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Abstract. We study a problem in discrete tomography on the free abelian group of
rank n through the theory of distributions on the n-dimensional torus, and show that there is
an intimate connection between the problem and the study of the Hodge cycles on abelian
varieties of CM-type. This connection enables us to apply our results in tomography to obtain
several infinite families of abelian varieties for which the Hodge conjecture hold.

1. Introduction. The purpose of this paper is to generalize the theory developed in
[2], which concerns discrete tomography by hook-shape windows, in order to investigate to-
mography by arbitrary windows in Zn, and show that the latter is closely connected with the
study of Hodge cycles on abelian varieties with complex multiplication by abelian CM-fields.

We give below a rough description of the problem of our main concern in the case of
windows in Z2. Let A = (C)Z

2
denote the set of C-valued functions on Z2. We write its

element in the form (a(i,j))(i,j)∈Z2 with a(i,j) ∈ C, and call it simply an array. An array with
finite support is called a window, and the set of windows is denoted by W. For any window
t = (t(i,j)) and for any array a = (a(i,j)), let dt(a) = ∑

(i,j)∈Z2 t(i,j)a(i,j) and call it the
degree of a with respect to t. The main object of our study in this paper is the set

A0
t = {(a(i,j))(i,j)∈Z2 ∈ A; max{|a(i,j)|} < ∞ and dt+(α,β)(a) = 0 for any (α, β) ∈ Z2}

of bounded arrays of degree zero with respect to every translation of t. Inspired by Ni-
vat’s works [8, 9], we investigated in [2] the structure of A0

Hn
(denoted by AHn(0)bounded

in the notation there), when the window is the characteristic function of an n-hook Hn =
{(0, 0), (1, 0), . . . , (n − 1, 0), (0, 1)} ⊂ Z2. We found in [2] that the theory of distributions
provides us with a natural and unified viewpoint for the study of the structure of A0

Hn
.

The main purpose of the present article is to show that the theory also permits us to
understand the structure of A0

t for any window t too. In the course of our study we recognize
an important role played by the characteristic polynomial mt(z,w) = ∑

(i,j)∈Z2 t(i,j)z
iw j ∈

Z[z, z−1,w ,w−1] of a window t = (t(i,j)) ∈ W and its star m∗
t (z,w) = mt(z

−1,w−1). We
will see that the intersection V (m∗

t ) ∩ T2 of the zero locus of m∗
t with the self-product of the

unit circle T controls the structure of A0
t . Furthermore, through the behavior of V (m∗

t ), we
can analyze the structure of A0

t for every window t and obtain a dimension formula for A0
t . As

an amusing consequence, we can prove in a few lines that every bounded discrete harmonic
function on Zn is constant (Proposition 5.1, Remark 5.1.1 (2)).
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On the other hand, our study of tomography will reveal unexpectedly a close connection
between the structure of A0

t and that of the Hodge rings of abelian varieties with complex mul-
tiplication by abelian CM-field. Roughly speaking, given a finite subset S ⊂ Zn, we construct
from S an infinite family AV(S) of abelian varieties, and relate the structures of the Hodge
rings of the abelian varieties in AV(S) to V (m∗

S) ∩ Tn. This connection enables us to reduce
the study of the Hodge rings to that of the zero locus of the characteristic polynomial. By
applying our theory to the simplest finite subset O = {(0, . . . , 0)} ⊂ Zn, for example, we see
that every abelian variety in AV(O) is simple and satisfies the Hodge conjecture (Proposition
6.7).

The plan of this paper is as follows. In Section 2, we introduce some notation and for-
mulate the basic problems of our concern. In Section 3 we generalize some results in [2] and
obtain a dimension formula for A0

t for an arbitrary window t. A crucial role is played by the
theory of distributions on Tn and their Fourier transforms. In Section 4 we investigate the
periodicity of arrays in A0

t and give a characterization for A0
t to contain a multiply periodic

array. Section 5 examines several examples and shows how to apply the general results to
investigate concrete examples of windows. In Section 6 we reveal an intimate connection be-
tween discrete tomography and the study of the Hodge rings of abelian varieties with complex
multiplication by abelian CM-field.

The author would like to take this opportunity to thank Professor Sadao Sato for helpful
conversations and suggestions.

2. Problem setting. In this section we introduce some notation and formulate the
basic problems of our concern.

Let A = (C)Z
n

denote the set of C-valued functions on Zn. We write its element in the
form a = (ai) where i = (i1, . . . , in) ∈ Zn and ai ∈ C. We call an element of A simply an
array. When there exists a positive constant C such that |ai| < C for any i ∈ Zn, the array
is said to be bounded. We denote the set of bounded arrays by A0. For any array a = (ai),
let supp a = {i ∈ Zn; ai �= 0} ⊂ Zn and call it the support of a. An array with finite support
is called a window, and the set of windows is denoted by W. For any window t = (ti) and
for any array a = (ai), let dt(a) = ∑

i∈Zn tiai and call it the degree of a with respect to t.
Furthermore, let

A0
t = {a ∈ A0; dt+p(a) = 0 for any p ∈ Zn} ,

the set of bounded arrays of degree zero with respect to every translation of t. Here the
translated window t + p is defined by (t + p)i = ti−p, i ∈ Zn. The main problems we study in
this paper are the following:

(2.a) Find a condition for finite-dimensionality of A0
t .

(2.b) Find an explicit formula for the dimension of A0
t .

(2.c) Find a condition under which A0
t contains a multiply periodic array.

3. Dimension formula for A0
t . In this section we investigate the problems (2.a) and

(2.b) by appealing to the theory of pseudomeasures on the n-dimensional torus.
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In order to formulate our result, we introduce some notation. For any window t =
(ti) ∈ W, let mt(z) = ∑

i∈Zn tizi ∈ C[z1, z
−1
1 , . . . , zn, z

1
n], where z = (z1, . . . , zn) and

zi = z
i1
1 · · · zinn . We call it the characteristic polynomial of t. Let T = {z ∈ C; |z| = 1} and

let ι : Tn → Tn denote the automorphism of Tn defined by ι(z1, . . . , zn) = (z−1
1 , . . . , z−1

n ).
We put m∗

t = ι∗(mt) so that m∗
t (z) = mt(ι(z)). For any subset X ⊂ Cn, we denote the zero

locus {z ∈ X;mt(z) = 0} by VX(mt). Let P denote the set of pseudomeasures on Tn (see
[1]). For any pseudomeasure S we denote its Fourier transform by Ŝ, which belongs by defi-
nition to �∞(Zn). Note that if we put fk(x) = ∏

1≤j≤n e−ikj xj , where k = (k1, . . . , kn) ∈ Zn

and x = (x1, . . . , xn) ∈ Rn, then the equality (fkS)
∧( p) = Ŝ( p + k) holds for any p =

(p1, . . . , pn) ∈ Zn. Therefore we see that

(m∗
t S)

∧( p) =
∑
k∈Zn

tkŜ(p + k) holds for any p ∈ Zn .(3.1)

Now let a = (ai) ∈ A0
t and let A denote the Fourier transform of a. Note that A is a pseu-

domeasure, since (ai) ∈ A0 = �∞(Zn). Furthermore, it follows from (3.1) that

(m∗
t A)

∧( p) =
∑
k∈Zn

tkap+k ,

which is equal to zero for any p ∈ Zn, since a = (ai) ∈ A0
t . Hence, by the injectivity of

Fourier transform, we havem∗
t A = 0. Thus we obtain the following

PROPOSITION 3.1. Notation being as above, we have suppA ⊂ VTn (m
∗
t ).

Recall that a pseudomeasure with a finite support is a measure ([1, 12.33]). Thus if we assume
that #(VTn (m

∗
t )) < ∞, then the Fourier transform A of an arbitrary array a ∈ A0

t is expressed
as A = ∑

α∈VT n (m
∗
t )
cαδα for some cα ∈ C, where δα denotes the Dirac δ-function placed at

α = (α1, . . . , αn) ∈ Tn. Conversely, if we assume that α ∈ VT n(m
∗
t ), then we can show that

the Fourier transform δ̂α belongs to A0
t as follows. Let αj = eiaj , 1 ≤ j ≤ n. Then we see

that

δ̂α( p) = δα(e
−ip1x1, . . . , e−ipnxn) = e−ip1a1 · · · e−ipnan = α

−p1
1 · · ·α−pn

n .

Therefore, if we put aα = (aα
i ) = δ̂α ∈ �∞(Zn), then

dt+p(aα) =
∑
i∈Zn

ti−paα
i =

∑
i∈Zn

tiα
−i−p = α−pm∗

t (α) = 0 ,

since we are assuming that α ∈ VTn (m
∗
t ). Thus we obtain the following.

THEOREM 3.2. Suppose that VT n(m
∗
t ) is a finite set. Then for any window t, the space

A0
t is isomorphic through the Fourier transform to the space 〈δα; α ∈ VTn (m

∗
t )〉C spanned by

the Dirac δ-functions placed at α ∈ VTn (m
∗
t ). In particular, we have

dimC A0
t = #(VTn (m

∗
t )) .

The following proposition deals with the case when VT n(m
∗
t ) is infinite.

PROPOSITION 3.3. When VTn (m
∗
t ) is infinite, the space A0

t is infinite-dimensional.
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PROOF. Assume that VTn (m
∗
t ) is infinite, and take mutually distinct elements zk ∈

VT n(m
∗
t ), k ∈ Z≥0. We show that the array ak = (z−i

k )i∈Zn belongs to A0
t for any k ∈ Z≥0,

and they are linearly independent. We may assume that the first coordinates of zk, k ∈ Z≥0,
are mutually distinct, since at least one of pj ({zk; k ∈ Z}), 1 ≤ j ≤ n, where pj denotes
the projection to the j -th coordinate, must be an infinite subset of T . Note that each array
ak, k ∈ Z≥0, is bounded, since zk ∈ Tn. Furthermore we can compute the degree of ak with
respect to the translated windows t + p, p ∈ Zn, as follows:

dt+p(ak) =
∑
i∈Zn

ti−pz−i
k

∑
i∈Zn

tiz
−i−p
k = z−p

k

∑
i∈Zn

tiz
−i
k = z−p

k m∗
t (zk) = 0 ,(3.2)

by the assumption zk ∈ VT n(m
∗
t ), k ∈ Z. Therefore, ak ∈ A0

t for any k. Furthermore we
can show that the arrays ak, k ∈ Z≥0, are linearly independent as follows. Let z1

k = p1(zk).
Then we see that (ak)(i,0,...,0) = (z1

k)
−i , and hence the arrays ak restrict to the sequences

((ak)i)i∈Z×{(0,...,0)} = ((z1
k)

−i)i∈Z , which are linearly independent. This completes the proof
of Proposition 3.3.

4. Periodicity of arrays in A0
t . In this section we give a simple criterion for A0

t to
contain a multiply periodic array.

Let µn ⊂ T denote the set of the n-th roots of unity and let µ∞ = ⋃
n≥1 µn. Let

ζn = e2πi/n ∈ µn. An array a = (ai)i∈Zn ∈ A is said to be n-ply periodic, if there exists a
nonzero c = (c1, . . . , cn) ∈ Zn≥1 such that ai = ai+c holds for any i ∈ Zn. The following
theorem provides us with a criterion for periodicity:

THEOREM 4.1. For any window t, there exists a nonzero n-ply periodic array in A0
t if

and only if Vµn∞(mt) �= ∅.

REMARK. The condition Vµn∞(mt) �= ∅ is equivalent to Vµn∞(m
∗
t ) �= ∅, since ι restricts

to a bijection on µn∞.

PROOF. If-part: Suppose that Vµn∞(mt) �= ∅. Take any z0 ∈ Vµn∞(m
∗
t ) and let a0 =

(z−i
0 )i∈Zn . One can check easily that it is n-ply periodic with period (o1, . . . , on), where

oj , j ∈ [1, n], denotes the order of pj (z0), and it belongs to A0
t as is seen in (3.2).

Only-If part: Suppose that a = (ai)i∈Zn ∈ A0
t is a nonzero n-ply periodic array with

period c = (c1, . . . , cn) ∈ Zn≥1. Let ζc = (ζc1, . . . , ζcn). For any d, e ∈ Zn, we let [d, e] =∏
1≤j≤n[dj , ej ] ⊂ Zn and let d ∗ e = (d1e1, . . . , dnen) ∈ Zn. Let 0 = (0, . . . , 0), 1 =

(1, . . . , 1) ∈ Zn. For any α ∈ [0, c − 1] and i ∈ Zn, let

bα
i =

∑
k∈[i,i+c−1]

ζ (k−i)∗α
c ak ,(4.1)

and put bα = (bα
i )i∈Zn ∈ A. It is evident that the array bα is bounded. Since A0

t is a C-vector
space, all of these arrays bα,α ∈ [0, c − 1], belong to A0

t . Furthermore we have the following

LEMMA 4.1.1. At least one of bα,α ∈ [0, c − 1], is a nonzero array.
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PROOF. It follows from (4.1) that

bα0 =
∑

k∈[0,c−1]
ζ k∗α

c ak ,

This equality can be regarded as giving a linear transformation which sends (ak)k∈[0,c−1] ∈
C[0,c1−1] ⊗ · · · ⊗ C[0,cn−1] to (bα

0 )α∈[0,c−1] ∈ C[0,c1−1] ⊗ · · · ⊗ C[0,cn−1] through the tensor

product of the matrices (ζ
kj αj
cj )(kj ,αj )∈[0,cj−1]×[0,cj−1] ∈ End(Ccj ), 1 ≤ j ≤ n, of van der

Monde-type. Therefore if a is nonzero array, then (ak)k∈[0,c−1] is nonzero by the periodicity,
which implies that at least one of bα does not vanish. This completes the proof of Lemma
4.1.1.

Moreover we notice the following:

LEMMA 4.1.2. For any i ∈ Zn, we have ζ
αj
cj bα

i = bα
i−ej

for any j ∈ [1, n], where
ej denotes the j -th standard basis of Zn.

PROOF OF LEMMA 4.1.2. This is a consequence of the periodicity of a, since for any
j ∈ [1, n] we have

ζ
αj
cj

( ∑
ij≤kj≤ij+(cj−1)

ζ
(kj−ij )αj
cj ak

)
=

∑
ij≤kj≤ij+(cj−1)

ζ
(kj+1−ij )αj
cj ak

=
∑

ij≤kj≤ij+(cj−1)

ζ
(kj−ij )αj
cj ak−ej .

This finishes the proof of Lemma 4.1.2.

REMARK. This lemma expresses in concrete terms the spectral decomposition of the
periodic arrays.

Now going back to the proof of Theorem 4.1, we take any nonzero bα whose existence is
assured by Lemma 4.1.1. It follows from Lemma 4.1.2 that none of the entries of bα vanishes.
Furthermore, the same lemma shows that bα = (bα

0 ζ−k∗α
c )k∈Zn = bα

0 (ζ
−k∗α
c )k∈Zn , and hence

the array (ζ−k∗α
c )k∈Zn belongs to A0

t . Therefore the argument employed when we showed
(3.2) implies again that mt(ζ

−α
c ) = 0, and hence Vµn∞(mt) �= ∅. This completes the proof of

Theorem 4.1.
We see from the proof above that we can restate the content of the theorem in more

precise form.

COROLLARY (of the proof). For any window t, there exists a nonzero n-ply periodic
array with period (c1, . . . , cn) in A0

t if and only if Vµc1 ×···×µcn (mt) �= ∅.

When a window t is defined over Q, namely when t ∈ (Q)Z
n
, Theorem 4.1 provides us

with a stronger result. Let A0
t (Z) denote the subset of A0

t consisting of Z-valued arrays.
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PROPOSITION 4.2. For any window t defined over Q, there exists a nonzero n-ply
periodic array in A0

t (Z) if and only if Vµn∞(mt) �= ∅. More precisely, there exists a nonzero
n-ply periodic array with period (c1, . . . , cn) in A0

t (Z) if and only if Vµc1 ×···×µcn (mt) �= ∅.

PROOF. It suffices to construct a nonzero periodic array with period (c1, . . . , cn) in
A0

t (Z) under the hypothesis that Vµc1×···×µcn (mt) �= ∅. Taking any element z0 ∈
Vµc1×···×µcn (mt), let a=(ai)i∈Zn with ai =z i

0. Note that a is periodic with period (c1, . . . , cn).
Let K be the finite extension of Q obtained by adjoining the coordinates of z0, and let
G = Gal(K/Q). Since t is defined over Q, every Galois conjugate aσ = (aσi ), σ ∈ G,
of a belongs to A0

t too, and has the same period as a. Therefore their sum b = ∑
σ∈G aσ ,

which is periodic with period (c1, . . . , cn) as the sum of such arrays, belongs to A0
t (Z), since

the entries of a are algebraic integers inK . Furthermore, it is not equal to the zero array, since
b0 = ∑

σ∈G 1 = #(G) �= 0. This completes the proof of Proposition 4.2.

5. Applications. In this section, we apply Theorem 3.2 and Theorem 4.1 to determine
the structure of A0

t for some examples of 2-dimensional windows.
We specify below a window by displaying its nonzero entries placed at the underlying

lattice points. Note that the structure of A0
t remains invariant by the very definition wherever

we translate the window by the elements of Z2.

5.1. Window tharmonic:

(“−4” is placed at the origin. See Remark 5.1.1 (1) below for the reason why we call it
harmonic.) The characteristic polynomial is given by mtharmonic = w + (z− 4 + z−1)+ w−1.
Let (z0,w0) ∈ VT 2(m∗

tharmonic
). Then we have

m∗
tharmonic

(z0,w0) = mtharmonic(z
−1
0 ,w−1

0 ) = w−1
0 + (z−1

0 − 4 + z0)+ w0 = 0 ,

and hence w0+z0+z−1
0 +w−1

0 = 4. This is possible only if z0 = w0 = 1, since (z0,w0) ∈ T2.
Hence we see that VT 2(m∗

tharmonic
) = {(1, 1)} and dim A0

tharmonic
= #(VT 2(m∗

tharmonic
)) = 1 by

Theorem 3.2. On the other hand, it is clear that the all-one array 1 belongs to A0
tharmonic

. Hence
we obtain the following.

PROPOSITION 5.1. For the window tharmonic, we have A0
tharmonic

= {c.1; c ∈ C}.
REMARK 5.1.1. (1) Note that an array a = (a(i,j))(i,j)∈Z2 belongs to A0

tharmonic
if and

only if it is bounded and a(i,j) = (a(i+1,j)+a(i,j+1)+a(i−1,j)+a(i,j−1))/4 for any (i, j) ∈ Z2.
Hence it gives rise to a discrete harmonic function on the lattice Z2. Thus Proposition 5.1 says
that any bounded discrete harmonic function on Z2 must be constant.
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(2) One can generalize the proposition to the n-dimensional window tnharmonic defined
by

(tnharmonic)i =




−2n , if i = 0 ,

1 , if
∑

1≤j≤n |ij | = 1 ,

0 , otherwise .

Thus any bounded discrete harmonic function on Zn must be constant.

5.2. Window tstairs(N) (N ≥ 1) :

Precisely speaking, we define tstairs(N) = (t(i,j)) by

t(i,j) =
{

1 , if 0 ≤ i, j, i + j ≤ N ,

0 , otherwise .

The characteristic polynomial is given by

mtstairs(N) = wN + (1 + z)wN−1 + · · · + (1 + z+ · · · + zN−1)w + (1 + z+ · · · + zN) .

Note that mtstairs(N) is symmetric in z and w , reflecting the symmetry of the figure. Since

(1 − w)mtstairs(N)(1,w) = (1 − w)(wN + 2wN−1 + · · · +Nw + (N + 1))

= (N + 1)− (w + w2 + · · · + wN+1) ,

we see that if (1,w0) ∈ VT 2(mtstairs(N)), then w0 is necessarily equal to one. Noting that
mtstairs(N)(1, 1) = (N + 1)(N + 2)/2 �= 0, we see by symmetry that if (z0,w0) ∈
VT 2(mtstairs(N)), then neither z0 nor w0 are equal to one. Furthermore, since

(1 − z)mtstairs(N)(z,w) = (1 − z)wN + (1 − z2)wN−1 + · · · + (1 − zN+1)

= (wN + wN−1 + · · · + 1)− z(wN + zwN−1 + · · · + zN) ,
(5.1)

a similar argument shows that if (z0,w0) ∈ VT 2(mtstairs(N)), then z0 �= w0. These considera-
tions lead us to the following.

PROPOSITION 5.2. Let R∗
n = µn − {1}, the set of nontrivial n-th roots of unity, and

let ∆n denote the diagonal of R∗
n × R∗

n. Then we have

VT 2(mtstairs(N)) = (R∗
N+1 × R∗

N+1 −∆N+1) ∪ (R∗
N+2 × R∗

N+2 −∆N+2) .(5.2)
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PROOF. Let (z0,w0) ∈ VT 2(mtstairs(N)). Since we already know that z0,w0 �= 1, and
z0 �= w0, it follows from (5.1) that

(1 − z0)mtstairs(N)(z0,w0) = 1 − wN+1
0

1 − w0
− zN+1

0
1 − (w0/z0)

N+1

1 − (w0/z0)
= 0 .

Letting z0 = eiθ ,w0 = eiϕ , we have the equality

sin(N + 1)ϕ/2

sin ϕ/2
eiNϕ/2 − ei(N+1)θ sin(N + 1)(ϕ − θ)/2

sin(ϕ − θ)/2
eiN(ϕ−θ)/2 = 0 .(5.3)

When sin(N + 1)ϕ/2 = 0, it follows from this equality that sin(N + 1)(ϕ− θ)/2 = 0. Hence
we have zN+1 = wN+1 = 1. On the other hand, when sin(N + 1)ϕ/2 �= 0, the equality (5.3)
implies that ei(N+1)θ · eiN(ϕ−θ)/2/eiNϕ/2 ∈ R, namely ei(N+2)θ/2 ∈ R, and hence z0 ∈ RN+2.
By symmetry we have w0 ∈ RN+2. Hence we see that

(z0,w0) ∈ (R∗
N+1 × R∗

N+1 −∆N+1) ∪ (R∗
N+2 × R∗

N+2 −∆N+2) .(5.4)

Conversely, assume that (5.4) holds. When (z0,w0) ∈ (R∗
N+1 × R∗

N+1 − ∆N+1),

mtstairs(N)(z0,w0) vanishes trivially. On the other hand, if (z0,w0) ∈ (R∗
N+2 ×R∗

N+2 −∆N+2),
then

(1 − z0)mtstairs(N)(z0,w0) = 1 − wN+1
0

1 − w0
− zN+1

0
1 − (w0/z0)

N+1

1 − (w0/z0)

= 1 − w−1
0

1 − w0
− z−1

0
1 − (w0/z0)

−1

1 − (w0/z0)

= w−1
0

w0 − 1

1 − w0
− w−1

0
w0 − z0

z0 − w0
= 0 ,

and hence (z0,w0) ∈ VT 2(mtstairs(N)). This completes the proof of Proposition 5.2.

Note that the right hand side of (5.2) is stable under ι : T2 → T2. Hence we see that

VT 2(m
∗
tstairs(N)

) = (R∗
N+1 × R∗

N+1 −∆N+1) ∪ (R∗
N+2 × R∗

N+2 −∆N+2)(5.5)

holds too. Since #(R∗
n × R∗

n − ∆n) = (n − 1)2 − (n − 1) = (n − 1)(n − 2) for any n and
(R∗

N+1 × R∗
N+1 − ∆N+1) ∩ (R∗

N+2 × R∗
N+2 − ∆N+2) = ∅, the equality (5.5) together with

Theorem 3.2 implies the following.

COROLLARY 5.2.1. dimA0
tstairs(N)

= 2N2 for any N ≥ 1.

In order to deal with the periodicity of arrays in A0
tstairs(N)

, we note that the equalities

VT 2(mtstairs(N)) = Vµ2∞(mtstairs(N)) = (Vµ2
N+1
(mtstairs(N))) ∪ (Vµ2

N+2
(mtstairs(N)))

hold by Proposition 5.2. Therefore we obtain the following corollary by Theorem 4.1:

COROLLARY 5.2.2. Every array in A0
tstairs(N)

is doubly periodic with period ((N +
1)(N + 2), (N + 1)(N + 2)).
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REMARK. When N = 1, then the window tstairs(1) coincides with the 2-hook H2

investigated in our previous paper [2], and Corollary 5.2.1 gives the correct dimension (= 2)
of A0

H2
.

5.3. Window tleg(a, b):

The characteristic polynomial mt leg(a,b)(z,w) is given by

mtlog(a,b)(z,w) = wb + wb−1 + · · · + w + (1 + z+ · · · + za) .

Its zero locus is determined as follows.

PROPOSITION 5.3. VT 2(mtleg(a,b)) = (R∗
a × R∗

b+1) ∪ (R∗
a+1 × R∗

b) ∪∆′
a+b+1, where

∆′
a+b+1 = {(z,w) ∈ R∗

a+b+1 × R∗
a+b+1; zw = 1}.

PROOF. By symmetry, we may assume that a ≥ b. Let (z0,w0) ∈ VT 2(mtleg(a,b)) and
let z0 = eiθ ,w0 = eiϕ . Then z0 �= 1, since any sum of b (< a + 1) elements of T cannot
make a + 1. On the other hand, if w0 = 1, then

mt leg(a,b)(z0, 1) = b + (1 + z0 + · · · + za0)

= b + 1 − za+1
0

1 − z0
= b + sin((a + 1)θ/2)

sin(θ/2)
eiaθ/2

= 0 ,

and hence aθ ∈ 2πZ, which implies za0 = 1. This in turn implies b + (1 + z0 + · · · + za0) =
b + 1 = 0, which is impossible. Thus we see that neither z0 nor w0 are equal to one. Hence
we have

mt leg(a,b)(z0,w0) = w0
1 − wb

0

1 − w0
+ 1 − za+1

0

1 − z0
= 0 .(5.6)

This gives us the equality

sin(bϕ/2)

sin(ϕ/2)
+ sin((a + 1)θ/2)

sin(θ/2)
ei(aθ−(b+1)ϕ)/2 = 0 .(5.7)

First we consider the case sin(bϕ/2) = 0. It follows that sin((a + 1)/2) = 0, and hence

za+1
0 = wb

0 = 1 .(5.8)

Next we consider the case sin(bϕ/2) �= 0. This implies through (5.7) that aθ−(b+1)ϕ ∈
2πZ, and hence

wb+1
0 = za0 .(5.9)
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Therefore, it follows from (5.6) that

1 − za+1
0 − w0z0 + w0z

a+1
0 − wb+1

0 + z0wb+1
0 = 0 .

Inserting (5.9) into this, we see that

1 − za+1
0 − w0z0 + w0z

a+1
0 − za0 + za+1

0 = 1 − w0z0 + w0z
a+1
0 − za0

= (1 − w0z0)(1 − za0) = 0 ,

and hence w0 = 1/z0 or za0 = 1. When w0 = 1/z0, (5.9) gives us the equality za+b+1
0 = 1

and

zb0mtleg(a,b)(z0,w0) = 1 + z0 + · · · + zb−1
0 + zb0(1 + z0 + · · · + za0) = 0 ,

which implies thatmt leg(a,b)(z0,w0) = 0. When za0 = 1, (5.9) gives us the equality wb+1
0 = 1.

Hence, taking (5.8) into account, we see that (z0,w0) ∈ ∆′
a+b+1 ∪ R∗

a × R∗
b+1 ∪ R∗

a+1 × R∗
b .

Since the converse inclusion can be checked easily, this completes the proof of Proposition
5.3.

Note that the pairwise intersections of three subsets R∗
a ×R∗

b+1, R∗
a+1 ×R∗

b , and∆′
a+b+1

are computed to be

(R∗
a × R∗

b+1) ∩∆′
a+b+1 = ∆′

(a,b+1) , (R∗
a+1 × R∗

b ) ∩∆′
a+b+1 = ∆′

(a+1,b) ,

(R∗
a × R∗

b+1) ∩ (R∗
a+1 × R∗

b ) = ∅ .
Hence we see that

#((R∗
a×R∗

b+1) ∪ (R∗
a+1 × R∗

b ) ∪∆′
a+b+1)

= #(R∗
a × R∗

b+1)+ #(R∗
a+1 × R∗

b )+ #(∆′
a+b+1)− #(∆′

(a,b+1))− #(∆′
(a+1,b))

= (a − 1)b + a(b − 1)+ (a + b)− ((a, b + 1)− 1)− ((a + 1, b)− 1)

= 2(ab+ 1)− (a, b + 1)− (a + 1, b) .

Furthermore, note that these three subsets are stable under ι : T2 → T2. Hence the proposi-
tion together with Theorem 3.2 implies the following dimension formula.

COROLLARY 5.3.1. For any pair (a, b) of positive integers, we have

dim A0
t leg(a,b)

= 2(ab+ 1)− (a, b + 1)− (a + 1, b) .(5.10)

As for the periodicity, Proposition 5.3 implies through Theorem 4.1 the following:

COROLLARY 5.3.2. Every array in A0
t leg(a,b)

is doubly periodic.

REMARK. When b = 1, the window tleg(a, 1) coincides withHa+1, called (a+1)-hook
and investigated in [2]. Theorem 6.8 in that paper gives the dimension formula

dim A0
Ha+1

=
{

2a , if a is odd ,
2a − 1 , if a is even .

(5.11)

On the other hand, the formula (5.10) with b = 1 provides us with

dim A0
t leg(a,1)

= 2(a + 1)− (a, 2)− (a + 1, 1) = 2a + 1 − (a, 2) ,
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which is readily seen to coincide with (5.11).

5.4. Window tcross:

The characteristic polynomial mtcross(z,w) is given by

mtcross(z,w) = w + (z+ 1 + z−1)+ w−1 .

Hence VT 2(mtcross) = VT 2(m∗
tcross

) = {(z,w) ∈ T2; (w + w−1) + (z + z−1) = −1}. Since
z + z−1 (resp. w + w−1) takes any real values between −2 and 2 on T , we see that the
set {(z,w) ∈ T2; (w + w−1) + (z + z−1) = −1} is infinite in contrast to the previous
examples. Therefore the space A0

tcross
is of infinite dimension by Proposition 3.3. One can

show, however, that the subspace A0,periodic
tcross

of A0
tcross

consisting of doubly periodic arrays is
finite-dimensional. Indeed, it follows from the main theorem of [11] that

Vµ2∞(mtcross) = {(−1, ζ±1
6 ), (ζ±1

6 ,−1), (±i, ζ±1
3 ), (ζ±1

3 ,±i), (ζ±1
5 , ζ±2

5 ), (ζ±2
5 , ζ±1

5 )} ,

and hence we see from Theorem 3.2 and Theorem 4.1 that dim A0,periodic
tcross

= 20.

6. Application to the study of Hodge cycles. In this section we recall the definition
of nondegeneracy of an abelian variety of CM-type, and review certain examples of stably
nondegenerate abelian varieties. Thereafter we show that our results in discrete tomography
play an important role in the study of the ring of Hodge cycles on abelian varieties of CM-type.

Recall that an abelian variety A of CM-type is said to be stably nondegenerate if there
are no nondivisorial Hodge cycles on A as well as on any of its self-products [3]. If A is not
stably nondegenerate, then it is said to be stably degenerate. In particular, if A is stably non-
degenerate, then the Hodge conjecture holds for any An, n ≥ 1. For example, the following
abelian varieties of CM-type are known to be stably nondegenerate:

(i) The jacobian variety of the hyperelliptic curve y2 = xp − 1 for an arbitrary odd
prime p ([6]).

(ii) Certain factors of the jacobian variety of the Fermat curve xm + ym = zm ([12]).
(iii) The jacobian variety of the Catalan curve yq = zp − 1 for arbitrary pair of distinct

odd primes p, q([4]).
(See [7] for more examples of stably nondegenerate abelian varieties as well as stably degen-
erate ones.) The common feature of these investigations is to fix as a frame the Galois group
of the abelian CM-field of an abelian variety A in question, to find its CM-type (which will
be seen later in this section to correspond to a window in our sense), and then to show that the
rank of the Hodge group of A is as large as possible. Roughly speaking, our strategy in this
paper enables one to argue in reverse order. Namely, we fix a window and find (an infinite
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family of) appropriate frames (= the Galois groups) into which it can be fit (=stably nondegen-
erate). Furthermore, given a window, we can determine completely the set of abelian Galois
groups for which the corresponding abelian varieties are stably nondegenerate.

For any n-tuple c = (c1, . . . , cn) of integers ≥ 2, we consider a CM-field Kc such that
the Galois group G(Kc/Q) is isomorphic to the abelian group Gc = Z/2Z × Hc, where
Hc = ∏

1≤j≤n Z/cjZ, and the complex conjugation ρ corresponds to (1, 0, . . . , 0) ∈ Gc. A
subset T ⊂ Gc is called a CM-type if

Gc = T
∐

ρ(T ) (disjoint sum) .

Let Gc = Z[Gc] and let Hc = Z[Hc], the latter being regarded as a subring of Gc through the
natural inclusion map. Furthermore we put

G≥0
c =

{ ∑
g∈Gc

cg .g ∈ Gc; cg ≥ 0 for any g ∈ Gc

}
.

We will write the group operation onGc multiplicatively in order to tell it from the addi-
tion in the group ring. Through this convention any element g1 ∈ Gc acts as an automorphism
of Gc by the rule g1(

∑
g∈Gc

cg .g) = ∑
g∈Gc

cg .g1g . Let p : Gc → Hc denote the projection
defined by p(

∑
g∈Gc

cg .g) = ∑
g∈Hc

cg .g . For any subset S ⊂ Gc, let [S] = ∑
s∈S s ∈ Gc.

We define a linear map ϕ : Gc → Hc by

ϕ(v) = p(v − ρv) , v ∈ Gc ,

and let ψ : Hc → Gc be defined by

ψ

( ∑
h∈Hc

dh.h

)
=

∑
h∈Hc,
dh>0

dh.(0, h)+
∑
h∈Hc,
dh<0

(−dh).(1, h) .

Note that ϕ is Hc-equivariant in the sense that ϕ(hv) = hϕ(v). Note further that the image
of ϕ is contained in

(G≥0
c )nondiv =

{ ∑
g∈Gc

cg .g ∈ G≥0
c ; cgcρg = 0 for any g ∈ Gc

}
,

and the two maps ϕ|(G≥0
c )nondiv

: (G≥0
c )nondiv → Hc and ϕ : Hc → (G≥0

c )nondiv are inverse to

each other. (We will see below that each element of (G≥0
c )nondiv gives rise to a nondivisorial

Hodge cycle on a certain abelian variety constructed from these data.) We introduce a natural
Z-valued pairing 〈 , 〉Gc by 〈∑g∈Gc

cg .g,
∑

g∈Gc
dg .g〉Gc = ∑

g∈Gc
cgdg , and 〈 , 〉Hc by

a similar formula. Furthermore, for any v ∈ Gc (resp. w ∈ Hc), we let (v )⊥Gc
= {v ′ ∈

Gc; 〈v ′, v 〉Gc = 0} (resp. (w)⊥Hc
= {w ′ ∈ Hc; 〈w ′,w 〉Hc = 0}). We show the following:

LEMMA 6.1. Let T be a CM-type. Then for any v ∈ Gc we have

〈v , [T ] − ρ[T ]〉Gc = 〈ϕ(v), ϕ([T ])〉Hc .(6.1)

In particular, we have v ∈ ([T ] − ρ[T ])⊥Gc
if and only if ϕ(v) ∈ (ϕ([T ]))⊥Hc

.
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PROOF OF LEMMA 6.1. For any v ∈ Gc, let v 0 = p(v ), v1 = v − v 0 so that
v = v 0 + v1. Note that ϕ(v) = v 0 − ρv1, since supp(v 0) ⊂ Hc, supp(v1) ⊂ ρHc.
Similarly, let T0 = T ∩ Hc, T1 = T ∩ ρHc so that [T ] = [T0] + [T1] and [T ] − ρ[T ] =
[T0] + [T1] − ρ[T0] − ρ[T1]. Therefore, the left hand side of (6.1) is computed as

〈v , [T ] − ρ[T ]〉Gc = 〈v 0 + v1, [T0] + [T1] − ρ[T0] − ρ[T1]〉Gc

= 〈v 0, [T0]〉Gc − 〈v 0, ρ[T1]〉Gc + 〈v 1, [T1]〉Gc − 〈v 1, ρ[T0]〉Gc ,

since Hc and ρHc are orthogonal to each other with respect to the pairing 〈 , 〉Gc . On the other
hand, the right hand side of (6.1) is computed as

〈ϕ(v ), ϕ([T ])〉Hc = 〈v 0 − ρv1, [T0] − ρ[T1]〉Hc

= 〈v 0, [T0]〉Hc − 〈ρv 1, [T0]〉Hc − 〈v 0, ρ[T1]〉Hc + 〈ρv 1, ρ[T1]〉Hc

= 〈v 0, [T0]〉Gc − 〈v 1, ρ[T0]〉Gc − 〈v 0, ρ[T1]〉Gc + 〈v 1, [T1]〉Gc ,

since 〈 , 〉Gc |Hc×Hc = 〈 , 〉Hc and 〈 , 〉Gc is Gc-equivariant. This completes the proof of
Lemma 6.1.

We will see the relevance of this lemma for the study of the structure of the ring of Hodge
cycles on abelian varieties with complex multiplication by Kc . First we recall some facts on
Hodge cycles on abelian varieties of CM-type (see [5] for details). Let T ⊂ Gc be a CM-type
and let AT denote the abelian variety associated to T . One knows that the first cohomology
group H 1(AT ,C) can be identified with CGc , and the complexification of the Hodge ring
(⊂ Λ(CGc)) admits as basis the set of basis vector of Λ(CGc) corresponding to subsets P of
Gc with the property that

#(P ∩ gT ) = (#P)/2 for any g ∈ Gc .

The above condition can be reformulated in terms of the group algebra Gc as

[P ] ∈ ([gT ] − ρ[gT ])⊥Gc
for any g ∈ Gc .

For, we have the following series of equivalences:

#(P ∩ gT ) = (#P)/2

⇔ #(P ∩ gT ) = #(P ∩ ρgT )
⇔ 〈[P ], [gT ] − ρ[gT ]〉Gc = 0 .

We can generalize the above consideration to deal with the Hodge ring of ANT = AT ×
· · · × AT (N times), by using the isomorphism H 1(ANT ,C) ∼= (CGc)⊕N . For any i ∈ [1, N],
let eig , g ∈ Gc, denote the standard basis of the i-th direct summand of (CGc)⊕N . For any

v = ∑
g∈Gc

cg .g ∈ G≥0
c with cg ≤ N , we denote by 〈v 〉 the basis element of Λ((CGc)⊕N)

defined by

〈v 〉 =
∧

g∈Gc

( ∧
1≤ig≤cg

e
ig
g

)
.
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We have seen in [5] that 〈v 〉 is a Hodge cycle on ANT if and only if 〈v , [gT ] − ρ[gT ]〉Gc = 0
for any g ∈ Gc. Furthermore, when AT is simple, one knows that 〈v 〉 is nondivisorial if and
only if cgcρg = 0 holds for any g ∈ Gc. In view of this, we put

Gc(T )Hodge = {v ∈ G≥0
c ; 〈v , [gT ] − ρ[gT ]〉Gc = 0 for any g ∈ Gc} ,

Gc(T )Hodge, nondiv = Gc(T )Hodge ∩ (G≥0
c )nondiv .

Note that, since [ρgT ] − ρ[ρgT ] = −([gT ] − ρ[gT ]), we have

Gc(T )Hodge = {v ∈ G≥0
c ; 〈v , [hT ] − ρ[hT ]〉Gc = 0 for any h ∈ Hc} .

Furthermore, by Lemma 6.1 we can rewrite this as

Gc(T )Hodge = {v ∈ G≥0
c ; 〈ϕ(v ), ϕ([hT ])〉Hc = 0 for any h ∈ Hc} .(6.2)

A CM-type T ⊂ Gc is said to be primitive if the corresponding abelian variety AT is simple.
By [10], T is primitive if and only if there exists no g ∈ Gc − {0} such that g.T = T . We
summarize the above argument in the following form:

PROPOSITION 6.2. For any v = ∑
g∈Gc

cg .g ∈ G≥0
c , the following hold.

(i) 〈v 〉 is a Hodge cycle on some self-product of AT if and only if v ∈ Gc(T )Hodge.
(ii) When T is primitive, 〈v 〉 is a nondivisorial Hodge cycle on some self-product of

AT if and only if v ∈ Gc(T )Hodge, nondiv.

We will see below that the sets Gc(T )Hodge and Gc(T )Hodge, nondiv are related with a
certain set of arrays investigated in the previous sections. For any element w = ∑

h∈Hc
dh.h

of Hc, we define a window tw = (twi )i∈Zn by the rule

twi =
{
dπc(i) , i ∈ [0, c − 1] ,
0 , otherwise ,

where πc; Zn → Hc denotes the natural projection. We will see in the following theorem
that the study of the structure of the Hodge ring of ANT ,N ≥ 1, is reduced to that of A0

tT .

We denote by A(Z) the set of Z-valued arrays, and let A0
t (Z) = A0

t ∩ A(Z). In this notation,
πc induces an injective homomorphism π∗

c : Hc(= (Z)Hc) → A(Z)(= (Z)Z
n
), whose image

coincides with

A(Z)c = {(ai)i∈Zn ∈ A(Z); ai+c = ai for any i ∈ Zn} ,

the set of n-ply periodic arrays with period c.

THEOREM 6.3. Let T ⊂ Gc be a CM-type. For an element v ∈ G≥0
c to belong to

Gc(T )Hodge, it is necessary and sufficient that π∗
c (ϕ(v)) ∈ A0

tϕ([T ]) (Z)
c. Moreover, for any

w ∈ Hc, we have ψ(w ) ∈ Gc(T )Hodge, nondiv if and only if π∗
c (w) ∈ A0

tϕ([T ]) (Z)
c.
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PROOF. We can compute the degree of π∗
c (ϕ(v)) with respect to the translated window

tϕ([T ]) + p, p ∈ Zn, as follows:

dtϕ([T ])+p(π
∗
c (ϕ(v ))) =

∑
i∈Zn

tϕ([T ])
i π∗

c (ϕ(v))i+p =
∑

i∈[0,c−1]
tϕ([T ])
i ϕ(v)πc(i+p)

=
∑

i∈[0,c−1]
ϕ([T ])πc(i)ϕ(v)πc(i+p)=

∑
i∈[0,c−1]

ϕ([T ])πc(i)ϕ(πc(−p).v)πc(i)

= 〈ϕ(πc(−p).v), ϕ([T ])〉Hc =〈ϕ(v ), ϕ([πc(p)T ])〉Hc .

Therefore, we see by (6.2) that π∗
c (ϕ(v)) ∈ A0

tϕ([T ]) (Z)c if and only if v ∈ Gc(T )Hodge. For

the second assertion we have only to recall that ϕ ◦ψ = idHc and Im(ψ) = (G≥0
c )nondiv. This

completes the proof of Theorem 6.3.

In view of Proposition 6.2, Theorem 6.3 enables us to relate the study of Hodge cycles
with that of discrete tomography in the following form:

THEOREM 6.4. Let T ⊂ Gc be a CM-type and let v ∈ G≥0
c . Then 〈v 〉 is a Hodge

cycle on some self-product of the abelian variety AT if and only if π∗
c (ϕ(v)) ∈ A0

tϕ[T ](Z)c.

Next we will study Hodge rings of an infinite family of abelian varieties constructed
from a fixed finite subset of Zn≥0. For any subset S ⊂ Hc, let S′ denote its complement in Hc.
Furthermore, for any subset T ⊂ Gc, let T0 = T ∩ Hc. Then we have ϕ([T ]) = [T0] − [T ′

0]
in this notation. For any window t, let (A0

t )
c denote the set of arrays in A0

t with period c.

PROPOSITION 6.5. For any subset S ⊂ Hc with #S �= c1 · · · cn/2 , (A0
t[S]−[S′])

c � {0}
if and only if (A0

t[S])c � {0}.
PROOF. Let r : Hc → [0, c − 1] ⊂ Zn be the product of n maps Z/cjZ → [0, cj − 1],

1 ≤ j ≤ n, each of which chooses the minimal nonnegative representatives of the congruence
classes. Then, by definition, the characteristic polynomial mt[S] is given by

mt[s] =
∑

i∈r(S)
z i .(6.3)

For the window t[S]−[S ′] we have

mt[S]−[S′](z) =
∑

i∈r(S)
z i −

∑
i∈r(S ′)

z i = 2
∑

i∈r(S)
z i −

∑
i∈r(Hc)

z i

= 2mt[S](z)−mt[Hc](z) .
(6.4)

On the other hand, we recall from Theorem 4.1 that for any window t, we have (A0
t )

c � {0}
if and only if Vµc(mt) �= ∅. Since mt[Hc](z) = ∏

1≤j≤n
∑

0≤i≤cj−1z
i
j , we see that mt[Hc]

vanishes identically on µc except for z = 1. Thus the equalities (6.3) and (6.4) assure the
equivalence in the statement. This completes the proof of Proposition 6.5.

We describe how this proposition enables us to study the Hodge rings of a certain infinite
family of abelian varieties. For any finite subset S ⊂ Zn≥0, let Rec(S) = {c ∈ Zn≥2; [0, c−1] ⊃
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S}, where Z≥2 denotes the set of integers greater than or equal to two. When c ∈ Rec(S), we
regard S as a subset of Hc through the natural projection. Let

Rec(S)nonprim = {c ∈ Rec(S) ; h.S = S or S′ for some h ∈ Hc − {(0, . . . , 0)}} ,
Rec(S)prim = Rec(S)− Rec(S)nonprim .

We denote by AV(S) the set of abelian varieties ATc,S , c ∈ Rec(S), with complex multiplica-
tion by Kc such that its CM-type Tc,S is given by

Tc,S = ({0} × S) ∪ ({1} × (S′)) ⊂ Gc .(6.5)

It follows from [10] that ATc,S is simple if and only if c ∈ Rec(S)prim. The following theorem
determines completely which abelian varieties in AV(S) are simple and stably nondegenerate.

THEOREM 6.6. Notation being as above, let

Period(S) = {c ∈ Rec(S); Vµc(mt[S]) �= ∅ and c1 · · · cn = 2#S} .
Then we have

{c ∈ Rec(S); ATc,S is simple and stably nondegenerate}
= Rec(S)prim − Period(S) .

PROOF. This is a consequence of the following series of equivalences, where we use
the same symbol S to denote the image of S ⊂ Zn≥0 under the projection πc and put T = Tc,S

for simplicity:

Vµc(mt[S]) �= ∅
⇔ Vµc(mt[S]−[S′]) �= ∅ (by Proposition 6.5)

⇔ Vµc(mtϕ([T ]) ) �= ∅ (by (6.5))

⇔ (A0
tϕ([T ]) (Z))c � {0} (by Proposition 4.2)

⇔ there exists a w ∈ Hc such that ψ(w ) ∈ Gc(T )Hodge, nondiv (by Theorem 6.3)

⇔ AT is stably degenerate . (by Proposition 6.2)

This completes the proof of Theorem 6.6.

We will examine how this theorem contributes to the study of Hodge cycles through
several examples. First we deal with the window tstairs(N) treated in Example 5.2.

EXAMPLE 6.7. Let S = tstairs(N), N ≥ 1. In this case we have

Rec(tstairs(N))prim = Rec(tstairs(N)) = Z2≥N+1 ,

where Z≥n denotes the set of integers ≥ n for any n. Furthermore Proposition 5.2 tells us that

Period(tstairs(N)) = Z2≥N+1 ∩ (PairN+1 ∪ PairN+2) ∪ {(N,N + 1), (N + 1, N)} ,
where we put Pairn = {(a, b) ∈ Z2≥0; (a, n), (b, n) > 1} − {(a, b) ∈ Z2≥0; (a, n) =
(b, n) = 2} for any n. (Note that Pair2 = ∅ by definition.) Thus it follows from Theorem 6.6
that for any positive N and for any c ∈ Z2≥N+1 − (PairN+1 ∪ PairN+2) − {(N,N + 1),
(N + 1, N)}, the abelian variety ATc,tstairs(N)

is simple and stably nondegenerate. In particular,
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we see that there exist infinitely many nondegenerate abelian varieties in AV(tstairs(N)), and
hence Hodge conjecture holds for infinitely many abelian varieties in AV(tstairs(N)). More-
over the same theorem implies also that there exist infinitely many degenerate abelian varieties
in AV(tstairs(N)).

The following two examples examines the simplest and the second simplest n-dimen-
sional windows.

PROPOSITION 6.8. Let O = {(0, . . . , 0)} ⊂ Zn, n ≥ 2. Then any abelian varieties in
AV(O) are simple and stably nondegenerate. In particular, the Hodge conjecture holds for
every abelian variety in AV(O).

PROOF. One can check easily that Rec(O)prim = Rec(O) = Zn≥2. Since mt O ≡ 1, it
is evident that Vµc(mt O) = ∅ for any c ∈ Rec(O), and hence Period(O) = ∅. Therefore it
follows from Theorem 6.6 that every abelian variety in AV(O) is simple and stably nondegen-
erate. This finishes the proof of Proposition 6.8.

In contrast to the simplicity of the proof, this proposition has an amusing consequence:

COROLLARY 6.8.1. Let K be an arbitrary abelian CM-field which contains an imag-
inary quadratic subfield. Then there exists at least one CM-type for K such that the corre-
sponding abelian variety satisfies the Hodge conjecture.

REMARK. Actually, anyone with a little experience of computing Hodge cycles on
abelian varieties could prove Proposition 6.8 directly without any knowledge about discrete
tomography. The point is, however, that discrete tomography leads us naturally to the sim-
plest window, which gives rise, a posteriori, to infinitely many stably nondegenerate abelian
varieties as above.

The next example deals with the second simplest window. The result is, however, rather
different. For any integer n, let Zeven,≥n (resp. Zodd,≥n) denote the set of even (resp. odd)
integers ≥ n.

PROPOSITION 6.9. Let Domino denote the subset {0, e1} ⊂ Zn, where e1 =
{1, 0, . . . , 0}. Then we have

Rec(Domino)nonprim = {2} × Zn−1
≥2 ,(6.6)

Rec(Domino)prim = Z≥3 × Zn−1
≥2 .(6.7)

Furthermore

every abelian variety ATc,Domino with c ∈ Zodd, ≥3 × Zn−1
≥2 is stably nondegenerate ,(6.8)

every abelian variety ATc,Domino with c ∈ Zeven, ≥4 × Zn−1
≥2 is stably degenerate .(6.9)

PROOF. It is easy to see that Rec(Domino) = Zn≥2. Furthermore one can check that
the CM-type Tc,Domino is non-primitive if and only if c1 = 2. Therefore we obtain the
equalities (6.6) and (6.7). Furthermore, the characteristic polynomial of Domino is given
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by mt Domino = 1 + z1, and hence Vµn∞(mt Domino) = {−1} × µn−1∞ for any c ∈ Zn≥2. It follows

that Period(Domino) = Zeven,≥2 × Zn−1
≥2 . Thus the assertions (6.8) and (6.9) follows from

Theorem 6.6. This completes the proof of Proposition 6.9.
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