CORRECTION AND SUPPLEMENT TO 'ON CLOSED GEODESICS OF LENS SPACES"*)

Takashi Sakai

(Received February 19, 1974)

Statement of Theorem 3 contains some errors. Sentence "Another geodesic is closed geodesic of length 2π and of multiplicity $1 . "$ in the lines $23-24$ and $28-29$ on page 410 should be replaced by "All closed geodesics of length $2 \pi / q$ are obtained as above. Other geodesics through these points are closed geodesics of length 2π (resp. π) in case of (i) (resp. (ii)) and of multiplicity $1 . "$

Nevertheless arguments in the lines $4-14$ on page 410 are valid when q is a prime or $\cos \left(2 \pi p_{1} / q\right)=\cdots=\cos \left(2 \pi p_{n} / q\right)$ holds. So Corollaries 1, 2 to Theorem 3 remain true. Thus Theorem 3 determines closed geodesics of length $2 \pi / q$.

Now we shall determine all closed geodesics of lens spaces. Generally closed geodesics of a lens space of constant curvature 1 are of length $2 \pi k / q(k=1,2, \cdots, q$: if q is odd and $k=1,2, \cdots, q / 2$: if q is even). First let us introduce the equivalence relation $\stackrel{(k)}{\sim}$ in $\left\{p_{1}, \cdots, p_{n}\right\}$. Let $s_{i}(i=1, \cdots, n)$ be an integer such that $s_{i} p_{i} \equiv k(\bmod q)$. Note that s_{i} is determined modulo q. Then we define $p_{i} \stackrel{(k)}{\sim} p_{j}$ if and only if $\cos \left(2 \pi p_{i} s_{j} / q\right)=\cos (2 \pi k / q)$. As is easily seen, this is an equivalence relation. Let $\left\{p_{1}=p_{j_{1}}, \cdots, p_{j_{m_{1}}} ; \cdots ; p_{j_{m_{b+1}+1}}, \cdots, p_{j_{m_{b}}}=p_{j_{n}}\right\}$ be a partition of $\left\{p_{1}, \cdots, p_{n}\right\}$ with respect to this equivalence relation. Now a point $p=\varphi\left(x_{1}, \cdots, x_{n}\right)$ is said to be $\stackrel{(k)}{\sim}$-adapted if there exists an $s \in\left\{m_{1}, \cdots, m_{b}\right\}$ and $x_{2 j-1}=x_{2 j}=0$ holds for $p_{j} \in\left\{p_{1}, \cdots, p_{n}\right\}-\left\{p_{j_{m_{s-1}+1}}, \cdots, p_{j_{m_{s}}}\right\}$. Now we have

Theorem 3'. Let $k=1, \cdots, q-1$ if q is odd and $k=1, \cdots, q / 2-1$ if q is even. Then through every $\stackrel{(k)}{\sim}$-adapted point there exists a unique closed geodesic of length $2 \pi k / q$ with initial direction $\varphi_{*}\left(x_{2},-x_{1}, \cdots, x_{2 n}\right.$, $-x_{2 n-1}$). This closed geodesic is of multiplicity 1 if and only if the base point is never $\stackrel{\left(k_{i}\right)}{\sim}$-adapted for all divisors $k_{i}(<k)$ of k. Every closed geodesic of length $2 \pi k / q$ may be obtained as above. Closed geodesics other than stated above are of length 2π (resp. π) if q is odd (resp. even) and

[^0]of multiplicity 1.
Finally we shall add one more corollary to this theorem.
Corollary 3. A lens space of constant curvature 1 with fundamental group of order q is homogeneous if and only if through every point there exists a closed geodesic of length $2 \pi / q$.

Proof. "only if" part is trivial. We consider the "if" part. From the assumption, equivalence class of $\stackrel{(1)}{\sim}$ is $\left\{p_{1}, \cdots, p_{n}\right\}$. Since p_{1} and consequently s_{1} is equal to 1 , we have $\cos \left(2 \pi p_{i} / q\right)=\cos (2 \pi / q)(i=1, \cdots, n)$. This means that the lens space has the homogeneous riemannian metric of constant curvature.

Department of Applied Science
Faculty of Engineering
Kyushe University
Fukuoka, Japan.

[^0]: *) Tôhoku Math. J., Vol. 23 (1971), pp. 403-411.

