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ON MARCINKIEWICZ INTEGRAL
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1. Introduction. Let P be a closed set in R™ and d(x) = dp(x) denote
the distance of the point x from P. Let N be a positive number and
feL(R"),1< p< . We shall call the integral

2
(1.1) Jiw) = i f) = | ZOLW gy
2 o —y|

to be the Marcinkiewicz “distance function” integral of f.

Concerning this integral, following results are known:

If fe L'(R"), then the integral (1.1) converges almost everywhere in
P. In particular, if P is bounded and is contained in a finite cube @Q,
then

0*(y)
1.2 S —2__(
(1.2) To—y [ Y
18 finite almost everywhere in P.
On the other hand, if |(P| < =V, then
S 0*(y)

dy
R ,x _ y,n+2

(1.3)

18 almost everywhere finite in P. For these results we refer the reader

to Zygmund [7] and Stein [6; Chapter IJ.
The integral of the form (1.1) diverges in general outside P, so some

variants are introduced, namely

_ ') S (¥)
(1.4) Hy(z) = Snn[w — g+ 3n+z(w)dy
and
o) — o'(y)f (v)
(1.5) Hi(z) = Sm] T —y "+ " (y) dy .

In view of the relation |[d(x) — d(y)| < |* — y| we have by Jensen’s
inequality
lx . y ln+1 + 5n+2(x) ~ l x — yl'm-H + Bn+2(y) ,

1 ¢E is the complement of the set E and |E| denotes the Lebesgue measure of E.
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hence H,(x) ~ Hj(x), so that inequalities for H; immediately lead to
inequalities for H,. Also, if z€ P then d(x) = 0, so that
(1.6) H;(x) = Jy(x) (xe P)
and informations for Hj(x) on P give informations for J,(x) on P.
For H, and Hj, following results are known (see above cited refer-

ences):
If feL”(R"),1< p < o, then®

(1.7 | Hills < Ap | f ln s
iof feL”(R") and f is supported in a (finite) cube Q O P, then

(1.8) S eclH1(1)|/|!fllmdx é A I Ql .
Q
If |[P| < =, then for any (finite) cube Q,
(1.9) | S e Ha@ Nl wolge & oo
Q

On the other hand, John and Nirenberg [5] introduced the notion of
functions of bounded mean oscillation (BMO). A function @ locally inte-
grable on R" is said to be of bounded mean oscillation if

5|
o, = =\ |9(x) — @ da < o ,
|9« S%DIQI QI () ol da <

where the supremum ranges over all (finite) cubes in RB™ and @, denotes
the mean value of @ on Q, O, = (1/|Q|)SQ¢(x)dx.
They proved that if @ is of BMO, then

(1.10) S 60|¢(z)—0QlIII0IIt dx é A | Ql ,
Q

from this we obtain immediately the integrability of e°!®!/l®ls gyer any
cube. This observation and the inequalities (1.8) and (1.9) suggest that
the Marcinkiewicz integral of a bounded function would be of BMO. In
Section 2 we shall prove that this is true for the Marcinkiewicz integral
of the type (1.5), and in Section 3 show an application of this result for an
estimate of singular integral of Calderon-Zygmund type, which is an
extension of a result due to Hunt [4] for the conjugate function.

2. Marcinkiewicz integrals of bounded functions. In this section

» Here and below, A, ¢ may vary from inequalities to inequalities. A and ¢ are always
independent of the function f, the set P, the cube, etc., but may depend on the dimension
n, the exponent p and the parameter 2 or other explicitly indicated parameters.
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we shall prove that the Marcinkiewicz integral of a bounded function of
the type (1.5) is of BMO. Here we slightly change the notations.

THEOREM 1. Let P be a closed set in R", d(x) denote the distance of
x from P, and N be any positive mumber.

1°. If |(P] < oo, then for any @€ L”(R"),

2°. If P s arbitrary, them for @€ L*(R"™) supported in a finite
cube,
we define the Marcinkiewicz integral of @ by

— *W)e(y)
@.1) O(a) = Sm T s W

Then @ s integrable and of BMO on R*, and
(2.2) ol =Allell -

REMARK. If neither the conditions 1° nor 2° are satisfied, then the
integral (2.1) may diverges on a set of positive measure, so that the
conditions 1° or 2° is necessary for the validity of the theorem.

PrOOF. We begin with the following observation. For any cube @

ng O()| do < Sm' O(a) | da = S Sml __ jll(ﬁ)ffryzvﬂ(y) dy|dx

< stcpl 2w 17w)| - l"ix+ - (y)} dy ,

where S, = {xe€ R": ¢(x) # 0}. Since the inner integral of the last expres-
sion is equal to

RM

dx - S dx _
= §* —_— A3 2 y
SR" !x I'n+2 + 5n+l(y) (y) BT |x |n+2 + 1 (y)
we obtain
(2.3) [Jo@de=al |ow)ldy;
Q Sentp

this shows that under the condition 1° or 2°, @ is integrable on R".

Next, to prove that @ is of BMO, we follow the idea of Fefferman
and Stein [3, p. 152]. Let Q = @, be a cube with side length % and
center z°, and Q,, be the cube with the same center as @ whose sides
have length 2h. We shall estimate @ in Q writing @ = @, + @,, where
?; arises from @;, @ = @, + P,, P, = PYo,,, P: = P+ (1 — %o,,) and X, is the
characteristic function of @,,. Then in view of (2.3)

2.4) SQIQI(x)IdxéASQ“l(P(w)IdwéAH?’]MQI-
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To estimate @,, write

- P(¥)o*(y) d
@ Scem x° —y " + 5n+1(y) Y.

Then
@2(x) — Qq
1 1

- 5 |: — ]d .
SBQ2h¢(y) (y) Ix — y I‘n+1 + 3n+1(y) |w0 _ y |n+1 + 3ﬂ+l(y) y

The modulus of the quantity in the brackets of the right side of the last
expression does not exceed

Alz— o] |7 =y ,
17—y + o @)l e° — y [ + 0 @)

where T is a point on the segment joining the points z° and . Now,
if xe@ and ye(Q,,, then

|z —2°| < Ah, |2° —y|=ch

1z —y|~|2° —y|~]e—y],

(2.5)

so that it follows that for xe @

@O 106 ol s Ak R

To estimate the last integral, we split the range (Q,, into the union of
E, and E,, where

E =@.N{yeR"dy) =y —=°}
and
E,=(Q.Nn{yeR"0o(y) > |y —a°|}.
Since F,c{ye R™: |y — x°| = ch} in view of (2.5), we obtain

(2.7) [, =ten.| -

y—s°lzeh | £° — y "1

sAllell.r™.

Quite similarly

dy
2.8 S < mg _dy
(2.8) Ey 11l chsly—ati<sw O"T(y)
slell.| % __<ale|.r.
Iv—zlzch'.’l} — y|

From (2.4) and (2.9), the relation (2.2) follows immediately, and the proof
of Theorem 1 is completed.
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John and Nirenberg [5] proved that if @ is of BMO and integrable
and || 9|« < £, then

(2.9) SR,,(8°'°‘”“” — 1)de < %gm| o) | de .

Combining this inequality and Theorem 1, we get the following
corollary.

COROLLARY. Under the motations and assumptions of Theorem 1,
we have for any a > 0
1° 4f |(P]| < oo, then

[{ze B": |0(x)| > a}| < A(e«""*= — 1) |(P] ;
2° 4f |S,| < o where S, = {x€ R™; p(x) #~ 0}, then
l{we B |0()| > a}| < A== — 1] S, | .

As the proof shows, it is not necessary to assume in Theorem 1 that
0 is the “distance function”, and we can extend Theorem 1 as follows:

THEOREM 1. Let 0 be any non negative (finite valued) measurable
function in R, and A be any positive number.

1°. If 0 is supported in a set of finite measure, then for any
pe L*(R"),

2°. If 0 is arbitrary, then for @ € L™(R") supported in a set of finite
measure,

3°. If ¢ is bounded, then for any ® € L™(R"),
the “generalised” Marcinkiewicz integral

_ A()P(y)
O(x) = SRnl T —y "+ 5n+1(y)dy

18 of BMO on R*, and ||@||« < A||®|l.. In case of 1° or 2°, @ is inte-
grable in R".

3. An application. R. Hunt obtained an interesting estimate of the
conjugate function: Let fe L'(—7, ) and define its conjugate function
f by

zoy— — L (" @)
oY o ?S"‘ 2 tan 2t — 2) “
2

then for any « and B > 0, we have

(3.2) |{we (—nx, 7): Mf (@) < @, | fl@)| > ap}| < Ao,



386 S. YANO

where Mf is the Hardy-Littlewood maximal function of f.
To prove this result, Hunt used a lemma of Carleson [1] on an estimate
of a function of the form

Ll g
;Smw—mwuﬂz vi

this lemma, however, can be derived from a result concerning the
Marcinkiewicz integral, as pointed out by Zygmund [7]. Moreover, Hunt’s
result can be extended to n-dimensional case.

THEOREM 2. Let K be a kernel of Calderén-Zygmund type on R™;
specifically suppose

(3.3) K(z) = Q)/| =",

2 is homogeneous of degree zero, and

S Qxydx' =0,
sn—1

and
(8.4) QeLiprn, A>0.
For fe LY(R"), define
(35) Foy=tim| - K@y .

Then for any number a, B8 > 0 and for any cube Q which satisfies
(3.6) Ql=4 71,

a

we have
(3.7 l[{oeQ: | f(z)| > aB, Mf(z) < a}| < Ae™**|Q],

where Mf is the Hardy-Littlewood maximal function, and A, ¢ are con-
stants depending only on K (more precisely on the bound of 2, and the
exponent N and the bound of Lipschitz condition for 2) and the di-
mension n.

ProOF. Let P={re R": Mf(x) < «}, then P is closed. Combining
the Calderdn-Zygmund decomposition for the pair f, @, and the Whiteney
decomposition of open set into the union of cubes, we obtain the following
decompositions of (P and f (for a proof see Stein [6, p. 32] or Fefferman
[2]):

There exists a sequence of non-overlapping cubes {Q;} such that
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(P =U,Q
(3.8) lcP|=z|Q,-|§-§-ufn“
(3.9) 57\, |/ @)1 4 5 Aa,

(3.10) [f@)| = a a.e. in P,

(8.11) cdiam Q; < distance (P, @;) < Adiam @; where 1<c< A.

Now define g by
f(@) (xeP)

W= 5, f W GeQsi=12, 0
and write f =g + b. Then
(3.12) |9@)| < A ae., llgl=17]L,
(313 b@=0im P, | bwdy=0,(bl<Allf]..

Since f =g+ b, we have by definition of P |{xeQ: |f(@)| > aB, Mf(x) <
a}| £ | {xeQ:|g(x)| > ap/2}N P|+ |{xe@:|b(x)| > ap/2}n P|. Thus it
suffices to prove

(3.14) [{reQ:|9(x)| > aB}| = Ae™** | Q|
and
(8.15) H{oeQ:|b(x)| > agln P| < Ae™?| Q|

for any cube @ with (3.6).
Since g is bounded and integrable by (3.12), a result of Fefferman
and Stein [2; p. 144] shows that ¢ is of BMO and

(3.16) 191« = Allg]l. = A
Therefore by (3.12) and Schwarz 1nequahty we obtain

@l =5 |, 130) 1 dy S gl = a(l/1lay™,

IQI"Z Iall's -4 IQI‘”
From this and (1.10), we get
(3.17) [{Be @ |3@)| > ag)| < Aeaumienig=i ||,

and this reduces to (3.14) for cube @ with [Q| = (4/a) || f ||
Next, let 6 be the distance function with respect to P, then Theorem
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1, part 1° can be applied to the Marcinkiewicz integral involving this d.
Now it is known (see e.g. Zygmund [8] and Stein [6; Chapter II]) that
for xe P

~ 2
(3.18) 15(x)] gAaS _) gy
| g — y [+
and as is mentioned in Section 1, the integral on the right hand side of
(3.18) is of the same size as the integral
: o*(y)
O(a) = g d
(x) R"| x—y l‘n+1 + 6n+2(y) y
for x€ P. Thus remembering (3.8) we obtain by Corollary 1, 1°
H{zeQ:|b(x)| > ag}n P
= |{zeQ:0(») > AB}| = Ae™? | Q]

for @ with |Q| = Aa™ || f |, and this proves (8.15). The proof is com-
pleted.
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