:

(8.6) Ae4 =
(−1 1

−1 1

)
(with α = −1) or Ae4 =

(
1 1

−1 −1

)
(with α = 1) .

In the first case, we obtain

Luu = e3 + e4 − L , Luv = −e4 , Lvv = −e3 + e4 + L ,

∇̃∂ue3 = Lu , ∇̃∂v e3 = Lv , ∇̃∂ue4 = Lu + Lv , ∇̃∂v e4 = −Lu − Lv .

Solving this system and choosing suitable Minkowskian coordinates yield case (12).
If the second case, we also obtain case (12) after a reparametrization.
Case (d): M minimal and parallel. This reduces to case (b) by Lemma 8.1. �
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