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Abstract. A few affine invariant structures depending only on the second fundamental
form relative to arbitrary transversal bundles on submanifolds of the standard affine spaces
are introduced. A notion of “local strong convexity” is proposed for arbitrary codimensional
submanifolds. In the case of n-dimensional submanifolds of 2n-dimensional real affine spaces,
complex structures on the ambient spaces are used as a tool for studying real affine invariants.

1. Introduction. In the present paper we study affine invariants on submanifolds of
affine spaces, defined by using only the second fundamental form determined by any transver-
sal bundle. Therefore we call the structures weak. For instance, the local strong convexity of
hypersurfaces is such an invariant. In the first section we propose a notion of local strong
convexity for arbitrary codimensional submanifolds. The notion we propose extends the one
known in the theory of hypersurfaces of affine spaces. Our considerations cover the Riemann-
ian case. We give four equivalent conditions which characterize the local strong convexity in
the language of affine and metric geometries. According to this definition the 2-dimensional
Clifford torus in the Euclidean 4-space is locally strongly convex.

We define the cone of the second fundamental form as the set {h(X,X) ; X ∈ TxM,X �=
0} ⊂ Nx , where N is a transversal bundle (arbitrary chosen) for a given immersion. Whether
the cone fills the whole space Nx or the origin of Nx belongs to the cone or it is symmetric
relative to its vertex are well-defined affine invariants of a given immersion. In the case of
2-dimensional Riemannian surfaces in the Euclidean space RN the cone of the second funda-
mental form is generated by the ellipse of curvature. Here, in the general setting, we also have
ellipses depending on chosen bases of vector planes contained in the tangent spaces. Some
properties of such ellipses are well-defined from the affine viewpoint. For instance, whether
the ellipse reduces to a segment of a line passing through the origin of the vector space Nx

or the origin lies in the interior of the domain surrounded by the ellipse are such properties.
Of course, being a circle, which is interesting from the metric geometry viewpoint, is not an
affine invariant.

We pay a special attention to n-dimensional submanifolds of affine spaces R2n. Every
such submanifold can be locally viewed as a purely real (in other words affine Lagrangian)
submanifold relative to some complex structure on R2n. Since the normal bundle for a purely
real submanifold is isomorphic to the tangent bundle, it follows that affine invariants defined
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by the normal bundle can be transported to the tangent bundle. This makes the study easier.
For instance, the second fundamental form (having values in some transversal vector bundle)
becomes now a (1, 2) tensor field on a manifold and by fixing one vector we get an endomor-
phism of a tangent space. We can now take into account invariants of endomorphisms and
define well-defined affine properties of a submanifold. Some of such properties are studied in
Section 2. In particular, we obtain an n-linear symmetric form, whose proportionality class
is an affine invariant. In the case of 2-dimensional submanifolds of R4 we get the same con-
formal class (possibly degenerate) which was discovered in the classical affine geometry of
surfaces in R4. In this paper we study the properties of this conformal class which have not
been studied in the classical case. In particular, we give a local classification of surfaces in R4

for which the conformal structure vanishes. We also give a description of compact orientable
surfaces in R4 whose rank of the conformal structure is constant.

The properties considered in the paper can also be used to answer some questions of
the following type. Having an immersion f : M → RN , is it possible to chose such a
homogeneous geometric structure on RN relative to which f has “good” properties? For
instance, let f be an immersion of a two-dimensional manifold M into R4. Is it possible
to find a complex structure on R4 relative to which f (assume additionally, real analycity)
becomes a holomorphic curve, or, is there a Kaehler structure on R4 relative to which f is
Lagrangian in the metric sense?

2. Locally strongly convex submanifolds of RN . Assume that f : M → RN is
an immersion of an n-dimensional connected manifold M into the affine space RN . Let k =
N−n. The affine structure on RN is given by the standard connection ∇̃. If N is a transversal
vector bundle for f , then we can write the formulas of Gauss and Weingarten as

∇̃Xf∗Y = f∗(∇XY )+ h(X, Y ) ,(1)

∇̃Xξ = −f∗(SξX)+ ∇′
Xξ ,(2)

where h(X, Y ) and ∇′
Xξ have values in N for any vector fields X,Y on M and a section ξ of

N . h is an N -valued symmetric 2-form on M , Sξ is a (1, 1)-tensor field on a domain of ξ ,
∇ is a torsion-free connection on M , and ∇′ is a connection on the bundle N . h is called the
second fundamental form of f , ∇ the induced connection and ∇′ the normal connection. If a
transversal bundle N is fixed, we call it the normal bundle.

Let N be a fixed transversal bundle for f . For a fixed point x0 ∈ M consider the subset

H̃x0 = {h(X,X) ; X ∈ Tx0M,X �= 0}(3)

of the space Nx0 . In general, it is a cone with vertex at the origin of the vector space Nx0 .
The vertex might belong to the cone or not. The cone may be symmetric relative to the vertex
or not. It may reduce to a vector subspace or a half-subspace. All those properties are affine
invariants of a submanifold at a fixed point x0 independent of a choice of a transversal bundle.
We shall call H̃x0 the cone of the second fundamental form. For instance, if RN = Cm and
we have a complex submanifold of Cm, then it can be equipped with a complex transversal
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bundle. In such a case h(iX, iX) = −h(X,X), where i is the imaginary unit in C acting on
Cm in the standard way. It means that the cone of the second fundamental form is symmetric
relative to the vertex. Therefore, if we have an even-dimensional submanifold of R2m and its
cone of the second fundamental form (for a transversal bundle) at a point x0 is not symmetric
relative to the vertex, then the submanifold cannot be complex (even locally) relative to any
complex structure on R2m (parallel relative to the standard connection ∇̃).

The cone of the second fundamental form is generated by the set

Ẽx0 = {h(X,X) ; X ∈ S} ,(4)

where S is an ellipsoid centered at 0 in the tangent space Tx0M . This set essentially depends
on a choice of an ellipsoid S.

If f : M → RN is a Riemannian surface, RN being regarded as a Euclidean space, M
is 2-dimensional, N is a metric normal bundle and S is the unit circle relative to the induced
scalar product on Tx0M , then Ẽx0 is called the ellipse of curvature at x0. In Riemannian
geometry it is interesting (for example) when the ellipse is a circle. Here we study affine
properties of the sets H̃x0 and Ẽx0 .

In general, if f : M → RN is an immersion equipped with any transversal bundle N and
Π is a vector plane of the tangent space Tx0M , then the mapping Π : X → h(X,X) ∈ Nx0

sends every ellipse centered at the origin into an ellipse. More precisely, if X,Y is a basis of
Π and W = cos θ X + sin θ Y (i.e., X,Y are half-axes of an ellipse in Π), then

h(W,W) = 1

2
(h(X,X)+ h(Y, Y ))

+ sin 2θ · h(X, Y )+ cos 2θ · 1

2
(h(X,X)− h(Y, Y )) .

(5)

The affine shape of the ellipse (for instance, whether it reduces to a point or a line seg-
ment) is independent of a choice of N , but depends on X,Y .

We shall consider the following properties of an immersion f at a fixed point x0 ∈ M:
I. h(X,X) �= 0 for all X ∈ Tx0M , X �= 0 (equivalently, 0 /∈ H̃x0 ).

II. There is a vector hyperplane Ωx0 of Nx0 such that all vectors h(X,X) for X ∈
Tx0M , X �= 0, lie on one side ofΩx0 (i.e., in one open half-space of Nx0 determined byΩx0 ).

III. For an arbitrary positive definite scalar product G on RN there is a point o of
the affine space RN and a positive real number r such that f (x0) ∈ SN−1, f∗(Tx0M) ⊂
Tf (x0)S

N−1 and f (U) ⊂ BN−1 for some neighborhood U of x0, where SN−1 is a sphere
(relative to G) of radius r centered at o and BN−1 is the closed ball surrounded by SN−1.

IV. For an arbitrary positive definite scalar productG on RN there is a basic point o of
the affine space RN such that the function

Φ : M � x → G(
−−−→
of (x),

−−−→
of (x)) ∈ R(6)

attains its local maximum at x0.
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V. There is an affine hyperplane f (x0)+ V of the affine space RN which supports f
at x0, that is, f∗(Tx0M) ⊂ V and there is a neighborhood U of x0 in M such that f (U \ {x0})
lies in one of the open half-spaces determined by the affine hyperplane f (x0)+ V .

We shall first make some basic observations. The first two properties clearly do not
depend on the choice of a transversal bundle N . Therefore they are affine invariants. II is
stronger than I. In order to check I or II it suffices to find the set Ẽx0 .

The first property holding at every point of M is equivalent to the following one:
I′. For every regular curve γ in M , f ◦ γ is biregular in RN (i.e., (f ◦ γ )′(t) and

(f ◦ γ )′′(t) are linearly independent for every t). Indeed, for a curve γ in M we have

(f ◦ γ )′′ = f∗(∇γ ′γ ′)+ h(γ ′, γ ′) .(7)

If I is satisfied for every point of M , then for a regular curve γ in M the vector (f ◦ γ )′′(t)
is linearly independent of (f ◦ γ )′(t) for any parameter t . Conversely, if γ (t) is a geodesic
(relative to the induced connection ∇) such that γ (0) = x and γ ′(0) = X �= 0 and (f ◦γ )′′(0)
is linearly independent of (f ◦ γ )′(0), then, since f∗(∇γ ′γ ′) is parallel to f∗(γ ′), we have
h(γ ′(0), γ ′(0)) �= 0.

It is clear that if a submanifold is a curve, then its biregularity implies II. It is also known
that if we have a biregular curve in the Euclidean space R3 (in this case it means regular and
of nowhere-vanishing curvature), then in a neighborhood of a fixed point the curve lies on one
side of the rectifying plane.

We shall now prove the following

THEOREM 2.1. The properties II, III and IV are equivalent. Moreover, II implies V
and V together with I imply II.

PROOF. For a fixed scalar productG the properties III and IV are obviously equivalent.
We shall now prove that II implies IV. Let N be a metric normal bundle relative to a

positive definite scalar productG on RN . Take the affine straight lineL passing through f (x0)

and perpendicular to the vector hyperplane V = f∗(Tx0M) + Ωx0 of RN . The vector half-
space Nx0 determined by Ωx0 which contains all h(X,X) for X ∈ Tx0M , X �= 0, determines
an open half-line of this straight line. Let o′ be any (for a moment) point of this half-line. For

each X ∈ Tx0M , X �= 0, we have G(h(X,X),
−−−−→
f (x0)o

′) > 0. Take o′ such that ξ = −−−−→
f (x0)o

′
is unit relative to G. Consider the function

Sn−1(1) � X → G(h(X,X), ξ) ∈ R+ ,

where Sn−1(1) is the unit sphere centered at 0 ∈ Tx0M relative to the induced metric. The
above function attains its minimum, say m, which is positive. Take r > 1/m and a point o on
the line L such that

−−−−→
f (x0)o = rξ . We now have

G(h(X,X),
−−−−→
f (x0)o) = rG(h(X,X), ξ) > 1(8)
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forX ∈ Sn−1(1). Consider the functionΦ given by (6). SinceG(f∗(Tx0M),
−−−→
of (x0)) = 0, we

have dx0Φ = 0. Differentiating Φ twice at x0, we obtain

(d2
x0
Φ)(X, Y ) = −G(h(X, Y ),−−−−→

f (xo)o)+G(f∗X, f∗Y ) .(9)

By (8) the form d2
x0
Φ is negative definite, which implies that Φ attains a local maximum at

x0.
Assume now IV. We shall prove II. We have the function Φ given by (6) which attains

a local maximum at x0. Let X ∈ Tx0M , X �= 0, be arbitrary. Let γ (t) be a curve such that

γ (0) = x0 and γ ′(0) = X. Then G(f∗(Tx0M),
−−−→
of (x0)) = 0 and

G((f ◦ γ )′′(0),−−−→
of (x0))+G((f ◦ γ )′(0), (f ◦ γ )′(0)) ≤ 0 .

Since the second component of this sum is positive, we have

G((f ◦ γ )′′(0),−−−→
of (x0)) < 0 .(10)

Take the metric normal bundle N (relative to G) for f . Then ξ = −−−→
of (x0) ∈ Nx0 . Take the

orthogonal complementΩx0 to ξ in Nx0 . By (10) and (7) we see that all h(X,X) (for X �= 0)
are non-zero and lie on one side of Ωx0 .

In order to prove that III implies V it suffices to observe that the affine hyperplane
f (x0)+ Tf (x0)S

N−1 supports f at x0.
We shall now prove that V together with I imply II. We have a supporting hyperplane

f (x0)+V and its side as in V. Let ξ be any vector transversal to V determining this side. Take
any algebraic complement Ωx0 to f∗(Tx0M) in V .

The constant vector bundle N = Ωx0 + Rξ is transversal to f in a neighborhood of x0

and it will be the normal bundle we choose.
Let γ (t) be a naturally parametrized geodesic relative to the connection induced by N

such that γ (0) = x0 and γ ′(0) = X ∈ Tx0M , X �= 0. We have

(f ◦ γ )′′(t) = h(γ ′(t), γ ′(t)) ∈ N(11)

for all t . We know that (f ◦ γ )(t) ∈ A+ = f (x0) + V + R+ξ for sufficiently small t �= 0.
For such a parameter t we have

A+ � (f ◦ γ )(t) = (f ◦ γ )(0)+ t (f ◦ γ )′(0)+ t2

2
(f ◦ γ )′′(θt)

for some 0 < θ < 1. It follows that

h(γ ′(θt), γ ′(θt)) ∈ N ∩ (V + R+ξ) = Ω + R+ξ ,

which implies that

h(γ ′(0), γ ′(0)) = lim
t→0

h(γ ′(θt), γ ′(θt)) ∈ Ωx0 + (R+ ∪ {0})ξ .
If additionally I is satisfied, then we get II. �
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We propose to call a submanifold f : M → RN satisfying II (equivalently III, IV or
V) at x0 ∈ M locally strongly convex at x0. Such a notion coincides with the one known
in the theory of hypersurfaces. By a locally strongly convex submanifold we shall mean a
submanifold which is locally strongly convex at each point of M .

3. n-dimensional submanifolds of R2n. We shall start with the following algebraic
lemma

LEMMA 3.1. Let Q be a (1, 2)-tensor on an n-dimensional vector space V (over a
field F of characteristic 0). There is a unique symmetric n-linear form L on V such that

detQX = L(X, . . . , X)(12)

for every X ∈ V .

PROOF. Let E1, . . . , En be a fixed basis of V . The linear map QX will be identified
with its matrix relative to the fixed basis. Let Qj denote the linear mapping sending X ∈ V

into the j -th column of QX. ThenQj(X) = QX(Ej ). The mapping

V n � (X1, . . . , Xn) → (Q1(X1), . . . ,Qn(Xn)) ∈ (Fn)n

is linear. Hence

L̃ : (X1, . . . , Xn) → det(Q1(X1), . . . ,Qn(Xn)) ∈ F
is n-linear. We have L̃(X, . . . , X) = detQX. By symmetrizing L̃, we obtain a desired map-
ping L. Such an L is unique. Indeed, it suffices to observe that if L is n-linear symmet-
ric and L(X, . . . , X) = 0, then L = 0. If X1, . . . , Xn are arbitrary, then the polynomial
(t1, . . . , tn) → L(X, . . . , X), with X = t1X1 +· · ·+ tnXn, vanishes identically. In particular,
all its coefficients are zero. Looking at the coefficients of t1, . . . , tn, using the fact that F has
characteristic zero and L is totally symmetric, we deduce that L vanishes identically. �

In the above lemma the symmetry of Q is not needed but for an anti-symmetric Q the
form L vanishes.

By a complex structure J on R2n we mean a complex structure parallel relative to the
connection ∇̃, that is, it is a complex structure on the vector (or affine) space R2n.

If a complex structure J on R2n is fixed and f : M → R2n is an immersion of an
n-dimensional manifold M , then f is called purely real (or affine Lagrangian) if the bundle
Jf∗(TM) is transversal to f∗(TM). The bundle Jf∗(TM) is the normal bundle for a purely
real submanifold. As in the general case we have a Gauss formula, which in this case reeds as
follows:

∇̃Xf∗Y = f∗(∇XY )+ Jf∗Q(X, Y ) ,(13)

where Q is a symmetric (1, 2)-tensor field on M . Q is called the second fundamental tensor
of f . The Weingarten formula reduces to the Gauss formula, because J gives an isomorphism
between the tangent and the normal bundle and ∇̃J = 0. For a fixed vector X ∈ TxM the
tensor Q defines the endomorphism QX : TxM → TxM given by QXY = Q(X, Y ).
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Recall that a purely real immersion f : M → R2n is called totally real (or Lagrangian) if
R2n is regarded as a Kaehler manifold (with ∇̃ as a Kaehler connection and a Kaehler metric
G on R2n) and if the bundle Jf∗(TM) isG-orthogonal to f∗(TM). In such a case the second
fundamental tensor satisfies also the following condition

G(Q(X, Y ), Z) = G(Q(X,Z), Y ) ,(14)

whereG is here the induced metric tensor on M .
Assume now we have an immersion f : M → R2n of an n-dimensional manifoldM . Let

x0 be a fixed point of M . Denote by V the vector space f∗(TxoM). There is a complex struc-
ture J on R2n relative to which the immersion is purely real in a neighborhood of x0. Namely,
any complex structure J on R2n relative to which the vector space V is purely real (that is,
JV ⊕ V = R2n) is good. If {e1, . . . , en} is any basis of V , then {e1, . . . , en, J e1, . . . , J en}
is a basis of R2n. If Ĵ is another complex structure on R2n relative to which f is purely
real around x0, then Ĵ can be expressed as PJP−1, where P is a linear transformation of
R2n = V ⊕ JV whose matrix relative to the basis {e1, . . . , en, J e1, . . . , J en} is given by[

I B
0 C

]
,(15)

where I is the identity n×nmatrix and det C �= 0. Let ∇̂ and Q̂ denote the induced connection
and the second fundamental tensor for f relative to the complex structure Ĵ . We have

(∇̃Xf∗Y )x0 = f∗(∇XY )x0 + Jf∗Qx0(X, Y ) ,

(∇̃Xf∗Y )x0 = f∗(∇̂XY )x0 + Ĵ f∗Q̂x0(X, Y ) .

On the other hand

Ĵ f∗Q̂(X, Y ) = Bf∗Q̂(X, Y )+ JCf∗Q̂(X, Y ) ,

where B and C are regarded here as endomorphisms of V given by the matrices B, C relative
to the basis {e1, . . . , en}. We obtain the following relations between ∇, ∇̂, Q and Q̂.

Q(X, Y ) = C ′Q̂(X, Y ) ,
∇XY = ∇̂XY + B′Q̂(X, Y ) ,

(16)

where C ′ = f−1∗ ◦ C ◦ f∗ : Tx0M → Tx0M and B′ = f−1∗ ◦ B ◦ f∗ : Tx0M → Tx0M .
It follows, in particular, that the property detQX = 0 (or �= 0) for a fixed X ∈ Tx0M is a
property invariant, not only under the action of the general complex affine group GA(C, n)
but is also under the action of the general real affine group GA(R, 2n). More precisely, if
we have an immersion f : M → R2n, where M is n-dimensional, and a fixed point x0, we
choose any complex structure on R2n relative to which f is purely real around x0. This gives
Q. Some properties ofQ do not depend on a choice of a complex structure. We shall say that
the vanishing of detQX is a real affine invariant, not only a complex affine invariant. We shall
collect some point-wise real affine invariants, that is, properties of the given immersion f at
a fixed point x0 which are invariant relative to the group GA(R, 2n). Among such properties
are the following:
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P1. QX = 0,
P2. detQX = 0,
P3. Q(X,X) = 0,
P4. the mapping Q : Tx0M � X → QX ∈ HOM (Tx0M) is a monomorphism,
P5. rkQX = r ,
P6. dim imQxo = r ,

where X is a non-zero vector of Tx0M in P1, P2, P3, P5. In P6

imQx0 = span{Q(X, Y ) ;X,Y ∈ Tx0M} .
Note that imQx0 is not a well-defined real affine invariant. In general, it essentially depends
on the complex structure J . Therefore, if a complex structure is used as a tool in the study of
an n-dimensional submanifold of R2n, then imQ is, in general, not a well-defined distribution,
even if dim imQ is constant on M .

One can find other invariants. Since detQX = detC · det Q̂X, we have

L = detC · L̂ ,
where L̂ is determined by Ĵ . The algebraic type of the symmetric form L is a real invariant.

If a complex structure on R2n is fixed, then R2n becomes Cn. An immersion f : M →
Cn is purely real if for every frame X1, . . . , Xn on M we have detC(f∗X1, . . . , f∗Xn) �= 0.
On an oriented purely real submanifold one defines a volume form ν by the formula

|ν(X1, . . . , Xn)| = |detC(f∗X1, . . . , f∗Xn)| .(17)

The volume form essentially depends on the complex structure. Indeed, let Ĵ be another
complex structure on R2n relative to which f is purely real around x0. We have the following
formulas for ν and ν̂, where ν̂ is determined by Ĵ , at x0:

(ν̂(X1, . . . , Xn))
2 = detR(f∗X1, . . . , f∗Xn, Ĵ f∗X1, . . . , Ĵ f∗Xn)
= detR(PP

−1f∗X1, . . . , PP
−1f∗Xn,PJP−1f∗X1, . . . , PJP

−1f∗Xn)
= detP · detR(P−1f∗X1, . . . , P

−1f∗Xn, JP−1f∗X1, . . . , JP
−1f∗Xn)

= detC · (ν(X1, . . . , Xn))
2 ,

where Ĵ = PJP−1 and P is given by (15). In the above computations we used the fact that
P (and P−1) restricted to f∗(Tx0M) is the identity. We have obtained

ν̂ = √|detC| ν(18)

at x0.
If n = 2, then L is a bilinear symmetric form, which will be denoted by g . Define a

function K by

K = detνg .(19)

This function is a complex affine invariant. If we change a complex structure as above, then

K̂ = detν̂ ĝ = (detC)−3K .
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Hence, if K is nowhere vanishing (which is a real affine invariant and, in the classical theory
of surfaces in R4, is called the non-degeneracy of an immersion), then the metric (possibly
indefinite) tensor field

g̃ = K−1/3g(20)

is a real affine invariant defined globally onM . In the theory of surfaces of R4 it is called the
affine metric, see for instance [1] and references given there. In particular, if f : M → R4 is
a surface, then one defines a (0, 2) symmetric tensor of weight 2 by the formula:

gu(Z,W) = 1

2
{det(X, Y, ∇̃ZX, ∇̃WY)+ det(X, Y, ∇̃WX, ∇̃ZY )} ,(21)

where u = (X, Y ) is a local frame onM . One easily sees that gu determines the same confor-
mal class as g constructed above.

Assume that f is holomorphic relative to some complex structure J on R4 around a point
x0 ∈ M . Take u = (X, JX). By putting Z = X, W = X, then Z = JX, W = JX, and then
Z = X, W = JX in (21), one sees that gu is definite or zero. It means that gx0 is definite or
zero. Therefore, if gx0 is not definite and is not zero, then the surface cannot be holomorphic
around x0 relative to any complex structure J on M .

4. Surfaces in R4. Assume that n = 2 and J is a fixed complex structure on R4

making this space a complex space C2. Let f : M → C2 be a purely real immersion. For a
basis {X,Y } of TxM the endomorphisms QX, QY can be expressed by their matrices relative
to the basis {X,Y }:

QX =
[
a c

b d

]
, QY =

[
c e

d k

]
.(22)

We have g(X,X) = detQX , g(Y, Y ) = detQY and

g(X, Y ) = 1

2
det

[
a e

b k

]
.(23)

The conformal class of g is a real affine invariant of the immersion f . In particular, the
rank of gx0 (also definitness or indefinitness of gx0 ) is a real invariant of the immersion f at
a point x0. The same deals with the nullity space of gx0 . In order to construct the conformal
class we can use any complex structure relative to which f is purely real around x0.

We shall now study the properties introduced in Section 2 in the case of surfaces in R4.
In the case where M is n-dimensional and f : M → Cn is a purely real immersion, the
conditions I and II from Section 2 can be read as follows:

I. Q(X,X) �= 0 for all X ∈ Tx0M , X �= 0.
II. There is a vector hyperplane Ωx0 of Tx0M such that all vectors Q(X,X), X ∈

Tx0M , X �= 0, lie in one open half-space of Tx0M determined by Ωx0 .
We have the following

LEMMA 4.1. Let f : M → R4 be an immersion.
(a) If f does not satisfy I at x0, then rk gx0 ≤ 1.
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(b) If rk gx0 = 1, then f does not satisfy I at x0.
(c) If gx0 is non-degenerate definite, then f satisfies I but does not satisfy II at x0.
(d) If gx0 is non-degenerate indefinite, then f satisfies II at x0.

PROOF. (a) Let X ∈ Tx0M , X �= 0, be such that Q(X,X) = 0. For any Y ∈ Tx0M

we have

QX =
[

0 c

0 d

]
, QY =

[
c e

d k

]
.(24)

It follows that g(X,X) = detQX = 0 and

g(X, Y ) = 1

2
det

[
0 e

0 k

]
= 0 .

(b) Let X ∈ Tx0M , X �= 0, spans the nullity space of gx0 , that is, g(X, Y ) = 0 for
every vector Y ∈ Tx0M . Suppose that Q(X,X) �= 0. Since detQX = g(X,X) = 0, there is
Y linearly independent of X such that Q(X, Y ) = 0. But then detQY = 0, i.e., gx0 = 0. This
contradiction shows thatQ(X,X) must be zero.

(c) There exists a basis {X,Y } of Tx0M such that g(X,X)g(Y, Y ) > 0 and g(X, Y ) =
0. Then

QX =
[
a c

b d

]
, QY =

[
c λa

d λb

]
(25)

and ad − bc �= 0. Moreover, detQY = −λ(ad − bc), which implies that λ < 0. The vectors
Q(X,X) andQ(Y, Y ) are linearly dependent. The vectorsQ(X,X) andQ(X, Y ) are linearly
independent. If W = w1X +w2Y , then

Q(W,W) = (w2
1 + λw2

2)Q(X,X)+ 2w1w2Q(X, Y ) .

It follows that Q(W,W) = 0 if and only if W = 0. We obtain I.
We have already observed that Q(Y, Y ) = λQ(X,X), where λ < 0. Hence the vectors

Q(X,X) andQ(Y, Y ) cannot lie on one side of any vector line in the vector plane Tx0M .
(d) LetX, Y span the asymptotic directions of gx0 . In particular, detQX = detQY = 0.

Suppose that X ∈ kerQX . Then

QX =
[

0 c

0 d

]
, QY =

[
c e

d k

]
.(26)

It follows that g(X, Y ) = 0, which is a contradiction. Thus Q(X,X) �= 0. Let Y ′ ∈ kerQX .
Then Y ′ is linearly independent of X and

QX =
[
a 0
b 0

]
, QY ′ =

[
0 e

0 k

]
.(27)

Thus detQ′
Y = 0. It follows that Y ′ is proportional to Y . We can assume that Y = Y ′.

Since g(X, Y ) �= 0, det
[
a e

b k

]
�= 0. It follows that Q(X,X) and Q(Y, Y ) are linearly

independent. If W = w1X +w2Y , then

Q(W,W) = w2
1Q(X,X)+w2

2Q(Y, Y ) .
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This implies that all vectorsQ(W,W), W �= 0, lie on one side of a vector line in Tx0M . �

REMARK 4.2. If gx0 = 0 and Qx0 �= 0, then I (or II) may be satisfied or may be not.
The examples will be provided after Theorem 5.4. Here we only indicate two possibilities.
The following situations can happen

QX =
[
a 0
b 0

]
, QY =

[
0 λa

0 λb

]
,

where (a, b) �= 0 for some basis {X,Y } of Tx0M . If λ > 0, then II is satisfied. If λ < 0, then
I is not satisfied.

By using the proof of Lemma 4.1, we also obtain

PROPOSITION 4.3. Let f : M → R4 be an immersion of a 2-dimensional manifold.
If g is non-degenerate indefinite on M , then M admits a globally defined nowhere vanishing
vector field.

PROOF. Take any positive definite metric tensor fieldG onM . LetX, Y be unit (relative
to G) vector fields (possibly local) spanning the asymptotic distributions of g . Then for a
fixedG the vector field Z = Q(X,X)+Q(Y, Y ) is uniquely defined. Therefore it is globally
defined. SinceQ(X,X) andQ(Y, Y ) are linearly independent, as it was observed in the proof
of Lemma 4.1, the vector field Z nowhere vanishes on M . �

EXAMPLE 4.4. Take an immersion into C2 defined on R2, equipped with the canoni-
cal coordinates (u, v):

f (u, v) = eivL(u) ,(28)

where L(u) is a curve in C2 such that detC(L(u), L′(u)) �= 0 for all u. Then
detC(fu, fv) = ie2ivdetC(L(u), L′(u)) �= 0 and consequently the immersion is purely real.
If we set

L(u) = (sinhu+ i coshu, coshu+ i sinhu) ,(29)

then the corresponding second fundamental tensorQ is given by

Q(X,X) = −Y , Q(X, Y ) = X , Q(Y, Y ) = Y ,

where X = ∂u and Y = ∂v . Hence g is positive definite on the whole R2. If we set

L(u) = (cosu+ i sin u, sin u+ i cosu) ,

then

Q(X,X) = Y, Q(X, Y ) = X, Q(Y, Y ) = Y .

In this case g is non-degenerate indefinite.

EXAMPLE 4.5. Let C2 = C1 × C2, where C1 = C = C2. The two copies of C in C2

are just numbered. Let p2(v) be an arc-length parametrized curve in the Euclidean space C2.
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We also assume that the curvature of the curve p2 vanishes nowhere. Take the curve q = p′
2

but in C1. Consider the surface

f (u, v) = (p1(v), p2(v))+ u(q(v), 0) ,(30)

where p1(v) is an arbitrary curve in C1. The second fundamental tensor Q is given by the
formulas

Q(X,X) = 0 , Q(X, Y ) = cX , Q(Y, Y ) = eX + cY ,

where c is a nowhere-vanishing function and X = ∂u, Y = ∂v . Here rk g = 1. Other
properties of such surfaces are studied in [4].

The second fundamental form Q gives the following simple criterion excluding some
surfaces from being metric totally real relative to a Kaehler (definite or indefinite) structure
on R4.

PROPOSITION 4.6. If rkQX = 1 for every X ∈ Tx0M , X �= 0, then there is no
Kaehler (definite or indefinite) structure on R4 relative to which f is totally real in a neigh-
borhood of x0.

PROOF. Assume that f : M → C2 is a totally real immersion relative to a Kaehler
positive definite matricG in C2. If {X,Y } is a G-orthonormal basis of a tangent space Tx0M ,
then the matrices (22) of QX and QY are symmetric. Take X belonging to ker τ , where
τ (Z) = trQZ . Then

QX =
[
a b

b − a

]
.(31)

It follows that rkQX = 2 or 0.
Consider now the indefinite case. Suppose that f is totally real around x0 relative to an

indefinite Kaehler metric G. The metric G is of type (+,+,−,−) and the induced metric
tensor field G on M is of type (+,−). Let X, Y ∈ Tx0M span the asymptotic directions of
gx0 . By (14) we have

QX =
[
a c

b a

]
, QY =

[
c e

a c

]
.

If a �= 0, then the vector X can be chosen such that a = 1. Similarly, if c �= 0, then Y can be
chosen such that c = 1. Hence there are the following possibilities:

QX =
[

1 1
b 1

]
, QY =

[
1 e

1 1

]
,(32)

or

QX =
[

0 1
b 0

]
, QY =

[
1 e

0 1

]
,(33)

or

QX =
[

1 0
b 1

]
, QY =

[
0 e

1 0

]
,(34)
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or

QX =
[

0 0
b 0

]
, QY =

[
0 e

0 0

]
.(35)

In the case described by (32), in order that rkQX = 1 = rkQY , the numbers e and b
must be equal to 1. Then QX−Y = 0, which is a contradiction. In (33) we have rkQY = 2.
In (34) we have rkQX = 2. In (35), if rkQX = rkQY = 1, then e �= 0 and b �= 0 and
consequently rkQX+Y = 2. In all cases we have got contradictions. �

We shall now consider affine properties of the sets H̃x0 and Ẽx0 for surfaces in R4. It
suffices to assume that the immersion f is purely real relative to some complex structure J
on R4 around xo and observe the sets

Ex0 = {Q(X,X) ; X ∈ S} ,(36)

Hx0 = {Q(X,X) ; X �= 0,X ∈ Tx0M} ,(37)

where S is an ellipse in Tx0M centered at the origin. The set Hx0 will be called the cone of
the second fundamental tensor.

We shall find the above sets depending on various types of the symmetric bilinear form
gx0 . Assume first that gx0 is definite. Let X,Y be an orthonormal basis of Tx0M relative to
gx0 . Then, as in the proof of Lemma 4.1, we get

QX =
[
a c

b d

]
, QY =

[
c − a

d − b

]
.(38)

It follows thatQ(X,X)+Q(Y, Y ) = 0, that is, the ellipse Ex0 is centered at 0. Moreover,
the vectorsQ(X, Y ) andQ(X,X)−Q(Y, Y ) are linearly independent. Hence the ellipse does
not reduce to a line segment. It means that the cone of the second fundamental tensor Hx0

is equal to Tx0M \ {0}. If we take another basis of Tx0M and construct the ellipse Ex0 , then
its center is not necessary the origin of Tx0M , but the origin belongs to the open domain
surrounded by Ex0 (because the set Hx0 must be Tx0M \ {0}).

Assume now that gx0 is non-degenerate indefinite. Take a basis {X,Y } of Tx0M as in the
proof of Lemma 4.1. ThenQ(X, Y ) = 0 and the vectorsQ(X,X)+Q(Y, Y ) andQ(X,X)−
Q(Y, Y ) are linearly independent. It means that the ellipse Ex0 reduces to a line segment and
the line does not pass through 0 ∈ Tx0M . The origin of Tx0M (the vertex of the cone Hx0 )
does not belong to the cone, as it was proved in Lemma 4.1. The cone is not symmetric
relative to the vertex.

Consider the case where rk gx0 = 1. Using the proof of Lemma 4.1, we know that
there is a basis {X,Y } of Tx0M such that Q(X,X) = 0. Then Q(X,X) + Q(Y, Y ) and
Q(X,X) −Q(Y, Y ) are opposite non-zero vectors and the axis Q(X, Y ) is also non-zero. It
means that the cone of the second fundamental tensor contains 0 ∈ Tx0M and does not reduce
to a half-line and is not the whole Tx0M . The cone is not symmetric relative to the vertex.
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As it was observed in Section 2, a surface whose cone Hx0of the second fundamental
tensor is not symmetric relative to its vertex cannot be complex (around x0) relative to any
complex structure on R4.

The case gx0 = 0 will be considered in the next section.

5. Classification results. Recall that an immersion f into a space with a connection
is called full if its codimension cannot be reduced, that is, there is no proper totally geodesic
submanifold of the ambient space containing the image of f .

We have the following “reduction lemma” for submanifolds of the affine space RN .

LEMMA 5.1. Let N be a transversal bundle for an immersion f : M → RN . Suppose
that dimM = n, M is connected and there is a subbundle N ′ with dimN ′ = r < N − n,
of N such that h(X, Y ) ∈ N ′ for all X,Y ∈ TM , and N ′ is ∇′-parallel. Then there is an
(n+ r)-dimensional affine subspace A of RN such that f (M) ⊂ A.

PROOF. Take the vector bundle

M � x → Vx = f∗(TxM)+ N ′
x .

By formulas (1) and (2) and the assumptions of the lemma, the bundle is parallel relative to the
standard connection ∇̃ on RN . Hence Vx = V for some (n+ r)-dimensional vector subspace
V of RN for all x ∈ M . It now suffices to observe that if γ (t) is an arbitrary curve onM , then

(f ◦ γ )(t) ∈ f (γ (0))+ V .
This easily follows from the Taylor formula

(f ◦ γ )(t) = (f ◦ γ )(0)+ t (f ◦ γ )′(θt) . �

We have an analogous result as in the classical theory of surfaces in R3:

LEMMA 5.2. Let f : U � (u, v) → f (u, v) = p(v) + uq(v) ∈ RN be an immersion
of an open connected domain U ⊂ R2 and fuv = ψfv for some function ψ satisfying the
equation ψu + ψ2 = 0 on U .

(a) If ψ = 0 on U , then f is a piece of a cylinder.
(b) If ψ �= 0 and ψv = 0 on U , then f is a piece of a cone.
(c) If ψ �= 0 and ψv �= 0 on U , then f is a piece of a tangential developable.

PROOF. In order to prove (a) it suffices to observe that if ψ = 0, then q ′ = fuv = 0.
Assume now that ψ �= 0 on U . Since ψu + ψ2 = 0, we have

ψ(u, v) = 1

u+ µ(v)
(39)

for some function µ. Therefore, using also the equality fuv = ψfv , we obtain

p′ = µq ′ .(40)

Since f is an immersion, µ+u does not vanish and the vectors q and q ′ are linearly indepen-
dent at each point.
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We shall now prove (b). In this case we have (39), where µ is constant. By (40) we get
p = q0 + µq , where q0 is a fixed point of RN . We have

f (u, v) = q0 + (u+ µ)q(v) ,(41)

that is, f is a piece of a cone.
In the case of (c), µ′(v) �= 0. If we set p̃ = −µq + p, we get

p + uq = p̃ −
(
u+ µ

µ′

)
p̃′ .(42)

This finishes the proof of the lemma.

Before stating the next theorem, we shall introduce the following notation. If ∇ is a
torsion-free connection on a 2-dimensional manifold M , (u, v) is a coordinate system on M
and X = ∂u, Y = ∂v , then we set

∇XX = AX + BY , ∇XY = CX +DY , ∇Y Y = EX + FY .(43)

If Ric is the Ricci tensor of ∇, then

Ric (X,X)=Bv −Du +D(A−D)+ B(F − C) ,

Ric (X, Y )=Dv − Fu + CD − BE ,

Ric (Y,X)=Cu − Av + CD − BE ,

Ric (Y, Y )=Eu − Cv + E(A−D) + C(F − C) .

(44)

Recall also that if f : M → Cn is a purely real immersion, then the following funda-
mental equations of Gauss and Codazzi are satisfied ([2]):

R(Z,W) = QZQW −QWQZ ,(45)

(∇WQ)(Z, V ) = (∇ZQ)(W,V )(46)

for all W,V,Z, where R is the curvature tensor of the induced connection ∇.
We can now prove the following

THEOREM 5.3. Let f : M → R4 be an immersion of a 2-dimensional connected
manifold M and g = 0 identically on M . If Q : TxM � W → QW ∈ HOM (TxM) is
a monomorphism for every x ∈ M , then f (M) is contained in some 3-dimensional affine
subspace of R4. If for each x ∈ M the mapping Q is not a monomorphism, then there is
a dense open subset M ′ of M such that for each x ∈ M ′, there is a neighborhood U of x
such that f restricted to U is either a piece of a cylinder, a piece of a cone, or a piece of a
tangential developable.

PROOF. For a fixed point x0 of M we choose a complex structure on R4 relative to
which f is purely real in a neighborhood U0 of x0. Considerations will be now carried on
around x0, that is, in a sufficiently small neighborhood of x0.

Observe first that rkQ ≤ 1. Since g = 0, the endomorphism QZ is singular for every
Z ∈ TxM . Let 0 �= X ∈ TxM be arbitrary. Let 0 �= Y ∈ kerQX . Assume first that Y is
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linearly independent of X. The matrices of QX and QY relative to the basis {X,Y } are given
by

QX =
[
a 0
b 0

]
, QY =

[
0 e

0 k

]
.(47)

Since detQX+Y = 0, the vectors (a, b) and (e, k) are proportional. It follows that rkQ ≤ 1.
If X ∈ kerQX, then

QX =
[

0 c

0 d

]
, QY =

[
c e

d k

]
.(48)

Since detQY = 0, the vectors (c, d) and (e, k) are proportional. Again, it follows that rkQ ≤
1.

Assume first that Q : TM � Z → QZ ∈ HOM (TM) is a monomorphism at each x.
Thus rkQ = 1 and imQ is a 1-dimensional distribution around x. Recall that the distribution
depends essentially on a complex structure chosen on R4 and, in general, it is not globally
defined on M .

Let Y be a vector field spanning imQ. If (u, v) is any coordinate system around x such
that ∂v = Y , then we have

QX =
[

0 0
b d

]
, QY =

[
0 0
d k

]
,(49)

where X = ∂u.
We shall now use the Codazzi equation. We then have

(∇XQ)(Y,X) = ∇X(dY )−Q(∇XY,X) −Q(Y,∇XX) = dCX + L1Y

(∇YQ)(X,X) = ∇Y (bY )− 2Q(∇YX,X) = bEX + L2Y ,

(∇YQ)(X, Y ) = ∇Y (dY )−Q(∇YX, Y )−Q(X,∇Y Y ) = dEX + L3Y ,

(∇XQ)(Y, Y ) = ∇X(kY )− 2Q(∇XY, Y ) = kCX + L4Y

for some functions L1, L2, L3, L4. Hence

dC = bE , dE = kC .(50)

We claim that the distribution imQ is ∇-parallel, that is, E = C = 0 at each point.
Indeed, if k = 0 at x, then, sinceQY �= 0, we have d �= 0. By (50) we get E = C = 0 at x. If
k �= 0 at x (and automatically around x), then there is a vector field X, linearly independent
of Y , around x spanning kerQY . We can now choose a coordinate system in such a way that
∂u spans kerQY and Y spans imQ. The formulas (50) are still valid. Then d = 0, k �= 0,
b �= 0. By (50) E = C = 0.

By the reduction lemma we know that for each point x of M there is an affine 3-
dimensional subspace A of R4 and a neighborhood U of x such that f (U) ⊂ A. Moreover
the immersion f|U : U → A is full. It follows that the image of the whole (connected) M is
contained in a 3-dimensional affine subspace of R4 .
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Assume now that the mapping Q : TM � Z → QZ ∈ HOM (TM) is not a monomor-
phism, although it is not trivial at each point. Then kerQ is a 1-dimensional distribution. By
the Gauss equation the induced connection is flat.

For any coordinate system (u, v) such that X = ∂u spans kerQ , we have

QX =
[

0 0
0 0

]
, QY =

[
0 e

0 k

]
,(51)

where Y = ∂v . Moreover

(∇XQ)(Y,X)= −Q(Y,∇XX) = −BQ(Y, Y ) ,
(∇YQ)(X,X)= 0 ,

(∇XQ)(Y, Y )= (Xe)X + eAX + eBY + (Xk)Y + k(CX +DY)− 2D(eX + kY ) ,

(∇YQ)(X, Y )= −D(eX + kY ) .

By the Codazzi equation we have

B = 0 , Xe + eA+ kC −De = 0 , Xk = 0 .(52)

In particular, the distribution kerQ is totally geodesic relative to the connection ∇.
Define subsets U1 and U2 of U0 by

U1 = {x ∈ U0 ; kerQ = imQ} , U2 = U0 \ U1 .

Consider the open set U2. If x ∈ U2, then kerQ and imQ are 1-dimensional complementary
distributions around x. Take a coordinate system (u, v) around x such thatX = ∂u and Y = ∂v

span kerQ and imQ, respectively. Then e = 0 and k �= 0 in (51). Hence, by (52), C = 0,
which, together with the fact that B = 0, means that the distribution kerQ is ∇-parallel.
Moreover, since ∇ is flat, by Formulas (44) we have the equality Av = 0. It means that we
can change the coordinate u in such a way that ∇∂u∂u = 0. Then, using again (44), we get
the equality Du + D2 = 0. In the new coordinate system we have fuu = 0 and fuv = Dfv ,
whereD2

u +D2 = 0. We can now use Lemma 5.2.
Consider now the set intU1. If x ∈ intU1, then around x we have one totally geodesic

1-dimensional distribution kerQ. Take a vector Y ′
x /∈ kerQx and extend it to a ∇-parallel

vector field Y ′ around x, which is possible because ∇ is flat. The distribution spanned by Y ′
is ∇-parallel and complementary to kerQ around x. Take a coordinate system (u, v) around
x such that X = ∂u spans kerQ and Y = ∂v is parallel to Y ′ at each point around x. We then
have

∇XX = AX , ∇XY = DY , ∇Y Y = FY .

Since ∇ is flat, by (44), we obtain Av = 0. Hence, by changing the coordinate u, we may
assume A = 0 and, again by (44), we can choose a coordinate system (u, v) around x such
that fuu = 0, fuv = D∂v , whereDu +D2 = 0. We now apply Lemma 5.2.

Around any point of int {Q = 0} the immersion f can be regarded as a piece of a
cylinder. The proof of the theorem is completed.
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THEOREM 5.4. If M is a compact 2-dimensional manifold and f : M → R4 is an
immersion, then there is a point x0 ∈ M such that gx0 is either non-degenerate indefinite and
rkQ = 2 or gx0 = 0 and rkQx0 = 1.

PROOF. Take any basic point o of R4 and any positive definite scalar product G on

R4. The function Φ : M � x → G(
−−−→
of (x),

−−−→
of (x)) attains its maximum at a point x0 ∈ M .

Therefore, f satisfies IV in Section 2. Consequently, by Theorem 2.1, it satisfies II at x0.
By Lemma 4.1 we know that gx0 is non-degenerate indefinite or gx0 = 0. In the first case,
by the proof of Lemma 4.1, we know that the rank of gx0 is 2. In the last case, by the proof
of Theorem 5.3, we know that rkQx0 ≤ 1. Since II is satisfied, rkQx0 cannot be 0. Hence
rkQx0 = 1. �

We shall now look at the sets Hx0 and Ex0 in the case where gx0 = 0 and Qx0 �= 0.
Since rkQx0 = 1, the vectors Q(X,X) + Q(Y, Y ), Q(X,X) − Q(Y, Y ) and Q(X, Y ) are
all proportional to each other (for any basis {X,Y } of Tx0M). It follows that the ellipse Ex0

is a line segment and the line passes through the origin of the vector space Tx0M . If the
codimension of f around x0 can be reduced and f , as a surface in a 3-dimensional affine
subspace of R4, is locally strongly convex at x0, then Hx0 is a half-line without the vertex
(the origin of Tx0M). If f is ruled around x0, then the origin of Tx0M belongs to Hx0 . In this
case Hx0 might be the whole line (for instance, for special affine Lagrangian surfaces) or a
half-line including the vertex. Examples of ruled special affine Lagrangian surfaces are given
in [3].

It should be remarked that throughout the paper we have intensively used the fact that
any n-dimensional submanifold of R2n can be locally regarded as a purely real submanifold
of Cn. It is not true in the global setting. There exist topological obstructions for embedded
submanifolds. There also exist n-dimensional immersed submanifolds of R2n which cannot
be globally purely real relative to any complex structure on R2n. We shall now consider this
problem in case of surfaces of R4.

LEMMA 5.5. Let M be a compact n-dimensional manifold and f : M → Cn be a
purely real immersion. The image ofM cannot be contained in any (2n−1)-dimensional real
affine subspace of Cn.

PROOF. Suppose that A is a (2n− 1)-dimensional real affine subspace of Cn in which
f (M) is contained. Let V be the direction of A. The space W = V ∩ JV is a (2n − 2)-
dimensional J -invariant vector subspace of Cn. Let G be the standard scalar product on Cn

and e be a non-zero vector of V perpendicular to W . Consider the function

M � x → G(
−−−→
of (x), e) ∈ R ,

where o ∈ Cn is any basic point of the affine space Cn. If x0 is a point of M , where the
function attains its extremum, then f∗(Tx0M) is orthogonal to e, that is, f∗(Tx0M) ⊂ W .
Moreover J (f∗(Tx0M)) ⊂ W because W is J -invariant. Hence

f∗(Tx0M)+ Jf∗(Tx0M) ⊂ W ,
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which is impossible for a purely real immersion. �

Using now Lemma 5.5 and Theorems 5.3, 5.4, we obtain

THEOREM 5.6. LetM be a 2-dimensional compact orientable manifold and f : M →
R4 be an immersion. If rk g is constant onM , then rk g = 2 and g is non-degenerate indefinite
at each point of M or g = 0 on M . In the first case M is a topological torus of genus 1, the
immersion f is full in R4 and locally strongly convex at each point of M . In the second case,
if f is locally strongly convex at each point of M , then M is a topological sphere, f (M) is
contained in a 3-dimensional affine subspace A of R4 and f : M → A is an ovaloid. If f is
purely real relative to some complex structure on R4, then the first case holds.

PROOF. By Theorem 5.4 we know that there is a point x0 ∈ M such that gx0 is either
non-degenerate indefinite or gx0 = 0 on Tx0M . Since rk g (which is a real affine invariant) is
constant onM , either g is non-degenerate indefinite at each point ofM or g = 0 onM . In the
first case, by Proposition 4.3 we know that the Euler characteristic of M is 0. Hence M must
be a topological torus. Moreover, since in this case rkQ = 2, the immersion must be full. In
the second case it suffices to observe that a locally strongly convex surface is such that Q is a
bundle monomorphism. By Theorem 5.3 we know that f is a locally strongly convex surface
in a 3-dimensional affine subspace of R4.

The last statement is a consequence of Lemma 5.5. �
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