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1. Introduction. Let P be a closed set in Rn and δ(x) = δP(x) denote
the distance of the point x from P. Let λ be a positive number and
/ e Lp(Rn), 1 ^ p ^ oo. We shall call the integral

(1.1) /,<*) = /,<*;/)
\χ — y \n+λ

to be the Marcinkiewίcz "distance function" integral of /.
Concerning this integral, following results are known:
If feLι(Bn)f then the integral (1.1) converges almost everywhere in

P. In particular, if P is bounded and is contained in a finite cube Q,
then

is finite almost everywhere in P.
On the other hand, if \$P\ <<*>», then

JR \x — y \

is almost everywhere finite in P. For these results we refer the reader
to Zygmund [7] and Stein [6; Chapter I].

The integral of the form (1.1) diverges in general outside P, so some
variants are introduced, namely

and

In view of the relation \δ(x) — δ(y)\ ^ \x — y\ we have by Jensen's
inequality

\ x - y | +* + δn+λ{x) ~ \ x - y \n+λ + δn+λ(y) ,

zE is the complement of the set E and \E\ denotes the Lebesgue measure of E.
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hence Hλ(x) & H[(x), so that inequalities for H[ immediately lead to

inequalities for Hλ. Also, if xe P then d(x) = 0, so that

(1.6) Hλ(x) = Jλ(x) (xeP)

and informations for H[(x) on P give informations for Jλ(x) on P.
For Hλ and H'λ, following results are known (see above cited refer-

ences):
If fe Lp(Rn), 1 < p < co, then2)

(1.7) II fli | U ^ A , | | / | | , ;

if f 6 L°°(Rn) and f is supported in a (finite) cube QZD P, then

(1.8)

If IC-PI < °°, then for any (finite) cube Q,

(1.9) ί e'l^ωi/ii/"-^ < oo .

On the other hand, John and Nirenberg [5] introduced the notion of
functions of bounded mean oscillation (BMO). A function Φ locally inte-
grable on Rn is said to be of bounded mean oscillation if

\\Φ\\* = s u p - ^ j j Φ ( z ) - ΦQ\dx< oo ,

where the supremum ranges over all (finite) cubes in Rn and ΦQ denotes

the mean value of Φ on Q, ΦQ = (1/1 Q |) ( Φ(x)dx.

They proved that if Φ is of BMO, then

(1.10) ( eemx)-φQιnm*dx^ A\Q\ ,
JQ

from this we obtain immediately the integrability of eclΦ]lιm* over any
cube. This observation and the inequalities (1.8) and (1.9) suggest that
the Marcinkiewicz integral of a bounded function would be of BMO. In
Section 2 we shall prove that this is true for the Marcinkiewicz integral
of the type (1.5), and in Section 3 show an application of this result for an
estimate of singular integral of Calderon-Zygmund type, which is an
extension of a result due to Hunt [4] for the conjugate function.

2. Marcinkiewicz integrals of bounded functions. In this section
2) Here and below, A, c may vary from inequalities to inequalities. A and c are always

independent of the function /, the set P, the cube, etc., but may depend on the dimension
n, the exponent p and the parameter λ or other explicitly indicated parameters.
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we shall prove that the Marcinkiewicz integral of a bounded function of
the type (1.5) is of BMO. Here we slightly change the notations.

THEOREM 1. Let P be a closed set in Rn, δ(x) denote the distance of
x from P, and λ be any positive number.

1°. // |CP| < oo, then for any φeL°°(Rn),
2°. If P is arbitrary, then for φeL°°(Rn) supported in a finite

cube,
we define the Marcinkiewicz integral of φ by

<2 i ) ^
Then Φ is integrable and of BMO on Rn, and

(2.2) || Φ II* <* A || φWn .

REMARK. If neither the conditions 1° nor 2° are satisfied, then the
integral (2.1) may diverges on a set of positive measure, so that the
conditions 1° or 2° is necessary for the validity of the theorem.

PROOF. We begin with the following observation. For any cube Q

dx=\ \\ -—B

I x — y \n+λ + on+λ(y)>

where Sφ = {x e Rn: φ(x) Φ 0}. Since the inner integral of the last expres-
sion is equal to

we obtain

(2.3) ( I Φ(x) I dx ^ A \ \φ(y)\dy;

this shows that under the condition 1° or 2°, Φ is integrable on Rn.
Next, to prove that Φ is of BMO, we follow the idea of Fefferman

and Stein [3, p. 152]. Let Q = Qh be a cube with side length h and
center x°, and Q2h be the cube with the same center as Q whose sides
have length 2h. We shall estimate Φ in Q writing Φ = Φ1 + Φ2, where
Φό arises from ψh φ = φ, + φ2, φγ = φχQ2h, φ2 = φ (1 - χQJ and χQ2h is the
characteristic function of Q2h. Then in view of (2.3)

(2.4) ( \Φι{x)\dx^A\ \φ{x)\dxSA\\φ\\x\Q\.
JQ JQzh
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To estimate Φ2, write

CLQ —
x° - y dn+x(y)

dy .

Then

Φ,(x) - aQ

= ί <p(vW(y)l —
JC«2A Ll x — y \n+x

;ι + δn+λ(y)

The modulus of the quantity in the brackets of the right side of the last
expression does not exceed

A 1 x - x° 1 1 x - y \n+λ-λ

[\x-y \n+λ + δn+λ(y)][\ x° - y \n+λ + δn

where x is a point on the segment joining the points x° and x. Now,
if x e Q and y e CQ2Λ, then

I x - x° I ^ Ah , I a° - 2/1 ^ cλ

I^ — 2 / | ^ | ^ ° — y\ ™\χ — y\ ,

so t h a t it follows t h a t for xeQ

(2.5)

To estimate the last integral, we split the range CQ2Λ into the union of
Ex and i£2, where

E1 = CQ2, ΓΊ {» 6

and

# 2 = CQ2A Π {2/ 6 2? : δ(y) > 12/ - x° |} .

Since £Ί c {# e i?71: | y — x° \ ^ ch} in view of (2.5), we obtain

(2.7)

Quite similarly

(2.8) dy

δn+1(y)

Z\\φ\\m\ —JV-—ZA\\φ\\mh->.

From (2.4) and (2.9), the relation (2.2) follows immediately, and the proof
of Theorem 1 is completed.
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John and Nirenberg [5] proved that if Φ is of BMO and integrable
and ||Φ|U ̂  K, then

(2.9) \ (ecmx)"κ - l)dx ^ A ί I φ(x) i dx .
JRn K Ji2π

Combining this inequality and Theorem 1, we get the following
corollary.

COROLLARY. Under the notations and assumptions of Theorem 1,

we have for any a > 0

1° if IC PI < °°, then

I {x e Rn: | Φ(x) \ > a} \ ^ A(ecanm- - I)"11 CP|

2° if I SΨ I < oo where Sφ = {xe Rn; φ{x) Φ 0}, then

I {z G R n : I Φ(a?) | > a } \ ^ A ( e c α / I l ί 0 1 1 - - I ) " 1 \ S φ \ .

As the proof shows, it is not necessary to assume in Theorem 1 that
δ is the "distance function", and we can extend Theorem 1 as follows:

THEOREM 1'. Let δ be any non negative (finite valued) measurable
function in Rn, and λ be any positive number.

1°. If δ is supported in a set of finite measure, then for any
φeL~(Rn),

2°. If δ is arbitrary, then for φ e L°°(Rn) supported in a set of finite
measure,

3°. If δ is bounded, then for any φeL°°(Rn),
the "generalised" Marcinkiewicz integral

φ(χ) = \Rn^rj\ -dy

is of BMO on Rn, and | | Φ | | * ^ A||9>|U. In case of 1° or 2°, Φ is inte-
grable in Rn.

3. An application. R. Hunt obtained an interesting estimate of the
conjugate function: Let feU{ — π, π) and define its conjugate function

fby

(3.1) /(*) = - 1 Γ ψ- dt ,
π J~π 2tan— (t - x)

2

then for any a and β > 0, we have

\ό.Δ) \ \£ *z \ — JL, di) IVIJ \JJ) ^ tl, \ J \ΛJ I ^
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where Mf is the Hardy-Littlewood maximal function of f.
To prove this result, Hunt used a lemma of Carleson [1] on an estimate

of a function of the form

Ί ' J . , τ ,o dy

this lemma, however, can be derived from a result concerning the
Marcinkiewicz integral, as pointed out by Zygmund [7]. Moreover, Hunt's
result can be extended to ^-dimensional case.

THEOREM 2. Let K be a kernel of Calderon-Zygmund type on Rn;
specifically suppose

(3.3) K(x) = Ω(x)/\x\n ,

Ω is homogeneous of degree zero, and

\ Ω(x')dx' = 0 ,

and

(3.4) Ω G Lip λ , λ > 0 .

For f e L\Rn), define

(3.5) f(x) = lim ( f(x - y)K{y)dy .

Then for any number a, β > 0 and for any cube Q which satisfies

(3.6) I Q I ^

we have

(3.7) I {xe Q: \ f(x) \ > aβ, Mf(x) ^a}\^ Ae~c? \Q\ ,

where Mf is the Hardy-Littlewood maximal function, and A, c are con-
stants depending only on K {more precisely on the bound of Ω, and the
exponent λ and the bound of Lipschitz condition for Ω) and the di-
mension n.

PROOF. Let P = {x e Rn: Mf(x) <: a), then P is closed. Combining
the Calderόn-Zygmund decomposition for the pair /, a, and the Whiteney
decomposition of open set into the union of cubes, we obtain the following
decompositions of ζP and / (for a proof see Stein [6, p. 32] or Fefferman
[2]):

There exists a sequence of non-overlapping cubes {Qy} such that
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(3.8) ICP^ΣIQ. l ^ -
i Oί

(3.9)

(3.10) I f(x) I g a a.e. in P ,

(3.11) c diam Q, ^ distance (P, Qy) ^ A diam Q, where 1 < c < A .

Now define g by

ί/W (seP)

ί / ( ) ώ (ί"6Qi;jβ = ̂ 2' β)

and write f = g + b. Then

(3.12) |fif(ίc)|^Aα a.e., \\g\l= \\f\l ,

(3.13) 6(^) = 0 i n P , t 6(»)d» = OJIδ-H^ A

Since f = g + b, we have by definition of P | {̂  e Q: \f(x) \ > aβ, Mf(x) ^
a}\ ^ \{xeQ:\g(x)\ > aβ/2}f]P\ + | {xe Q: \ b(x)\ > aβ/2}nP\. Thus it
suffices to prove

(3.14) I {x e Q: \ g(x) \ > aβ} \ ^ Ae-> \ Q \

and

(3.15) I {xe Q: \ b(x) \ > aβ} n P\ ^ Ae~c^ \ Q \

for any cube Q with (3.6).

Since g is bounded and integrable by (3.12), a result of Feίferman
and Stein [2; p. 144] shows that g is of BMO and

(3.16) | | 3 Ί U ^ A | | f l r | L ^ i l α .

Therefore by (3.12) and Schwarz inequality we obtain

i on, ^ ^

From this and (1.10), we get

(3.17) I {x e Q: \ g(x) \ > aβ} \ ^ A^ ( l l / l |i / β |« | } 1 V β ^ | Q \ ,

and this reduces to (3.14) for cube Q with \Q\ ^ {Ala)\\f\\ι.
Next, let δ be the distance function with respect to P, then Theorem
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1, part 1° can be applied to the Marcinkiewicz integral involving this δ.
Now it is known (see e.g. Zygmund [8] and Stein [6; Chapter II]) that
for xeP

(3.18) \b(x)\^Aa\ — ^
)R% I x — yy\n+λ

and as is mentioned in Section 1, the integral on the right hand side of
(3.18) is of the same size as the integral

Φ(x)=[ *M dy

for xeP. Thus remembering (3.8) we obtain by Corollary 1, 1°

\{xeQ:\b(x)\ >aβ}f]P\

^ \{xeQ:Φ(x)> Aβ}\ ^Ae~cβ\Q\

for Q wi th \Q\ ^ AαΓ1 [|/Hi> and this proves (3.15). The proof is com-

pleted.
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