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Introduction. Let V and W be connected compact complex manifolds.
According to Douady [2], the set H(Vf W) of all holomorphic maps of
V into W admits an analytic space*5 structure whose underlying topology
is the compact-open topology. For / e H( V, W), the Zariski tangent
space TfH{ V, W) to H( V, W) at / is canonically isomorphic to a subspace
of H°( V,f*TW), the zero-th cohomology group of (the sheaf of holomorphic
sections of) the pull back f*TW oί the holomorphic tangent bundle TW of
W over / . (See §1.)

Now, we say that f e H(V, W) is stable if and only if there is an
open neighbourhood U of / in H{ V, W) such that, for each g e U, there
are automorphisms (holomorphic isomorphisms) a of V and 6 of W with
g = bfa.

We also say that a map f e H(V, W) is infinitesimally stable if and
only if

f*H\W, TW) + f*H\V, TV) = IP(V, f*TW) ,

where

f*:H\W, TW)~+H°(V,f*TW),

/*: H\ V, TV) — H°( V, /*TW)

be the induced linear maps defined by /*(>?) = ηf, for ηe H°(W, TW) and
/•(?) = W)(ζ), for ζeH\V, TV).

The purpose of this paper is to prove the following theorem, (cf.,
Mather [5]).

THEOREM 1. A holomorphic map f of V into W is infinitesimally
stable if and only if (1) / is stable and (2) the Zariski tangent space
TfH(V, W) to H(V, W) at f is isomorphic to H°(V, f*TW).

As an example, let V be a compact Riemann surface and let P1 be
the complex protective line. Then H( V, P1) is the set of all algebraic

By an analytic space, we mean a reduced, Hausdorff, complex analytic space.
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functions on V. We prove:

THEOREM 2. Any algebraic function of order 2 on V is stable.

1. Infinitesimal displacement maps. Let Vf W and H(V, W) be as
above. The map

F:(P,f)e Vx H{V, W)-+f(P)e W

is holomorphic. Following Kodaira [4], we define a linear map

σf: TfH(V, W)-»H°(V, f*TW)

by σf(d/ds) = (dF/ds)f, where s is a coordinate in an ambient space of
H(V, W) around / . We call of the infinitesimal displacement map at f.

The map σf is injective. In fact, as was shown in [6], (considering
the graph Γf of / ) , the analytic space H{V, W) is locally (around /)
identified with

S={ξeB\K(ξ) = 0},

where B is an open neighbourhood of 0 in H°(V, f*TW) and if is a
holomorphic map of B into iP( V, f*TW), the first cohomology group of
(the sheaf holomorphic sections of) f*TW. Moreover, it is easy to see
that σf is identified with the inclusion map T0S(zH°(V, f*TW).

Note that the automorphism groups Aut (V) of V and Aut (W) of
W are open (and closed*5) in H(V, V) and in H(W, W), respectively.
We denote by e and e' the identities of Aut (V) and Aut (W), respectively.
Then the infinitesimal displacement maps

σe: TeAut(V)->H°(V, TV) ,

σe,: 2V Aut (W) — H%W, TW)

are linear isomorphisms. In fact, each ξ e H°( V, ΓF)(resp. η e H°(W, TW))
defines the one-parameter group exp tξ, teC, (resp. exp tηy teC) of au-
tomorphisms of V (resp. W). We have then

d exp
dt

= ξ (resp.
dexp tη

ί = 0 /-. * V ' dt

Now, for / e H(V, W), we define a holomorphic map

A,: Aut (W) x Aut(V)-+H(V, W)

by Af{b, a) = bfa, for (δ, α)e Aut(TΓ) x Aut(F).

LEMMA 1. The following diagram is commutative:

Using Hurwitz's theorem, we can easily show that Aut(F) is closed in H(V, V).
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2V Aut (W) x T. Aut (V) ^ 1 ^ TfH( V, W)

σe' X σe I σ/

H\W, TW) x H°(V, TV)~^L+H°(V, f*TW) ,

where (/* + /*)()?, ξ) = f*η + /*£, for {η, ξ)eH°(W, TW) x

PROOF. Let {ί7Jίe7 and {ί7ϊ}ίe/ be finite open coverings of V such
that, for each is I,
(1) UiCU'i (i.e., the closure Ut is compact and is contained in Z7J),
(2) there is on TJ[ a coordinate system

Let {Wt}iei and {T7 }ίe/ be finite open coverings of f(V) such that, for
each iel,
(3) f(UZ)cWi9

(4) T^cT^ί,
(5) there is on W\ a coordinate system

The map / is expressed by the equations

W, = /,(*<), «< 6 C/ , ΐ 6 / ,

where /< is a vector valued holomorphic function on U[.
Let ε be a small positive number. We denote by Bε the ε-disc in

C with the center 0. For ξeH°(V, TV) and ηeH°(W, TW), the one-
parameter families expίf, teBε, and exps)?, seBε, of automorphisms of
F and W, respectively, are expressed as

(zift)e U< x Bε — ai(zut)e U[ ,

(wί,s)eWix Bε~+bί(wi,s)eW'i,

respectively. Then the map exp sη f exp tξ, (s, t) e Bε x Bε, is expressed
by the equations:

v>i = btiftidiiZi, t)), s) , f o r (zt9 s,t)e UiX Bεx Bε .

Hence we have
( 6) (dwjdt)t=o =
(7) (dwi/d8Uo=

where ξ = {ίife)}^/ and η = {7}t(wt)}iBI.
Now, (6) and (7) imply Lemma 1. q.e.d.

2. Proof of Theorem 1. Assume that / is infinitesimally stable.
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Then, by Lemma 1, σf is a linear isomorphism and (dAf){er>e) is surjective.
Since Aut(T7) x Aut(F) is non-singular, this implies that H(V, W) is
non-singular at / and Af is a local submersion around (e\ e). Hence /
is stable and TfH(V, W) is isomorphic to H°(V, f*TW).

Conversely, assume that / is stable and TfH(V, W) is isomorphic
to H°(V, f*TW). Since / is stable, H(V, W) is non-singular at / .
Assume that / is not infinitesimally stable. Then, by Lemma 1, (dAf){e,}e)

is not surjective. Let M be a complex submanifold through / of an
open neighbourhood of / in H(V, W) such that

(dAf)u,,e)(Te, Aut (W)x Te Aut (V)) 0 TfM = TfH( V, W) .

Then dim M > 0.

LEMMA 2. If Mis sufficiently small, then M Π Af (Aut (W) x Aut (V))
is at most countable.

PROOF OF LEMMA 2. (cf., Chevalley [1], p. 95). We put

G= Aut(W) x A u t ( F ) ,

I f = { ( b , a ) e G \ b f a = f } .

Then If is a closed submanifold of G through (e\ e).
Let L be a closed submanifold of a small open neighbourhood of (e',

e) in G passing (e\ e) such that

2V..,i> Θ T{,t9)L = Γ(.,,.,G.

We define a holomorphic map

A:Gx H(V, W)-+H(V, W)

by A((b, a), g) = bga, for ((6, α), g)eGx H(V, W). Then

(dAhe,,ehf): Tie,tβ)L®TfM-+ TfH(V, W)

is a linear isomorphism. Hence, we may assume that

A:L x M-+U

is a holomorphic isomorphism, where U is an open neighbourhood of /
in H(V, W).

For meM, we put

Sm = {bma\(b, a)eL} .

Then it is easy to see that, for any m e M, either Sm Π Af(G) is empty
or Sm c Af(G). It is also easy to see that, for any compact subset K
of G,
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{meM\Smί) Af{K) is not empty}

is a finite set.

Now, G satisfies the second axiom of countability. Hence G is
written as

G = U Kn ,

where each Kn is a compact subset of G. Then

A,(G) = U Af(Kn) .

Hence, noting that meSm for meM, we have

MΓϊAf(G)= ^neM\SmΓi(OίAf(κS) is not emptyJ

= {meM\SmΓϊ Af(Kn) is not empty for some n)

where Mn = {m e M \ Sm f) Af(Kn) is not empty} is a finite set, for each
n = 1, 2, . Thus ikf Π Af(G) is at most countable, q.e.d. of Lemma 2

Now, by Lemma 2, for any open neighbourhood U of / in H(V, W),

UΠM-Af (Aut (W) x Aut (F))

is not empty. This shows that / is not stable, a contradiction.
This completes the proof of Theorem 1.

3. Proof of Theorem 2. Let V be a compact Riemann surface of
genus g. Let P1 be the complex projective line. Then H( V, P1) is the
set of all algebraic functions on V.

LEMMA 3. Let f be an algebraic function on V. Then

f*TPL=[2Dco]f

where D^ is the polar divisor of f and [2AJ is the line bundle determined
by the divisor ZD^. Moreover, if f is of order n^ g, then

dim H\V, /*ΓP1) = 2n + 1 - g .

PROOF. Let (z09 zλ) be the standard homogeneous coordinate on P\
Then we have easily TP1 = [2(oo)], where (oo) is the divisor of the point
oo = (0, 1) G P\ Hence

= /*[2(oo)] = [2DJ.
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If / is of order n^ g, then

deg (2ZU = 2n > 2g - 2 .

Hence, by Riemann-Roch Theorem,

dim H°( V, /* TP1) = dim H\ V, [2D«,]) - 2n + 1 - g .

q.e.d.

Now, we prove Theorem 2 by dividing into three cases.

Case 1: g ^ 2. Let / be an algebraic function of order 2 on V. In
this case, V is a hyper elliptic Riemann surface. / is a two sheeted
ramified covering of V onto P 1 with (2g + 2)-branch points. Let P be
one of the branch points. Let b be an automorphism of Pι mapping f(P)
to co = (0, 1). Then P is the only pole of order 2 of the function bf.
By Lemma 3 above and by Theorem 14, [3],

Γ(F, (bf)*TPι) = άimH\V, [4P])

= 4 + 1 — {the number of the gaps at P <£ 4} .

By Theorem 25, [3], P is a Weierstrass point of V. Since the Weierstrass
gap sequence at a Weierstrass point is 1, 3, 5, , 2g — 1, we have

(1) dim H°(V, (6/)*ΓFι) - 4 + 1 - 2 - 3 .

Note that

(2) dim H\P\ TP1) = dim Aut (P1) = 3 ,

(3) dimiίo(F, TV) = dimAut(V) = 0 .

We put f = bf. In order to prove that / is stable, it suffices to
prove that / is stable. By (1), (2), (3) and by Theorem 1, it then suffices
to prove that

/*: H\P\ TP1) -> H°( V, f* TP1)

is injective.
Note that an element of H°(P\ TP1) is written as

X = (pζ2 + qξ + r)d/dζ on P1 - oo ,

where ξ = zjzo is the inhomogeneous coordinate on F - co, oo = (0, 1),
and p, q and r are constants.

The universal covering space of V is the unit disc D — {z e C \ \ z \ <
1}. Let π: D—>V be the covering map. We put / = fπ. Then / is a
meromorphic function on D.

Now, assume that f*X — 0. Then
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0 - πψX = f*X = pf{zf + qf(z) + r ,

on D — /^(oo). This implies that p = q = r — 0. Hence, /* is injective.

Case 2: g = 1. In this case, V is a complex 1-torus. Let / be an
elliptic function of order 2 on F. By Lemma 3, dim iϊ o(F, f*TP1) = 4.
Note that

dim H\ V,TV) = dim Aut (V) = 1 .

Hence, in order to prove Theorem 2 in this case, using Theorem 1, it
suffices to prove that

/* + f*:H°(P\ TP1) x H°(V, TV)-*H°(V, f*TPι)

is injective.
The universal covering space of V is C. Let π: C—>F be the covering

map. We denote by z a coordinate on V induced by π. Then an element
of H\V, TV) is written as

Y= sd/dz ,

where s is a constant.
Now, for X= (pξ2 + qξ + r)d/dξeH°(P, TP1), assume that f*X +

/ * r = 0 . Then

P / W + ?/(*) + r + sf\z) = 0 ,

on F — /^(oo), This implies that p = q = r = s = 0. Hence /* + /* is
injective.

REMARK. We can show that, for any elliptic function / of order 2
on V, there are b e Aut (P1) and a e Aut (V) with / == bpa, where p is
Weierstrassian ^-function on V. (See [7].)

Case 3: g = 0. In this case, F = P 1. Let / be a rational function
of order 2. Then / is a two sheeted ramified covering of P1 onto P1

with two branch points P and Q. Let a be an automorphism of P1

mapping 0 = (1, 0) to P and oo = (0,1) to Q. Let bλ be an automorphism
of P1 mapping f(P) to 0 and f(Q) to oo. Then

bja(ξ) = pί2 , for f = zjzo e F - o o ,

where p is a non-zero constant. Let b2 be the automorphism of Pι defined
by 62(f) = (l/p)f, for £ - z^eP1 - oo. Put δ - &A- Then

δ/α(£) = ί2 , for ξ = zjzo e P1 - oo .

This shows that / is stable.
This completes the proof of Theorem 2.
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