NOTES ON FOURIER ANALYSIS (XVII): THE INTEGRATED LIPSCHITZ CONDITION OF A FUNCTION AND FEJER MEAN OF FOURIER SERIES.*>

By

Sigeki Yano.

I. Let f(x) be a function of period 2π satisfying the integrated Lipschitz condition Lip (α, p) $(0 < \alpha \leq 1, p \geq 1)$, that is

(1.1)
$$(\int_{0}^{2\pi} f(x+t) - f(x) \Big|^{p} dx \Big)^{1/p} = O(t^{\alpha}),$$

and let its Fouries seies be

(1.2)
$$f(x) \sim a_0/2 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

If $f \in \text{Lip}(\alpha, p)$ $(0 < \alpha < 1, p \ge 1)$ and $\sigma_n(x, f) = \sigma_n(x)$ denotes the Fejér mean of (1, 2), then it will be easily seen that¹

(1.3)
$$\left(\int_{0}^{2\pi}|f(x)-\sigma_{n}(x)|^{\nu}dx\right)^{1/\nu}=O(n^{-\alpha}).$$

This does not hold generally for $\alpha = 1$, p = 1, but we have

(1.4)
$$\int_{0}^{2\pi} |f(x) - \sigma_n(x)| dx = O(n^{-1} \log n).$$

This will be seen by the following example. If we put

(1.5)
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n} = \frac{\pi - x}{2} \qquad (0 \le x < 2\pi),$$

then f(x) belongs to Lip $(1, 1)^{2}$. Now

$$f(x) - \sigma_n (x) = \frac{1}{n} \sum_{k=1}^n \left\{ f(x) - s_k(x) \right\}$$
$$= \frac{1}{n} \sum_{k=1}^n \sin kx - \frac{1}{n} \sum_{k=1}^n \frac{\sin kx}{k} + \sum_{k=n+1}^\infty \frac{\sin kx}{k}$$

*) Received May 5th. 1943.

2) It is well known that if f(x) is of bounded variation then f(x) belongs to Lip(1.1). cf. loc. cit. Lemma 9.

¹⁾ G. H. Hardy and J.E. L'ttlewood, A convergence criteria for Fourier series, Math. Zeitschr. 28, (1928).

$$=\frac{1}{n}\overline{D}_{n}(x)-\frac{1}{n}\sum_{k=1}^{n}\frac{\sin kx}{k}-\frac{\overline{D}_{n}(x)}{n+1}+\sum_{k=n+1}^{\infty}\frac{D_{k}(x)}{k(k+1)}$$
$$=\sum_{k=n+1}^{\infty}\frac{\overline{D}_{k}^{*}(x)}{k(k+1)}-\frac{1}{2}\sum_{n+1}^{\infty}\frac{\sin kx}{k(k+1)}+\frac{\overline{D}_{n}(x)}{n(n+1)}+O(1/n),$$

where

$$\bar{D}_{n}(x) = \sum_{k=1}^{n} \sin kx, \ \bar{D}_{n}^{*}(x) = \bar{D}_{n}(x) - \frac{1}{2} \sin nx = \frac{1 - \cos nx}{2 \text{ tg } \frac{1}{2} x} \ge 0$$
(0

Since³⁾

$$\int_{0}^{2\pi} \overline{D}_{n}(x) | dx \sim \log n, \int_{0}^{\pi} \overline{D}_{n}^{*}(x) dx \sim \log n,$$

we have

$$\int_{0}^{2\pi} |f(x) - \sigma_n(x)| \, dx \ge A \sum_{k=n+1}^{\infty} \frac{\log n}{n^2} - \frac{B \log n}{n(n+1)} + O(1/n) \\ > C \log n/n,$$

where A, B and C are the positive constants.

Furthermore, even for the absolutely continuous function, the relation

$$\int_{0}^{2\pi} |f(x)-\sigma_n(x)| dx = O(n^{-1})$$

does not hold in general. For example, we take the function

(1.6)
$$f(x) = \sum_{k=2}^{\infty} -\frac{\sin kx}{k \log k},$$

which is absolutely continuous, but

(1.7)
$$\int_{0}^{2\pi} |f(x)-\sigma_n(x)| \, dx > D \log \log n/n,$$

where D is a positive constant, in fact,

(1.8)
$$f(x) - \sigma_n(x) = \frac{1}{n} \sum_{k=2}^n \frac{\sin kx}{\log k} - \frac{1}{n} \sum_{k=2}^n \frac{\sin kx}{k \log k} + \sum_{k=n+1}^\infty \frac{\sin kx}{k \log k}.$$

If we denote $a_n - a_{n+1}$ by Δc_n , we have

(1.9)
$$\sum_{k=2}^{n} \frac{\sin kx}{\log k} = \sum_{k=2}^{n-1} \overline{D}_{k}(x) \Delta \frac{1}{\log k} + O(1) + \frac{\overline{D}_{n}(x)}{\log n}$$
$$= \sum_{k=2}^{n-1} \overline{D}_{k}^{*}(x) \Delta \frac{1}{\log k} - \frac{1}{2} \sum_{k=2}^{n-1} \sin kx \Delta \frac{1}{\log k} + \frac{\overline{D}_{n}(x)}{\log n} + O(1),$$

3) A. Zygm und. Theory of trigonometrical series, p. 28.

and then

$$\int_{0}^{2\pi} \sum_{k=2}^{n} \frac{\sin kx}{\log k} |dx| \ge E \sum_{k=2}^{n-1} \log k \Delta \frac{1}{\log k} - O(1)$$

> F log log n.

Next, since

$$\sum_{k=n+1}^{\infty} \frac{\sin kx}{k \log k} = -\frac{\overline{D}_n(x)}{(n+1)\log(n+1)} + \sum_{k=n+1}^{\infty} \overline{D}_k(x) \Delta \frac{1}{k \log k},$$

we have

(1.10)
$$\int_{0}^{2\pi} \sum_{k=n+1}^{\infty} \frac{\sin kx}{k \log k} |dx = O(1/n) + O\left(\sum_{k=n+1}^{\infty} \frac{1}{k^2}\right) = O(1/n).$$

. . .

Summing up the estimations (1.7), (1.8) (1.9) and (1.10), we get

$$\int_{0}^{n} |f(x)-\sigma_{n}(x)| dx > G \log \log n/n.$$

II. Recently R. Salem and A. Zygmund⁴) have proved that if f(x) is integrable and if $\int_{0}^{2\pi} |f(x)-s_n(x)| dx = O(n^{-\alpha})$, then $\int_{0}^{2\pi} |\bar{f}(x)-\bar{s}_n(x)| dx = O(n^{-\alpha})$ for any $\alpha > 0$, where $s_n(x)$ is the *n*-th partial sum of the series (1. 2), and $\bar{f}(x)$ and $\bar{s}_n(x)$ denote the conjugate function of f(x) and the partial sum of conjugate series of (1. 2), respectively.

For the Fejér means, however, the circumference is differement. If $0 < \alpha < 1$, and $p \ge 1$, then under the condition

(2.1)
$$\left(\int_{0}^{2\pi} |f(x)-\sigma_{n}(x)|^{p} dx\right)^{1/p} = O(n^{-\alpha})$$

we have

(2.2)
$$\left(\int_{0}^{2\pi} |\vec{f}(x)-\sigma_{n}(x)|^{p} dx\right)^{1/p} = O(n^{-\alpha}),$$

where $\overline{\sigma}_n(x)$ is the Fejér means of the series conjugate to (1. 2). For, in the case f(x) belongs to Lip (α, p) , if (2. 2) holds for $0 < \alpha < <1$, then, by Hardy and Littlewood's Theorem⁵), $\overline{f}(x)$ belongs to Lip (α, p) and then (2. 2) holds good.

In the case $\alpha = 1$, the above fact fails to be true. This may be seen by the following example.

52

⁴⁾ R. Salem and A. Zygmund, The approximation by partial sums of Fourier series. Trans. American Math. Soc., 59 (1948).

⁵⁾ Loc. cit.¹⁾

(2.3)
$$f(x) = \sum_{n=2}^{\infty} \frac{\cos nx}{n \log n},$$

(2.4)

$$f(x) = -\sum_{n=2}^{\infty} \frac{\sin nx}{n \log n}.$$

For, we have

$$f(x) - \sigma_{n}(x) = \frac{1}{n} \sum_{k=2}^{n} (k-1) \frac{\cos kx}{k \log k} + \sum_{k=n+1}^{\infty} \frac{\cos kx}{k \log k} ,$$

and then

$$\int_0^{\pi} |f(x) - \sigma_n(x)| \, dx = O\left(\frac{1}{n}\right).$$

But we have seen in § 1 that

$$\int_{0}^{2\pi} |\bar{f}(x) - \bar{\sigma}_n(x)| dx \ge D \log \log n/n.$$

III. We can, however, prove the following theorem.

Theorem 1. If

(3.1)
$$\int_{0}^{2\pi} |f(x) - \sigma_{n}(x)| dx = O(1/n)$$

then

(3.2)
$$\int_{0}^{2\pi} |\bar{f}(x)-\bar{\sigma}_{n}(x)| dx = O(\log n/n).$$

Proof will be done by the analogous way as Kawata's Theorem⁶).

IV. We shall now prove the following theorem.

Theorem 2. Let f(x) belong to Lip(1.1), then the necessary and sufficient condition that

$$\int_{0}^{2\pi} |f(x) - \sigma u(x)| \, dx = O(1/n),$$

is that f(x) belongs to Lip(1. 1).

The proof of Theorem 2 is based on the following two lemmas.

Lemma 1. Let f(x) belong to Lip (1.1), then the necessary and sufficient condition that the conjugate function f(x) belongs to Lip(1.1) is that the condition

(4.2)
$$\int_{0}^{2\pi} \int_{h}^{\pi} \frac{\varphi(x,t)}{t^{2}} dt \, | \, dx = O(1)$$

holds, where

⁶⁾ T. Kawata, The Lipschitz condition of a function and Fejér means of Fourier series. Under the press.

 $\mathcal{P}(x, t) = f(x+t) + f(x-t) - 2f(x).$

Proof. We can write

$$f(x) = -\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x+t) - f(x)}{2 \operatorname{tg}_{2}^{1} t} dt,$$

so we get

$$f(x+h) = -\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x+t) - f(x+h)}{2tg_{2}^{2}(t-h)} dt.$$

$$f(x+h) - \bar{f}(x) = -\frac{1}{2\pi} \left(\int_{-\pi}^{-2h} \int_{2h}^{\pi} \right) (f(x+t) - f(x)) (\operatorname{ctg} \frac{1}{2}(t-h) - \operatorname{ctg} \frac{1}{2}t) dt$$

$$+ \frac{1}{2\pi} (f(x+h) - f(x)) \int_{2h}^{\pi} (\operatorname{ctg} \frac{1}{2}(t-h) - \operatorname{ctg} \frac{1}{2}(t+h)) dt$$

$$+ \frac{1}{2\pi} \int_{-2h}^{2h} \frac{f(x+t) - f(x)}{tg \frac{1}{2}t} dt - \frac{1}{2\pi} \int_{-2h}^{2h} \frac{f(x+t) - f(x+h)}{tg \frac{1}{2}(t-h)}$$

$$\equiv J_{1} + J_{2} + J_{3} + J_{4},$$

say.

$$\int_{-\pi}^{\pi} |J_{3}| dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} dx \int_{-\pi}^{2h} \frac{f(x+t) - f(x)}{tg \frac{1}{2}t} dt \bigg| \leq \frac{1}{2\pi} \int_{-2h}^{2h} \frac{dt}{t} \int_{-\pi}^{\pi} |f(x+t) - f(x)| dt$$
$$= O(\int_{-2h}^{2h} dt) = O(h).$$

Similarly
$$\int_{-\pi}^{\pi} |J_4| dx = O(h)$$
. And
 $J_2 = [f(x+h) - f(x)] \int_{2h}^{\pi} (\frac{h}{(t-h)(t+h)}] dt$,

so we get

$$\int_{-\pi}^{\pi} |J_2| \, dx = O(h).$$

Finally, we estimate for J_1 ,

$$\begin{split} J_{1} &= -\frac{1}{2\pi} \left(\int_{-\pi}^{-2h} \int_{2h}^{\pi} \right) (f(x+t) - f(x)) [\operatorname{ctg} \frac{t-h}{2} - \operatorname{ctg} \frac{t}{2}] dt \\ &= -\frac{1}{2\pi} \int_{2h}^{\pi} \int_{2h}^{\pi} (f(x+t) + f(x-t) - 2f(x)) [\operatorname{ctg} \frac{t-h}{2} - \operatorname{ctg} \frac{t}{2}] dt \\ &+ \frac{1}{2\pi} \int_{2h}^{\pi} (f(x-t) - f(x)) [\operatorname{ctg} \frac{t-h}{2} + \operatorname{ctg} \frac{t+h}{2} - 2\operatorname{ctg} \frac{t}{2}] dt \\ &= J_{1}' + J_{2}'', \end{split}$$

$$\int_{-\pi}^{\pi} |J_{1}''| dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{2h}^{\pi} f(x-t) - f(x) \left[\left(\operatorname{ctg} \frac{t-h}{2} + \operatorname{ctg} \frac{t+h}{2} - 2\operatorname{ctg} \frac{t}{2} \right) dt \right] dx$$
$$= O\left(h^{2} \int_{2h}^{\pi} \frac{dt}{(t+h)(t-h)}\right) = O(h).$$

And now

$$J_{1}' = -h \int_{2h}^{\pi} \frac{\varphi(x,t)}{t^{2}} dt + O\left(\int_{2h}^{\pi} \varphi(x,t) \left[\frac{h}{t^{2}} - \frac{1}{t-h} + \frac{1}{t}\right] dt$$
$$= -h \int_{2\eta}^{\pi} \frac{\varphi(x,t)}{t^{2}} dt + O\left(h^{2} \int_{2h}^{\pi} \frac{\varphi(x,t)}{t^{2}(t-h)} dt\right),$$

so we get

$$\int_{-\pi}^{\pi} |J_1'| dx = h \int_{-\pi}^{\pi} \int_{2h}^{\pi} \frac{\varphi(x,t)}{t^2} dt | dx + O\left(h^2 \int_{2h}^{\pi} \frac{dt}{t(t-h)}\right)$$
$$= h \int_{-\pi}^{\pi} \int_{2h}^{\pi} \frac{\varphi(x,t)}{t^2} dt | dx + O(h).$$

Summing up the estimations for J_1 , J_2 , J_3 and J_4 , we complete the proof of Lemma 1.

Lemma 2. Let f(x) belong to Lip(1.1). Then in order that the relation (4.1) holds, it is necessary and sufficient that the condition (4.2) holds.

Proof. We have

$$\sigma_{n-1}(x) - f(x) = \frac{1}{\pi} \int_0^{\pi} \varphi(x,t) \frac{\sin^2 n^{\frac{n}{2}} t/2}{n \sin^2 t/2} dt$$
$$= \frac{1}{\pi} \int_0^{\pi/n} + \frac{1}{\pi} \int_{\pi/n}^{\pi} \equiv I_1 + I_2,$$

say, since f(x) belongs to Lip(1.1), we have

(4.3)
$$\int_{0}^{2\pi} |I_1| dx = \frac{1}{\pi} \int_{0}^{\pi/n} O(t) \frac{n^2 t^2}{n t^2} dt = O\left(\frac{1}{n}\right).$$

Therefore,

$$\sigma_{n-1}(x)-f(x)-\frac{1}{\pi n}\int_{\pi/n}^{\pi}\frac{\varphi(x,t)}{\sin^2 t/2}dt$$
$$=I_n-\frac{1}{\pi n}\int_{\pi/n}^{\pi}\varphi(x,t)\frac{\cos nt}{\sin^2 t/2}-dt \equiv P_n-Q_n,$$

say. If we put $R_n(t) \equiv 1/\pi n(\sin t/2)^2$, then, for $n \ge 1$,

$$Q_n = \int_{\pi/n}^{\pi} \varphi(x,t) R_n(t) \cos nt \ dt$$

S. YANO

$$= -\int_{-\infty}^{\pi(n-1)/n} \varphi(x,t+\pi/n) R_n(t+\pi/n) \cos nt \, dt,$$

$$2Q_n = \int_{-\pi/n}^{\pi(n-1)/n} \varphi(x,t) [R_n(t) - R_n(t+\pi/n)] \cos nt \, dt$$

$$+ \int_{-\pi/n}^{\pi(n-1)/n} [\varphi(x,t) - \varphi(x,t+\pi/n)] R_n(t+\pi/n) \cos nt \, dt$$

$$- \int_{0}^{\pi/n} \varphi(x,t+\pi/n) R_n(t+\pi/n) \cos nt \, dt$$

$$+ \int_{-\pi(n-1)/n}^{\pi} \varphi(x,t) R_n(t) \cos nt \, dt \equiv I_n + J_n + K_n + L_n.$$

By the mean value theorem

$$|R_n(t)-R_n(t+\pi/n)| \leq Cn^{-2}t^{-3},$$

so that

$$|I_n| \leq Cn^{-2} \int_{\pi/n}^{\pi-\pi/n} |\varphi(x,t)| t^{-3} dt \leq Cn^{-3} \int_{\pi/n}^{\pi} |\varphi(x,t)| t^{-3} dt$$

Since $R_n(t+\pi/n) \leq 1/nt^2$, and

 $\varphi(x,t)-\varphi(x,t+\pi/n)=f(x+t)-f(x+t-\pi/n)+f(x-t)-f(x-t-\pi/n),$ we find

$$|J_n| \leq C \varkappa^{-1} \int_{\pi/n}^{\pi} |f(x+t) - f(x+t-\pi/n)| t^{-2} dt$$

+ $C \varkappa^{-1} \int_{\pi/n}^{\pi} |f(x-t) - f(x-t-\pi/n)| t^{-2} dt.$

Moreover, since $R_n(t+\pi/n) < Cx$ for $0 \leq t \leq \pi/n$, $|K_n| \leq Cn^{-1} \int_{0}^{\pi/n} |\varphi(x,t+\pi/n)| dt.$

Finally

$$|L_n| \leq C e^{-1} \int_{\pi(n-1)/n}^{\pi} |\varphi(x,t)| dt.$$

Since $\int_{0}^{2\pi} |f(x+t)-f(x)| dx = O(t)$ by the assumption we can immediately deduce that $\int |P_n| dx$, $\int |I_n| dx$, $\int |J_n| dx$, $\int |K_n| dx$, $\int |L_n| dx$ are all O(1/n). Thus the lemma is proved.

Proof of Theorem 2 is immediate from Lemma 1 and 2.

Tôhoku University, Sendai.