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SMOOTH FANO POLYTOPES CAN NOT BE
INDUCTIVELY CONSTRUCTED
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Abstract. We examine a concrete smooth Fano 5-polytope P with 8 vertices with the
following properties: There does not exist a smooth Fano 5-polytope Q with 7 vertices such
that P contains Q, and there does not exist a smooth Fano 5-polytope R with 9 vertices such
that R contains P . As the polytope P is not pseudo-symmetric, it is a counter example to a
conjecture proposed by Sato.

1. Introduction. Many papers have been concerned about the classification of smooth
Fano polytopes (among these, e.g., [2, 4, 5, 8] and references therein). These polytopes have
been completely classified up to dimension 4 modulo unimodular equivalence. Recently the
classification of smooth Fano 5-polytopes has been announced ([7]).

One approach is to attempt to construct smooth Fano d-polytopes inductively from sim-
pler or already known ones by adding and removing vertices according to some rule, while
staying inside the realm of smooth Fano d-polytopes for some fixed d ≥ 1.

This idea is behind the notion of F-equivalence, due to Sato in [8]. By V(P ) we denote
the set of vertices of a polytope P .

DEFINITION 1.1 (equivalent to Definitions 1.1 and 6.1 in [8]). Two smooth Fano d-
polytopes P and Q are called F-equivalent if there exists a sequence

P0, P1, . . . , Pk−1, Pk , k ≥ 0

of smooth Fano d-polytopes Pi satisfying the following:
1. P and Q are unimodular equivalent to P0 and Pk , respectively.
2. For every 1 ≤ i ≤ k either V(Pi−1) = V(Pi) ∪ {w} or V(Pi) = V(Pi−1) ∪ {w} for

some lattice point w �= 0.
3. If w ∈ V(Pi) \ V(Pi−1), then there exists a proper face F of Pi−1 such that w =∑

v∈V(F ) v and the set of facets of Pi containing w is equal to

{conv({w} ∪ (V(F ′) \ {v})) | F ′ facet of Pi−1, F ⊆ F ′, v ∈ V(F )} .

If w ∈ V(Pi−1) \ V(Pi), a similar condition holds.

The third requirement in the definition above is the rule of vertex adding and removal. It
has an equivalent formulation in terms of the corresponding smooth toric Fano varieties: The
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toric variety corresponding to Pi is an equivariant blow-up or blow-down of the toric variety
corresponding to Pi−1.

Clearly, F-equivalence is an equivalence relation on the set of smooth Fano d-polytopes.
The problem is now: Find a set of representatives, so that every smooth Fano d-polytope is
F-equivalent to one of these representatives.

Sato proposes the following conjecture. Recall that a smooth Fano polytope P is called
pseudo-symmetric if there exists a facet F of P , such that −F is also a facet. The notion
of pseudo-symmetry is due to Ewald and pseudo-symmetric smooth Fano d-polytopes have
been classified completely for every d ≥ 1 (see [5]).

CONJECTURE 1.2 ([8, Conjectures 1.3 and 6.3]). Any smooth Fano d-polytope is ei-
ther pseudo-symmetric or F-equivalent to the simplex

Td := conv{e1, . . . , ed,−e1 − · · · − ed} ,

where (ei) is the standard integral basis of the lattice Zd .

The conjecture is known to hold for d ≤ 4 ([8, Theorems 7.1 and 8.1]). Indeed, every
smooth Fano 3-polytope is F-equivalent to the simplex T3, and there are only 2 smooth Fano
4-polytopes not F-equivalent to the simplex T4: They are the del Pezzo 4-polytope V 4 and the
pseudo del Pezzo 4-polytope Ṽ 4, where

V 2k = conv{±e1, . . . ,±e2k,±(e1 + · · · + ek − ek+1 − · · · − e2k)} ,

Ṽ 2k = conv{±e1, . . . ,±e2k, e1 + · · · + ek − ek+1 − · · · − e2k} .

Both V 4 and Ṽ 4 are alone in their F-equivalence class. However, notice that

V 2k = conv(V(Ṽ 2k) ∪ {−e1 − · · · − ek + ek+1 + · · · + e2k})
and

Ṽ 2k = conv({±e1, . . . ,±e2k} ∪ {e1 + · · · + ek − ek+1 − · · · − e2k}) .

Since conv{±e1, . . . ,±e2k} is a smooth Fano 2k-polytope F-equivalent to T2k ([8, Theorem
6.7]), one might be tempted to define a new equivalence relation, say I-equivalence (I for
inductive), by requiring only 1 and 2 in Definition 1.1, meaning that there are no restrictions
on vertex adding and removal. Then by the classification of pseudo-symmetric smooth Fano
polytopes ([5]) and Theorem 6.7 in [8], any pseudo-symmetric smooth Fano d-polytope is
I-equivalent to the simplex Td . Inspired by Sato’s conjecture one might then suspect: Every
smooth Fano d-polytope is I-equivalent to Td . This would indeed hold for d ≤ 4.

The result of this paper is that Conjecture 1.2 is not true. We show this by means of an
explicit counter example. More precisely, we examine a smooth Fano 5-polytope P with 8
vertices with the following properties:

(i) P is not pseudo-symmetric.
(ii) There does not exist a smooth Fano 5-polytope Q with 7 vertices, such that Q ⊂ P

(Proposition 4.1).
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(iii) There does not exist a smooth Fano 5-polytope R with 9 vertices, such that P ⊂ R

(Proposition 4.2).
Furthermore, the example shows the existence of ‘isolated’ smooth Fano d-polytopes: It is not
possible to obtain P from another smooth Fano 5-polytope by adding or removing a vertex,
no matter what rule one uses for the inductive construction.

The author would like to thank Anders Buch and Johan P. Hansen for their advice and
encouragement. The author also wishes to thank the anonymous referee for corrections and
useful suggestions.

2. Notation. We begin by fixing the notation and recalling some basic facts.
By convK we denote the convex hull of the set K . When P is any polytope, i.e. the

convex hull of a finite set of points, V(P ) denotes the set of vertices of P .
A simplicial convex lattice polytope in Rd is called a smooth Fano d-polytope if the

origin is contained in the interior of P and the vertices V(F ) of every facet F of P is a
Z-basis of the integral lattice Zd ⊂ Rd . Two smooth Fano d-polytopes P1, P2 ⊂ Rd are
called unimodular equivalent, if there exists a bijective linear map ϕ : Rd → Rd , such that
ϕ(Zd) = Zd and ϕ(P1) = P2. Unimodular equivalence classes of smooth Fano d-polytopes
correspond to isomorphism classes of smooth Fano toric d-folds ([2, Theorem 2.2.4]).

When P is a smooth Fano d-polytope and F is any facet of P , there exists a unique
linear map uF : Rd → R such that uF (v) = 1 for every v ∈ V(F ). Clearly, uF (x) ≤ 1 for
any x ∈ P with equality if and only if x ∈ F . Every vertex v of P is a Z-linear combination
of V(F ), so uF (v) ∈ Z. In particular, uF (v) ≤ 0 if and only if v /∈ V(F ).

Recall that (d − 2)-dimensional faces of a d-polytope are called ridges. Every ridge is
the intersection of precisely two facets of the polytope.

LEMMA 2.1. Let P be a smooth Fano d-polytope. Let F1 and F2 be two facets of P

such that F1 ∩F2 is a ridge G of P . Let vi , i = 1, 2, be the vertex of Fi which is not contained
in G. Then

v1 + v2 =
∑

w∈V(G)

aww ,

for some integers aw.
Every point x ∈ Zd is a unique Z-linear combination of the vertices of F1

x =
∑

w∈V(F1)

bww , bw ∈ Z

and

uF2(x) = uF1(x) + bv1(uF1(v2) − 1) .

If x ∈ V(P ), x �= v2 and bv1 < 0, then uF1(v2) > uF1(x).

PROOF. Both V(F1) and V(F2) are lattice bases of Zd and the first assertion follows.
The second statement is clear for all x ∈ V(F2), and then for all x ∈ Zd . Suppose x ∈
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V(P ) \ (V(F1) ∪ V(F2)) and bv1 < 0. Then uF2(x) ≤ 0 and

uF1(x) ≤ bv1(1 − uF1(v2)) < uF1(v2) ,

which proves the last inequality. �

3. Primitive relations. Now we recall the concepts of primitive collections and re-
lations, which are due to Batyrev in [1]. These are excellent tools for representation and
classification of smooth Fano polytopes (see [2, 4, 8]).

Let C = {v1, . . . , vk} be a subset of V(P ), where P is a smooth Fano polytope. The set
C is called a primitive collection if conv(C) is not a face of P , but conv(C \ {vi}) is a face of
P for every 1 ≤ i ≤ k. Consider the lattice point x = v1 + · · · + vk . There exists a unique
face σ(C) �= P of P , called the focus of C, such that x is a positive Z-linear combination of
vertices of σ(C), that is

x = a1w1 + · · · + amwm , ai ∈ Z+ ,

where {w1, . . . , wm} = V(σ (C)). The linear relation

v1 + · · · + vk = a1w1 + · · · + amwm(1)

is called a primitive relation. The integer k−a1−· · ·−am is called the degree of the primitive
relation (1) and is always positive ([2, Proposition 2.1.10]).

LEMMA 3.1 ([3, Corollary 4.4]). Let

v1 + · · · + vk = a1w1 + · · · + amwm(2)

be a linear relation of vertices of a smooth Fano polytope P such that ai ∈ Z+ and
{v1, . . . , vk}∩{w1, . . . , wm} = ∅. Suppose k−a1 −· · ·−am = 1 and that conv{w1, . . . , wm}
is a face of P . Then (2) is a primitive relation, and whenever {w1, . . . , wm} is contained in a
face F , (F ∪ {v1, . . . , vk}) \ {vi} is a face of P for every 1 ≤ i ≤ k.

We recall the well-known classification of smooth Fano d-polytopes with d + 2 vertices.

THEOREM 3.2 ([6, Theorem 1]). Let P be a smooth Fano d-polytope with d + 2 ver-
tices, V(P ) = {v1, . . . , vd+2}. Then the primitive relations of P are (up to renumeration of
the vertices)

v1 + · · · + vk = 0 , 2 ≤ k ≤ d

and

vk+1 + · · · + vd+2 = a1v1 + · · · + akvk , a1, . . . , ak ≥ 0 , a1 + · · · + ak < d + 2 − k .

4. A counter example to Conjecture 1.2. Let e1, . . . , e5 be the standard basis of the
integral lattice Z5 ⊂ R5. Consider the smooth Fano 5-polytope P with 8 vertices, V(P ) =
{v1, . . . , v8}.

v1 = e1 , v2 = e2 , v3 = e3 , v6 = e4 , v7 = e5 ,

v4 = −e1 − e2 − e3 − 3e4 , v5 = −e4 , v8 = −e1 − e2 − 2e4 − e5 .
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The primitive relations are given by

v1 + v2 + v3 + v4 = 3v5 ,(3)

v5 + v7 + v8 = v3 + v4 ,(4)

v3 + v4 + v6 = v7 + v8 ,(5)

v5 + v6 = 0 ,(6)

v1 + v2 + v7 + v8 = 2v5 .(7)

When F is a face of P , V(F ) is a subset of V(P ) = {v1, . . . , v8}. For simplicity we write
{i1, . . . , ik} to denote the polytope conv{vi1 , . . . , vik }. In this notation the facets of P are

{1, 2, 3, 5, 7} , {1, 2, 3, 5, 8} , {1, 2, 4, 5, 7} , {1, 2, 4, 5, 8} , {1, 3, 4, 5, 7} ,

{1, 3, 4, 5, 8} , {1, 3, 4, 7, 8} , {1, 3, 6, 7, 8} , {1, 4, 6, 7, 8} , {2, 3, 4, 5, 7} ,

{2, 3, 4, 5, 8} , {2, 3, 4, 7, 8} , {2, 3, 6, 7, 8} , {2, 4, 6, 7, 8} , {1, 2, 3, 6, 7} ,

{1, 2, 3, 6, 8} , {1, 2, 4, 6, 7} , {1, 2, 4, 6, 8} .

We will now show that it is not possible to add or remove a lattice point from the vertex
set V(P ) and obtain another smooth Fano 5-polytope. As P is not pseudo-symmetric, it is a
counter example to Conjecture 1.2.

PROPOSITION 4.1. There does not exist a smooth Fano 5-polytope Q with 7 vertices
such that Q ⊂ P .

PROOF. Suppose there does exist a smooth Fano 5-polytope Q with 7 vertices such that
V(P ) = V(Q) ∪ {vi} for some i, 1 ≤ i ≤ 8. By the existing classification (Theorem 3.2) we
know that Q has exactly two primitive relations of positive degree

vi1 + · · · + vik = 0, vj1 + · · · + vjd−k = c1vi1 + · · · + ckvik .

There are two possibilities: Either i ∈ {5, 6} or i ∈ {1, 2, 3, 4, 7, 8}.
Let i ∈ {5, 6}. Then there must be a primitive collection of vertices of Q with empty

focus. But for both possible i, no non-empty subset of V(P ) \ {vi} add to 0.
Let i ∈ {1, 2, 3, 4, 7, 8}. Then v5 + v6 = 0 is a primitive relation of Q, and the other

primitive collection is C = {v1, v2, v3, v4, v7, v8} \ {vi}. The vertices in C must add up to
cv5, where |c| ≤ 4. It is now easy to check for every possible i that this is not the case.

Hence we are done. �

PROPOSITION 4.2. There does not exist a smooth Fano 5-polytope R with 9 vertices,
such that P ⊂ R.

PROOF. Suppose there does exist a smooth Fano 5-polytope R with 9 vertices such that
V(R) = V(P ) ∪ {v9} for some lattice point v9.

As v5 is a vertex of R, Relation (3) is a primitive relation of R (Lemma 3.1). Then {3, 4}
is a face of R. Relation (4) ensures that {7, 8} is also a face of R. This means that Relations
(3)–(5) are primitive relations of R.
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As Relations (3)–(5) all have degree one, we can deduce a lot of the combinatorial struc-
ture of R: The set {3, 4} is a face of R. Thus

{3, 4, 5, 7} , {3, 4, 5, 8} , {3, 4, 7, 8}
are faces of R (Relation (4)). Relation (3) implies that

{1, 2, 3, 5, 7} , {1, 2, 4, 5, 7} , {1, 3, 4, 5, 7} , {2, 3, 4, 5, 7} ,

{1, 2, 3, 5, 8} , {1, 2, 4, 5, 8} , {1, 3, 4, 5, 8} , {2, 3, 4, 5, 8}
are facets of R. By using Relation (4), we get 2 facets of R:

{1, 3, 4, 7, 8} , {2, 3, 4, 7, 8} .

Relation (5) gives us 4 more facets of R such as

{1, 3, 6, 7, 8} , {1, 4, 6, 7, 8} , {2, 3, 6, 7, 8} , {2, 4, 6, 7, 8} .

Among the original 18 facets of P , 14 are also facets of R. The remaining 4 facets are:

{1, 2, 3, 6, 7} , {1, 2, 3, 6, 8} , {1, 2, 4, 6, 7} , {1, 2, 4, 6, 8}.
So v9 is in a cone over one of these four facets of P , i.e., v9 is a non-negative Z-linear
combination of vertices of one of the four facets. Without loss of generality we can assume
that v9 ∈ cone(v1, v2, v3, v6, v7) (if this is not the case, apply an appropriate renumbering of
the vertices of P , which fixes the primitive relations):

v9 = a1v1 + a2v2 + a3v3 + a6v6 + a7v7 , ai ≥ 0 for all i ∈ {1, 2, 3, 6, 7} .

Then {1, 2, 3, 6, 7} is not a facet of R. But F = {1, 2, 3, 5, 7} is a facet of R, so on the other
side of the ridge {1, 2, 3, 7}, there must be the facet F ′ = {1, 2, 3, 7, 9}. By Lemma 2.1 and
Relation (6), a6 = 1 and 1 > uF (v9) > uF (v6) = uF (−v5) = −1. So 0 = uF (v9) =
a1 + a2 + a3 − 1 + a7.

Since {1, 3, 6, 7, 8} and {2, 3, 6, 7, 8} are facets of R, we must have {1, 3, 6, 7, 9} and
{2, 3, 6, 7, 9} among the facets of R. This implies that

v8 + v9 ∈ span{v1, v3, v6, v7} ∩ span{v2, v3, v6, v7} = {0} × {0} × R × R × R .

As v8 + v9 = (a1 − 1)v1 + (a2 − 1)v2 + a3v3 + (a6 − 2)v6 + (a7 − 1)v7, we must have
a1 = a2 = 1.

Since a1 + a2 + a3 − 1 + a7 = 0, we must have that a3 < 0 or a7 < 0, which is a
contradiction. We conclude that the smooth Fano 5-polytope R does not exist. �
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