CONFORMALLY FLAT RIEMANNIAN MANIFOLDS ADMITTING A TRANSITIVE GROUP OF ISOMETRIES II

Hitoshi Takagi

(Received July 31, 1974)

1. Introduction. Let M be an n-dimensional conformally flat Riemannian manifold which admits a transitive group of isometries. In [1], the author proved that M is isometric to one of the homogeneous Riemannian manifolds of following types:

$$
\begin{equation*}
S^{n}(K) / \Gamma, \quad E^{n} / \Gamma, \quad H^{n}(-K), \tag{I}
\end{equation*}
$$

where $S^{m}(K), E^{m}$ and $H^{m}(-K)$ denote a Euclidean m-sphere of radius $K^{-1 / 2}$, a Euclidean m-space and a hyperbolic m-space of curvature $-K$ respectively. N / Γ denotes a quotient space, where Γ is a group of isometries of N acting freely and properly discontinuously. And \times denotes a Riemannian product.
J. A. Wolf (see [2]) classified the homogeneous Riemannian manifolds of the forms $S^{n}(K) / \Gamma$ and E^{n} / Γ. Thus, the problem left to us is to determine the groups Γ appearing in (IV). In [1], the author proved a few theorems about the structure of Γ. Making use of the theorem, we shall classify the manifolds of type IV completely.
2. Structure of Γ. We consider $S^{n-1}(K)$ as the set of vectors of norm $K^{-1 / 2}$ in a Euclidean vector space \boldsymbol{R}^{n}. Then, the group of all isometries of $S^{n-1}(K)$ is the orthogonal group $O(n)$. Let \boldsymbol{Q} and \boldsymbol{Q}^{\prime} denote the algebra of real quaternions and the multicative group of unit quaternions respectively. $\quad \boldsymbol{Q}^{\prime}=\left\{a=a_{1}+a_{2} i+a_{3} j+a_{4} k ; \sum_{s=1}^{4} a_{s}^{2}=1, a_{s} \in \boldsymbol{R}\right\}$ has an $S O(4 l)$-representation ρ defined by

$$
\rho: a \rightarrow(\overbrace{\left.\begin{array}{r}
A \\
\ddots \\
A
\end{array}\right)}^{l}, \quad \text { where } \quad A=\left(\begin{array}{rrrr}
a_{1} & -a_{2} & -a_{3} & -a_{4} \\
a_{2} & a_{1} & -a_{4} & a_{3} \\
a_{3} & a_{4} & a_{1} & -a_{2} \\
a_{4} & -a_{3} & a_{2} & a_{1}
\end{array}\right) \text {. }
$$

The subgroup $\boldsymbol{C}^{\prime}=\left\{b=a_{1}+a_{2} i ; a_{1}^{2}+a_{2}^{2}=1, a_{s} \in \boldsymbol{R}\right\}$ has an $S O(2 l)$-representation σ defined by

$$
\sigma: b \rightarrow(\overbrace{\left.\begin{array}{l}
B \\
\ddots \\
\cdot
\end{array}\right)}^{l}, \quad \text { where } \quad B=\left(\begin{array}{rr}
a_{1} & -a_{2} \\
a_{2} & a_{1}
\end{array}\right) .
$$

The subgroup $\{ \pm 1\}$ has an $O(n)$-representation ε given by

$$
\varepsilon: \pm 1 \rightarrow \pm(\overbrace{\left(\begin{array}{l}
1 \\
\ddots \\
\\
\\
\\
1
\end{array}\right)}^{n} .
$$

Then, ρ, σ and ε are faithful. Hereafter, we identify $\boldsymbol{Q}^{\prime}, \boldsymbol{C}^{\prime}$ and $\{ \pm 1\}$ with the closed subgroups $\rho\left(\boldsymbol{Q}^{\prime}\right), \sigma\left(\boldsymbol{C}^{\prime}\right)$ and $\varepsilon(\{ \pm 1\})$ of $S O(4 l), S O(2 l)$ and $O(n)$ respectively.

On the other hand, the additive group \boldsymbol{R} is considered as the group of all parallel translations of $E^{1} . \quad \boldsymbol{R}$ is a normal subgroup of the group $E(1)$ of all isometries of E^{1}.

Theorem 2.1 (see [1]). (i) $\left(S^{n-1}(K) \times E^{1}\right) / \Gamma$ is a homogeneous Riemannian manifold if and only if Γ is a discrete subgroup of $\boldsymbol{Q}^{\prime} \times \boldsymbol{R}, \boldsymbol{C}^{\prime} \times$ \boldsymbol{R} or $\{ \pm 1\} \times \boldsymbol{R}^{*)}$. (ii) Let H be one of $\boldsymbol{Q}^{\prime}, \boldsymbol{C}^{\prime}$ and $\{ \pm 1\}$. Then, a discrete subgroup Γ of $H \times \boldsymbol{R}$ is of the form
(a)

$$
\begin{equation*}
\Gamma_{1} \times\{0\} \quad o r \tag{b}
\end{equation*}
$$

semi-direct product group $\langle(x, y)\rangle \cdot\left(\Gamma_{1} \times\{0\}\right)$,
where Γ_{1} is a finite subgroup of H, x an element of the normalizer $N\left(\Gamma_{1}\right)$ of Γ_{1} in H and y a positive real number.
3. Finite subgroups of \boldsymbol{Q}^{\prime} (see Wolf [2]). Let \boldsymbol{R}^{3} be viewed as the space of pure imaginary quaternions with basis $\{i, j, k\}$. Then, we have a $\operatorname{map} \pi: \boldsymbol{Q}^{\prime} \rightarrow S O(3)$ defined by $\pi(x)\left(x^{\prime}\right)=x x^{\prime} x^{-1}$. π is a two to one $(\pi(x)=$ $\pi(-x)$) homomorphism of \boldsymbol{Q}^{\prime} onto $S O(3)$, and is a differential covering of $S O(3)$ by S^{3}. Thus, \boldsymbol{Q}^{\prime} is the universal covering group of $S O(3)$.

Every finite subgroup of $S O(3)$ appears as a group of symmetries of a regular polygon or a regular polyhedron in R^{3}. And these groups are given in terms of generators and relations as follows:

[^0]| | order | generators | relations |
| :--- | :---: | :--- | :--- |
| \boldsymbol{Z}_{m} | m | A | $A^{m}=1$ |
| \boldsymbol{D}_{m} | $2 m$ | A, B | $A^{m}=B^{2}=1, B A B^{-1}=A^{-1}$ |
| \boldsymbol{T} | 12 | A, P, Q | $A^{3}=P^{2}=Q^{2}=1, P Q=Q P$,
 $A P A^{-1}=Q, A Q A^{-1}=P Q$ |
| \boldsymbol{O} | 24 | A, P, Q, R | $A^{3}=P^{2}=Q^{2}=1, P Q=Q P$,
 $A P A^{-1}=Q, A Q A^{-1}=P Q$,
 $R A R^{-1}=A^{-1}, R P R^{-1}=Q P, R Q R^{-1}=Q^{-1}$ |
| \boldsymbol{I} | 60 | A, B, C | $A^{3}=B^{2}=C^{5}=A B C=1$ |

$\boldsymbol{D}_{m}, \boldsymbol{T}, \boldsymbol{O}$ and \boldsymbol{I} are called the dihedral, tetrahedral, octahedral and icosahedral groups respectively. T, I and O are isomorphic to the alternating groups A_{4}, A_{5} and the symmetric group S_{4} respectively. The binary dihedral, binary tetrahedral, binary octahedral and binary icosahedral groups are defined by

$$
\boldsymbol{D}_{m}^{*}=\pi^{-1}\left(\boldsymbol{D}_{m}\right), \boldsymbol{T}^{*}=\pi^{-1}(\boldsymbol{T}), \boldsymbol{O}^{*}=\pi^{-1}(\boldsymbol{O}) \quad \text { and } \quad \boldsymbol{I}^{*}=\pi^{-1}(\boldsymbol{I})
$$

Wolf proved
Theorem 3.1. Every finite subgroup of \boldsymbol{Q}^{\prime} is a cyclic, binary dihedral, binary tetrahedral, binary octahedral, or binary icosahedral group. If two finite subgroups of \boldsymbol{Q}^{\prime} are isomorphic then they are conjugate in \boldsymbol{Q}^{\prime}. A finite subgroup of \boldsymbol{Q}^{\prime} is contained in a complex subfield of \boldsymbol{Q} if and only if it is cyclic, contained in the real subfield if and only if it is cyclic of order 1 or 2.

For example, we can choose generators of these groups as follows:

	order	generators	relations
\boldsymbol{Z}_{m}	m	$a=\cos (2 \pi / m)+i \sin (2 \pi / m)$	$a^{m}=1$
\boldsymbol{D}_{m}^{*}	$4 m$	$a=\cos (\pi / m)+i \sin (\pi / m), j$	$a^{m}=j^{2}=-1, j a j^{-1}=a^{-1}$
T^{*}	24	$a=(1 / 2)(1+i+j+k), i, j$	$a^{3}=i^{2}=j^{2}=-1, i j=-j i$, $a i a^{-1}=j, a j a^{-1}=i j$
\boldsymbol{O}^{*}	48	$a=(1 / 2)(1+i+j+k), i, j$, $b=(1 / \sqrt{2})(i-k)$	$a^{3}=i^{2}=j^{2}=-1, i j=-j i$, $a i a^{-1}=j, a j a^{-1}=i j$, $b i b^{-1}=j i, b a b^{-1}=a^{-1}, b j b^{-1}=j^{-1}$
I^{*}	120	$a=(1 / 2)(1+i+j+k)$, $b=\frac{\sqrt{5}-1}{4} i+\frac{\sqrt{5}+1}{4} j+\frac{1}{2} k$,	$a^{3}=b^{2}=c^{5}=a b c=-1$ $\left(a^{-1} b a c b a=-i, b a c b=-j\right)$

Hereafter, we restrict the meaning of the notations $\boldsymbol{Z}_{m}, \boldsymbol{D}_{m}^{*}, \boldsymbol{T}^{*}, \boldsymbol{O}^{*}$ and I^{*} to those of the above table.

Lemma 3.1. For a subgroup G of \boldsymbol{Q}^{\prime}, we denote by $N(G)$ the normalizer of G in \boldsymbol{Q}^{\prime}. Then
(i) $N\left(\boldsymbol{Z}_{1}\right)=N\left(\boldsymbol{Z}_{2}\right)=\boldsymbol{Q}^{\prime}$,
(ii) $N\left(\boldsymbol{Z}_{m}\right)=\boldsymbol{C}^{\prime} \cup \boldsymbol{C}^{\prime} j \quad(m \geqq 3)$,
(iii) $N\left(\boldsymbol{D}_{m}^{*}\right)=\boldsymbol{D}_{2 m}^{*} \quad(m \geqq 3)$,
(iv) $\quad N\left(\boldsymbol{D}_{2}^{*}\right)=N\left(\boldsymbol{T}^{*}\right)=N\left(\boldsymbol{O}^{*}\right)=\boldsymbol{O}^{*}, \quad N\left(\boldsymbol{I}^{*}\right)=\boldsymbol{I}^{*}$.

Proof. (i) It is obvious. (ii) Let $d=a_{1}+a_{2} i$ and $x=x_{1}+x_{2} i+$ $x_{3} j+x_{4} k$ be elements of \boldsymbol{Q}^{\prime}. Then we have

$$
\begin{align*}
x d x^{-1}= & a_{1}+a_{2}\left(x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}\right) i+2 a_{2}\left(x_{1} x_{4}+x_{2} x_{3}\right) j \tag{3.1}\\
& +2 a_{2}\left(x_{2} x_{4}-x_{1} x_{3}\right) k .
\end{align*}
$$

Thus, if $x \in N\left(\boldsymbol{Z}_{m}\right)$ and $d=a_{1}+a_{2} i \in \boldsymbol{Z}_{m}\left(a_{2} \neq 0\right)$, then $x_{1} x_{4}+x_{2} x_{3}=x_{2} x_{4}-$ $x_{1} x_{3}=0$, which implies $x_{1}=x_{2}=0$ or $x_{3}=x_{4}=0$, that is, $x \in \boldsymbol{C}^{\prime} \cup \boldsymbol{C}^{\prime \prime} j$. Conversely, if $d \in \boldsymbol{Z}_{m}$ and $x \in \boldsymbol{C}^{\prime} \cup \boldsymbol{C}^{\prime} j$, then $x d x^{-1}=d^{ \pm 1} \in \boldsymbol{Z}_{m}$, that is, $x \in$ $N\left(\boldsymbol{Z}_{m}\right)$. (iii) First, we note that $\boldsymbol{D}_{m}^{*}=\boldsymbol{Z}_{2 m} \cup \boldsymbol{Z}_{2 m} j$. If $x \in \boldsymbol{N}\left(\boldsymbol{D}_{m}^{*}\right)$ and $d=$ $a_{1}+a_{2} i \in \boldsymbol{D}_{m}^{*}\left(a_{1} a_{2} \neq 0\right)$, then, by (3.1), $x d x^{-1} \in \boldsymbol{Z}_{2 m}$, that is, $x \in \boldsymbol{C}^{\prime} \cup \boldsymbol{C}^{\prime \prime} j$. But, if $x \in \boldsymbol{C}^{\prime} \cap N\left(\boldsymbol{D}_{m}^{*}\right)$ and $z j \in \boldsymbol{C}^{\prime} j \cap N\left(\boldsymbol{D}_{m}^{*}\right)$, then $x j x^{-1}=x^{2} j \in \boldsymbol{D}_{m}^{*}$ and $(z j) j(z j)^{-1}=z^{2} j \in \boldsymbol{D}_{m}^{*}$, that is, $x \in \boldsymbol{Z}_{4 m}$ and $z j \in \boldsymbol{Z}_{\mathrm{t} m} j$ respectively. Thus, $N\left(\boldsymbol{D}_{m}^{*}\right) \subset \boldsymbol{D}_{2 m}^{*} . \quad N\left(\boldsymbol{D}_{m}^{*}\right) \supset \boldsymbol{D}_{2 m}^{*}$ is clear. (iv) First, we note that

$$
\begin{equation*}
\boldsymbol{D}_{4}^{*} \supset \boldsymbol{D}_{2}^{*} \quad \text { (normal subgroup) }, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{D}_{2 m}^{*} \supset \boldsymbol{D}_{2}^{*} \text { (not normal subgroup) }, \quad(m \geqq 3), \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{T}^{*} \supset \boldsymbol{D}_{2}^{*} \text { (normal subgroup) } \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{O}^{*} \supset \boldsymbol{D}_{2}^{*} \text { (normal subgroup) } \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{I}^{*} \supset \boldsymbol{T}^{*} \text { (not normal subgroup) and } \tag{6}
\end{equation*}
$$

(1) $\sim(8)$ are obvious from the last table and the fact that $\pi\left(I^{*}\right) \cong A_{5}$ is a simple group. Next, we prove that $N\left(D_{2}^{*}\right), N\left(T^{*}\right), N\left(O^{*}\right)$ and $N\left(I^{*}\right)$ are finite groups. Let $x=x_{1}+x_{2} i+x_{3} j+x_{4} k$ be an element of \boldsymbol{Q}^{\prime}. Then,

$$
x i x^{-1}=\left(x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}\right) i+2\left(x_{1} x_{4}+x_{2} x_{3}\right) j+2\left(x_{2} x_{4}-x_{1} x_{3}\right) k
$$

and

$$
x j x^{-1}=2\left(x_{2} x_{3}-x_{1} x_{4}\right) i+\left(x_{1}^{2}-x_{2}^{2}+x_{3}^{2}-x_{4}^{2}\right) j+2\left(x_{1} x_{2}+x_{3} x_{4}\right) k .
$$

We put

$$
f_{1}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}, f_{2}=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}, f_{3}=2\left(x_{1} x_{4}+x_{2} x_{3}\right),
$$

$f_{4}=2\left(x_{2} x_{4}-x_{1} x_{3}\right), f_{5}=2\left(x_{2} x_{3}-x_{1} x_{4}\right), f_{6}=x_{1}^{2}-x_{2}^{2}+x_{3}^{2}-x_{4}^{2}$ and $f_{7}=2\left(x_{1} x_{2}+x_{3} x_{4}\right)$. Then, a map $f: \boldsymbol{R}^{4} \rightarrow \boldsymbol{R}^{7}$ is defined by $f\left(x_{1}, \cdots, x_{4}\right)=\left(f_{1}, \cdots, f_{7}\right)$. Then, it is easy to show that rank $d f_{x}=4$ for every $x \in \boldsymbol{R}^{4}-\{0\}$. That is, for each point $v \in \boldsymbol{R}^{7}, f^{-1}(v) \cap S^{3}(1)$ is a finite set. Since $i, j \in \boldsymbol{D}_{2}^{*}$, the above fact shows that $N\left(\boldsymbol{D}_{2}^{*}\right), N\left(\boldsymbol{T}^{*}\right), N\left(\boldsymbol{O}^{*}\right)$ and $N\left(\boldsymbol{I}^{*}\right)$ are finite set. Now the lemma is evident by (1) $\sim(8)$ and Theorem 3.1.
4. Condition for Γ and Γ^{\prime} to be conjugate. Let Γ and Γ^{\prime} be two groups appearing in Theorem 2.1, that is,

$$
\Gamma=\langle(x, y)\rangle \cdot\left(\Gamma_{1} \times\{0\}\right), \quad \Gamma^{\prime}=\left\langle\left(x^{\prime}, y^{\prime}\right)\right\rangle \cdot\left(\Gamma_{1}^{\prime} \times\{0\}\right) .
$$

Lemma 4.1. Γ and Γ^{\prime} are conjugate in $H \times \boldsymbol{R}$ if and only if (i) $y=y^{\prime}$ and there exists an element t of H satisfying (ii) $t \Gamma_{1} t^{-1}=\Gamma_{1}^{\prime}$ and (iii) $x^{-1} t^{-1} x^{\prime} t \in \Gamma_{1}$.

Proof. Let (t, u) be an element of $H \times \boldsymbol{R}$ satisfying $(t, u) \Gamma\left(t^{-1}\right.$, $-u)=\Gamma^{\prime}$. Then, we have

$$
\bigcup_{k \in \mathbb{Z}} \bigcup_{s_{i} \in \Gamma_{1}}\left(t x^{k} s_{i} t^{-1}, k y\right)=\bigcup_{k \in \mathbb{Z}} \bigcup_{s_{j}^{\prime} \in \Gamma_{1}^{\prime}}\left(\left(x^{\prime}\right)^{k} s_{j}^{\prime}, k y^{\prime}\right) .
$$

In particular, we have (i), (ii) and (iii). Conversely, let t be an element of H satisfying (ii) and (iii). We show that $(t, 0) \Gamma\left(t^{-1}, 0\right)=\Gamma^{\prime}$. First, (iii) implies $x^{-k} t^{-1}\left(x^{\prime}\right)^{k} t \in \Gamma_{1}$ for every $k \in \boldsymbol{Z}$. In fact, by the induction, we have $x^{-k} t^{-1}\left(x^{\prime}\right)^{k} t \in \Gamma_{1}$ for $k \geqq 0$. And $x^{k} t^{-1}\left(x^{\prime}\right)^{-k} t=x^{k}\left(x^{-k} t^{-1}\left(x^{\prime}\right)^{k} t\right)^{-1} x^{-k} \in$ Γ_{1}. Then, we have $\left(x^{\prime}\right)^{k} \Gamma_{1}^{\prime}=t x^{k} \Gamma_{1} t^{-1}$ by (ii), and hence $(t, 0) \Gamma\left(t^{-1}, 0\right)=\Gamma^{\prime}$ by (i).
q.e.d.

Now, we shall classify the groups of the form $\Gamma=\langle(x, y)\rangle\left(\Gamma_{1} \times\{0\}\right)$ up to the conjugate classes in $H \times \boldsymbol{R}$. By Lemma 4.1, we may assume that Γ_{1} is $\boldsymbol{Z}_{m}, \boldsymbol{D}_{m}^{*}, \boldsymbol{T}^{*}, \boldsymbol{O}^{*}$ or \boldsymbol{I}^{*} of the table in Section 3. And $\Gamma=\langle(x, y)\rangle$. ($\Gamma_{1} \times\{0\}$) and $\Gamma^{\prime}=\left\langle\left(x^{\prime}, y\right)\right\rangle \cdot\left(\Gamma_{1} \times\{0\}\right)$ are conjugate in $H \times \boldsymbol{R}$ if and only if there exists $t \in N\left(\Gamma_{1}\right)$ satisfying $x^{-1} t^{-1} x^{\prime} t \in \Gamma_{1}$. This assertion is detailed as follows:
(I) $H=\boldsymbol{Q}^{\prime}$:
(a) $\Gamma_{1}=\boldsymbol{Z}_{1}: \Gamma \sim \Gamma^{*}$) if and only if there exists $t \in \boldsymbol{Q}^{\prime}$ satisfying $x^{\prime}=t x t^{-1}$. But it is easy to see that $\boldsymbol{Q}^{\prime}=\left\{t \boldsymbol{C}^{\prime} t^{-1} ; t \in \boldsymbol{Q}^{\prime}\right\}$. Thus, we may

[^1]assume $x, x^{\prime} \in \boldsymbol{C}^{\prime}$. If $t x t^{-1} \in \boldsymbol{C}^{\prime}(x \neq \pm 1)$, then $t \in \boldsymbol{C}^{\prime} \cup \boldsymbol{C}^{\prime} j$ and $t x t^{-1}=x$ or x^{-1}. That is, $\Gamma \sim \Gamma^{\prime}$ if and only if $x^{\prime}=x$ or x^{-1}.
(b) $\Gamma_{1}=\boldsymbol{Z}_{2}$: In the same manner as (a), we may assume $x, x^{\prime} \in \boldsymbol{C}^{\prime}$, and $\Gamma \sim \Gamma^{\prime}$ if and only if $x^{\prime}=x, x^{-1},-x$ or $-x^{-1}$.
(c) $\Gamma_{1}=\boldsymbol{Z}_{m}(m \geqq 3): \Gamma \sim \Gamma^{\prime}$ if and only if there exists $t \in \boldsymbol{C}^{\prime} \cup \boldsymbol{C}^{\prime} j$ satisfying $x^{-1} t^{-1} x^{\prime} t \in \boldsymbol{Z}_{\boldsymbol{m}}$. Then we have (1) ~ (3):
(1) $x, x^{\prime} \in \boldsymbol{C}^{\prime}: \Gamma \sim \Gamma^{\prime}$ if and only if $x^{-1} x^{\prime} \in Z_{m}$ or $x^{-1}\left(x^{\prime}\right)^{-1} \in \boldsymbol{Z}_{m}$.
(2) $x, x^{\prime} \in \boldsymbol{C}^{\prime} j: \Gamma \sim \Gamma^{\prime}$, since $x^{-1} t x^{\prime} t=1 \in \boldsymbol{Z}_{m}$ for $t \in \boldsymbol{C}^{\prime}$ satisfying $t^{2}=x^{\prime} x^{-1}$.
(3) $x \in \boldsymbol{C}^{\prime} j, x^{\prime} \in \boldsymbol{C}^{\prime}: \Gamma \nsim \Gamma^{\prime}$, since $t \boldsymbol{C}^{\prime} t^{-1} \subset \boldsymbol{C}^{\prime}$ and $t \boldsymbol{C}^{\prime} j t^{-1} \subset \boldsymbol{C}^{\prime} j$ for every $t \in \boldsymbol{C}^{\prime} \cup \boldsymbol{C}^{\prime} j$.
(d) $\Gamma_{1}=\boldsymbol{D}_{2}^{*}: \Gamma \sim \Gamma^{\prime}$ if and only if there exists $t \in \boldsymbol{O}^{*}$ satisfying $x^{-1} t^{-1} x^{\prime} t \in \boldsymbol{D}_{2}^{*}$. We note that $\boldsymbol{O}^{*}=\boldsymbol{D}_{2}^{*} \cup\left(a \boldsymbol{D}_{2}^{*} \cup a^{2} \boldsymbol{D}_{2}^{*}\right) \cup\left(b \boldsymbol{D}_{2}^{*} \cup b a \boldsymbol{D}_{2}^{*} \cup b a^{2} \boldsymbol{D}_{2}^{*}\right)$, where $a=(1 / 2)(1+i+j+k)$ and $b(1 / \sqrt{2})(i-k)$. Then we have (1)~(6):
(1) $x, x^{\prime} \in s \boldsymbol{D}_{2}^{*}\left(s \in \boldsymbol{O}^{*}\right): \Gamma \sim \Gamma^{\prime}$, since $x^{-1} x^{\prime} \in \boldsymbol{D}_{2}^{*}$.
(2) $x \in a \boldsymbol{D}_{2}^{*}, x^{\prime} \in a^{2} \boldsymbol{D}_{2}^{*}: \Gamma \sim \Gamma^{\prime}$, since $x^{-1} b x^{\prime} b^{-1} \in \boldsymbol{D}_{2}^{*}$.
(3) $x \in b \boldsymbol{D}_{2}^{*}, x^{\prime} \in b a \boldsymbol{D}_{2}^{*}: \Gamma \sim \Gamma^{\prime}$, since $x^{-1} a^{-1} x^{\prime} a \in \boldsymbol{D}_{2}^{*}$.
(4) $x \in b \boldsymbol{D}_{2}^{*}, x^{\prime} \in b a^{2} \boldsymbol{D}_{2}^{*}: \Gamma \sim \Gamma^{\prime}$, since $x^{-1} a^{-2} x^{\prime} a^{2} \in \boldsymbol{D}_{2}^{*}$.
(5) $x \in a \boldsymbol{D}_{2}^{*}$ (or $x \in b \boldsymbol{D}_{2}^{*}$), $x^{\prime} \in \boldsymbol{D}_{2}^{*}: \Gamma \nsim \Gamma^{\prime}$.
(6) $x \in b \boldsymbol{D}_{2}^{*}, x^{\prime} \in a \boldsymbol{D}_{2}^{*}: \Gamma \nsim \Gamma^{\prime}$.
(e) $\Gamma_{1}=\boldsymbol{D}_{m}^{*}(m \geqq 3): \Gamma \sim \Gamma^{\prime}$ if and only if there exists $t \in \boldsymbol{D}_{2 m}^{*}$ satisfying $x^{-1} t^{-1} x^{\prime} t \in \boldsymbol{D}_{m}^{*}$. We note that $\boldsymbol{D}_{2 m}^{*}=\boldsymbol{D}_{m}^{*} \cup s \boldsymbol{D}_{m}^{*}$, where $s \in \boldsymbol{D}_{2 m}^{*}-\boldsymbol{D}_{m}^{*}$. Then we have (1) ~ (3):
(1) $x, x^{\prime} \in D_{m}^{*}: \Gamma \sim \Gamma^{\prime}$.
(2) $x \in \boldsymbol{D}_{2 m}^{*}-\boldsymbol{D}_{m}^{*}, x^{\prime} \in \boldsymbol{D}_{m}^{*}: \Gamma \nsim \Gamma^{\prime}$.
(3) $x, x^{\prime} \in \boldsymbol{D}_{2 m}^{*}-\boldsymbol{D}_{m}^{*}: \Gamma \sim \Gamma^{\prime}$.
(f) $\Gamma_{1}=\boldsymbol{T}^{*}: \Gamma \sim \Gamma^{\prime}$ if and only if there exists $t \in \boldsymbol{O}^{*}$ satisfying $x^{-1} t^{-1} x^{\prime} t \in \boldsymbol{T}^{*}$. We note that $\boldsymbol{O}^{*}=\boldsymbol{T}^{*} \cup b \boldsymbol{T}^{*}$. Then we have (1) (3):
(1) $x, x^{\prime} \in T^{*}: \Gamma \sim \Gamma^{\prime}$.
(2) $x \in \boldsymbol{O}^{*}-\boldsymbol{T}^{*}, x^{\prime} \in \boldsymbol{T}^{*}: \Gamma \nsim \Gamma^{\prime}$.
(3) $x, x^{\prime} \in \boldsymbol{O}^{*}-\boldsymbol{T}^{*}: \Gamma \sim \Gamma^{\prime}$.
(g) $\Gamma_{1}=\boldsymbol{O}^{*}: \Gamma \sim \Gamma^{\prime}$.
(h) $\Gamma_{1}=I^{*}: \Gamma \sim \Gamma^{\prime}$.
(II) $H=\boldsymbol{C}^{\prime}, \Gamma_{1}=\boldsymbol{Z}_{m}(m=1,2,3, \cdots): \Gamma \sim \Gamma^{\prime}$ if and only if $x^{-1} x^{\prime} \in \boldsymbol{Z}_{m}$. (III) $H=\{ \pm 1\}, \Gamma_{1}=\boldsymbol{Z}_{m}(m=1,2): \Gamma \sim \Gamma^{\prime}$ if and only if $x^{-1} x^{\prime} \in \boldsymbol{Z}_{m}$.

Next, we check the condition that $\Gamma=\langle(x, y)\rangle \cdot\left(\Gamma_{1} \times\{0\}\right)$ and $\Gamma^{\prime}=$ $\left\langle\left(x^{\prime}, y\right)\right\rangle \cdot\left(\Gamma_{1} \times\{0\}\right)$ are conjugate in $I\left(S^{n-1}(K) \times E^{1}\right)=O(n) \times E(1)$. It is easy to see that Γ and Γ^{\prime} are conjugate in $O(n) \times E(1)$ if and only if there exists an element A of the normalizer of Γ_{1} in $O(n)$ satisfying $x^{-1} A^{-1} x^{\prime} A \in \Gamma_{1}$ or $x A^{-1} x^{\prime} A \in \Gamma_{1}$. Then, it is easy to check that, if Γ and
Γ^{\prime} are not conjugate in $\boldsymbol{Q}^{\prime} \times \boldsymbol{R}$, then they are not conjugate in $O(4 l) \times$ $E(1) . \quad \Gamma$ and Γ^{\prime} are conjugate in $O(4 l+2) \times E(1)$ if and only if $x^{-1} x^{\prime} \in$ Γ_{1} or $x x^{\prime} \in \Gamma_{1} . \quad \Gamma$ and Γ^{\prime} are conjugate in $O(2 l+1) \times E(1)$ if and only if $x^{-1} x^{\prime} \in \Gamma_{1}$ or $x x^{\prime} \in \Gamma_{1}$.
5. Classification of $\left(S^{n-1}(K) \times E^{1}\right) / \Gamma$. Summing up the results of Section 4, we have the classification of the manifolds of the form $\left(S^{n-1}(K) \times E^{1}\right) / \Gamma$:
(I) $\left(S^{4 l-1}(K) \times E^{1}\right) / \Gamma$:
(i) $\Gamma=\langle(x, y)\rangle$, where $x=\cos \theta+i \sin \theta(0 \leqq \theta \leqq \pi)$.
(ii) $\Gamma=\langle(x, y)\rangle \cdot\left(\boldsymbol{Z}_{2} \times\{0\}\right)$, where $x=\cos \theta+i \sin \theta(0 \leqq \theta \leqq \pi / 2)$.
(iii) $\quad \Gamma=\langle(x, y)\rangle \cdot\left(Z_{m} \times\{0\}\right)(m=3,4, \cdots)$, where

$$
x=\cos \theta+i \sin \theta(0 \leqq \theta \leqq \pi / m)
$$

or j.
(iv) $\Gamma=\langle(x, y)\rangle \cdot\left(D_{2}^{*} \times\{0\}\right)$, where $x=1,(1 / 2)(1+i+j+k)$ or $(1 / \sqrt{2})(i-k)$.
(v) $\Gamma=\langle(x, y)\rangle \cdot\left(\boldsymbol{D}_{m}^{*} \times\{0\}\right)(m=3,4, \cdots)$, where $x=1$ or $\cos (\pi / 2 m)+$ $i \sin (\pi / 2 m)$.
(vi) $\Gamma=\langle(x, y)\rangle \cdot\left(T^{*} \times\{0\}\right)$, where $x=1$ or $(1 / \sqrt{2})(i-k)$.
(vii) $\quad \Gamma=\langle(1, y)\rangle \cdot\left(O^{*} \times\{0\}\right)$.
(viii) $\quad \Gamma=\langle(1, y)\rangle \cdot\left(I^{*} \times\{0\}\right)$.
(ix) $\quad \Gamma=\Gamma_{1} \times\{0\}$, where $\Gamma_{1}=\boldsymbol{Z}_{m}(m=1,2,3, \cdots), \boldsymbol{D}_{m}^{*}(m=2,3, \cdots)$, $\boldsymbol{T}^{*}, \boldsymbol{O}^{*}$ or I^{*}.
(II) $\quad\left(S^{4 l+1}(K) \times E^{1}\right) / \Gamma$:
(i) $\quad \Gamma=\langle(x, y)\rangle \cdot\left(Z_{m} \times\{0\}\right) \quad(m=1,2,3, \cdots)$, where

$$
x=\cos \theta+i \sin \theta \quad(0 \leqq \theta \leqq \pi / m)
$$

(ii) $\quad \Gamma=Z_{m} \times\{0\} \quad(m=1,2,3, \cdots)$
(III) $\quad\left(S^{2 l}(K) \times E^{1}\right) / \Gamma$:
(i) $\Gamma=\langle(1, y)\rangle,\langle(-1, y)\rangle$ or $\langle(1, y)\rangle \cdot\left(Z_{2} \times\{0\}\right)$.
(ii) $\Gamma=\boldsymbol{Z}_{1} \times\{0\}$ or $\boldsymbol{Z}_{2} \times\{0\}$.

References

[1] H. Takagi, Conformally flat Riemannian manifolds admitting a transitive group of isometries, to appear.
[2] J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.
College of General Education
Tôhoku University
Sendai, Japan

[^0]: ${ }^{*}$ For our purpose, we identify two subgroups which are conjugate in $O(n) \times E(1)$.

[^1]: *) $\Gamma \sim \Gamma^{\prime}$ means that Γ and Γ^{\prime} are conjugate in $H \times \boldsymbol{R}$.

