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INTERPOLATION AND COMPLEX SYMMETRY
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Abstract. In a separable complex Hilbert space endowed with an isometric conjugate-
linear involution, we study sequences orthonormal with respect to an associated bilinear form.
Properties of such sequences are measured by a positive, possibly unbounded angle operator
which is formally orthogonal as a matrix. Although developed in an abstract setting, this
framework is relevant to a variety of eigenvector interpolation problems arising in function
theory and in the study of differential operators.

1. Introduction. Interpolation problems, such as free interpolation by bounded an-
alytic functions, are often closely related to biorthogonal sequences of vectors in associated
Hilbert spaces which are equipped with symmetric bilinear forms. Similarly, the qualitative
study of eigenfunctions of special classes of operators often provides sequences of vectors
which are orthogonal with respect to an auxiliary bilinear form rather than the usual sesquilin-
ear form. As a consequence, we attempt to develop an abstract framework for systems of
vectors which are orthonormal with respect to a symmetric bilinear form.

Throughout this note, H will denote a separable, infinite dimensional, complex Hilbert
space endowed with a conjugation C : H → H, a conjugate-linear operator satisfying C2 = I

and 〈Cx,Cy〉 = 〈y, x〉 for all x, y in H. Corresponding to each conjugation on H, we obtain
a symmetric bilinear form [ · , · ] on H×H defined by [x, y] = 〈x,Cy〉. We say that (un)

∞
n=1

is a complete system of C-orthonormal vectors if the linear span of the vectors un is dense in
H and if

[uj , uk] = δjk

for all j, k. Here δjk denotes the Kronecker δ-symbol. It is easy to show that if (un)
∞
n=1 is a

complete sequence of vectors in H such that [uj , uk] = 0 whenever j �= k, then [un, un] �= 0
necessarily holds for every n. Thus there is no loss of generality in insisting that [un, un] = 1
for all n.

Complex symmetric operators are the primary source of such systems of vectors, for the
eigenvectors of certain complex symmetric operators form an immediate class of concrete
examples. Indeed, the present work has its origin in the recent study of complex symmetric
operators [2, 4, 5, 6, 7, 8, 10, 15]. To be more specific, we say that a bounded linear operator

2000 Mathematics Subject Classification. Primary 30D55; Secondary: 47A15.
Key words and phrases. Complex symmetric operator, interpolation, eigensystem, eigenfunction, contraction,

conjugation, dissipative operator, bilinear form, inner function, compressed Toeplitz operator.
Partially supported by National Science Foundation Grants DMS-0638789 and DMS-0350911.



424 S. GARCIA AND M. PUTINAR

T : H → H is C-symmetric if T = CT ∗C and complex symmetric if there exists a conju-
gation C with respect to which T is C-symmetric. The terminology stems from the fact that
T is a complex symmetric operator if and only if T is unitarily equivalent to a symmetric
matrix with complex entries, regarded as an operator acting on an l2-space of the appropriate
dimension [4, Sect. 2.4].

This class of complex symmetric operators includes all normal operators, operators de-
fined by Hankel matrices, compressed Toeplitz operators (including finite Toeplitz matrices
and the compressed shift), the Volterra integration operator, and various differential oper-
ators (including certain auxiliary operators produced by the complex scaling method for
Schrödinger operators [15]). We refer the reader to [6, 7] or [4] (for a more expository pace)
for further details. In light of this variety, the range of C-orthonormal systems obtained from
complex symmetric operators is potentially vast.

In this note, we attempt to include as many examples and applications as we can, paying
particular attention to interpolation problems related to the Hardy space on the unit disk. For
example, as a corollary of a general theorem on interpolation of real l2-sequences (Theorem
6) we obtain the following (stated as Theorem 7):

THEOREM. If ϕ is a nonconstant inner function, then there exists a subset E ⊂ D of
measure zero such that for each w in D\E the level set ϕ−1{w} is nonempty and

(i) if zn is an enumeration of ϕ−1{w}, then ϕ′(zn) �= 0 for all n, i.e., ϕ assumes the
value w with multiplicity one at each zn,

(ii) for each real sequence (an)
∞
n=1 in l2, there exists a function f in H 2 	 ϕH 2 such

that

Re

(
f (zn)√
ϕ′(zn)

)
= an

holds for each n.

It turns out that our main object of study is the linear operator (defined initially on finite
sums)

A0

(
m∑

n=1

cnun

)
=

m∑
n=1

cnCun .

It is a densely defined, non-negative symmetric operator which inherits a complex orthogonal
matrix structure, when properly interpreted (see Theorem 2). In general, the operator A0 is
unbounded and thus its selfadjoint extensions become relevant. We establish several criteria
for the essential selfadjointness of A0 (Theorem 5) in addition to studying properties of the
so-called the Friedrichs extension.

2. Some examples of C-orthonormal systems. Before proceeding further, let us
first discuss a few examples of C-orthonormal systems. Although the following several ex-
amples are quite simple, the underlying conjugation behind these examples is not widely
discussed. Moreover, we feel that having a number of diverse examples close at hand better
motivates the abstract study of C-orthonormal systems.
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EXAMPLE 1. Let A : D(A) → H be a selfadjoint operator with simple, discrete
spectrum and let K ≥ 0 be a compact operator belonging to a Schatten-von Neumann class
Cp for some p > 1. Under these hypotheses, the dissipative operator T = A + iK has a
complete sequence of eigenvectors [12, p. 277]. Using this principle, one can readily produce
examples of non-normal complex symmetric operators which possess complete systems of
eigenvectors.

On a related note, several conditions which guarantee that a rank-one perturbation of a
bounded normal operator will be complex symmetric can be found in [8]. For instance, it can
be shown that if N is a normal operator on H and U is a unitary operator in the von Neumann
algebra generated by N , then the operator T = N + a(Uv ⊗ v) is a complex symmetric
operator for all a ∈ C and v ∈ H.

The following simple example shows how concrete C-orthonormal systems can arise
from relatively standard operators:

EXAMPLE 2. Let w = α + iβ where α and β are real constants and consider H =
L2[0, 1], endowed with the conjugation [Cf ](x) = f (1 − x). A short computation shows
that if w is not an integer multiple of 2π , then the vectors

(1) un(x) = exp[i(w + 2πn)(x − 1/2)]
for n ∈ Z are eigenfunctions of the C-symmetric operator

[Tf ](x) = eiw/2
∫ x

0
f (y)dy + e−iw/2

∫ 1

x

f (y)dy

= eiw/2V + e−iw/2V ∗,

where V denotes the Volterra integration operator. One might also say that the un are the
eigenfunctions of the derivative operator with boundary condition f (1) = eiwf (0). Expand-
ing out the exponent in (1) and simplifying, we find that each un is, up to constant multiples,
the image of e2πinx under the bounded and invertible operator of multiplication by eiwx .
In particular, the system (un)n∈Z is complete in L2[0, 1] and a straightforward computation
shows that it is also C-orthonormal (see also [5, Ex. 9] or [4, Lem. 4.3]).

EXAMPLE 3. If u belongs to the uniform algebra H∞ +C (here C denotes the algebra
of continuous functions on the unit circle), then Hartman’s compactness criterion tells us
that the corresponding infinite Hankel matrix defines a compact operator on l2(N) [14, Ch.
1, Thm. 5.5]. Since each such Hankel matrix is C-symmetric with respect to the canonical
conjugation C on l2(N), one expects many C-orthonormal systems of eigenvectors to arise in
this context.

Our final example (stated as Theorem 1) in this section is somewhat involved and requires
a few preliminaries. Recall that each nonconstant inner function ϕ gives rise to a so-called
Jordan model space H 2 	 ϕH 2. Here H 2 denotes the Hardy space on the open unit disk D.
It turns out that each such model space carries a natural conjugation:
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LEMMA 1. If ϕ denotes a nonconstant inner function, then Cf = f zϕ (defined in
terms of boundary functions) is a conjugation on H 2 	 ϕH 2.

In particular, observe that a function f in H 2 belongs to H 2 	 ϕH 2 if and only if there
exists a function g in H 2 such that

(2) f = gzϕ

a.e. on the unit circle ∂D (henceforth we will freely identify functions in H 2 with their a.e.
defined boundary values). The proof of the preceding lemma and further details can be found
in [4].

The following theorem indicates that an abundance of natural C-orthonormal systems
arise in the context of Hardy space theory:

THEOREM 1. If ϕ is a nonconstant inner function, then there exists a subset E ⊂ D

of measure zero such that for each w in D\E the following hold:
(i) ϕ−1{w} �= ∅ and if zn is an enumeration of ϕ−1{w}, then ϕ′(zn) �= 0 for all n, i.e.,

ϕ assumes the value w with multiplicity one at each zn.
(ii) For any determination of the numbers δn = √

ϕ′(zn), the functions

(3) [un](z) = δn · ϕ(z) − w

z − zn
,

(4) [Cun](z) = δn · 1 − w̄ϕ(z)

1 − znz

both form complete C-orthonormal systems in H 2 	 ϕH 2. In particular,

(5) [f, un] = f (zn)√
ϕ′(zn)

for each f ∈ H 2 	 ϕH 2.

PROOF. Without loss of generality, we may assume that ϕ is not a finite Blaschke prod-
uct. A variant of Frostman’s Theorem (see [13, Thm. 3.10.2]) asserts that there exists a subset
E ⊂ D of measure zero such that for all w ∈ D\E, the function bw ◦ ϕ is a Blaschke product
having simple zeros. Here bw denotes the disk automorphism

(6) bw(z) = z − w

1 − w̄z
.

In particular, if zn denotes an enumeration of the set ϕ−1{w}, then we have ϕ′(zn) �= 0 for
each n. A short calculation based on the fact that Cun is a constant multiple of a reproducing
kernel implies (5) and shows that [uj , uk] = δjk for all j, k. It therefore suffices to show that
the system (un)

∞
n=1 is complete in H 2 	 ϕH 2.

Suppose toward a contradiction that there exists a function f in H 2 	 ϕH 2 which does
not vanish identically but such that [f, un] = 0 for all n. In light of (5), this immediately
implies that f (zn) = 0 for all n. Let us write f = If F where If is inner and F is outer. Since
the sequence zn is exactly the zero sequence for the Blaschke product bw ◦ ϕ (whose zeros
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are simple), it follows that bw ◦ ϕ divides If . In particular, we may assume that If = bw ◦ ϕ

since H 2 	 ϕH 2 is stable under conjugate-analytic Toeplitz operators (i.e., inner factors of
functions in H 2 	 ϕH 2 can be removed without leaving H 2 	 ϕH 2).

Writing f = (bw ◦ ϕ)F and using (2), it follows that there exists another inner function
j such that

(bw ◦ ϕ)F = jFzϕ .

Since j is inner, we may rewrite the preceding in the form

(7) j (bw ◦ ϕ)F/F̄ = z̄ϕ .

To simplify our notation somewhat, we at this point fix some n and henceforth denote zn

by λ and bzn by b. A short calculation reveals that

(8) [(bw ◦ ϕ)/b] · [k/k̄] = z̄ϕ ,

where k denotes the reproducing kernel function

kλ = 1 − w̄ϕ(z)

1 − λ̄z
.

Upon combining (7) and (8) we find that

j (bw ◦ ϕ)F

F̄
= (bw ◦ ϕ)k

bk̄
.

Using the fact that j and b are unimodular a.e. on ∂D, the preceding can be rewritten in the
form

(1 + jb)
F

k
=
[
(1 + jb)

F

k

]
.

This means that the function

h = (1 + jb)
F

k

belongs to H 2 (since k is invertible in H∞) and is real-valued a.e. on ∂D. Since it is well-
known [9, II.13.b] that this forces h to be a constant function, it immediately follows that the
function

1

1 + jb
= F

hk

also belongs to H 2. This implies that the nonconstant function i(1 − jb)(1 + jb)−1 belongs
to H 2 and is real valued a.e. on ∂D. Since this is a contradiction, we conclude that (un)

∞
n=1 is

complete in H 2 	 ϕH 2, as desired. �

The reader may recognize that we have essentially been dealing with systems of eigen-
vectors of certain compressed Toeplitz operators (these too are complex symmetric—see [6,
Prop. 3] or [4, Sect. 5]). We should mention the recent article [18] which, in the context of
complex symmetric operators, raises numerous important questions concerning compressed
Toeplitz operators.
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Although we have considered only scalar inner functions here (i.e., we are interested in
the eigenfunctions of contractions with defect indices 1 − 1), the recent article [2] indicates
that many contractions with defect indices 2 − 2 are also complex symmetric operators.

3. General framework. Let H denote a separable infinite-dimensonal Hilbert space
equipped with a conjugation C and let (un)

∞
n=1 denote a C-orthonormal system in H. We

consider here linear extensions of the map un �→ Cun. Since the un are not necessarily
orthogonal with respect to the usual sesquilinear form 〈 · , · 〉 on H, this map does not imme-
diately extend (as a bounded operator) further than the dense linear submanifold F of finitely
supported vectors.

To be specific, we say that a vector f in H is finitely supported if it is of the form
f = ∑mf

n=1 cnun for some positive integer mf . Since [uj , uk] = δjk , it follows that the
coefficients cn(f ) of a vector f in F are given by the formula

(9) cn(f ) = [f, un]
and hence each such f can be recovered via the skew-Fourier expansion

(10) f =
mf∑
n=1

[f, un]un .

Let A0 : F → H denote the linear extension of the map A0un = Cun to F . In other
words, A0 is the linear operator defined on finitely supported vectors by A0(

∑m
n=1 cnun) =∑m

n=1 cnCun. Since [uj , uk] = δjk , it follows that

(11) 〈A0f, f 〉 =
mf∑
n=1

|[f, un]|2

for any f in F . In particular, the non-negativity of A0 on its domain D(A0) = F implies
that A0 is a symmetric operator (in the sense of unbounded operators): A0 ⊆ A∗

0. Since F is
dense in H, it also follows that if A0 : F → H is bounded, then A0 has a unique bounded,
selfadjoint extension A : H → H.

From the definition of A0, we see that the antilinear operator CA0 fixes each un. We are
therefore lead to consider the antilinear map J : F → F defined by J = CA0. On finitely
supported vectors, we have

(12) J

( m∑
n=1

cnun

)
=

m∑
n=1

cnun ,

and hence J is an involution of F : J 2 = IF . Since J = CA0 and C is isometric, it is clear
that A0 is bounded if and only if the conjugate-linear involution (12) is bounded on F .

It will be useful to refer to the following theorem from [5], which contains a number of
statements that are equivalent to the boundedness of A0:

THEOREM 2. If (un)
∞
n=1 is a complete C-orthonormal system in H, then the following

are equivalent:
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(i) (un)
∞
n=1 is a Bessel sequence with Bessel bound M i.e.,

∑∞
n=1 |〈f, un〉|2

≤ M‖f ‖2 for f ∈ H.
(ii) (un)

∞
n=1 is a Riesz basis with lower and upper bounds M−1 and M , respectively,

i.e., M−1‖f ‖2 ≤ ∑∞
n=1 |〈f, un〉|2 ≤ M‖f ‖2 for f ∈ H.

(iii) A0 extends to a bounded linear operator A : H → H satisfying ‖A‖ ≤ M .
(iv) There exists M > 0 satisfying:∥∥∥∥

n∑
j=1

cjuj

∥∥∥∥ ≤ M

∥∥∥∥
n∑

j=1

cjuj

∥∥∥∥ ,

for every finite sequence c1, c2, . . . , cn.
(v) The Gram matrix (〈uj , uk〉)∞j,k=1 dominates its transpose:

(M2〈uj , uk〉 − 〈uk, uj 〉)∞j,k=1 ≥ 0

for some M > 0.
(vi) The Gram matrix G = (〈uj , uk〉)∞j,k=1 is bounded on l2(N) and orthogonal

(GtG = I as matrices). Furthermore, ‖G‖ ≤ M .
(vii) The skew Fourier expansion

∑∞
n=1 [f, un]un converges in norm for each f in F

and

1

M
‖f ‖2 ≤

∞∑
n=1

|[f, un]|2 ≤ M‖f ‖2 .

In all cases, the infimum over all such M equals the norm of A0.

Since a complete sequence which is a Bessel sequence need not be a Riesz basis, the
implication (i) ⇒ (ii) is false without the hypothesis of C-orthonormality. We also remark
that (ii) is equivalent to saying that (un)

∞
n=1 is the image of an orthonormal basis of H under a

bounded, invertible linear operator [3, Prop. 3.6.4]. In fact, this is often taken as the definition
of a Riesz basis.

EXAMPLE 4. For this example, we maintain the same notation as in Example 2. In
this case, the map un �→ Cun extends to a bounded operator on all of L2[0, 1]. Indeed, this
extension is simply the multiplication operator [Af ](x) = e2β(x−1/2)f (x) whence B = √

A

is given by

[Bf ](x) = eβ(x−1/2)f (x) .

The system (un)
∞
n=1 forms a Riesz basis for L2[0, 1] and is the image of the orthonormal basis

(sn)
∞
n=1, defined by sn = Bun, under the bounded and invertible operator B−1. The sn are

given explicitly by

sn(x) = exp[i(α + 2πn)(x − 1/2)] .

Such bases and their relationship to the Volterra integration operator and the “compressed
shift” corresponding to the atomic inner function ϕ(z) = exp[(z + 1)/(z − 1)] are discussed
in [4].



430 S. GARCIA AND M. PUTINAR

The existence of a constant M > 0 such that ‖un‖ ≤ M for all n is a necessary condition
for (un)

∞
n=1 to form a Riesz basis for H. This can be seen by setting f = un in condition (vii)

of Theorem 2. Even with the additional structure introduced by the underlying conjugation,
this condition is not sufficient for (un)

∞
n=1 to be a Riesz basis:

EXAMPLE 5. Consider H = L2[−π, π], equipped with normalized Lebesgue mea-
sure dm = dt/(2π). Let h be a continuous function in L2[−π, π] which is odd, real-valued,
unbounded, and such that the function g = eh also belongs to L2[−π, π]. Define the con-
jugation [Cf ](x) = f (−x) on L2[−π, π] and observe that the system of vectors (un)n∈Z

defined by

[un](x) = exp[h(x) + inx] = g(x)einx

belongs to L2[−π, π] and satisfies ‖un‖ = ‖g‖ for each n ∈ Z. Furthermore,

[Cun](x) = exp[−h(x) + inx] = einx

g(x)

and hence the system (un)n∈Z is easily seen to be C-orthonormal.
The operator A0 is easily seen to be multiplication by the function exp[h(−x)−h(x)] =

exp[−2h(x)], with domain equal to the linear span of the sequence (un)n∈Z . In particular,
A0 is essentially self-adjoint and unbounded. Thus (un)n∈Z is a complete C-orthonormal
system which is uniformly bounded (supn∈Z ‖un‖ < ∞) but which fails to be a Riesz basis
by Theorem 2.

For C-symmetric contractive operators, we do have the following Riesz basis criterion:

THEOREM 3. Let T be a contractive C-symmetric operator (i.e., ‖T ‖ ≤ 1 and T =
CT ∗C) with simple spectrum (zn)

∞
n=1 and a complete sequence of corresponding

C-orthonormal eigenvectors (un)
∞
n=1. If supn ‖un‖ ≤ M holds and if the matrix

(13)

(√
1 − |zj |2

√
1 − |zk|2

|1 − zj zk|

)∞

j,k=1

defines a bounded linear operator on l2, then the sequence (un)
∞
n=1 forms a Riesz basis for

H. In particular, if the matrix (13) is bounded above, then it is also invertible.

PROOF. Let D = I − T ∗T and note that

|1 − zj zk||〈uj , uk〉| = |〈uj , uk〉 − 〈T uj , T uk〉|
= |〈Duj , uk〉|
≤ √〈Duj , uj 〉√〈Duk, uk〉
= ‖uj‖‖uk‖

√
1 − |zj |2

√
1 − |zk|2

since 〈Dx, y〉 defines a non-negative sesquilinear form on H × H. It follows that

|〈uj , uk〉| ≤ M2

√
1 − |zj |2

√
1 − |zk|2

|1 − zj zk|
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for all j, k whence the desired result follows from (vi) of Theorem 2 (the orthogonality of the
Gram matrix follows immediately from purely formal manipulations). �

The corresponding result for dissipative operators can be deduced in a completely anal-
ogous manner:

THEOREM 4. Let T : D → H be a C-symmetric, pure dissipative operator with sim-
ple spectrum (zn)

∞
n=1 and a complete sequence of corresponding C-orthonormal eigenvectors

(un)
∞
n=1. If supn‖un‖ ≤ M holds and if the matrix

(14)

(√
(Im zj )(Im zk)

|zj − zk|

)∞

j,k=1

defines a bounded linear operator on l2, then the sequence (un)
∞
n=1 forms a Riesz basis for

H. In particular, if the matrix (14) is bounded above, then it is also invertible.

This is related to a classical observation due to Glazman which gives conditions solely in
terms of the (simple) spectrum of a dissipative operator for the corresponding unit eigenvec-
tors to form a Riesz basis [11]. This idea was put into a more general context in the last chapter
of the monograph [12]. We remark that Glazman’s result, which did not have a complex sym-
metry assumption, required the finiteness of the Hilbert-Schmidt norm of the associated Gram
matrix.

4. Criteria for the essential self-adjointness of A0. In general, the operator A0 :
F → H is unbounded. Without further assumptions on the C-orthonormal system (un)

∞
n=1, it

may occur that A0 � A∗
0 and hence we must search for selfadjoint extensions of A0. The main

goal of this section is to establish several practical criteria to determine when the operator A0

is essentially selfadjoint (i.e., when the closure of A0 is selfadjoint). These are summarized in
Theorem 5. We first require several preparatory remarks.

If f is finitely supported, then by (10) it follows that A0f = ∑mf

n=1 [f, un]Cun. Thus,
since (Cun)

∞
n=1 is also a complete C-orthonormal system,

[f, un] = [A0f,Cun]
for each n. This motivates the consideration of the linear submanifold Γ ⊂ H ⊕ H defined
by

(15) Γ = { (f, g)∈ H ⊕ H ; [f, un] = [g, Cun] for all n } .

It is not hard to see that Γ is a closed graph which contains the graph of A0. Indeed, (un, Cun)

belongs to Γ for every n, and hence (f,A0f ) belongs to Γ for all f in F . That Γ is a closed
subset of H ⊕ H is also clear. Moreover, if (0, g) belongs to Γ , then 〈g, un〉 = [g, Cun] =
[0, un] = 0 holds for all n and hence g = 0 since the system (un)

∞
n=1 is complete. It turns out

that Γ can be identified with the graph of A∗
0:

LEMMA 2. The graph of A∗
0 is precisely Γ .
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PROOF. If f belongs to D(A∗
0), then

[f, un] = 〈f,Cun〉 = 〈f,A0un〉 = 〈A∗
0f, un〉 = [A∗

0f,Cun]
holds for all n, whence (f,A∗

0f ) belongs to Γ . Conversely, if (f, g) belongs to Γ , then it
follows that

〈f,A0un〉 = 〈f,Cun〉 = [f, un] = [g, Cun] = 〈g, un〉
for all n. Thus 〈f,A0h〉 = 〈g, h〉 for every h in F and h �→ 〈A0h, f 〉 is a bounded linear
functional on F . In particular, f belongs to D(A∗

0). �

In the bounded case, the antilinear involution J = CA0 on F , given explicitly by (12),
was of particular importance since it is bounded if and only if A0 extends to a bounded linear
operator on all of H. If A0 is unbounded, then it turns out that J extends to an involution on
D(A∗

0):

LEMMA 3. The antilinear operator J = CA∗
0 maps D(A∗

0) onto itself and satisfies
J 2 = ID(A∗

0).

PROOF. Clearly J = CA∗
0 is a well-defined extension of J = CA0 to D(A∗

0). If
(f,A∗

0f ) belongs to Γ , then the computation

[Jf, un] = 〈Jf,Cun〉 = 〈un,CJf 〉 = 〈un,A
∗
0f 〉 = 〈Cun, f 〉 = [Cf,Cun]

shows that (Jf,Cf ) belongs to Γ as well. Thus Jf belongs to D(A∗
0) and A∗

0(Jf ) = Cf .
Moreover, we also see that J 2f = CA∗

0(Jf ) = C2f = f for all f in D(A∗
0) and hence

J 2 = ID(A∗
0). �

Since A∗
0 is a closed operator, its domain is complete with respect to the graph norm

‖f ‖2
A∗

0
= ‖A∗

0f ‖2 + ‖f ‖2 on D(A∗
0). Let HR denote the R-linear manifold of vectors whose

formal skew-Fourier coefficients are real:

HR = {f ∈ H ; [f, un] ∈ R for all n} .

We note that HR ⊂ D(A∗
0), for if f belongs to HR , then [f, un] = [Cf,Cun] holds for all n

whence f belongs to D(A∗
0) by Lemma 2.

In light of (12), one suspects that HR is fixed by J . Indeed, this is true since

[Jf, un] = 〈CA∗
0f,Cun〉 = 〈un,A

∗
0f 〉 = 〈Cun, f 〉 = [f, un]

holds for all n. Thus J extends to all of D(A∗
0) and fixes those vectors f whose formal

skew-Fourier coefficients [f, un] are real. This is despite the fact that vectors in D(A∗
0) do

not necessarily enjoy norm convergent skew-Fourier expansions. Moreover, we also note that
‖A∗

0x‖ = ‖x‖ for any x in HR since A∗
0 = CJ and C is isometric.

Our next several lemmas concern the relationship between the conjugate-linear involu-
tion J and the structure of D(A∗

0) as an R-linear space.

LEMMA 4. The orthogonal decomposition

D(A∗
0) = HR ⊕R iHR
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holds, where the orthogonal direct sum is taken with respect to the real part Re〈 · , · 〉A∗
0

of the
inner product associated to the graph norm of D(A∗

0). Moreover, the antilinear involution J

restricts to the identity IHR
on HR .

PROOF. The last statement of the lemma has already been proved. Now note that if f

is in D(A∗
0), then we may write f = (1/2)(f + Jf ) + i(1/2i)(f − Jf ). Using the fact that

J = CA∗
0, a routine calculation shows that both terms (1/2)(f + Jf ) and (1/2i)(f − Jf )

belong to HR . For every pair of vectors x, y in HR , we have

〈x, iy〉A∗
0

= 〈A∗
0x, iA∗

0y〉 + 〈x, iy〉
= −i{〈CJx,CJy〉 + 〈x, y〉}
= −i{〈Cx,Cy〉 + 〈x, y〉}
= −i{〈x, y〉 + 〈x, y〉}

and hence Re〈x, iy〉A∗
0

= 0. �

It follows from the preceding lemma that each f in D(A∗
0) can be written in the form

f = x + iy with x, y in HR . With respect to this decomposition, the involution J = CA∗
0

assumes the simple form

(16) J (x + iy) = x − iy , x, y ∈ HR .

Of course, if J is bounded (that is, if any of the equivalent conditions listed in Theorem 2
hold), then the vectors x and y can be developed into norm convergent skew-Fourier series
whose coefficients [x, un] and [y, un] are real for every n.

If J is unbounded, the skew-Cartesian decomposition (16) still holds, despite the fact
that convenient series developments for x, y and x + iy are no longer at hand. Although J

acts isometrically on HR , the quantities ‖x‖ and ‖y‖ cannot be estimated from ‖x + iy‖ in a
uniform manner and J is far from isometric on H itself.

On the other hand, J acts isometrically on D(A∗
0) if we instead consider the graph norm

on D(A∗
0):

LEMMA 5. J is isometric with respect to the graph norm of D(A∗
0).

PROOF. A short calculation implies that

‖Cx ± iCy‖2 + ‖x ± iy‖2 = 2(‖x‖2 + ‖y‖2)

for any x, y in H. Moreover, for each pair x, y in HR we have

A∗
0(x + iy) = A∗

0x + iA∗
0y = CJx + iCJy = Cx + iCy .

Putting the preceding equations together yields

‖A∗
0(x + iy)‖2 + ‖x + iy‖2 = ‖A∗

0(x − iy)‖2 + ‖x − iy‖2 ,

which is equivalent to saying that ‖Jf ‖A∗
0

= ‖f ‖A∗
0
. �
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We wish now to consider the density of the R-linear manifold HR ∩ F . As we will see,
this is intimately connected with the question of whether A0 is essentially selfadjoint. To this
end, let 	R denote the orthogonal complement with respect to the real inner product Re〈 · , · 〉
on H (as opposed to Re〈 · , · 〉A∗

0
on D(A∗

0)) and consider the following lemma:

LEMMA 6. H 	R (HR ∩ F) = iCHR .

PROOF. If f belongs to H 	R (HR ∩ F), then Re〈f, un〉 = 0 for every n since the
vectors un clearly belong to HR ∩ F . This implies Re[Cf, un] = 0 for all n and hence iCf

belongs to HR , whence f belongs to iCHR . Conversely, suppose that g = iCf for some
f in HR and note that Re〈un, g〉 = − Re i〈un,Cf 〉 = − Re i[f, un] = 0 for every n. This
implies that Re〈g, h〉 = 0 for any h in HR ∩ F , which concludes the proof. �

We will henceforth let A = A∗
0, so that A is the closed extension of A0 possessing the

graph Γ as defined in (15). Let us consider also the closure H0
R of HR ∩ F in H, so that

H0
R is the closed subspace spanned by the linear manifold of finitely supported vectors whose

(formal) skew-Fourier coefficients are real. Finally, let us denote by clA0 F the closure of F
in the graph norm of cl A0.

Since ‖Ax‖ = ‖x‖ for x ∈ HR ∩F , it follows that H0
R must be contained in clA0 F . We

therefore deduce that

(17) H0
R + iH0

R ⊆ clA0 F ⊆ D(A) .

Putting together the observations above we can state the following selfadjointness criteria:

THEOREM 5. With the notation introduced above, the following are equivalent:
(i) A(= A∗

0) is self-adjoint.
(ii) There are no nontrivial solutions to the equations Cx = ±ix, where x belongs to

HR .
(iii) The space HR ∩ F is norm dense in HR .
(iv) The sequence (un + Cun)

∞
n=1 is complete in H.

(v) A∗
0 = cl(A0).

(vi) F is dense in the graph norm of D(A).
(vii) H0

R + iH0
R = D(A).

PROOF. (i) ⇒ (ii) Since Cx = CJx = A∗
0x for any x in HR , it follows that the

equations Cx = ±ix have no nontrivial solutions since A∗
0 is selfadjoint.

(ii) ⇒ (i) Suppose that the equations Cx = ±ix admits no nontrivial solutions in HR .
To show that A∗

0 is selfadjoint, we will show that the equations A∗
0f = ±if have no nontrivial

solutions in D(A∗
0). If A∗

0f = if holds, then writing f = x + iy with x, y in HR , it follows
that Cx + iCy = ix − y, or equivalently

(18) (C − i)x = (C + i)(iy) .
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Simple algebra yields the equations

(C − i)(C + i) = −2i(C + i) ,(19)

(C + i)(C − i) = 2i(C − i) ,(20)

(C − i)2 = 0 ,(21)

(C + i)2 = 0 .(22)

Using (20), (18) and (22) we find that 2i(C− i)x = (C+ i)2(iy) = 0. This implies that Cx =
ix whence x = 0. Similarly, using (19), (18) and (21) we find that and −2i(C + i)(iy) =
(C − i)2x = 0. This reveals that Cy = iy whence y = 0. Therefore the equation A∗

0f = if

admits no nontrivial solutions in D(A∗
0). A similar argument applies to A∗

0f = −if and thus
A∗

0 is selfadjoint.
(iii) ⇒ (ii) Suppose that HR ∩F is norm dense in HR . If x belongs to HR ∩F , then x

is of the form x = ∑m
n=1 anun where each an is real. Since 〈x,Cx〉 = [x, x] = ∑m

n=1 a2
n ≥ 0,

it follows that 〈x,Cx〉 ≥ 0 holds on HR by continuity. This inequality clearly precludes the
possibility of either of the equations Cx = ±ix holding for a nonzero vector x in HR .

(i) ⇒ (iii) We prove the contrapositive of this implication. If HR ∩ F is not norm
dense in HR , then there exists a nonzero vector x ∈ HR 	R (HR ∩F). In view of Lemma 6,
x must belong to iCHR . In other words, x = iCy = iAy for some y in HR . Therefore

(23) Ax = Cx = C(iCy) = −iy .

Taken together, the equations x = iAy and Ax = −iy imply that (A − i)x = (A − i)y. It
follows that either the kernel of (A − i) is nontrivial (hence A is not selfadjoint) or x = y. In
the latter case, (23) implies that (A + i)x = 0, whence A is not selfadjoint.

(i) ⇒ (iv) Since A is selfadjoint i.e., A is the closure of A0, F is dense in D(A) with
respect to the graph norm of A. Since A ≥ 0, the map (I + A) : D(A) → H is bijective and
continuous (from the graph norm on D(A) to the norm topology on H). Therefore (I + A)F
is dense in H and thus the sequence (un + Cun)

∞
n=1 is complete.

(iv) ⇒ (i) Conversely, if the sequence (I + A)un = un + Cun is complete in H, then
F is dense in D(A) with respect to the graph norm of A. It therefore follows that cl A0 = A

and that A is selfadjoint.
(v) ⇔ (vi) These are simply restatements of each other.
(i) ⇔ (vi) If F is dense in the graph norm of A, then A = cl A0. As before A∗ = A

would imply cl A0 = A∗
0. On the other hand, F is dense in the graph norm of cl A0, by the

very definition of A0.
(i) ⇔ (vii) By (17), H0

R + iH0
R = D(A) if and only if A∗

0 is selfadjoint. Indeed, in one
direction, if clA0 F = D(A), then we know that cl A0 = A = A∗

0. Conversely, if A∗
0 = cl A0,

then we know that H0
R = HR and D(A∗

0) = HR + iHR. �

Before moving on, let us now briefly summarize a few points. In part, Theorem 2 and
Theorem 5 assert:
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(a) A0 is bounded if and only if every vector f in H can be developed in a norm-
convergent skew Fourier expansion: f = ∑∞

n=1[f, un]un. This is also equivalent to (un)
∞
n=1

being a Riesz basis for H.
(b) A0 is essentially selfadjoint if and only if every vector f in HR (i.e., so that

[f, un] ∈ R for all n) can be approximated by finite sums
∑m

n=1 anun where the an are
real. A simple algebraic criterion for this is that the equation Cx = ix (or Cx = −ix) has no
nonzero solutions x in HR .

5. The Friedrichs extension and real interpolation. Since the symmetric operator
A0 is non-negative, it admits non-negative selfadjoint extensions (see [16, Thm. X.1] and its
corollaries). Recall that the Friedrichs extension of A0, which we will henceforth denote by
A, is defined on a domain contained in the closure HF of D(A0) = F with respect to the norm
‖f ‖2

F = 〈A0f, f 〉+‖f ‖2 on F . More precisely, A represents the preceding sesquilinear form
in the sense that

(24) ‖f ‖2
F = 〈Af, f 〉 + ‖f ‖2

for any f in D(A). In particular, ‖f ‖F coincides with the graph norm of the selfadjoint
operator

√
A and HF = D(

√
A) [16, Sec. X.3]. For every finitely supported vector f =∑m

n=1 cnun, we therefore see that

‖f ‖2
F = ‖f ‖2 +

m∑
n=1

|cn(f )|2 .

Since HF is the completion of F with respect to this norm, we deduce the following lemma:

LEMMA 7. A vector f in H belongs to D(
√

A) if and only if the corresponding se-
quence cn(f ) = [f, un] of skew Fourier coefficients is square summable. Moreover,

‖f ‖2
F = ‖f ‖2 +

∞∑
n=1

|[f, un]|2 .

Surprisingly, even if A0 is unbounded (in other words (un)
∞
n=1 is not a Riesz basis—see

Theorem 2), it is possible to interpolate real sequences in l2:

THEOREM 6. Let (un)
∞
n=1 be a complete C-orthonormal sequence in H. For each

sequence of real numbers (cn)
∞
n=1 in l2, there exists a vector f in H such that Re [f, un] = cn

for all n.

PROOF. Let L : D(
√

A) → l2 be the coefficient map Lf = ([f, un])∞n=1 where we
consider D(

√
A) with respect to the norm ‖ · ‖F. By Lemma 7, ‖Lf ‖ = ∑∞

n=1 |[f, un]|2 is
finite for each f in D(

√
A) and hence L is bounded by the Uniform Boundeness Principle.

Let c = (cn)
∞
n=1 be any real sequence in l2 and consider the element L∗c in D(

√
A). Since

〈L∗c, un〉F = 〈c, L(un)〉l2 = cn holds for all n, (24) tells us that

〈L∗c, Cun〉H + 〈L∗c, un〉H = 〈L∗c, un〉F = cn ,
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which is equivalent to

[L∗c, un] + [CL∗c, un] = cn .

A straightforward calculation then shows that

Re[L∗c + CL∗c, un] = Re cn = cn

and hence the vector f = (L∗c + CL∗c) satisfies Re[f, un] = cn for all n. �

In general, we cannot interpolate complex l2-sequences. Moreover, Theorem 6 does not
assert any relationship between the l2-norm of the real sequence (cn)

∞
n=1 and the H-norm of

the interpolating vector f . In particular, one does not expect such a relationship to hold when
A0 is unbounded.

The following theorem is a simple application of Theorem 6 (and Theorem 1). In particu-
lar, note that it applies to any nonconstant inner function—we do not have to restrict ourselves
to interpolating Blaschke products or any other such subclass.

THEOREM 7. If ϕ is a nonconstant inner function, then there exists a subset E ⊂ D

of measure zero such that for each w in D\E the level set ϕ−1{w} is nonempty and
(i) if zn is an enumeration of ϕ−1{w}, then ϕ′(zn) �= 0 for all n (i.e., ϕ assumes the

value w with multiplicity one at each zn),
(ii) for each real sequence (an)

∞
n=1 in l2, there exists a function f in H 2 	 ϕH 2 such

that

Re

(
f (zn)√
ϕ′(zn)

)
= an

holds for each n.

Recall that the antilinear involution J = CA∗
0 leaves invariant both domains of D(A0) =

F and D(A∗
0) and that J is continuous in their respective graph norms. Unfortunately, this is

not always the case for the Friedrichs space HF:

THEOREM 8. The antilinear involution J leaves the space HF invariant and is con-
tinuous in the norm of HF if and only if A0 is bounded.

PROOF. If A0 is bounded, then J is defined on all of H and bounded there by ‖A0‖ by
Theorem 2. This implies that J is bounded by 1 + ‖A0‖ with respect to the Friedrichs norm.

If J maps HF onto HF and is continuous in the norm of HF, then there exists a constant
γ > 0 such that ‖Jf ‖F ≤ γ ‖f ‖F for every f in HF. Since Jun = un for all n, we see that
[f, un] = [Jf, un] for any finitely supported vector f . Noting that F ⊂ HF, we see that

‖A0f ‖2 ≤
mf∑
n=1

|[f, un]|2 + ‖A0f ‖2 =
mf∑
n=1

|[Jf, un]|2 + ‖CA0f ‖2

= 〈A0Jf, Jf 〉 + ‖Jf ‖2 = ‖Jf ‖2
F ≤ γ 2‖f ‖2

F

= γ 2(〈A0f, f 〉 + ‖f ‖2) ≤ γ 2(‖A0f ‖‖f ‖ + ‖f ‖2)
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for every f in F . If A0 were unbounded, then there would exist a sequence of unit vectors
fn in F such that ‖A0fn‖ → ∞. For sufficiently large n, this would violate the inequality
‖A0fn‖2 ≤ γ 2(1 + ‖A0fn‖). �

Although the original sequence of vectors (un)
∞
n=1 is not even a Bessel sequence in gen-

eral, the construction of the Friedrichs extension of A0 provides a canonical orthonormal basis
of H:

THEOREM 9. The system (
√

Aun)
∞
n=1 is orthonormal and complete in H.

PROOF. Since each un belongs to D(A), we have

〈√Auj ,
√

Auk〉 = 〈uj ,Auk〉 = 〈uj , Cuk〉 = δjk

and hence the vectors (
√

Aun)
∞
n=1 are orthonormal. We now show that they are complete.

Suppose that g belongs to H and is orthogonal to each
√

Aun (and hence to all of F). Since
F is dense in the Friedrichs space HF = D(

√
A), it follows that for any f in HF, there exists

a sequence fn in F such that ‖f − fn‖F tends to zero. Thus

|〈√Af, g〉| ≤ |〈√Afn, g〉| + |〈√A(f − fn), g〉|
≤ 0 + ‖√A(f − fn)‖‖g‖
≤ ‖f − fn‖F‖g‖

and hence 〈√Af, g〉 = 0 for every f in HF. This implies that g belongs to D(
√

A) and hence√
Ag = 0. In particular, we see that Ag = 0 and therefore

0 = 〈Ag, un〉 = 〈g, Aun〉 = 〈g, Cun〉 = [g, un]
for all n. Since the system (un)

∞
n=1 is complete, it follows that g = 0 and hence the system

(
√

Aun)
∞
n=1 is also complete. �

We next reverse the preceding computations, giving a general method for producing
complete C-orthonormal systems:

THEOREM 10. Let B be an injective, non-negative selfadjoint operator with dense
domain D(B) in a separable complex Hilbert space H. If (en)

∞
n=0 is an orthonormal basis of

H which satisfies
(i) (en)

∞
n=1 is contained into D(B) ∩ D(B−1),

(ii) for every finitely supported sequence (cn)
m
n=1 of complex numbers we have∥∥∥∥

m∑
n=1

cnB
−1en

∥∥∥∥ =
∥∥∥∥

m∑
n=1

cnBen

∥∥∥∥ ,

then C(Ben) = B−1en, for n = 1, 2, . . . , extends by conjugate-linearity to an isometric invo-
lution of H, i.e., C is a conjugation on H. Moreover un = Cen is a complete C-orthonormal
system of vectors in H.
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PROOF. Let (an)
∞
n=1 and (bn)

∞
n=1 be finitely supported sequences of complex numbers.

By the definition of C we have

C

( ∞∑
n=1

anBen

)
=

∞∑
n=1

anB
−1en .

Condition (ii) ensures that C is well-defined, isometric as an R-linear map, and can be ex-
tended to all of H. Let [f, g] = 〈f,Cg〉 denote the associated bilinear form. We will show
that this form is symmetric. If f = ∑∞

n=1 anBen and g = ∑∞
n=1 bnBnen, then

[f, g] = 〈f,Cg〉 =
∞∑

j,k=1

ajbk〈Bej , B
−1ek〉 =

∞∑
j,k=1

ajbkδjk =
∞∑

j=1

ajbj ,

which a similar computation reveals also equals [g, f ].
Next we observe that both systems (Ben)

∞
n=1 and (B−1en)

∞
n=1 are complete in H due to

the fact that B is selfadjoint and injective. For arbitrary vectors x and y we therefore have

〈x,Cy〉 = 〈y,Cx〉 , 〈Cx,Cy〉 = 〈y, x〉 .

These identities imply C2 = I and the proof is complete. �

In light of the preceding material, we see that there is a bijective correspondence between
(i) pairs (C, (un)

∞
n=1) consisting of a conjugation C and a complete C-orthonormal

system (un)
∞
n=1

(ii) pairs (B, (en)
∞
n=1) consisting of an invertible, non-negative selfadjoint operator B,

an orthonormal basis (en)
∞
n=1 satisfying conditions (i) and (ii) which is dense in D(B) with

respect to the graph norm.
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