Tôhoku Math. Journ. 27(1975), 445-451.

CONFORMALLY FLAT RIEMANNIAN MANIFOLDS ADMITTING A TRANSITIVE GROUP OF ISOMETRIES II

HITOSHI TAKAGI

(Received July 31, 1974)

1. Introduction. Let M be an n-dimensional conformally flat Riemannian manifold which admits a transitive group of isometries. In [1], the author proved that M is isometric to one of the homogeneous Riemannian manifolds of following types:

(I) $S^n(K)/\Gamma$, E^n/Γ , $H^n(-K)$,

(II) $(S^r(K)/\Gamma) \times H^{n-r}(-K), \quad 2 \leq r \leq n-2,$

(III) $(E^{1}/\Gamma) imes H^{n-1}(-K)$,

(IV) $(S^{n-1}(K) imes E^1)/arGamma$,

where $S^{m}(K)$, E^{m} and $H^{m}(-K)$ denote a Euclidean *m*-sphere of radius $K^{-1/2}$, a Euclidean *m*-space and a hyperbolic *m*-space of curvature -K respectively. N/Γ denotes a quotient space, where Γ is a group of isometries of N acting freely and properly discontinuously. And \times denotes a Riemannian product.

J. A. Wolf (see [2]) classified the homogeneous Riemannian manifolds of the forms $S^{n}(K)/\Gamma$ and E^{n}/Γ . Thus, the problem left to us is to determine the groups Γ appearing in (IV). In [1], the author proved a few theorems about the structure of Γ . Making use of the theorem, we shall classify the manifolds of type IV completely.

2. Structure of Γ . We consider $S^{n-1}(K)$ as the set of vectors of norm $K^{-1/2}$ in a Euclidean vector space \mathbb{R}^n . Then, the group of all isometries of $S^{n-1}(K)$ is the orthogonal group O(n). Let \mathbb{Q} and \mathbb{Q}' denote the algebra of real quaternions and the multicative group of unit quaternions respectively. $\mathbb{Q}' = \{a = a_1 + a_2i + a_3j + a_4k; \sum_{s=1}^4 a_s^2 = 1, a_s \in \mathbb{R}\}$ has an SO(4l)-representation ρ defined by

$$ho: a
ightarrow \left(egin{array}{c} A \ dots \ dots \ A \end{array}
ight)$$
, where $A = egin{pmatrix} a_1 & -a_2 & -a_3 & -a_4 \ a_2 & a_1 & -a_4 & a_3 \ a_3 & a_4 & a_1 & -a_2 \ a_4 & -a_3 & a_2 & a_1 \end{pmatrix}$.

H. TAKAGI

The subgroup $C' = \{b = a_1 + a_2i; a_1^2 + a_2^2 = 1, a_s \in R\}$ has an SO(2l)-representation σ defined by

$$\sigma: b \rightarrow \left(\overbrace{\begin{array}{c} B \\ \ddots \\ B \end{array}}^{l}
ight)$$
, where $B = \left(\begin{matrix} a_1 & -a_2 \\ a_2 & a_1 \end{matrix}
ight)$.

The subgroup $\{\pm 1\}$ has an O(n)-representation ε given by

$$\varepsilon:\pm 1 \mapsto \pm \begin{pmatrix} n \\ \ddots \\ 1 \end{pmatrix}.$$

Then, ρ , σ and ε are faithful. Hereafter, we identify Q', C' and $\{\pm 1\}$ with the closed subgroups $\rho(Q')$, $\sigma(C')$ and $\varepsilon(\{\pm 1\})$ of SO(4l), SO(2l) and O(n) respectively.

On the other hand, the additive group R is considered as the group of all parallel translations of E^{1} . R is a normal subgroup of the group E(1) of all isometries of E^{1} .

THEOREM 2.1 (see [1]). (i) $(S^{n-1}(K) \times E^1)/\Gamma$ is a homogeneous Riemannian manifold if and only if Γ is a discrete subgroup of $Q' \times R$, $C' \times R$ or $\{\pm 1\} \times R^{*}$. (ii) Let H be one of Q', C' and $\{\pm 1\}$. Then, a discrete subgroup Γ of $H \times R$ is of the form

(a)
$$\Gamma_1 \times \{0\}$$
 or

(b) semi-direct product group $\langle (x, y) \rangle \cdot (\Gamma_1 \times \{0\})$,

where Γ_1 is a finite subgroup of H, x an element of the normalizer $N(\Gamma_1)$ of Γ_1 in H and y a positive real number.

3. Finite subgroups of Q' (see Wolf [2]). Let R^3 be viewed as the space of pure imaginary quaternions with basis $\{i, j, k\}$. Then, we have a map $\pi: Q' \to SO(3)$ defined by $\pi(x)(x') = xx'x^{-1}$. π is a two to one ($\pi(x) = \pi(-x)$) homomorphism of Q' onto SO(3), and is a differential covering of SO(3) by S^3 . Thus, Q' is the universal covering group of SO(3).

Every finite subgroup of SO(3) appears as a group of symmetries of a regular polygon or a regular polyhedron in \mathbb{R}^3 . And these groups are given in terms of generators and relations as follows:

^{*)} For our purpose, we identify two subgroups which are conjugate in $O(n) \times E(1)$.

CONFORMALLY FLAT RIEMANNIAN MANIFOLDS

	order	generators	relations
Z_m	m	A	$A^m = 1$
\boldsymbol{D}_m	2m	A, B	$A^m = B^2 = 1, \ BAB^{-1} = A^{-1}$
T	12	A, P, Q	$A^3 = P^2 = Q^2 = 1, \ PQ = QP, \ APA^{-1} = Q, \ AQA^{-1} = PQ$
0	24	A, P, Q, R	$A^3 = P^2 = Q^2 = 1, \ PQ = QP,$ $APA^{-1} = Q, \ AQA^{-1} = PQ,$ $RAR^{-1} = A^{-1}, \ RPR^{-1} = QP, \ RQR^{-1} = Q^{-1}$
Ι	60	A, B, C	$A^3 = B^2 = C^5 = ABC = 1$

 D_m , T, O and I are called the dihedral, tetrahedral, octahedral and icosahedral groups respectively. T, I and O are isomorphic to the alternating groups A_4, A_5 and the symmetric group S_4 respectively. The binary dihedral, binary tetrahedral, binary octahedral and binary icosahedral groups are defined by

$$D_m^*=\pi^{-1}(D_m), \ T^*=\pi^{-1}(T), \ O^*=\pi^{-1}(O) \ \ ext{ and } \ \ I^*=\pi^{-1}(I) \ .$$

Wolf proved

THEOREM 3.1. Every finite subgroup of Q' is a cyclic, binary dihedral, binary tetrahedral, binary octahedral, or binary icosahedral group. If two finite subgroups of Q' are isomorphic then they are conjugate in Q'. A finite subgroup of Q' is contained in a complex subfield of Q if and only if it is cyclic, contained in the real subfield if and only if it is cyclic of order 1 or 2.

For example, we can choose generators of these groups as follows:

	order	generators	relations
Z_m	m	$a = \cos \left(2\pi/m \right) + i \sin \left(2\pi/m \right)$	$a^m = 1$
D_m^*	4 <i>m</i>	$a = \cos{(\pi/m)} + i \sin{(\pi/m)}, j$	$a^m = j^2 = -1, \ jaj^{-1} = a^{-1}$
T *	24	a = (1/2)(1 + i + j + k), i, j	$a^3=i^2=j^2=-1,ij=-ji,\ aia^{-1}=j,aja^{-1}=ij$
0*	48	a = (1/2)(1 + i + j + k), i, j, $b = (1/\sqrt{2})(i - k)$	$egin{array}{llllllllllllllllllllllllllllllllllll$
<i>I</i> *	120	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$a^3=b^2=c^5=abc=-1$ $(a^{-1}bacba=-i,\ bacb=-j)$

H. TAKAGI

Hereafter, we restrict the meaning of the notations Z_m , D_m^* , T^* , O^* and I^* to those of the above table.

LEMMA 3.1. For a subgroup G of Q', we denote by N(G) the normalizer of G in Q'. Then

(i)
$$N(\boldsymbol{Z}_1) = N(\boldsymbol{Z}_2) = \boldsymbol{Q}',$$

- (ii) $N(\mathbf{Z}_m) = \mathbf{C}' \cup \mathbf{C}' j \quad (m \geq 3),$
- (iii) $N(\boldsymbol{D}_m^*) = \boldsymbol{D}_{2m}^* \quad (m \geq 3),$
- (iv) $N(D_2^*) = N(T^*) = N(O^*) = O^*$, $N(I^*) = I^*$.

PROOF. (i) It is obvious. (ii) Let $d = a_1 + a_2 i$ and $x = x_1 + x_2 i + x_3 j + x_4 k$ be elements of Q'. Then we have

$$\begin{array}{ll} (3.1) \qquad \qquad xdx^{-1}=a_1+a_2(x_1^2+x_2^2-x_3^2-x_4^2)i+2a_2(x_1x_4+x_2x_3)j\\ \qquad \qquad +2a_2(x_2x_4-x_1x_3)k\ .\end{array}$$

Thus, if $x \in N(\mathbb{Z}_m)$ and $d = a_1 + a_2 i \in \mathbb{Z}_m$ $(a_2 \neq 0)$, then $x_1 x_4 + x_2 x_3 = x_2 x_4 - x_1 x_3 = 0$, which implies $x_1 = x_2 = 0$ or $x_3 = x_4 = 0$, that is, $x \in C' \cup C'j$. Conversely, if $d \in \mathbb{Z}_m$ and $x \in C' \cup C'j$, then $x dx^{-1} = d^{\pm 1} \in \mathbb{Z}_m$, that is, $x \in N(\mathbb{Z}_m)$. (iii) First, we note that $D_m^* = \mathbb{Z}_{2m} \cup \mathbb{Z}_{2m}j$. If $x \in N(D_m^*)$ and $d = a_1 + a_2 i \in D_m^*$ $(a_1 a_2 \neq 0)$, then, by (3.1), $x dx^{-1} \in \mathbb{Z}_{2m}$, that is, $x \in C' \cup C'j$. But, if $x \in C' \cap N(D_m^*)$ and $zj \in C'j \cap N(D_m^*)$, then $xjx^{-1} = x^2j \in D_m^*$ and $(zj)j(zj)^{-1} = z^2j \in D_m^*$, that is, $x \in \mathbb{Z}_{4m}$ and $zj \in \mathbb{Z}_{4m}j$ respectively. Thus, $N(D_m^*) \subset D_{2m}^*$. $N(D_m^*) \supset D_{2m}^*$ is clear. (iv) First, we note that

(1) $D_4^* \supset D_2^*$ (normal subgroup),

(2)
$$D^*_{2m} \supset D^*_2$$
 (not normal subgroup), $(m \ge 3)$,

- $(3) T^* \supset D_2^* (normal subgroup),$
- $(4) O^* \supset D_2^* \text{ (normal subgroup),}$
- (5) $I^* \supset D_2^*$ (not normal subgroup),

(6)
$$O^* \supset T^*$$
 (normal subgroup),

- (7) $I^* \supset T^*$ (not normal subgroup) and
- $(8) O^* \supset D_4^* .$

(1) ~ (8) are obvious from the last table and the fact that $\pi(I^*) \cong A_5$ is a simple group. Next, we prove that $N(D_2^*)$, $N(T^*)$, $N(O^*)$ and $N(I^*)$ are finite groups. Let $x = x_1 + x_2i + x_3j + x_4k$ be an element of Q'. Then,

$$xix^{-1} = (x_1^2 + x_2^2 - x_3^2 - x_4^2)i + 2(x_1x_4 + x_2x_3)j + 2(x_2x_4 - x_1x_3)k$$

and

$$xjx^{-1}=2(x_2x_3-x_1x_4)i+(x_1^2-x_2^2+x_3^2-x_4^2)j+2(x_1x_2+x_3x_4)k$$

We put

$$f_1=x_1^2+x_2^2+x_3^2+x_4^2,\,f_2=x_1^2+x_2^2-x_3^2-x_4^2,\,f_3=2(x_1x_4+x_2x_3)$$
 ,

 $f_4 = 2(x_2x_4 - x_1x_3), f_5 = 2(x_2x_3 - x_1x_4), f_6 = x_1^2 - x_2^2 + x_3^2 - x_4^2 \text{ and } f_7 = 2(x_1x_2 + x_3x_4).$ Then, a map $f: \mathbb{R}^4 \to \mathbb{R}^7$ is defined by $f(x_1, \dots, x_4) = (f_1, \dots, f_7)$. Then, it is easy to show that rank $df_x = 4$ for every $x \in \mathbb{R}^4 - \{0\}$. That is, for each point $v \in \mathbb{R}^7, f^{-1}(v) \cap S^3(1)$ is a finite set. Since $i, j \in D_2^*$, the above fact shows that $N(D_2^*), N(T^*), N(O^*)$ and $N(I^*)$ are finite set. Now the lemma is evident by $(1) \sim (8)$ and Theorem 3.1.

4. Condition for Γ and Γ' to be conjugate. Let Γ and Γ' be two groups appearing in Theorem 2.1, that is,

$$\Gamma = \langle (x, y) \rangle \cdot (\Gamma_1 \times \{0\}) , \quad \Gamma' = \langle (x', y') \rangle \cdot (\Gamma'_1 \times \{0\}) .$$

LEMMA 4.1. Γ and Γ' are conjugate in $H \times R$ if and only if (i) y = y' and there exists an element t of H satisfying (ii) $t\Gamma_1 t^{-1} = \Gamma'_1$ and (iii) $x^{-1}t^{-1}x't \in \Gamma_1$.

PROOF. Let (t, u) be an element of $H \times R$ satisfying $(t, u)\Gamma(t^{-1}, -u) = \Gamma'$. Then, we have

$$\bigcup_{k\in\mathbb{Z}}\bigcup_{s_i\in\Gamma_1}(tx^ks_it^{-1},ky)=\bigcup_{k\in\mathbb{Z}}\bigcup_{s_j'\in\Gamma_1'}((x')^ks_j',ky').$$

In particular, we have (i), (ii) and (iii). Conversely, let t be an element of H satisfying (ii) and (iii). We show that $(t, 0)\Gamma(t^{-1}, 0) = \Gamma'$. First, (iii) implies $x^{-k}t^{-1}(x')^{k}t \in \Gamma_{1}$ for every $k \in \mathbb{Z}$. In fact, by the induction, we have $x^{-k}t^{-1}(x')^{k}t \in \Gamma_{1}$ for $k \geq 0$. And $x^{k}t^{-1}(x')^{-k}t = x^{k}(x^{-k}t^{-1}(x')^{k}t)^{-1}x^{-k} \in$ Γ_{1} . Then, we have $(x')^{k}\Gamma_{1}' = tx^{k}\Gamma_{1}t^{-1}$ by (ii), and hence $(t, 0)\Gamma(t^{-1}, 0) = \Gamma'$ by (i). q.e.d.

Now, we shall classify the groups of the form $\Gamma = \langle (x, y) \rangle (\Gamma_1 \times \{0\})$ up to the conjugate classes in $H \times R$. By Lemma 4.1, we may assume that Γ_1 is $\mathbb{Z}_m, \mathbb{D}_m^*, \mathbb{T}^*, \mathbb{O}^*$ or \mathbb{I}^* of the table in Section 3. And $\Gamma = \langle (x, y) \rangle \cdot$ $(\Gamma_1 \times \{0\})$ and $\Gamma' = \langle (x', y) \rangle \cdot (\Gamma_1 \times \{0\})$ are conjugate in $H \times R$ if and only if there exists $t \in N(\Gamma_1)$ satisfying $x^{-1}t^{-1}x't \in \Gamma_1$. This assertion is detailed as follows:

(I) H = Q':

(a) $\Gamma_1 = \mathbb{Z}_1$: $\Gamma \sim \Gamma'^{*}$ if and only if there exists $t \in \mathbb{Q}'$ satisfying $x' = txt^{-1}$. But it is easy to see that $\mathbb{Q}' = \{tC't^{-1}; t \in \mathbb{Q}'\}$. Thus, we may

^{*)} $\Gamma \sim \Gamma'$ means that Γ and Γ' are conjugate in $H \times R$.

assume $x, x' \in C'$. If $txt^{-1} \in C'$ $(x \neq \pm 1)$, then $t \in C' \cup C'j$ and $txt^{-1} = x$ or x^{-1} . That is, $\Gamma \sim \Gamma'$ if and only if x' = x or x^{-1} .

(b) $\Gamma_1 = \mathbb{Z}_2$: In the same manner as (a), we may assume $x, x' \in C'$, and $\Gamma \sim \Gamma'$ if and only if $x' = x, x^{-1}, -x$ or $-x^{-1}$.

(c) $\Gamma_1 = \mathbb{Z}_m (m \ge 3)$: $\Gamma \sim \Gamma'$ if and only if there exists $t \in C' \cup C'j$ satisfying $x^{-1}t^{-1}x't \in \mathbb{Z}_m$. Then we have $(1) \sim (3)$:

(1) $x, x' \in C': \Gamma \sim \Gamma'$ if and only if $x^{-1}x' \in \mathbb{Z}_m$ or $x^{-1}(x')^{-1} \in \mathbb{Z}_m$.

(2) $x, x' \in C'j: \Gamma \sim \Gamma'$, since $x^{-1}tx't = 1 \in Z_m$ for $t \in C'$ satisfying $t^2 = x'x^{-1}$.

(3) $x \in C'j$, $x' \in C'$: $\Gamma \not\sim \Gamma'$, since $tC't^{-1} \subset C'$ and $tC'jt^{-1} \subset C'j$ for every $t \in C' \cup C'j$.

(d) $\Gamma_1 = D_2^*: \Gamma \sim \Gamma'$ if and only if there exists $t \in O^*$ satisfying $x^{-1}t^{-1}x't \in D_2^*$. We note that $O^* = D_2^* \cup (aD_2^* \cup a^2D_2^*) \cup (bD_2^* \cup baD_2^* \cup ba^2D_2^*)$, where a = (1/2)(1+i+j+k) and $b(1/\sqrt{2})(i-k)$. Then we have $(1) \sim (6)$:

(1) $x, x' \in sD_2^*$ $(s \in O^*)$: $\Gamma \sim \Gamma'$, since $x^{-1}x' \in D_2^*$.

(2) $x \in aD_z^*, x' \in a^2D_z^*: \Gamma \sim \Gamma'$, since $x^{-1}bx'b^{-1} \in D_z^*$.

(3) $x \in bD_z^*, x' \in baD_z^*: \Gamma \sim \Gamma', \text{ since } x^{-1}a^{-1}x'a \in D_z^*.$

(4) $x \in bD_2^*, x' \in ba^2D_2^*: \Gamma \sim \Gamma'$, since $x^{-1}a^{-2}x'a^2 \in D_2^*$.

(5) $x \in aD_2^*$ (or $x \in bD_2^*$), $x' \in D_2^*$: $\Gamma \not\sim \Gamma'$.

(6) $x \in bD_2^*, x' \in aD_2^*: \Gamma \not\sim \Gamma'.$

(e) $\Gamma_1 = D_m^*$ $(m \ge 3)$: $\Gamma \sim \Gamma'$ if and only if there exists $t \in D_{2m}^*$ satisfying $x^{-1}t^{-1}x't \in D_m^*$. We note that $D_{2m}^* = D_m^* \cup sD_m^*$, where $s \in D_{2m}^* - D_m^*$. Then we have (1) \sim (3):

(1) $x, x' \in D_m^*: \Gamma \sim \Gamma'$.

(2) $x \in D_{2m}^* - D_m^*, x' \in D_m^*: \Gamma \not\sim \Gamma'.$

(3) $x, x' \in D_{2m}^* - D_m^*: \Gamma \sim \Gamma'$.

(f) $\Gamma_1 = T^*: \Gamma \sim \Gamma'$ if and only if there exists $t \in O^*$ satisfying $x^{-1}t^{-1}x't \in T^*$. We note that $O^* = T^* \cup bT^*$. Then we have (1) ~ (3):

(1) $x, x' \in T^*: \Gamma \sim \Gamma'$.

(2) $x \in O^* - T^*, x' \in T^*: \Gamma \not\sim \Gamma'.$

 $(3) \quad x, x' \in \mathbf{O}^* - \mathbf{T}^*: \Gamma \sim \Gamma'.$

(g)
$$\Gamma_1 = \mathbf{0}^*: \Gamma \sim \Gamma'.$$

(h) $\Gamma_1 = I^*: \Gamma \sim \Gamma'.$

(II) $H = C', \Gamma_1 = \mathbb{Z}_m$ $(m = 1, 2, 3, \cdots)$: $\Gamma \sim \Gamma'$ if and only if $x^{-1}x' \in \mathbb{Z}_m$. (III) $H = \{\pm 1\}, \Gamma_1 = \mathbb{Z}_m$ (m = 1, 2): $\Gamma \sim \Gamma'$ if and only if $x^{-1}x' \in \mathbb{Z}_m$.

Next, we check the condition that $\Gamma = \langle (x, y) \rangle \cdot (\Gamma_1 \times \{0\})$ and $\Gamma' = \langle (x', y) \rangle \cdot (\Gamma_1 \times \{0\})$ are conjugate in $I(S^{n-1}(K) \times E^1) = O(n) \times E(1)$. It is easy to see that Γ and Γ' are conjugate in $O(n) \times E(1)$ if and only if there exists an element A of the normalizer of Γ_1 in O(n) satisfying $x^{-1}A^{-1}x'A \in \Gamma_1$ or $xA^{-1}x'A \in \Gamma_1$. Then, it is easy to check that, if Γ and

 Γ' are not conjugate in $Q' \times R$, then they are not conjugate in $O(4l) \times E(1)$. Γ and Γ' are conjugate in $O(4l+2) \times E(1)$ if and only if $x^{-1}x' \in \Gamma_1$ or $xx' \in \Gamma_1$. Γ and Γ' are conjugate in $O(2l+1) \times E(1)$ if and only if $x^{-1}x' \in \Gamma_1$ or $xx' \in \Gamma_1$.

5. Classification of $(S^{n-1}(K) \times E^1)/\Gamma$. Summing up the results of Section 4, we have the classification of the manifolds of the form $(S^{n-1}(K) \times E^1)/\Gamma$:

- (I) $(S^{4l-1}(K) imes E^1)/arGamma$:
 - (i) $\Gamma = \langle (x, y) \rangle$, where $x = \cos \theta + i \sin \theta$ $(0 \le \theta \le \pi)$.
 - (ii) $\Gamma = \langle (x, y) \rangle \cdot (\mathbb{Z}_2 \times \{0\}), \text{ where } x = \cos \theta + i \sin \theta \ (0 \le \theta \le \pi/2).$
 - (iii) $\Gamma = \langle (x, y) \rangle \cdot (Z_m \times \{0\}) \ (m = 3, 4, \cdots), \text{ where}$

$$x = \cos heta + i \sin heta \, \left(0 \leqq heta \leqq \pi/m
ight)$$

or j.

(iv) $\Gamma = \langle (x, y) \rangle \cdot (D_2^* \times \{0\})$, where x = 1, (1/2)(1 + i + j + k) or $(1/\sqrt{2})(i - k)$.

(v) $\Gamma = \langle (x, y) \rangle \cdot (D_m^* \times \{0\}) \ (m = 3, 4, \cdots), \text{ where } x = 1 \text{ or } \cos(\pi/2m) + i \sin(\pi/2m).$

(vi) $\Gamma = \langle (x, y) \rangle \cdot (T^* \times \{0\})$, where x = 1 or $(1/\sqrt{2})(i - k)$. (vii) $\Gamma = \langle (1, y) \rangle \cdot (O^* \times \{0\})$.

(viii) $\Gamma = \langle (1, y) \rangle \cdot (I^* \times \{0\}).$

(ix) $\Gamma = \Gamma_1 \times \{0\}$, where $\Gamma_1 = Z_m$ $(m = 1, 2, 3, \dots), D_m^*$ $(m = 2, 3, \dots), T^*, O^*$ or I^* .

(ii) $\Gamma = \mathbb{Z}_m \times \{0\}$ $(m = 1, 2, 3, \cdots)$ (III) $(S^{21}(K) \times E^1)/\Gamma$: (i) $\Gamma = \langle (1, y) \rangle, \langle (-1, y) \rangle$ or $\langle (1, y) \rangle \cdot (\mathbb{Z}_2 \times \{0\})$. (ii) $\Gamma = \mathbb{Z}_1 \times \{0\}$ or $\mathbb{Z}_2 \times \{0\}$.

References

[1] H. TAKAGI, Conformally flat Riemannian manifolds admitting a transitive group of isometries, to appear.

[2] J. A. WOLF, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.

College of General Education Tôhoku University Sendai, Japan