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Abstract. In this paper we completely classify parallel non-degenerate surfaces in 4-
dimensional Lorentzian space forms. In addition, we also completely classify non-degenerate
surfaces with parallel mean curvature vector in 4-dimensional Lorentzian space forms.

1. Introduction. By a Lorentzian manifold we mean a pseudo-Riemannian manifold
with index one. A Lorentzian space form is by definition a Lorentzian manifold of constant
sectional curvature.

Let E7 denote the pseudo-Euclidean n-space with metric tensor given by

A n
(1.1 go=-> dx}+ Y dxi,

i=1 j=s+1
where (x1, ..., x,) is the rectangular coordinate system of [E}. We put
12 St(x0,¢) = {x € E{™!; (x — x0,x —xo) =" > 0},
' HE(xo, —¢) = {x e BT (x —x0.x —x0) = —¢ 7! < 0},

where ( , ) is the indefinite inner product on Ef . Then Sf (x0, ¢) and H f (xo, —c) are complete
pseudo-Riemannian manifolds with index s of constant curvature ¢ and —c, respectively. We
simply denote Sf (x0, ¢) and HYk (xp, —c) by Sf (c¢) and Hsk(—c) when xg is the origin.

The Lorentzian manifolds E’f, S’l‘ (x0,c¢) and H {‘ (xp, —c) are complete Lorentzian space
forms, which are known as the Minkowski, de Sitter, and anti-de Sitter spaces, respectively.

A vector v is called space-like (resp. time-like) if (v, v) > 0 (resp. (v, v) < 0). A vector
v is called light-like if it is nonzero and it satisfies (v, v) = 0. A curve is called a null curve if
its tangent vector is light-like at each point.

A submanifold of a pseudo-Riemannian manifold (in particular, in a Riemannian man-
ifold) is called a parallel submanifold if it has parallel second fundamental form. Parallel
submanifolds are one of the most fundamental submanifolds. Parallel submanifolds in real
(resp. complex) space forms have been classified in [8, 18] (resp. in [14, 15]). Some special
classes of parallel submanifolds in Lorentzian space forms have been studied in [1, 9, 10, 12].
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In this article, we completely classify non-degenerate surfaces with parallel second fun-
damental form in 4-dimensional Lorentzian space forms. In addition, we completely clas-
sify non-degenerate surfaces with parallel mean curvature vector in 4-dimensional Lorentzian
space forms.

2. Preliminaries.

2.1. Basic notation, formulas and definitions. Let L‘l‘ (c) denote a Lorentzian space
form of constant sectional curvature c. Then the Riemann curvature tensor R of L?(c) is given
by

R(X.Y)Z =c{(Y,Z)X — (X, Z)Y}.

Throughout the paper, we assume that M is a non-degenerate surface in L‘l‘ (c), i.e., the
induced metric on M is non-degenerate. So, M is either space-like or Lorentzian. We put
6 =1 oré = —1, according to M being space-like or Lorentzian, respectively.

Denote by V and V the Levi Civita connections on M and L‘l1 (c), respectively. Let X and
Y denote vector fields tangent to M and let § be a normal vector field. Then the formulas of
Gauss and Weingarten give a decomposition of the vector fields VyxY and V£ into a tangent
and a normal component (cf. [2, 3, 16]):

2.1 VxY = VxY + h(X,Y),
(2.2) Vxé = —A¢ X + Dx&.
These formulae define 4, A and D, which are called the second fundamental form, the shape
operator and the normal connection respectively.
The mean curvature vector is defined by H = (1/2)trace h. For each £ € TxLM , the

shape operator Ag is a symmetric endomorphism of the tangent space 7xM at x € M. The
shape operator and the second fundamental form are related by

(2.3) (h(X.Y), &) = (Ae X, Y)

for X, Y tangent to M and &£ normal to M.
The equations of Gauss, Codazzi and Ricci are given respectively by

2.4 (RIX,Y)Z, W) ={Apy,pX, W) — (Anx,2)Y, W)
o (X, WY, Z) — (X, Z)(Y, W),

2.5) Vxh)(Y,Z) = (Vyh)(X, Z),

(2.6) (RP(X,Y)&, n) = ([Ag, Ay)X.Y)

for X, Y, Z, W tangent to M and &, n normal to M, where Vh is defined by
2.7 (Vxh)(Y, Z) = Dxh(Y, Z) — h(VxY, Z) — h(Y,Vx Z).

The surface M is said to be fotally geodesic if h = 0 holds identically; and parallel
if we have Vi = 0. The surface is said to have parallel mean curvature vector if we have
DH = 0 identically. It is called totally umbilical if its second fundamental form satisfies
hX,Y)=(X,Y)H.
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The light cone LC" ! (x0) with vertex xg in E? is defined to be
(2.8) LC" (x0) = (x € E"; (x —x0,x —x0) = 0}.

We simply denote £C" ! (xo) C E? by LC C E if xo is the origin.

A surface in a pseudo-Riemannian 3-manifold (or in a light cone) is called a CMC surface
if its mean curvature vector H satisfies (H, H) = constant # 0.

2.2. Moving frames. Let M be a space-like or a Lorentzian surface in a Lorentzian

space form L‘l‘(c). Put § = 1 if M is space-like and put § = —1 if M is Lorentzian. Let
{e1, e2} be a local tangent frame and let {e3, e4} be a local normal frame, such that

(2.9) (e1,e1) =6, (e1,e2) =0, (ez,e2)=1,

(2.10) (e3,e3) = =8, (e3z,eq) =0, (e4,e4)=1.

We define the one-forms w%, a)é, wé‘ and a)f1 by the following equations:

(2.11) Vxer =wi(X)e2, Vxer=wy(X)e1, Dxes =wi(X)es, Dxes=w(X)e3.

Then w% = —Sw% and a)?1 = (Sa)g‘.
If M is space-like, sometimes we use a local normal frame {e3, e4} on M satisfying
(2.12) (e3,€3) = (e4,e4) =0, (e3,e4) =—1.
We may put
(2.13) Dxe3 = 0(X)e3, Dxes= —0(X)eq

for some one-form 6.

2.3. Isothermal coordinates and lemmas. Locally, there exists an isothermal coordi-
nate system (u, v) on a space-like (or Lorentzian) surface M so that the metric tensor of M
takes the following form:

(2.14) g = E(u,v)(8du® + dv?),

where § = 1 if M is space-like; and § = —1 if M is Lorentzian (see [11, page 111] for
Lorentzian surfaces).
The following lemmas are obtained in [5].

LEMMA 2.1. Let M be a non-degenerate surface in a Lorentzian space form L‘l‘ (o). If
M has parallel mean curvature vector, then with respect to the isothermal coordinates (u, v)
satisfying (2.14) we have
1 1
(2.15) EDav (6l —n) = Dy, (6m), EDau (6l —n) = —Dy,m,
where l = h(9,, 9,), m = h(9,, dy), n = h(dy, dy).

LEMMA 2.2. Let M be a non-degenerate surface with parallel nonzero mean curva-
ture vector in a Lorentzian space form L‘ll(c). Then we have:
(1) RP =0,ie. M has flat normal connection;
(2) [Ae, Ayl =0foré,ne TPLM.
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2.4. Marginally trapped surfaces. The concept of trapped surfaces, introduced by
Penrose in [17] plays a very important role in general relativity. In the theory of cosmic black
holes, if there is a massive source inside the surface, then close enough to a massive enough
source, the outgoing light rays may also be converging; a trapped surface. Everything inside
is trapped. Nothing can escape, not even light. It is believed that there is a marginally trapped
surface, separating the trapped surfaces from the untrapped ones, where the outgoing light
rays are instantaneously parallel. The surface of a black hole is located by the marginally
trapped surface.

In terms of the mean curvature vector, a codimension-two space-like surface is future
trapped if its mean curvature vector is time-like and future-pointing at each point (similarly,
for passed trapped); and it is marginally trapped if the mean curvature vector is light-like at
each point on the surface.

3. Space-like surfaces with DH = 0. In this section we classify space-like surfaces
in L}(c) with DH = 0.

THEOREM 3.1. A space-like surface M with parallel mean curvature vector in the 4-
dimensional Minkowski space-time E‘l‘ is congruent to one of the following twelve types of
surfaces:

(1)  a minimal surface of E%;

(2) a CMC surface of the light cone LC C E%;

(3) a CMC surface of a Euclidean 3-space B3 C E?;

(4) a CMC surface of a 3-dimensional Minkowski space-time E? c E%

(5) a CMC surface of a 3-dimensional de Sitter space-time S? (c) c EY;

(6) a CMC surface of a 3-dimensional hyperbolic space H?(—c) C E;

(7) a flat parallel surface given by L = a(coshu, sinhu, cosv, sinv),a > 0;
(8) aflat parallel surface given by

1
L=5(1- byu? + (1 +b)?, (1 —bu>+ (1 +b)v>,2u,2v), beR;

(9) a flat non-parallel surface with constant light-like mean curvature vector, which

lies in the hyperplane Ho = {(t, t, x3, x4) € E‘f}, but not in any light cone;

(10)  a non-parallel flat marginally trapped surface lying in the light cone LC;

(11) a non-parallel surface lying in the de Sitter space-time Sio’ (c) for some ¢ > 0 such
that the mean curvature vector H' of M in Sf (c) satisfies (H', H') = —c;

(12)  a non-parallel surface lying in the hyperbolic space H>(—c) for some ¢ > 0 such
that the mean curvature vector H' of M in H3(—c) satisfies (H', H') = c.

Surfaces of types (7)—(12) are marginally trapped in E‘f

PROOF. Let M be a space-like surface in E‘l‘. Assume that M has parallel mean curva-
ture vector. Then (H, H) is constant. So, one of the following three cases occurs:
i H=0,
(i) H is light-like,
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(iii) (H, H) is a nonzero constant.

If H = 0, we obtain case (1). If H is light-like, then according to Theorem 3.1 of [6], M
is one of the surfaces given by cases (7)—(12).

Now, let us assume that (H, H) is a nonzero constant. Let (z, v) be isothermal coordi-
nates on M satisfying (2.14). Let us choose e3, e4 to be an orthonormal normal frame with
H = bej for a positive number b. Let us put €3 = (e3, €3), €4 = (e4, e4). We have ¢4 = —e3.
From DH = 0, we also have De3 = De4 = 0. Let us put

1
(31) o = E(l_ n, €3> ) ﬁ = (mve?)) 5

where [, m, n are defined as in Lemma 2.1. It follows from Lemma 2.1 and De3 = O that «
and S satisfy the Cauchy-Riemann condition:

a a a a
(3.2) da _9p  da 9B
av ou ou av
Thus, the function ¢1 = « + i is a holomorphic functionin z = u + iv.
Similarly, if we put

1
(33) Yy = E(l_nve4>v = (m,e4),

then ¢p = y + id is also holomorphic by the same argument. From the definitions of ¢1, ¢,
we get

3.4) ¢ ay+ﬂ8+i(a8—,3y).

¢ o? + p*
Let us put
(3.5) hej, ex) = higes + hies,
for j,k = 1,2, where e = 8,4/\/E, e = BU/\/E. With respect to e, ez, (2.3) and (3.5) give
n, b nt ht
(3.6) Aes =g3( 3! §2>, A, =s4( P B
hi, hy, hi, hy

Since H = bes, we find 2b = h}, + h3, and h}, + h3, = 0.
After applying [A¢;, A¢,] = 0 from Lemma 2.2 and using (3.6), we obtain
G.7 hzltz(h?l - h%z) = (hzl‘l - héz‘z)hﬁz-

It is easy to see that (3.7) is equivalent to Sy = «d. Thus, (3.4) implies that the meromorphic
function ¢, /¢ is real; hence, it is constant. A straightforward computation yields ¢»/¢1 =
—ht,/h3, = 8/B. Letus put

(3.8) n1 =(sinr)es — (cosr)esa, 12 = (cosr)ez — (sinr)es, r = arctan(%) .
1

By applying (3.6)—(3.8), we find
(3.9) Ay =¢I, trace Ay, =¢e3bcosr,
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where { = e3b sinr is constant. Since De3 = Dey = 0 and r, trace A, are constant, we have
Dny = Dny =0.

If ¢ = 0, then sinr = 0. In this case, e4 is a constant unit vector which implies that
(L, eq) is constant. Hence, after choosing suitable Minkowskian coordinates we obtain case
(3) or case (4) depending on e4 being time-like or space-like, respectively.

Now, assume that ¢ # 0. Let us consider the following map:

(3.10) v :M—>E: ps L(p)+¢ 'mip).

Then, we have @Xijf =X - §_1A,“X = 0 for X € TM. Thus, ¥ is constant, say co € IE?.
We may assume ¢y = 0 by choosing suitable Minkowskian coordinates. Thus, we obtain from
(3.8) that

G.11) (L.L) = %(cotzr 1.

If cot’ r = 1, then M is a CMC surface of the light cone £C. This gives case (2).

Ifc = 84b2/(00t2 r—1)> 0, Misa CMC surface of Sf’ (c), which gives case (5).

Finally, if ¢ = 84b2/(C0t2 r—1) <0, then M is a C MC surface of H3(—c), which gives
case (6) of the theorem. O

THEOREM 3.2. A space-like surface with parallel mean curvature vector in the de
Sitter space-time S?(l) C E? is congruent to one of the following twelve types of surfaces:
(1) a minimal surface of Sf(l);
(2) a CMC surface in Sf(l) N E, where & is a space-like hyperplane in IE?;
(3) a CMC surface in Si‘(l) N &1, where £1 is a Minkowskian hyperplane in B
(4) a surface M which lies in Si‘(l) N 'H, where H is a degenerate hyperplane in E?
such that the normal vector of M in S‘l‘(l) N 'H is light-like;
(5) a parallel surface of curvature one given by L=(1,sinu,cosucosv,
cosusinv, 1) witha, b, c € R;
(6) aflat parallel surface defined by L = (1/2)(2u* — 1, 2u® — 2, 2u, sin 2v, cos 2v);
(7) aflat parallel surface defined by
[ ( b cos(+/2 — bu) sin(+/2 — bu) cos(+~/2 + bv) cos(v/2 + bv))
S \Va—p V2-b V2—b = J2Z+b = J2+b
with |b| < 2.
(8) aflat parallel surface defined by
[ — (cosh(«/b —2u) sinh(v/b —2u) cos(v/2 + bv) cos(+/2 + bv) b )
B Vb—2  Jb—=2  J2+4b = V2+b Jp2_4

with b > 2.

(9) a non-parallel surface of curvature one with constant light-like mean curvature
vector, and it lies in ICq, N S?(l), with Kq = {(x1, X2, X3, X4, X5) € E?; X5 = x1 +a} for some
a € R, but not in any light cone in E?;

(10) a non-parallel marginally trapped surface of curvature one in S?(l) which lies in
LCy:={(y. 1) €E}; (y,y) =0,y € Ef} C SH(D);
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(11)  a non-parallel surface of S} (1) which lies in S} (1) N S} (xo, ¢) with xo # 0 and
¢ > 0 such that the mean curvature vector H' of M in S‘l‘(l) N S?(xo, ¢) satisfies (H', H') =
—c;

(12) a non-parallel surface of S‘l‘(l) which lies in S‘l‘(l) N H*(xq, —c) with xg # 0
and ¢ > 0 such that the mean curvature vector H' of M in Si‘(l) N H*(xg, —c) satisfies
(H',H') = c.

Surfaces of types (5)—(12) are marginally trapped in Si‘(l).

PROOF. Let M be a space-like surface in Sf(l) with parallel mean curvature vector.
Then (H, H) is constant. So, one of the following three cases occurs: (i) H = 0, (ii)) H is
light-like, (iii) (H, H) is a nonzero constant.

If H = 0, we get case (1) of the theorem. If H is light-like, then [6, Theorem 6.1] implies
that M is one of the surfaces given by cases (5)—(12).

Now, assume (H, H) is a nonzero constant. Let us put e3 = (e3, €3), €4 = (e4, e4). Then
we have g4 = —e&3. From DH = 0, we get De3z = Desq = 0. Let us put

(3.12) 15y = (sinr)es — (cosr)es, 1y = (cosr)ez —(sinr)es, r = arctan(%) ,
1

exactly in the same way as in the proof of Theorem 3.1. Then, by applying the same argument
as in the proof of Theorem 3.1, we have

(3.13) Dn =Dnp =0, A, =¢I, traceA,, =e¢e3bcosr,

where ¢ = e3bsinr is a constant.

If ¢ = 0, then sinr = 0. So, e4 is a constant unit vector which implies that (L, e4) is
constant. Hence, after choosing suitable Minkowskian coordinates, we obtain case (2) or case
(3) depending on e4 being time-like or space-like, respectively.

Next, assume that ¢ # 0. Let us consider the map:

(3.14) YiM—E:p Lp)+¢ 'mp).
We have @Xl/f =0, X € TM. Thus, ¥ is constant, say ¢y € IE? Thus, we obtain
(3.15) (L — co, L — co) = %(cotzr— 1.

Combining this with (L, L) = 1 gives
1
(3.16) (L,co)=E{l—i—(co,co)—%(cotzr—l)}.

Thus, we obtain cases (2), (3) or (4) depending on whether ¢ is time-like, space-like or light-
like. O

THEOREM 3.3. A space-like surface with parallel mean curvature vector in the anti de
Sitter space-time Hf(—l) C Eg is congruent to one of the following twelve types of surfaces:
(1) a minimal surface of H14(— 1);
(2) a CMC surface in H14(— 1) N &1, where & a Minkowskian hyperplane in E3;
(3) a CMC surface in H14(— 1) N &, where & is a hyperplane with index 2 in F3;
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(4) a surface M which lies in H14(— 1) N'H, where H is a degenerate hyperplane such
that the normal vector of M in Hf(—l) N 'H is light-like;

(5) a parallel surface of curvature —1 given by L=(1,coshucoshwv,sinhu,
coshu sinh v, 1);

(6) aflat parallel surface defined by L = (1/2)(2u® + 2, cosh 2v, 2u, sinh 2v, 2u® +

D
: (7) aflat parallel surface defined by
L:(COSh(mu) cosh(v/2+bv) sinh(v/2—bu) sinh(v/2+bv) b )
V2=b T V2+b T V2=-b T V2+b VA-pr)’
bl <2
(8) aflat parallel surface defined by
L:( b cosh(v/b +2v) sinh(v/b +2v) cos(v/b — 2u) sin(ﬂu))
b>2;

(9) a non-parallel surface with curvature —1 and constant light-like mean curvature
vector, which lies in Gp N Hf(—l), with Gy = {(x1, X2, X3, X4, X5) € IE;; x3 = x1 + b} for
some b € R, but not in any light cone of E3;

(10) a non-parallel marginally trapped surface of Hf(—l) with curvature —1, and it
liesin LC :={(1,y) € E3; (y,y) =0,y € E}} C H}(—1);

(11) a non-parallel surface lying in Hf(—l) N Sg(xo, c) with xo # 0 and ¢ > 0 such
that the mean curvature vector H' in H14(—1) N Sg(xo, ¢) satisfies (H', H') = —c;

(12) a non-parallel surface lying in H14(—1) N H14(xo, —c) with xo # 0and c > 0
such that mean curvature vector H' in H14(—1) N Hf(xo, —c) satisfies (H', H') = c.

Surfaces of types (5)—(12) are marginally trapped in H14(— 1).

REMARK 3.1. For the existence and examples of surfaces of types (9)—(12) of Theo-
rem 3.1, Theorem 3.2 and Theorem 3.3, see [6].

4. Lorentzian surfaces with DH = 0.

LEMMA 4.1. Let A be a linear operator on a two-dimensional vector space V, which
is symmetric with respect to a Lorentzian inner product ( , ) on V. Then there exists a basis

{e1, e} of V with (e1,e1) = —1, {e1,e2) = 0 and {e2, e2) = 1 such that, with respect to
{e1, ea}, A takes one of the following forms:
a 0
4.1) A= (O ,3> ,
_(«* B
4.2) A_<—ﬂ a), B#0,

o 1 o 1
4.3) A:(_l (x—l—2> or A:<—1 05—2)'
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PROOF. Let{u;,uy}beabasisof V with (uy,u1) = —1, (41, u2) = 0and (u2, uz) = 1.
Since A is symmetric, it takes the form A = ( 4 f ) with respect to {u1, u»}. Notice that, for
a fixed real number ¢, the basis {e1, e2} given by

“4.4) e1 = (cosht)uy + (sinht)uy, ex = (sinht)u; 4 (cosht)ur

also satisfies (eq, e;) = —1, (e1, e2) = 0 and (e2, €2) = 1.

If b = 0, we are in case (4.1).

Now, suppose that b # 0. We distinguish three cases.

If |(c — a)/2b| > 1, we can choose the ¢ in (4.4) so that 2b/(c — a) = tanh(2t), and we
obtain (4.1).

If |(c—a)/2b| < 1, we can choose ¢ in (4.4) so that (c —a)/2b = tanh(2¢), and we obtain
(4.2). Notice that we may assume 8 # 0 for (4.2), since otherwise, it reduces to a special case
of (4.1).

Finally, if ¢ — a = £2b, we can choose t = £ 1n |b| in (4.4) and we obtain either

a 1 a -1
4.5) A_<_1 /3> or A_<1 ﬁ>'
By changing e> into —e2, we can transform the second matrix of (4.5) into the first matrix of

(4.5). If B — o = %2, we have obtained the form (4.3). If 8 — o« # £2, we can do another
transformation to obtain either (4.1) or (4.2). O

REMARK 4.1. With respect to the null-basis {v| = (e]+€2)/v/2, va = (e1 —e2)/~/2},
the matrices of (4.3) become respectively

a+1 =2 a—1 0
A:( 0 O{+1> and A=< ) a—l)'

THEOREM 4.1. Let M be a Lorentzian surface in the Minkowski space-time E‘l‘. Then
M has parallel mean curvature vector if and only if, up to suitable choice of Minkowskian
coordinates, M is one of the following surfaces:

(1)  a minimal surface of E4;

(2) a CMC surface of a Minkowski space-time IE{’ c E%

(3) a CMC surface of a de Sitter space-time Sf () C IE?.

PROOF. LetL : M — IE‘I1 be a Lorentzian surface with DH = 0 in E‘l‘. If H =0, we
obtain case (1). Next, assume H # 0 and choose an orthonormal normal frame {e3, e4} with
H = ke3. Then k is a nonzero constant and De3 = Deg = 0.

Since A, is a symmetric operator with trace zero, it follows from Lemma 4.1 that we
can choose {e1, e} which satisfies (2.9) and

_(-v O (0 ¥ (£l 1
(4.6) Ae4_<0 y), A"“_(—y O) or Ae4_<_1 +1)
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Case (a): A, takes the first form of (4.6). From Lemma 2.2 we get [A,,, A,,] = 0 and
hence we have

—a 0 -y 0
o (@) ()
for some functions «, B, y. Since H = ke3 # 0, we get that
4.8) B—a =2«

is a nonzero constant. From (2.3), (2.9) and (4.7), we obtain
4.9) h(ei,e1) = aes +yes, h(ei,e2) =0, h(ez,er) =pPes+yes.
By applying (2.11), (4.9) and the equation of Codazzi, we find
ey = =2yoi(e2). elf=—(a+poje),

(4.10) , ,
ey = 2ywi(er), e =—(a+ pBowiler),

which imply e;(Iny) = ¢;(In(e + B)) for j = 1,2 and thus y /(« + B) is constant.

Let us put
o yﬁ)

(4.11) é3 = (cost)es + (sint)es, é4 = (sint)e3 — (cost)es, t= arctan(

Then é3, ¢4 are orthonormal parallel normal vector fields such that
4.12) trace A;, = 2k cost, Az = (ksinf)l.

Hence, trace A;, and k sin¢ are constant.

If y =0, we get é4 = e4 and A,, = 0. Combining this with Des = 0 shows that ey is
a constant vector. Thus, (L, e4) is constant, where L is the immersion of M in ]E‘f. So, after
choosing a suitable Minkowskian coordinate system we get case (2).

Next, let us assume that y # 0. It follows from (4.12), the constancy of « sin¢ and
Dés = 0 that Vxés = —(k sint) X for any X € TM. Hence

e4(p)

(4.13) v:M—E}: prs L(p)+ —
K sint

is a constant map. So, after choosing ¥ to be the origin we obtain
4.14) (L,L) = k2 csc? t = constant.

Thus, M is a C M C surface of a de Sitter space-time. So, we obtain case (3).
Case (b): A,, takes the second form of (4.6). Since [Ae,, A¢,] = 0 from Lemma 2.2,
we have

_(—a B (0 vy
(4.15) Ae3_<_,3 _a), Ae4_<_y o)

for some functions «, 8, y. Hence

(4.16) h(ei,e1) =ae3, h(er,er) =—Pes—vyes, h(ez,e2) =—ae3.
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This implies that 2H = —2ae3 and hence @« = —« is constant. The equation of Codazzi gives

(4.17) elf = —2pwi(er), ey = -2ywi(e),

e = —2pwile)), ey =-2ywile).
These equations imply that 8/y is constant. Remark that we may assume y # 0, because the
case y = 0 was already solved above. Let us put

(4.18) e3 = (cost)es + (sint)es, eé4 = (sint)e3 — (cost)eq, = arctan<ﬁ> .
14

Then é3, ¢4 are orthonormal normal vector fields, which are parallel in the normal bundle,
such that A;, and A;, satisfy (4.12). We can now proceed as in case (a).

Case (c): A, takes the third form of (4.6). Since [A,,, A¢,] = 0 from Lemma 2.2, we
have

+1 1
(4.19) A=| o_p 2 . Ae4=< )

for some functions «, 8. Hence
a—p
2
Remark that 2H = (@ + B)e3 = 2ke3 and hence (o + B)/2 = « is a nonzero constant.
From the equation of Codazzi, we obtain that w% = 0 and that « and § are constant. Now

(4.20)  h(er,e1) = —ae3 Fes, h(er,er) = e3—eq, h(ez,er) =PesFey.

put

4.21) e3 = (cost)ez + (sint)es, e4 = (sint)e3 — (cost)es, = arctan<é> .
Y

Then é3, é4 are orthonormal parallel normal vector fields such that A ¢, and A, satisfy (4.12).
We can now proceed as in the previous cases.
The converse is easy to verify. a

THEOREM 4.2. Let M be a Lorentzian surface in Sf(l) C E? Then M has parallel
mean curvature vector if and only if M is one of the following surfaces:

(1) a minimal Lorentzian surface in S‘l‘(l);

(2) a CMC surface in S‘l‘(l) N &1, where &1 is a Lorentzian hyperplane in ]E?

PROOF. Under the hypothesis, if H = 0, we get case (1). So, we assume H # 0 and
choose an orthonormal normal frame {e3, e4} with H = ke3. Then, k is a nonzero constant,
De3z = Dey =0 and [A,,, Ae,] = 0.

Since trace A, = 0, it follows from Lemma 4.1 that there exist e and e; satisfying (2.9)
and that A,, is given by one the three forms in (4.6).

Case (a): A, takes the first form of (4.6). From [A,;, Ac,] = 0 we have

(4.22) Ae3=(_0“ 2) Ae4=(_oy S)
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for some functions «, 8, y. Since H = ke3 # 0, we get § — o = 2k is a nonzero constant.
From (2.3), (2.9) and (4.22), we obtain

(4.23) h(ei,e1) =ae3 +yes, h(er,er) =0, h(ex,er) = Pez+ yes.

By applying (2.11), (4.23) and the equation of Codazzi, we may prove that y /(o + B) is
constant.

If y =0, we get A,, = 0. Combining this with Des = 0 shows that e4 is a constant
space-like vector. So, (L, e4) is constant, say b. Hence, M lies the Lorentzian hyperplane &;
given by (L, e4) = b. This gives case (2).

If y # 0, letus put é4 = (sint)e3 — (cost)eq with ¢t = arctan(2y /(o + B)). Then é4 is
a space-like parallel unit normal vector fields with A;, = (« sin#)1. Hence, it follows from
(4.12), the constancy of « sint and Dés = 0 that L + k" (csc1)éy4 is a constant vector, say
co. So, we have

4.24) (L —co, L —co) = k2 csc? t = constant.

If ¢co = 0, then we have L = —K’l(csc t)e4, which is impossible since e4 is tangent to
S‘l‘(l). Thus, we must have ¢y # 0. So, it follows from (L, L) = 1 and (4.24) that M lies
in the hyperplane £ given by 2(L, co) = 1 + {(co, co) — k2 csc? t. Since M is Lorentzian, the
hyperplane £ must be Lorentzian. Thus, we obtain case (2) again.

Case (b): A,, takes the second form of (4.6). This can be reduced to case (a) just like
case (b) in the proof of Theorem 4.1.

Case (c): Ae, takes the third form of (4.6). Similarly, one can proceed as in the previous
cases.

The converse is easy to verify. O

THEOREM 4.3. Let M be a Lorentzian surface in Hf(—l) C Eg Then M has parallel
mean curvature vector if and only if M is one of the following surfaces:

(1) a minimal Lorentzian surface in H14(— 1);

(2) a CMC surface in H14(— 1) N &y, where & is a Lorentzian hyperplane in Eg;

(3) a CMC surface in H14(— 1) N &, where & is a hyperplane of index 2 in E3;

(4) a CMC surface in H14(— 1) N'H, where 'H is a degenerate hyperplane in ]Eg

5. Parallel surfaces in 3-dimensional Lorentzian space forms. Now, we classify
parallel surfaces in 3-dimensional Lorentzian space forms. These classifications serve as aux-
iliary results for the classification in 4-dimensional Lorentzian space forms.

THEOREM 5.1. A non-degenerate parallel surface in ]E{’ is congruent to an open part
of one of the following eight types of surfaces:

(1)  a Euclidean plane E? in IE{’ given by L = (0, u, v);

(2) a totally umbilical hyperbolic plane H? in IE{’ given by

L = b(coshu coshv, coshu sinhv, sinhu), b > 0;

(3) aflat cylinder H' x E! in E3 defined by L = (a coshu, a sinhu, v) witha > 0;
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(4) a Lorentzian plane E% in IE% given by L = (u, v, 0);
(5) a totally umbilical de Sitter space S% in IE% given by

L = b(sinhu, coshu cosv, coshusinv), b > 0;

(6) aflat cylinder Ei x SV in IE{’ given by L = (u, acosv, asinv) witha > 0;
(7) aflat cylinder Sl1 x E! given by L = (a sinhu, a coshu, v) witha > 0;
(8) a flat minimal Lorentzian surface in ]E{’ given by

(e Y L o2
L—<6(u V) —|—u,6(u v) +v,2(u v)).

PROOF. We distinguish the cases that M is space-like and that M is Lorentzian.

Case (a): M is a space-like parallel surface in E? Let e3 be a unit time-like normal
vector field and {e1, e>} an orthonormal frame field on M which diagonalizes the shape op-
erator associated to e3, say Ae; = aej and Aey = Bep. A direct computation shows that the
surface is parallel if and only if & and 8 are constant and (o — ,B)a)% =0.

If« = B =0, then M is totally geodesic which gives case (1) of the theorem.

If « = B = a # 0, then the second fundamental form of M in E? satisfies

5.1 h(ey,e1) = —aes, h(e;,er) =0, h(er,er) =—ae3.
Thus, if follows from the equation of Gauss that K = —a?. If we choose coordinates (x, y)
with g = dx? 4 cosh?(ax)dy?. Then, we have
Lyx = —ae3, Lyy=atanh(ax)Ly, Ly, =—a cosh?(ax)es — %sinh(Zax)Lx,
63)(63 = —al,, 63}_63 =—alL,.

The solution of this system is
L(u, v) = cj cosh(ax) cosh(ay) + c> cosh(ax) sinh(ay) + ¢3 sinh(ax) + ¢4,

with ¢, ¢2,¢3,¢4 € E? After choosing suitable Minkowskian coordinates and making a
suitable reparametrization, we obtain case (2) of the theorem.

If « # B, then w% = 0. So, M is flat and it follows from the equation of Gauss that
af = 0. Without loss of generality, we may assume § = 0. Now, choose coordinates (u, v)
on M with 9, = e¢; and 9, = e>. Then, the immersion L satisfies

Ly =-ae3, Ly=0, Ly=0, Vyes=—aL,, Vye3=0.
The solution of this system of equations is, up to a translation, given by
L(u,v) = ¢ cosh(au) + ¢ sinh(au) + c3v,

with ¢, ¢2, ¢3 € ET . After reparametrizing and choosing suitable Minkowskian coordinates,
we obtain case (3) of the theorem.

Case (b): M is a Lorentzian parallel surface in ]E% Let e3 be a unit space-like normal
vector field. In general, the shape operator A,, cannot be diagonalized, but it follows from
Lemma 4.1 that, after a suitable choice of a frame {e;, e2} with (e, e;) = —1, (e1,e2) =0
and (e», e2) = 1, there are three cases to consider.
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Case (b.1): A takes the form (4.1). In this case, we have K = «af and

(5.2) h(ei,e1) = —ae3, hier,e2) =0, h(ez, ez) = pPes.
From (5.2) and (2.7) we know that Vi = 0 if and only if
(5.3) da =dp = (« — B)o} =0.

In particular, «, B are constant if Vh = 0 holds.

Case (b.1.i): « = = 0. In this case, we obtain case (4).

Case (b.lii): o = B = a # 0. In this case, M is a totally umbilical surface with
K = a?. By choosing coordinates (x, y) with g = —dx? + cosh?(ax)dy?, we obtain

Lyy = —ae3, Ly =atanh(@x)Ly, Lyy =acosh®(ax)es + % sinh(2ax)L, ,
68}(63 = —aLy, 63),63 = —alL,.

Solving this system leads, after a suitable reparametrization, to case (5).

Case (b.1.iii): @ # B. In this case, we have a)% = 0 and the surface is flat; so ¢ = 0.
A similar calculation as in the space-like case yields case (6) of the theorem if « = 0 and case
Miftp=0.

Case (b.2): A takes the form (4.2). The second fundamental form satisfies

5.4 h(ei,e1) = —ae3, h(er,er) =—Be3, h(ez,er) =ae;3

for some functions a, 8 with 8 # 0. Hence, by applying the assumption Vi = 0, (2.7) and
(2.11), we have

(5.5) da =dB = wi=0.

Thus, «, B are constant and the surface is flat.

On the other hand, equation (2.4) of Gauss together with (5.4) gives K = o + 82, which
is a contradiction since 8 # 0.

Case (b.3): A takes one of the forms (4.3). Since the surface is parallel, we obtain that
« is constant and w% = 0. Hence the surface is flat. But from the equation of Gauss, we obtain
that the Gaussian curvature is given by K = (o % 1)%.

Case (b.3.1): A takes the first form of (4.3) with« = —1. If we take coordinates (u, v)
with d, = ejand 0y = €2, g = —du? + dv?, then the formulas of Gauss and Weingarten yield
the following system of equations:

Lyy=e3, Lyy=—e3, Ly =e3, Vau€3 =L,+ Ly, Vave3 =—L,—L,.

Solving this system leads, after a reparametrization, to case (8) of the theorem.
Case (b.3.i1): A takes the second form of (4.3) witha = 1. Proceeding in the same way
as in the previous case, we obtain a surface congruent to case (8). ]

REMARK 5.1. The flat minimal Lorentzian surface given in case (8) of Theorem 5.1
is a B-scroll in the sense of [10] since it has degenerate relative nullity (see [10, page 391];
see also [13]).
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THEOREM 5.2. A non-degenerate parallel surface in S? (¢c) C EY, ¢ > 0, is congruent
to an open part of one of the following six types of surfaces:
(1)  a totally umbilical sphere S* in S% (c) locally given by

L = (a,bsinu,bcosucosv,bcosusinv), br—a? =c*1;

(2) a totally umbilical Euclidean plane E? in S% (c) given by

1 3 5
L:$<M2+U2—Z,l/l2+v2—z,l/l,v>;

(3) a totally umbilical hyperbolic plane H? in S% (c) given by

L = (acoshu coshv, acoshusinhv, asinhu,b), b*—a?=c"" ;

4) aflat surface H' x S in S% (c) defined by

L = (acoshu, asinhu, bcosv, bsinv), bp?—a? =c*1;

(5) a totally umbilical de Sitter space S% in Sio’ (c) given by

L = (asinhu, a coshu cosv, a coshusinv, b), al+b>=c"! ;

(6) aflat surface Sl1 x Stin Sf (c) given by

L = (asinhu,acoshu,bcosv, bsinv), a’+b*=c"".

PROOF. First, we classify non-degenerate parallel surfaces in S ? (1) and then we apply
the dilation L — L//c on E‘l‘ to obtain the desired results.

Case (a): M is a space-like parallel surface in S?(l). Let e3 be a normal vector field
of M in Sf(l) with (e3, e3) = —1 and let {e1, e2} be an orthonormal frame field on the
surface which diagonalizes the shape operator A associated to e3 so that Ae; = «e; and
Aey = Ben. A straightforward computation shows that the surface is parallel if and only if
da =dp = (« — ot = 0.

Case (a.1). If o = g =0, the surface is a totally geodesic unit 2-sphere. Hence, we get
case (1) of the theorem with a = 0.

Case (a.2). If o« = B = a # 0, the surface is totally umbilical. So, the second funda-
mental form of M in S%(l) satisfies

(5.6) h(er,e1) = —ae3, h(e1,e2) =0, h(ez,er) =—ae3.

From (5.6) and the equation of Gauss, we obtain K = 1 — a?.

If a> = 1, then M is flat. In this case, we may choose coordinates (1, v) with ¢ =
du?® + dv?. Then, we obtain from (5.6) that

Ly=—-e3s—L, Lyy=0, Lyy=-e3—0L, 631463 =-L,, 68,)63 =—L,.

After solving this system, choosing suitable Minkowskian coordinates and making a suitable
reparametrization, we obtain case (2).
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If a®> < 1, then M is of positive curvature 1 —a?. In this case, we may choose coordinates
(x, y) with g = dx? + cos?(v/1 — a2x)dy?. Then, we have

Lic=—aes—L, Ly =—/1— aztan(\/l —a%x)Ly,

= —cos (\/1 —a%x)(aes + L) + —— sm(2\/1 —a%x)L,,

Vaxey, = —al,, Vave3 = —aLy .

Solving this system leads, after a reparametrization, to case (1) with a # 0.

Similarly, for > > 1, we may obtain case (3) of the theorem.

Case (a.3). If the surface is not totally umbilical, we have a)% = 0. So, M is flat and we
find 8 = a«~! from the equation of Gauss. Without loss of generality, we may assume o > 0.

By taking coordinates (x, y) with 9, = e, dy = ez, we have
(5 7) LxXz—(O[€3~|—L), nyzo, Ly)7=_(05_1€3—|—L),
. Vie3 = —aLy, va),% = —a_lLy .

If = > — 1 > 0, then solving (5.7) gives
L = ¢y cosh(y/px) + ¢z sinh(/px) + ¢3 cos(/oy/a) + casin(/py/a),

with c1, ¢2,¢3,¢4 € E‘l‘. After choosing suitable Minkowskian coordinates and making a
suitable reparametrization, we obtain case (4).

If o = @> — 1 < 0, with a similar approach, we also obtain case (4).

Case (b): M is a Lorentzian parallel surface in Sf(l). Let e, e2 be as in Lemma 4.1,
and e3 be a unit normal vector field in S f’ (1) with associated shape operator A. Then it follows
from Lemma 4.1 that there are three cases to consider.

Case (b.1): A takes the form (4.1). In this case, we have K = 1 + o8 and

(5.3) h(er,e1) = —ae3, h(er,er) =0, h(ey, e2) = Pe3.

From (5.8) and (2.7) we know that Vi = 0 if and only if doe = df = (@ — ﬂ)w% =0.In
particular, o, 8 are constant if Vh = 0 holds.

Case (b.1i):a = B =a. The surface is totally umbilical with K = 14a>. By choosing
coordinates (x, y) with g = —dx? + cosh? W1+ azx)dyz, we obtain

Lyy=—aes+L, Lyy=+vI1+ a? tanh(v 1+ azx)Ly ,
Lyy = cosh®’(v/1 +a2x)(ae3 — L) + ———— s1nh(2\/1 +a2x)Ly,

Vaxe3 = —al,, Vaye3 =—alL,.

Solving this system leads, after a reparametrization, to case (5) of the theorem.
Case (b.1.ii): « # B. In this case, we have w% = 0. Thus, M is flat. So, we get B =
—a~ L. If we choose coordinates (x, y) with 0y = ey, dy = ez, we have

Lyx=—ae3s+ L, Lyy=0, Ly, = —O{_1€3 — L, 63)(63 = —aL,, @3ye3 = (x_lLy.
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Solving this system leads, after a reparametrization, to case (6).

Case (b.2): A takes the form (4.2). In this case, we also have (5.4) and (5.5). Thus,
the surface is flat. On the other hand, equation (2.4) of Gauss together with (5.2) gives K =
1 + o 4 B2, which contradicts K = 0.

Case (b.3): A takes one of the forms (4.3). If the surface is not totally umbilical, we
obtain a contradiction similarly as in case (b.2). O

REMARK 5.2. It was proved in [7] that cases (2) and (4) of Theorem 5.2 are the only
isometric immersions of E? into Sf’ and case (6) is the only isometric immersion of E% into
s3.

1

THEOREM 5.3. A non-degenerate parallel surface in H13(—c) c E%, ¢ > 0, is con-
gruent to an open part of one of the following ten types of surfaces:
(1) a totally umbilical hyperbolic plane H? in H13(—c) given by

L = (b, acoshu coshwv, a coshu sinhv, asinhu), a’+bp*=c"! ;
(2) asurface H' x H' in Hf’(—c) given by
L = (acoshu, bcoshv, asinhu, bsinhv), a’+b*=c"" ;
(3) a totally umbilical de Sitter space 512 in H13(—c) given by

L = (b, asinhu, acoshusinv, a coshucosv), b —a*>=c"! ;

(4) a totally umbilical Lorentzian plane E? in H3(—c) iven b
y p 1 1 8 y

L=%(uz—vz—%u,v,uz—vz—%>;
(5) a totally umbilical anti-de Sitter space le in H13(—c) given by
L = (asinu, acosucoshv, acosusinhv, b), a’—b* = cil;
(6) a surface Sl1 x H' in H13(—c) given by
L = (asinhu, b coshv, acoshu, bsinhv), pr—a?=c"1;
(7) aflat surface Hl1 x SV in H13(—c) defined by
L = (acosu,asinu,bcosv, bsinv), a’>—b* = c_l;

(8) a Lorentzian plane ]E% immersed in H13(—c) by

1 . . .
L = 7(cosucoshv — tan k sin u sinh v, sec k sin u cosh v,
c

cosu sinhv — tank sinu cosh v, sec k sinu sinhv), k€ R;

(9) a Lorentzian plane ]E% immersed in H13(—c) by

1 u—v . . u—v u—v . u—v
L =—| cosv— 5 sinwv, sinv + 5 cos v, 5 sin v, cosv | ;

NG
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(10) a Lorentzian plane ]E% immersed in H13(—c) by

1 u—+v
L = —| coshv —
JE( 2

PROOF. Just like the proof of Theorem 5.2, we may first classify non-degenerate paral-
lel surfaces in H13(—1) and then apply the dilation L — L/+/c on ]Eg to obtain the desired
results.

Case (a): M is a space-like parallel surface in Hl?’(—l). Let e3 be a time-like unit
normal vector field in Sf’(l) with associated shape operator A and let {ej, e>} be an orthonor-
mal tangent frame diagonalizing A, say Ae; = ae; and Aey = fey. In this case, we have
K = —af — 1 and the second fundamental form satisfies

sinh v, # coshv, sinhv — “tv coshv, # sinh v) .

(5.9 h(er,e1) = —ae3, h(er,er) =0, hiey, er) =—Pe3.

From (5.9) and (2.7) we know that V4 = 0 if and only if do = df = (a — /S)a)% =0.In
particular, «, B8 are constant if Vh = 0 holds.

Case (a.1):a = B = a. Inthis case, we get K = —(1 + a?). By choosing coordinates
(x, y) with g = dx? + cosh?(+/1 + a2x)dy?, we obtain

Lix=L—ae3, Ly, =+v1+a’tanh(v'1+ax)Ly,
/1 2
Ly, = cosh?(v/1 + a2x)(L — ae3) — % sinh(2v/1 + a2x)L, ,

Viy.e3 = —al,, Vaye3 =—alL,.

After solving this system, choosing suitable Minkowskian coordinates, and making a suitable
reparametrization, we obtain case (1) of the theorem.

Case (a.2): o # . We have w% = 0. So, M is flat and we find 8 = —a~!. By applying
a similar method as before, we obtain case (2).

Case (b): M is Lorentzian. We take a unit normal e3 on M tangent to H13(—1) and we
consider the three possibilities for the shape operator A associated to e3.

Case (b.1): A takes the form (4.1). In this case, we have K = «f8 — 1 and the second
fundamental form satisfies

(5.10) h(ei,e1) = —ae3, h(e1,e2) =0, h(ez,e2) = Pes.

From (5.10) and (2.7) we know that Vi = 0 if and only ifdo = df = (o — ﬂ)w% =0.
Case (b.1.i): ¢ = B = a. Inthiscase, M is a totally umbilical surface with K = ar—1.
So, we divide this into 3 cases.
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Case (b.1i.a): a®> > 1. In this case, if we choose coordinates (x, y) such that g =
—dx? + cosh?(v/a2? — 1x)dy?, then we obtain

Lyx=—aes—L, Lyy=+ a? — 1tanh(va? — Ix)Ly,
VaZ =1
Ly, = cosh?(va? — 1x)(aes + L) + C’T sinh(2v/a? — 1x)L,

Viy.e3 = —aly, Vaye3 = —alL,.

Solving this system leads, after a reparametrization, to case (3).
Case (b.1i.8):a> = 1. Without loss of generality, we may assume a = 1. If we choose
coordinates (x, y) such that ¢ = —dx? + dy?, then we obtain

Liy=-e3s—L, Ly=0, Ly=es+L, Vjpes=-Ly, Vjes=-—Ly.

After solving this system and choosing suitable initial conditions, we get case (4).

Case (b.1i.y):a> < 1. Withan analogous computation as (b.1.i.), we obtain case (5)
of the theorem.

Case (b.1.ii): « # B. In this case, we have w% = 0. Thus, M is flat. So, we get B =
—a~!. With an analogous computation as above, we obtain cases (6) and (7).

Case (b.2): A takes the form (4.2). In this case, we have (5.4) and (5.5). Thus, the
surface is flat and «, B are constant with 8 # 0.

On the other hand, equation (2.4) of Gauss and (5.4) give K = —a? - ﬁ2 — 1. Thus, we
have o% + ﬁ2 = 1. Thus, we may put « = sink, § = cos k for some k € R.

Since a)% = 0, there exist coordinates (x, y) with 9, = ey, d, = e2. So, the metric tensor
is g = —dx? 4 dy?. Thus, we obtain

L,y = —(sink)es — L, L,y =—(cosk)es, Ly, = (sink)es3+ L,

Ve, e3 = —sinkey + coskey, V,,e3 = —coske; —sinkey, cosk #0.

Solving this system leads to case (8) of the theorem after the reparametrization

k k k k
u = +/cosk (xcosz—ysin§> ,  v=+/cosk (ycos§~|—xsin§> .

Case (b.3): A takes one of the forms (4.3).
Case (b.3.1): A takes the first form of (4.3). Then the second fundamental form of M in
H13 (—1) satisfies

(5.11) h(er,e1) = —ae3, h(ej,ex) =—e3, hiey,er)=(a+2)es.

Hence, by applying Vh =0, (2.7), (2.11) and (5.11), we have da = w% =0.Thus, K =0
and we can choose coordinates (x, y) with 9y = ey, dy = e;. So, the metric tensor is g =
—dx? + dy>.

On the other hand, from the equation of Gauss and (5.11) we find K = «(« + 2). Hence,
we have eithera =0 ora = —2.
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Case (b.3.i.a): &« = 0. The immersion L : M — H3(—1) C E} satisfies

Lyx=—-L, Lyy=—e3, Ly, =23+L, 66183282, Ve,e3 = —e1 — 2e;.

Solving this system yields case (9) of the theorem.
Case (b.3i.8):a = —2. Inthiscase, L : M — H3(—1) C E‘z‘ satisfies

Lyx=2e3—L, Lyy=-—e3, Lyy=1L, 66183 =2e1+e, Vee3=—er.

Solving this system gives case (10) of the theorem.
Case (b.3.i1): A takes the second form of (4.3). Then we have

h(er,e1) = —ae3, h(ej,ex) =—e3, hiey,er)=(a—2)e3.

As before, the equations of and Gauss and Codazzi, and Vi = 0 yield a)% =0anda(e—2) =
0. Thus, after choosing (x, y) as before, we have one of the following:

LXX =-L ) ny = —e3, Lyy = _263 + L s
Vioez =er, Vye3=—er+2e;
Lxx:_ZLx_La ny=_e3, LyyZL,
Vies =—2e1+ex, Vies=—ej.

After solving these systems, choosing suitable Minkowskian coordinates and replacing y and
x by —y and —x, respectively, we obtain cases (9) and (10) as well. a

REMARK 5.3. It was proved in [7, page 93] that if ¢ : IE% — Hf’(—l) is an isometric
immersion with parallel shape operator, then ¢ is the B-scroll of a complete curve of torsion
1 and constant curvature (see [7] for details). Consequently, for ¢ = 1 case (4) and cases
(6)—(10) of Theorem 5.3 are such B-scrolls.

6. Parallel surfaces in the light cone.

THEOREM 6.1. Let M be a non-degenerate parallel surface of ]E‘l¥ If M lies in the
light cone LC = {x € E%; (x, x) = 0}, then M is space-like and the immersion is congruent
to an open part of one of the following four types of surfaces:

(1) a totally umbilical surface of positive curvature defined by

L =a(l,cosucosv,cosusinv,sinu), a >0;
(2) a totally umbilical surface of negative curvature defined by
L = a(coshu coshv, coshu sinhv, sinhu, 1), a > 0;

(3) aflat totally umbilical surface defined by

1 1
L=<u2+v2+z,u2+v2—z,u,v>;

(4) aflat surface defined by L = a(coshu, sinhu, cosv, sinv), a > 0.
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PROOF. LetL : M — ]E‘l1 be a non-degenerate parallel surface. If M is immersed in
LC, we can regard M as a parallel surface of H 14 (—1) via the following inclusion:

6.1) L:LC— HY(=1) CE; : x> (1,x).

Since M admits a light-like normal vector in Hf (—1), each normal space is a Lorentzian
plane. Thus, M is a space-like surface.
LetL=toL:M— LC — H14(—1) - Eg be the composition of L and ¢. Put

(6.2) e3s=1L—(1,0,0,0,0).

Then e3 is a light-like normal vector of M in Hf (—1). Let e4 be another light-like normal
vector of M in Hf‘(—l) such that (e3, e4) = —1.

It follows from (2.13) and (6.2) that A,; = —I and Dez = Des = 0. Thus, we may
choose an orthonormal frame {e, ¢;} such that

0
6.3) Ay =—1, Ay = (’6 8) .

Then the second fundamental form of M in Hf (—1) satisfies
(6.4) h(ej,e1) = —yes+es, hler,er) =0, h(er,er)=—ce3+es.
Since M is a parallel surface in Hf‘ (—1), it follows from (6.4) that

dy =de = (y —e)w} =0.

From the equation of Gauss and (6.4) we find K =y +¢ — 1.

Case (a):y =e. Wehave A,; = —1,Aey =yl and K =2y — 1.

Case (a.1): 2y > 1. In this case, we shall choose coordinates (u, v) on M with g =
du? 4 cos?(y/2y — 1u)dv?, then the immersion L of M in E3 satisfies

Luu=—-yes+es+L, Ly=—2y —ltan(y2y — lu)L,,

Loy = —,/2;/ — 1sin(2y2y — lu)Ly, + cos>(\/2y — lu)(—ye3s +es+ L),

Vi3 = Ly, Vi3 = Ly, Vi, e4 = —yLy, Vi e = —yL,.

After solving this system and choosing suitable Minkowskian coordinates, we obtain

A 1
L=—H/2y —1,1,cosucosv,cosusinv, sinu),
N il :

which gives rise to case (1) of the theorem for L.

Case (a.2): 2y < 1. Similarly, we obtain case (2) for L.

Case (a.3): 2y = 1. We choose coordinates («, v) on M with ¢ = du? + dv?, then the
immersion L of M in Eg satisfies

~ e3 ~ ~ ~ e3 ~
Luu=_7+e4+Ls L, =0, va:_?+e4+L7

A

- . . . 1. . 1.
Vs.es =Ly, Vyes=L,, Vyes= _ELuv Vs, e4 = _ELU'
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Solving this system leads, after a reparametrization, to case (3) of the theorem.
Case (b): y #¢e. We get a)% = 0. Thus, M isflatand e = 1 — y. Since y # ¢, we have
y # 1/2.If we choose coordinates (u#, v) with 9, = e1, 3, = e2, we obtain

iuuz_ye3+e4+i, Em):oa ivvz()’_l)e3+e4+£a
Vaes=1Lu, Vaes=Ly,., Vyes=-yL,. Vyes=(y —1L,.
Solving this system leads, after a reparametrization, to case (4) of the theorem. a

THEOREM 6.2. Let M be a non-degenerate parallel surface of ]Eg. If M lies in the
light cone LC = {x € E%; (x, x) = 0}, then M is Lorentzian and the immersion is congruent
to an open part of one of the following eight types of surfaces:

(1) a totally umbilical surface of positive curvature defined by

L = a(sinhu, 1, coshu cosv, coshusinv), a > 0;
(2) a totally umbilical surface of negative curvature defined by
L = a(sinu,cosucoshv, 1,cosusinhv), a>0;

(3) the flat totally umbilical surface defined by

1 1
L=(uu?>—v’—— u>—v>+-,v];
(uu 4u ~|—4

(4) aflat surface defined by L = a(sinhu, cosh v, coshu, sinhv),a > 0;
(5) aflat surface defined by L = a(sinu, cosu, cosv, sinv),a > 0;
(6) aflat surface defined by

L = a(sinhu cos v + sinh u sin v, coshu sinv — sinhu cosv ,

coshu cosv — sinhu sinv, coshu sinv + sinhucosv), a > 0;
(7) aflat surface defined by
L =a(cosv —usinv, sinv + ucosv,cosv + usinv, sinv —ucosv), a > 0;
(8) aflat surface defined by
L = a(coshu — vsinhu, sinhu 4+ v coshu, coshu + v sinhu, sinhu — v cosh )
witha > 0.

PROOF. LetL : M — Eg be a non-degenerate parallel surface. Assume that M is
immersed in £C. Then M is immersed in Sg (H c Eg via the following inclusion:

(6.5) L LC— S3(1)CE) : x> (x,1).

Since M admits a light-like normal vector in S, each normal space is a Lorentzian plane.
Hence, the surface M is Lorentzian.
LetL=toL: M — LC — Sg(l) C ]E; be the composition of L and ¢. Put

(6.6) e3s=L—(0,0,0,0,1).
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Then e3 is a light-like normal vector in Sg (1). Let e4 be another light-like normal vector of M
in Sg(l) with (e3, e4) = —1. It follows from (2.13) and (6.6) that

6.7) Ay =—1, Des=Dey=0

Let e1, ep be a frame on M with (ej,e;) = —1, (e3,e2) = 1 and (ey,e2) = 0 as in
Lemma 4.1. Then it follows from Lemma 4.1 that there are three cases to consider.
Case (a): A,, takes the form (4.1). In this case, we obtain

(6.8) h(ei,e1) =aez —es, hler,e2) =0, h(er,e2)=—Pe3+ey,
which implies K = 1 4+ o + B. Since M is a parallel surface in Sg (1), (6.8) implies that
da =dp = (« — p)o? =0.

Case (ai):a = 8. Wehave Ao, = -1, A,y =al and K =1+ 2a.

Case (a.i.1): 2a > —1. In this case, we shall choose coordinates (u#, v) on M with
g= —du?® + coshz(«/l + 20u)dv?. Then the immersion L of M in Eg satisfies

iuu =we3 —e4 + I:, iuv = /1 + 2atanh(v/1 + 20m)l:v ,
~ 1 ~ ~
Loy = EN/1 + 2a sinh(2+/1 + 2au) Ly, + cosh®>(v/1 + 2au)(es — aes — L),
Vaes =Ly, Vaes=L,, Vaes=—al,, Vyes=—aL,.

After solving this system, choosing suitable Minkowskian coordinates and making a suitable
reparametrization, we obtain case (1) of the theorem for L.
Case (a.i.2): 2a < —1. Similarly, we obtain case (2).
Case (a.i.3): 2a = —1. We choose coordinates (u, v) with g = du® + dv?. Then the
immersion L of M in Eg satisfies
~ e3 A N A e3 ~
Luuz_?_e4+L, L,y =0, LUU=?+64_L7
- N ~ - 1. ~ 1.
Vo,e3 =Ly, Vyes=L,, Vyes= ELM . Vaeq = ELU .

A

Solving this system leads, after a reparametrization, to case (3) of the theorem.
Case (a.ii): o # B. We get w% =0.So, M isflatand 8 = —1 — . Since o # B, we
find o« # —1/2. If we choose coordinates (u, v) with 9, = ey, 9, = e, we get

Liu=aes—es+L, Lpw=0, Ly=0+a)es+es—L,
V€3 = Ly, @aves) =1L,, 631,64 =—al,, @avm =(+a)L,.
Solving this system leads, after a reparametrization, to case (4) or case (5) depending on
whether 1 + 2o > Oor 1 + 2« < 0.
Case (b): A,, takes the form (4.2). In this case, we have
(6.9) h(ei,e1) =ae3 —es, h(er,e2) =Pe3, hlez,e2) =—woe3+e4.

Since M is a parallel surface, (6.9) yields do = df = a)% = 0. Thus, wehave 0 = K = 142«
and hence ¢ = —1/2.
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If we choose coordinates (x, y) with 9, = e1, dy = e, we obtain
Lix = %(1:+Co)—e4, Lyy=B(L—co), Lyy=es— %(I:JrCo),
Vi, e4 = %ix +BLy, Viyes=—PLy+ %iy, co=(0,0,0,0,1).

If B = k? > 0, then after solving this system, we obtain
L= co + coshu(ci cosv + ¢2 sinv) + sinh u(c3 cos v + ¢4 sinv)

with ¢1, ¢2, ¢3, ¢4 € E5 and u = k(x + ¥)/v/2, v = k(x — y)/~/2. After choosing suitable
Minkowskian coordinates we obtain case (6) of the theorem.

Similarly, if 8 = —k? < 0, we also obtain case (6) of the theorem.

Case (c): A, takes one of the forms (4.3).

Case (c.1): A, takes the first form of (4.3). In this case, we have

(6.10) h(ei,e1) =ae3 —eq, h(er,ez) =e3, h(er,e2)=—(ax+2)e3+eq.

Because M is a parallel surface, (6.10) yields da = a)% = 0. Thus, it follows from (6.10) that
0=K =34 2«. Thus,« = —3/2.
If we choose coordinates (x, y) with d, = ey, dy = e, we obtain

A 3 1. A A A 1 3.
Lxx:ECO_e4_ELs nyZL—C(), Lyy:ECO+e4_EL7
~ 3. N ~ A 1.
Vi e4 = ELX +Ly, Vpes=—-Ly+ ELya

with cop = (0, 0, 0, 0, 1). Solving this system gives

A

L =co+ (c1 +c2(x + y)) cos(x — y) + (c3 + calx + y)) sin(x — y),

with ¢y, ¢2,¢3,¢4 € Eg After choosing suitable Minkowskian coordinates and a reparame-
trization, we get case (7).
Case (c.2): A, takes the second form of (4.3). In this case, we have

(6.11) h(e1,e1) =ae3 —es, h(er,er) =e3, h(ez,e2) =2 —a)es+eq.

Because M is a parallel surface, (6.11) yields do = a)% = 0. Thus, it follows from (6.11) that
0=K =20 — 1. Thus, @« = 1/2.
If we choose coordinates (x, y) with 9, = e1, dy, = e, we obtain

A A A ~ 3
Lyy==-L~—-co—e4, nyZL_COa L)fyZEL_ECO+€4,
~ 1. A ~ A 3.
Vi, es4 = —5Lx +Ly, Vaes=—Ly+ ELys c0=1(0,0,0,0,1).
Solving this system leads, after a reparametrization, to case (8). a

7. Classification of space-like parallel surfaces in L‘l‘(c). Now, we classify space-
like parallel surfaces in 4-dimensional Lorentzian space forms.
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LEMMA 7.1. Suppose that M is a space-like surface in a Lorentzian space form L‘ll(c).
Let {e3, ea} be a normal frame satisfying (e3, e3) = —1, (e3,eq) = 0, {eq,e4) = 1 and let
{e1, ex} be an orthonormal tangent frame with respect to which the shape operators are given

by
a 0 )
ao= (5 p)e 2= (3 2)

Define w% = —a)% and a)g‘ = wi as in (2.11). We have
(1) M is parallel if and only if the following equations hold:

da:ya)‘;, dﬁ:sa)g, dy:aw§+28w%,
ds = (e —y)o}, de=pwj—28w], Sw;=(a—powi.

(2) The Gaussian curvature of M is given by K = ¢ — aff + ye — 8.
(3) The normal curvature of the immersion is given by

K+ = (RP(e1, e2)e3,e4) = 8(B — ).

PROOF. The first statement follows by direct computation of the vectors (vxh) (e1,e1),
(Vxh)(e1, e2) and (Vxh)(ea, e2) foran arbitrary vector X. The second and the third statement
follow from the equations of Gauss and Ricci, respectively. O

Now, we classify parallel space-like surfaces in E?'

THEOREM 7.1. If M is a space-like parallel surface in ]E‘ll, then M is congruent to an
open part of one of the following nine types of surfaces:

(1)  the totally geodesic plane E? given by L = (0, u, v, 0);

(2) a totally umbilical sphere S? given locally by

L =a(0,cosucosv,cosusinv,sinu), a>0;
(3) aflat cylinder E' x S! given by
L=0,u,acosv,asinv), a>0;
4) aflat cylinder H' x E! given by
L(u,v) = (acoshu,asinhu,v,0),a > 0;
(5) aflat surface H' x S' given by
L = (acoshu,asinhu,bcosv,bsinv), a,b>0;
(6) a totally umbilical hyperbolic plane H? given by
L = a(coshu coshv, coshu sinhv, sinhu,0), a >0;

(7)  the minimal flat surface given by

L:(uz—vz,uz—vz,u,v);
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(8) the flat totally umbilical surface defined by

1 1
L=<u2+v2+z,u2+v2—z,u,v>;

(9) the flat surface given by
1
L=5(1- by + (1 +b)?, (1 — b+ (1 + b)v?, 2u,2v), beR.

Conversely, each surface of the nine types given above is space-like and parallel.

PROOF. Since M is a parallel surface, we have DH = 0. Hence, Theorem 3.1 im-
plies that M is a marginally trapped surface or one of the following non-marginally trapped
surfaces:

(a) aparallel minimal surface;

(b) a parallel surface lying in the light cone £C C E¥;

(c) aparallel surface in a 3-dimensional Euclidean space E3 c E?;

(d) aparallel surface in a 3-dimensional Minkowski space-time E? cE}

(e) aparallel surface in a 3-dimensional de Sitter space-time in ]E‘ll;

(f) a parallel surface in a 3-dimensional hyperbolic space in E‘l‘.

If M is marginally trapped, then it is congruent to case (5) with a = b or to case (9)
according to Theorem 3.1.

Now, assume that M is non-marginally trapped.

Case (a): M is minimal and parallel. Let {e3, e4} be a normal frame such that (e3, e3) =
—1, (e3, e4) = 0 and (e4, e4) = 1. Choose an orthonormal tangent frame {ej, ez} such that
A., is diagonal. Hence, with respect to the basis {e], e2}, we have

R

for some functions «, y and §. Thus, we obtain

(7.2) h(e1,e1) = —h(ez,e2) = —ae3 +yes, h(er,er) =dey.

From Lemma 7.1 we know that Vi = 0 if and only if the following equalities hold:
(7.3) do = ywé, dy = aa)g + 25a)%, dé = —Zyw%, Swg = Zaa)%.

Case (a.1):a =0. We have A.; = 0 and ,3a)§ = ya)g =0.

If B = y =0, then M is totally geodesic. So, it is congruent to case (1).

If B, y are not both zero, then we have a)§ = 0. So, the equation of Weingarten implies
that e3 is parallel in E‘l‘ and hence, if L : M — ]E‘l1 denotes the immersion, then (L, e3) is
constant. Thus, M lies in a Euclidean 3-space E> C E‘l‘. Since M is parallel and minimal in
E‘l‘, M must be parallel and minimal in E3. Hence, M is totally geodesic in E3, which gives
case (1).

Case (a.2): @ # 0. In this case, (7.3) can be written as

o + 82 4

(7.4) da =ywy, dy= w3, ds=-"—03, o
o
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Differentiating both sides of the last equation in (7.4) and using the others give

(7.5) sdwi = 2adw?
which implies § K 1 — _2¢K. Thus, from Lemma 7.1 we find
(7.6) o’ —y? =282 =0.

Combining the equations in (7.4) yields that
(7.7) ad=C1, oa?—y2-8=0

are both constant. From (7.6) and (7.7) we obtain §2 = C», which is constant.

Case (a.2.i): 6 = 0. From (7.6) we get «®> = y°. We may assume @ = y # 0 by
changing the orientation of e4 if necessary. From (7.4) we have w% = 0. Thus, there exist
local coordinates (u, v) on M with 9, = e, 0, = e>. Then

Lyy=ales—e3), Lywy=0, Ly =2a(ez—e4),
~ oy ~ oy
Vo,e3 = —al, + —es, Vyes =al,+ —eys,

o o
~ oy ~ oy
Vi,ea = —al, + 363 , Vaes =aly,+ 363 .

After solving this system, choosing suitable Minkowskian coordinates and making a suitable
reparametrization, we obtain case (7), which is a flat and minimal surface, that is not totally
geodesic.

Case (a.2.i1): § # 0. Since § is constant, (7.7) implies that o and y are constant. Using
(7.4)—(7.7), we get a)% = 0. So, the surface is flat and thus Lemma 7.1 yields a?—y?-582=0.
Combining this with (7.6) gives § = 0, which is a contradiction.

Case (b): M is a parallel surface in LC. In this case, Theorem 6.1 implies that M is
congruent to cases (2), (5), (6) or (8).

Case (c): M is a non-minimal parallel surface in 3. In this case, M is an open portion
of a round sphere or a circular cylinder. So, M is congruent to (2) or (3).

Case (d): M is a non-minimal parallel surface in ]E% From Theorem 5.1 we know that
it is congruent to either case (4) or case (6).

Case (e): M is a non-minimal parallel surface in a de Sitter space. By Theorem 5.2,
the surface is congruent to cases (2), (5), (6) or (8) .

Case (f): M is a parallel surface in a hyperbolic space. 'We may prove again that either
M is totally umbilical in H 3(=¢) or M is flat, but not totally umbilical in H 3(=c¢). In the first
case, it is congruent to (2), (6) or (8). In the second case, we proceed as in S % (c) to obtain that
M is congruent to (5).

The converse can be easily verified. ]

THEOREM 7.2. If M is a space-like parallel surface in S?(l) C K2, then M is con-
gruent to an open part of one of the following ten types of surfaces:
(1) a totally umbilical sphere S? given locally by

L = (¢,bcosucosv,bcosusinv, bsinu,a), a’+b* —c? =1;
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@

L = (a coshu coshv, a coshu sinhv, asinhu, b, c), bP+c?—a* = 1;

3

“

&)

(6)

(N

®)

C))

(10)

Conversely, each surface of the ten types given above is space-like and parallel.

PROOF. Let M be a parallel space-like surface in S?(l) C E? Then DH = 0 and so,
Theorem 3.2 implies that M is either a marginally trapped surface given by cases (8)—(10) or
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a totally umbilical hyperbolic plane H? given by

a torus S' x S! given by

L = (a,bcosu,bsinu, ccosv, csinv), b2+c2—a2=1;
a flat surface H' x S given by

L = (bcoshu, bsinhu, ccosv, csinv, a), a2+cz—b2=1;

a flat totally umbilical surface defined by
1 1
L= <u2+v2~|—a2~|—z,u2~|—v2+a2— Z,u,v,\/l—i—az);
a flat surface defined by

3 5
L= (vz—Z—i—az,acosu,asinu,v,vz—Z—i—az), a>0;

a flat surface defined by

3 5
u2+v2——,u2~|—v2——,u,v,a , a€R;

1
V1 +a? < 4 4
the flat marginally trapped surface defined by

1 2 2 .
L= 5(2” —1,2u” —2,2u,sinv, cosv) ;

a flat marginally trapped surface defined by

b cosu sin u CoS v sin v
L: ) ) ) ) k] |b|<2;
VE—bp2 20 V2—=b V2+b J2+Db

a flat marginally trapped surface defined by

( coshu sinhu  cosv sinv b ) b2
= ) ) ) ) ) > .
Vb=2 Jb=2 J2+b J2+Db Vb2 —4

(7) witha = 1, or M is non-marginally trapped given by one of the following:

()
(b)
(©
(d)

M is a parallel minimal surface of S?(l);

M is a parallel surface in Sf(l) N &, where & is a space-like hyperplane;
M is a parallel surface in S?(l) N &1, where & is a Lorentzian hyperplane;
M is a parallel surface in Sf(l) N 'H, where H is a degenerate hyperplane.

Now, assume that M is non-marginally trapped.

Case (a): M is a minimal parallel surface of Sf (1). Asin the proof of Theorem 7.1, we
choose {e3, e4} as in Lemma 7.1 and let {e1, e2} be an orthonormal tangent frame such that

(7.1) and (7.2) hold. Thus, from Lemma 7.1, we have (7.3).
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Case (a.1):a = 0. We choose {eq, ez} so that § = 0. Thus, (7.1) and (7.3) give
(7.8) Aoy =0, Ae4=<g _Oy>, dy =0, yw?=0.
If y = 0, the surface is totally geodesic, which gives a special case of (1).
If y # 0, then (7.8) gives w% = 0. Hence, M is flat. Lemma 7.1 then yields that K =

1 — y? = 0. After replacing e4 by —ey if necessary, we have y = 1. We can choose Euclidean
coordinates (u, v) with ey = 9, and ey = 9,,. Then we have

Ly =es—L, Lyy=0, Lyy=-es—0L, 681464 =—Ly, 6(’)Ue4 =—L,.

After solving this system, choosing suitable Minkowskian coordinates, and making a suitable
reparametrization, we obtain a special case of case (3).
Case (a.2): « # 0. From (7.3), we have (7.4), which implies that

(7.9) ad=C1, oa?—y2-8"=0

are both constant. Applying the de Rham operator to both sides of the last equation of (7.4)
gives —2a K = 6K L. Thus, from Lemma 7.1, we obtain

(7.10) 14> —y2—-282=0.

Combining (7.9) and (7.10) shows that § is constant. A direct computation using (7.4), (7.10)
and the expression for K in Lemma 7.1 yields a)% =8 = 0. So, (7.10) gives y? = 1 + o?.
After choosing coordinates (#, v) as in case (A.1), we obtain

Luu=—ae3+)/€4—L, Luv:Os LUU=a€3—]/€4—L,

~ oy ~ oy

Vy.e3 = —aly + —e4, Vye3=al, + —eq,
14 Y

~ oy ~ oy

Vy,ea = —y Ly + 763 , Vagea=yLy+ 763 .

After solving this system, we obtain the same solution as in case (a.1). Thus, we obtain a
special case of (3) again.

Now, let us assume that M is non-minimal in S‘l‘(l).

Case (b): M is a parallel surface in S‘l‘(l) NE, where £ is a space-like hyperplane. We
may assume that £ is defined by x; = a. Then S} (1) N € = §3(c) with ¢ = 1/(1 + a?). Since
M is a parallel surface of S‘l‘(l), M is also a parallel surface in S3(e) = {(a, x2, x3, x4, x5) €
E?; x% +---+ x52 = 1+a?}. Thus, M is either a totally umbilical surface or a torus in $3(c).
In the first case, we obtain case (1). In the second case, we obtain case (3).

Case (c): M is a parallel surface in S‘l‘(l) N &1, where &1 is a Lorentzian hyperplane.
We may assume that & is defined by x5 = a with @ > 0. There are three possibilities for
S‘l‘(l) N &1; namely,

(1) ifael0,1),then S}(HNE = Si(c),c=1/(1—a?;

(2) ifa> 1, then S}()NE = H3*(—c),c =1/(1 — a?), and

(3) ifa =1, then S}(1) N &; is the light cone in & = E.
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Case (c.1):a € [0, 1). Inthis case, M is a parallel surface in S? (¢). Thus, Theorem 5.2
implies that M is congruent to (7) or special cases of (1), (2) and (4).

Case (c.2): a > 1. In this case, M is either totally umbilical in H 3(—c¢) or flat. In the
first case, we obtain special cases of (1), (2) and (5). The second case gives a special case of
4).

Case (c.3): a = 1. In this case, S?(l) N &1 is the light cone £C in & = E‘l‘. Hence,
Theorem 6.1 implies that M is congruent to special cases of (1), (2), (4) or (5).

Case (d): M is a parallel surface in Si‘(l) N 'H, where 'H is a degenerate hyperplane.
We may assume that H is the hyperplane IC;, = {(x1, ..., x5) € E?; x5 = x1 +a}.

Case (d.1): a = 0. Since M lies in Ko, we have x5 = xi. Then ez = (1,0,0,0, 1)
is a light-like normal vector of M in S?(l). Let e4 be a light-like normal vector field with
(e3, e4) = —1. Then there is an orthonormal frame field {e{, ez} such that

- _(r ©
(7.11) Aey =0, A"4_<0 8)’

h(er,e1) = —ye3, h(er,e2) =0, h(ez, e)=—ce3.

On the other hand, it follows from (7.11) and the equation of Gauss that K = 1. Thus,
w% # 0. Now (7.11) and Vi = 0 imply that y = ¢ is a constant, say 7. Thus, if we choose
coordinates (u, v) with g = du? + cos? udv?, then we obtain

L -
Ly, =-res—L, L,,=—tanulL,, Ly, = 7” sin 2u — coszu(re3 + L), Ves =0.

Solving this system leads, after a reparametrization, to special case of case (1).

Case (d2):a # 0. Putes = L —a~'(1,0,0,0, 1). Then we have (e3, L) = 0 and
(e3, e3) = —1. Thus, e3 is a time-like unit normal vector field of M in Sf(l) with De3z = 0.
Let e4 be a unit space-like normal vector field in S?(l) with (e3, e4) = 0. With respect to a
suitable orthonormal tangent frame {e1, e>}, we have

0
Apy =1, Ae4=(’6 8).

Since Dez = 0, Vh = 0 implies that dy = de = (¢ — y)a)% =0.
Case (d.2.1): ¢ = y = 0. In this case, M is totally umbilical with K = 0. Thus, if we
choose coordinates (u, v) with g = du?® + dv?, then we obtain

Luu=es—L, Lyw=0, Ly=e3s—L, Vyes=L,, Vyes=Ly.

Solving this system gives case (7) witha = 1.
Case (d.2.ii): e = y =r # 0. In this case, M is totally umbilical with K = 2. So, if
we choose coordinates (x, y) with g = dx? + cosz(rx)dyz, then we obtain

Lyxy =e3+reqs— L, Lyy=—rtan(rx)Ly,
Lyy = rsin(rx) cos(rx)Ly + cosz(rx)(e_o, +req— L),

Vo, e3 =Ly, Vayey, =Ly, Vyes=-—rLy, V8y34 =-—rL,.
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After solving this system, choosing suitable Minkowskian coordinates and making a suitable
reparametrization, we obtain a special case of (1).

Case (d.2.ii): ¢ # y. In this case, we have w% = 0. Thus, M is flat and we get
K = ye = 0. Without loss of generality, we may assume ¢ = 0, y # 0. So, after choosing
Euclidean coordinates (u, v) with e; = 9, e = d,, we obtain

Lyw=e3+yes—L, Lyy=0, Lyy=e—0L,
631483 = Lu ) 631}83 = LU s 631464 = _VLM ’ 6ave4 = O

Solving this system leads, after a reparametrization, to case (6) of the theorem.
The converse can be verified by a straightforward computation. a

The following result completely classifies space-like parallel surface in H 14 (—1).

THEOREM 7.3. If M is a space-like parallel surface in H14(—1) C E3, then M is
congruent to an open part of one of the following ten types of surfaces:
(1) a totally umbilical sphere S* given locally by

L = (a,c,bsinu, bcosucosv,bcosusinv), a2 - +ct=1 ;
(2) a totally umbilical hyperbolic plane H? given locally by
L = (a, bcoshu coshv, bcoshusinhv, bsinhu,c), a?+b*—ct=1 ;
(3) aflat surface H' x S given by
L = (a,bcoshu, bsinhu, ccosv, csinv), a+b—c*=1 ;
(4) aflat surface H' x H' given by
L = (bcoshu, ccoshv, bsinhu, csinhv, a), PP+t —a?=1 ;

(5) aflat totally umbilical surface defined by
1 1
L = <\/1—a2,u2+v2+a2+z,u2+v2+a2— Z,u,v);
(6) aflat surface defined by

3 5
L:<a,b<u2~|—v2—Z),b(u2+v2—z>,bu,bv), a?=1+b*>1;

(7) a flat surface defined by
5 3
L = <v2+ 7 —az,acoshu,asinhu,v, V2 + 1 —a2>, a#0;
(8) the flat marginally trapped surface defined by

1 1 1
L = <u2 +1, Ecoshv, u, Esinhv, u? + E) ;
(9) aflat marginally trapped surface defined by
coshu coshv sinhu  sinhwv b
= ., bl <2

V2D V2Fb V20 V2+b JA—p?
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(10) a flat marginally trapped surface defined by

( b coshv sinhv  cosu sinu ) b2
= 9 9 9 9 9 > .
VbP—4 Vb+2 Vb+2 Vb—-2 Vb-2

Conversely, each surface of the ten types given above is space-like and parallel.

PROOF. Let M be a parallel space-like surface in Hf (—=1). Then DH = 0 and accord-
ing to Theorem 3.3, M is either a marginally trapped surface given by cases (8)—(10) or a
special case of (2), or M is non-marginally trapped and one of the following:

(a) M is a parallel minimal surface of Hf (-1);

(b) M is a parallel surface in H f (=1) N &1, where &£ is a Lorentzian hyperplane;

(c) M is a parallel surface in Hf (=1) N &, where & is an index 2 hyperplane;

(d) M is a parallel surface in H f (=1) N"H, where 'H is a degenerate hyperplane.

Now, assume that M is non-marginally trapped.

Case (a): M is a minimal parallel surface of H14(— 1). Asin the proof of Theorem 7.1,
we may choose {e3, e4} as in Lemma 7.1 and let {e1, e2} be an orthonormal tangent frame
such that (7.1) and (7.2) hold. Thus, from Lemma 7.1, we have (7.3).

Case (a.1):a = 0. Choose {eq, e2} such that § = 0. Then (7.1) and (7.3) give
(7.12) Aoy =0, Ae4=<g _Oy>, dy =0, yw?=0.

If y = 0, the surface is totally geodesic, which gives case (2).

If y # 0, then (7.13) gives a)% = 0. Hence the surface is flat. Lemma 7.1 then yields that
K = —1 — y? =0, which is impossible.

Case (a.2): ¢ # 0. By similar arguments as in case (A.2) of the proof of Theorem 7.2,
we obtain a)% =§ =0and y2 = a? — 1. After choosing Euclidean coordinates (u, v) with
e1 = 0y, e2 = 0y, we have

Ly, =—-aes+yes+L, Lyy=0, Ly =ae3—yes+1L,

~ oy ~ Uy

Vy,e3 = —al, + —e4, Vyez=al,+ —ey,
Y 14

~ oy ~ Uy

Vi.ea = —yL, + 763 , Vaes=yLy+ 763 .

Solving this system yields case (4) of the theorem witha = 0 and b = ¢ = 1/+/2.
Case (b): M lies in Hf (=D N &y, & is a Lorentzian hyperplane. 'We may assume that
&1 is defined by x; = a with a > 0. Then, Hf(—l) N &1 is given by

{(a,xz,...,)g)eEg; —x%—i—x%—i—xi—i—x%:az—l}.

Case (b.1):a®> > 1. Inthis case, H}(—1) N & = §7(c) with ¢ = 1/(a*> — 1). Thus, M
is a parallel surface of S % (c). Hence, by applying Theorem 5.2, we obtain special cases of (1),
(2), (3) or (6).

Case (b.2):a® < 1. Inthis case, H}(—1) N & = H3(—c) with ¢ = 1/(1 —a?). So, M
is a parallel surface of a hyperbolic 3-space H3(—c). Hence, M is either totally umbilical in
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H3(—c) or flat. In the first case, we obtain special cases of (1), (2) and (5). The second case
gives a special case of (3).

Case (b.3):a = 1. Inthis case, H}(—1)NE = LC C E} (= &). Thus, M is a parallel
surface lying in the light cone £C C E?' Hence, by Theorem 6.1, we obtain special cases of
(1), (2), (3) and (5).

Case (c): M is a parallel surface in H14(—1) N &, where & is a hyperplane of index 2.
We may assume that & is given by xs = a, a > 0. Thus, Hf‘(—l) Né& = Hf’(—c) C ]E‘l1 with
¢ = 1/(1 + a®) defined by —x; — x% + x% + xi = —(1 + a*) < 0. Hence, we may apply
Theorem 5.3 to obtain special cases of (2) and (4).

Case (d): M is a parallel surface in H14(— 1)N'H, 'H a degenerate hyperplane. 'We may

assume that H is the hyperplane G, = {(x, ..., x5) € IE;; x5 = x1 + a}.
Case (d.1):a = 0. Since M lies in Gy, we have x5 = x1. Putes = (1,0, 0, 0, 1) and let
e4 be another light-like normal vector field of M in Hf‘ (—1) with (e3, eq) = —1, (eq, e4) = 0.
With respect to a suitable orthonormal frame field {e}, e2}, we have
_ _ (v ©
(713) Ae3 - Os Ae4 - <0 5) £

h(er,e1) = —ye3, h(er,e2) =0, h(ey, e2) =—ce3.

From the equation of Gauss and (7.13), we get K = —1. Thus, a)% # 0. Since De3 = 0, it
follows from Vi = 0 that y = ¢ which is constant, say r.
If we choose coordinates (u, v) with g = d u? + cosh? udv?, then we obtain

L -
Luw=L—re3, Ly, =tanhuL,, Ly, =cosh®u(L —re3)— 7 sinh2u, Vez=0.

Solving this system leads, after a reparametrization, to a special case of case (2).

Case (d.2):a # 0. Putez =L + a_l(l, 0,0,0, 1). Then, by applying (L, L) = —1,
we find (e3, L) = 0 and (e3, e3) = 1. Thus, e3 is a space-like unit normal vector field of
M in H}(—1) with De3 = 0. Let e4 be a unit time-like normal vector field in H{'(—1) with

(e3, e4) = 0. With respect to a suitable orthonormal tangent frame {e}, >}, we have A, = —1
and A,, = (’6 g) Hence, we obtain K = —y ¢ and
(7.14) h(ei,e1) = —e3 —yes, her,er) =0, h(er,e2)=—e3—ceq.

From De3 = Dey =0, (7.14) and Vh = 0, we find (¢ — y)w} = dy = de = 0.
Case (d.2.1): ¢ = y = 0. In this case, M is totally umbilical with K = 0. Thus, if we
choose coordinates (u, v) with g = du?® + dv?, then we obtain

Lyu=—-es+L, Ly=0, Ly=-es+L, Vyes=L,, Vyes=1L,.

Solving this system leads to a special case of case (5) .
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Case (d.2.ii). Ife =y =r # 0, then M is totally umbilical with K = —y2. So, if we
choose coordinates (x, y) with g = dx? 4 cosh?(yx)dy?, then we obtain

Lyx=—e3—res+ L, Lyy=rtanh(rx)L,,
Lyy = cosh®(rx)(L — e3 — res) — sinh(rx) cosh(rx)Ly ,
63)(83 =Ly, 63),83 =rLy, 63)(84 = —rL,, 63),84 =-—rLy.
Solving this system leads, after a reparametrization, to a special case of case (2).

Case (d.2.iii): If ¢ # y. In this case, we have a)f = 0. Thus, M is flat and the equation
of Gauss yields K = —ye = 0. We may assume ¢ = 0, y # 0. So, after choosing Euclidean
coordinates (u, v) with e; = 9, e = 9,, we obtain

Luu:_e3_ye4+Ls Luv:()v LUU:_e3+L7
v‘9ue3 =Ly, 631)63 =Ly, 63ue4 =—yLy, v(91;34 =0.
Solving this system leads, after a reparametrization, to case (7) of the theorem

The converse can be verified by a straightforward computation. a

REMARK 7.1. Cases (8), (9) and (10) of Theorem 7.2 are special cases of Cases (6),
(3) and (4), respectively.

REMARK 7.2. Cases (8), (9) and (10) of Theorem 7.3 are special cases of Cases (6),
(4) and (3), respectively.

8. (Classification of Lorentzian parallel surfaces in L‘l‘(c). In this section, we clas-
sify Lorentzian parallel surfaces in Lorentzian space forms.

LEMMA 8.1. Let M be a Lorentzian minimal parallel surface in a Lorentzian space
form L?(c). Then M is a Lorentzian minimal parallel surface of a totally geodesic Lorentzian
L3(c) C Li(o).

PROOF. Assume that M is a Lorentzian minimal parallel surface in a Lorentzian space
form L‘ll(c). Choose an orthonormal normal frame {e3, e4} such that

(a0 (B v
N )

with respect to a pseudo-orthonormal tangent frame {ej, ez}, satisfying (e, ej)=—1,
(e1,e2) = 0and (ez, e2) = 1. We have

h(er,e1) = —ae3, h(er,e2) =yes, h(es, e2) =—we3 — Pey.
A straightforward computation shows that the surface is parallel if and only if
(8.1) da=pwi, df=-2yo}—oaw;, dy=-2Bw}, 200}=yo;.

Differentiating both sides of the last equality of (8.1) gives 2ad a)% = yda)g, and combining
this with the equations of Gauss and Ricci yields

a(@® + B> —2y2—¢)=0.
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Case (a): « = 0. From (8.1), we have fw§ = yo§ = 0.

Case (a.1): a)g‘ = 0. In this case, e3 is parallel in L‘l1 (¢), and hence we obtain from the
reduction theorem that the surface lies in a totally geodesic subspace L? (o).

Case (a.2): a)g‘ # 0. In this case, we have 8 = y = 0 and hence the surface is totally
geodesic, which implies the result.

Case (b): a® + B2 —2y2% = ¢. It follows from (8.1) that o®> + B2 — 2 is constant and
hence y is constant. From the third equation of (8.1), we obtain /Sa)% =0.

Case (b.1): B = 0. From (8.1), we obtain 2yw? + awj = 0 and 20w — yoi = 0.
Combining these equalities with a®> — 2y? = c yields (¢ — 30{2)w% = 0. For a)% = 0, we
refer to case (B.2). If ¢ = 32, then ¢ > 0 and it follows from o — 27/2 = cthatc = —37/2.
Hence, c = @ = y = 0 and the surface is totally geodesic.

Case (b.2): a)% = 0. Since the surface is flat, we have K = 0, or, equivalently, a? +
B? — y? — ¢ = 0. Together with o> + 2 — 2y — ¢ = 0, we obtain y = 0 and hence both
A, and A,, are diagonal. After a suitable rotation of {e3, e4} in the normal plane, we may
assume that « = 0. It follows from the first equality of (8.1) that ,Ba);¥ = 0.If B = 0, the
surface is totally geodesic. If a)§ = 0, then e3 is parallel in L‘l*(c) and the result follows form
the reduction theorem. a

Making use of Lemma 4.1 and similar techniques as in the previous section, we can
prove the following theorems.

THEOREM 8.1. If M is a Lorentzian parallel surface in E*, then M is congruent to an
open part of one of the following six types of surfaces:

(1) the totally geodesic plane E% givenby L = (u, v, 0, 0);

(2) a totally umbilical de Sitter space Sf given by

L = b(sinhu, coshucosv, coshusinv,0), b>0;
(3) aflat cylinder ]E% x S! given by
L= (u,acosv,asinv,0), a>0;
(4) aflat cylinder Sll x E! given by
L = (asinhu,acoshu,v,0), a>0;
(5) aflat surface Sll x S! defined by
L = (asinhu,acoshu,bcosv,bsinv), a,b>0;

(6) the flat minimal surface in E{’ - IE‘I¥ given by
L= (2= + 1t = =0 + v, 2 — )0
=(-uw—-v)V+u -u—-v v, —(u — v)“, .
6 6 2

. . . 4
Conversely, each surface defined above is a Lorentzian parallel surface in E7.

PROOF. Since M is a parallel surface, we have DH = 0. Hence, Theorem 4.1 implies
that M is one of the following:
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(a) aparallel surface of a Minkowski space-time ]E% c E4;

(b) aparallel surface of a de Sitter space-time Sf (c) C IE? for some ¢ > 0;

(c) aminimal parallel surface of E‘l‘.

Case (a): M is parallel surface of E? C E‘l‘. According to Theorem 5.1, M is congruent
to cases (1), (2), (3), (4) or (6).

Case (b): M is parallel surface Si” () C E‘l‘. Theorem 5.2 implies that M is congruent
to case (2) or (5).

Case (c): M is minimal and parallel. This reduces to case (a) by Lemma 8.1 a

THEOREM 8.2. If M is a Lorentzian parallel surface in Sf(l) C E, then M is con-
gruent to an open part of one of the following two types of surfaces:

(1) a totally umbilical de Sitter space S% in S?(l) given by

L = (asinhu, a coshucosv,acoshusinv, b, 0), a’+b*=1 ;
(2) aflat surface S* x S' given by
L = (asinhu, acoshu,bcosv, bsinv, 0), a+pr=1.
Conversely, each surface defined above is a Lorentzian parallel surface in Si‘(l).

PROOF. Since M is a parallel surface, we have DH = 0. Hence, Theorem 4.2 implies
that M is one of the following:

(a) aparallel surface of S‘l‘(l) N &), where & is a Lorentzian hyperplane in E?;

(b) a minimal parallel surface of Sf(l).

If M is a parallel surface of Si‘(l) N &1, we may assume & is defined by x5 = 0. Then
S}(1)N & = §3(1). Thus, by Theorem 5.2, we obtain case (1) or (2).

If M is minimal and parallel, this reduces to the first case according to Lemma 8.1. O

THEOREM 8.3. If M is a Lorentzian parallel surface in H14(—1) C E3, then M is
congruent to an open part of one of the following twelve types of surfaces:
(1) a totally umbilical de Sitter space Sf given by

L = (c,asinhu, acoshucosv, acoshusinv, b), 2 —a2-pr=1 ;
(2) a totally umbilical anti-de Sitter space le given by
L = (asinu, acosucoshv, acosusinhv, 0, b), a? — b = 1;
(3) aflat surface Sll x H! given by
L = (asinhu, b coshwv, acoshu, bsinhv, c), a?—br+ct=-1 ;
(4) a flat surface Hl1 x S given by
L = (acosu,asinu,bcosv, bsinv,c), a*+b>—c*>=1;
(5) aflat surface Sll x S given by

L = (a,bsinhu, bcoshu, ccosv, csinv), a?—bp*—c* = 1;
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(6) a totally umbilical flat surface defined by

5 3
L={(u?=v*==),au,av,alu®>—v* == ),b),a®> = b>=1;
4 4

(7) a flat surface defined by

alu —v) . . a(u —v) a(u —v) .
L=|acosv— Tsmv,asmv + Tcosv, ——ssinv,
Mcosv,b), a2—b2=1;
2
(8) a flat surface defined by
L = <a coshv — alu +v) sinh v, a(uz—i— v) coshv, asinhv — w coshv,
a(u + v)

sinhv,b), a?—b*=1;

(9) a surface defined by
L = (acosucoshv — atank sinu sinh v, a sec k sinu cosh v,
acosusinhv — atank sinu cosh v, a sec k sinu sinh v, b) , a’ — b = 1,cosk #0;

(10) a flat surface defined by

Lo (PR 1 cosh sinby BEFR D1
D2k b b 2b%k

(11) aflat surface defined by

L (_ az(v2+k2+l)+17 sinhau’ coshau’v’ akr—v -1 —1 4k #£0;
2a%k a a 2a%k

(12) aflat surface defined by

u—v) wr—vrP—K2-1
L= +
24k 2k

1 1
) 8(” - U)3 +u, E(u - U)z,

1 3 u—v)?* ur—v*+i*-1
L , . k0.
A YT 2% 7

Conversely, each surface defined above is a Lorentzian parallel surface in H14(— 1).

PROOF. Since M is a parallel Lorentzian surface, we have DH = (. Hence, Theorem
4.3 implies that M is one of the following:

(a) aparallel surface of H 14 (—1) N &1, where & is a Lorentzian hyperplane in E3;

(b) aparallel surface of H f‘ (=1) N &, where & is a hyperplane of index 2 in Eg;

(c) aparallel surface of H 14 (—=1) N"H, where H is a degenerate hyperplane in E3;

(d) aminimal parallel surface of H f(— 1).
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Case (a): M is a parallel surface of Hf(—l) N €. We may assume & is defined by
x1 = a > 0. Then the intersection Hf‘(—l) N & is given by

{(a,xz,...,)g)eEg; —x%—i—x%—i—xi—i—x%:az—l}.

If a < 1, M is Lorentzian and lies in a hyperbolic 3-space, which is impossible.

Ifa > 1, M lies in H14(—1) né& = Sf(l/(a2 — 1)). Since M is also parallel in this de
Sitter space, Theorem 5.2 implies that M is congruent to case (1) or (5).

If a = 1, then M lies in a light cone in an E¥, which is impossible (Theorem 6.1).

Case (b): M is a parallel surface of H14(—1) N &. We may assume & is given by
xs =b > 0.Thus, H}(—1) N & = H (—1/(1 + b)) C E} is defined by

—x1 —x3+x3+x3=—(14+b<0.

Hence, we may applying Theorem 5.3 to obtain special cases of (1), (2), (3), (4), (6), (7), (8)
or (9).

Case (¢): M is a parallel surface of H f‘ (=1)N'H. We may assume that 7 is the hyper-
plane Gy = {(x1,...,x5) € Eg; x5 = x1 + k}.

Case (c.1): k = 0. In this case, we have x5 = x1. If e3 = (1,0, 0, 0, 1), then (L, e3) =
(Lyx, e3) = (Ly, e3) = 0, which implies that e3 is a light-like normal vector of M orthogonal
to L. But this is impossible since M is Lorentzian.

Case (c.2): k # 0. Since M lies in Gi, we get x5 = x] + k. So, if we put e3 =
L+ k’l(l, 0,0,0, 1), then by applying (L, L) = —1 we know that e3 is a space-like unit
normal vector field of M in Hf (—1) satisfying De3 = 0. Let e4 be another unit space-like
normal vector field of M in H f (—1) with (e3, e4) = 0. Then, from the definition of e3, we
have A,; = —1.

Now, by applying Lemma 4.1, we know that there exists a basis {ej, e2} satisfying
(e2,e2) = —(er,e1) = 1, (e1,e2) = 0 such that A, takes one of forms given by (4.1),
(4.2) or (4.3) with respect to {eq, e2}.

Case (c.2.1): A., takes the form (4.1). In this case we have

(8.2) h(er,e1) = ez —aes, hler,e2) =0, h(ez,e2) = —e3+ Pey.

Thus, it follows from Dez = Des = VA = 0 that «, B are constant and w% = 0. Thus, M is
flat, and hence, the equation of Gauss gives a8 = 0.
Case (c.2i.1): a0 = 0and B = b # 0. If we choose coordinates (u, v) with 9, =

e1, 0y = e2, then we obtain from (8.2) that

Ly =e3—L, Lyy=0, Lyy=—e3+bes+ 1L,
8.3 - - - -
3 Va,es=L,, Vages=Ly,, Vyges=0, Vyes=—bL,.

After solving this system and choosing suitable Minkowskian coordinates, we obtain case
(10).

Case (c.21.2): o = a # 0and B = 0. In this case we obtain case (11) in a similar way
as (c.2.1.1).
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Case (c.2.1i): A, takes the form (4.2), B # 0. In this case we have
(8.4) h(ei,e1) = ez —aes, hlei,ex) =Pes, h(er, e2) =—e3+aes.

Thus, it follows from De3 = Dey = Vh = 0 that «, B are constant and w% = 0. Hence, the
equation of Gauss gives 0 = K = a” 4+ B2 which is impossible.
Case (c.2.ii): A, takes one of the forms (4.3). In this case we have

(8.5) h(eir,e1) = ez —aes, hler,ez) =—es, h(ez,er) =—e3+ (xE2)ey.

Thus, it follows from De3 = Des = Vh = 0 that « is a constant and w% = 0. Hence, M is
flat. Moreover, we may choose coordinates (u, v) such that 9, = e1, 9, = e>. Also, it follows
from (8.5) and the equation of Gauss that 0 = K = (1 &+ «)?. Thus, A,, takes one of the
following two forms:

(8.6) A,y = (:} i) (withae = —1) or A = (_11 _11) (witha =1).

In the first case, we obtain
Ly=e3+es—L, Lyy,=—e4, Lyy=—e3+tes+L,
Visues = Ly, @av% =Ly, @au€4 =L,+Ly,, Vses=—L,—L,.

Solving this system and choosing suitable Minkowskian coordinates yield case (12).
If the second case, we also obtain case (12) after a reparametrization.
Case (d): M minimal and parallel. This reduces to case (b) by Lemma 8.1. a
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