LINEAR TOPOLOGICAL SPACES

 AND ITS PSEUDO-NORMS.*)

 AND ITS PSEUDO-NORMS.*)}

By
Noboru Matsuyama.

Linear topological spaces were studied by A. Kolmogoroff, ${ }^{1)}$ J. v. Neumann, ${ }^{2}$ H. Hyers ${ }^{3}$) and many other authers. Concerning relations among these investigations, J. V. Wehausen ${ }^{4}$) proved the equivalency of linear topological spaces of Neumann and Kolmogonoff, and Hyers gave a new defintion of linear topological spaces equivalent to them. After him to any linear topological space we can associate a cernain directed system. When we examine this directed system, we see that the directed system can be replaced by a semi-join-lattice, and the linear topological space is characterized by the family of new topologies which form a semi-join-lattice (§ 2). In § 3 we show that this semi-lattice can be replaced by the semi-meetattice. The norm of the convex linear topological space satisfies the triangular inequality. But the "Norm" of § 3 does not necessarily satisfy it. In § 4 we consider that the "Norm" satisfying the triangular inequality actually characterizes the convex linear topological space.

1. Definitions. Kolmogorof's Definition (Definition K). Let L be a linear Hausdorff space. If the vector operations $x+y$. and $t \cdot x$ are continuous with respect to this topology, then L is said to be a linear topological space.

Neumann's Definition (Definition \mathbf{N}). Let L be a linear space. If L has family A of subsets U in L satisfying the following conditions, it is said to be a linear topological space, and is denoted by $L(A) . A$ and U are said to be the neighbourhood system and neighbourhood, respectively.

[^0](N. 1) Only common point of all U is θ.
(N. 2) For any U_{1} and U_{2} there exists U_{3} such that
$$
U_{3} \subset\left(U_{1}, U_{2}\right)
$$
(N. 3) For any U_{3} and numerical t (but $|t| \leqq 1$) there exists U_{i} such as $t U_{1} C U$.
(N. 4) For any U there exists U_{1} such as $U_{1}+U \subset U$.
(N. 5) For any point $x \in L$ and U there exists numerical value t such that $x e t U$.

Hyers' Definition (Definition H). Let L be a linear spece and D a directed system. When there exists a real valued function $|x|_{a}$ (called pseudonorm.) on the domatn $L \times D$ satisfying the following conditions, L is said to be a linear topological space, and is denoted by $L(D)$.
(H. 1) $|x|_{d} \geqq 0$, if $|x|_{d}=0$ for all $d \in D$ then $x=\theta$.
(H. 2) $|t x|_{a}=|t| \cdot|x|_{a}$.
(H. 3) For $\varepsilon>0$ and $d \in D$ there exist $\delta>0$ and $e \in D$ such that

$$
|x|_{e}<\delta \text { and }|y|_{e}<\delta \text { imply }|x+y|_{a}<\varepsilon .
$$

(H. 4) If $d>e$ then $|x|_{d}=|x|_{\rho}$.

Definition 1. Let S be a subset of the linear space L. Then two real valued functions $|x|_{s}$ and $\|x\|_{S}$ are defined by

$$
|x|_{s=\underset{\lambda>0, x \in \lambda S}{\text { gr. . . b. }} \lambda,},
$$

and

$$
\|x\|_{s}=\underset{\gamma(x)}{\operatorname{gr} .1 . \mathrm{b} \cdot} \sum_{k=1}^{n}\left|x_{k_{k-1}-x_{k}}\right|_{s}
$$

where $\gamma(x)$ is a finite set such as $\gamma(x)=\left\{\theta=x_{0}, x_{1}, \ldots x_{n}=x\right\}$.
Theorem 1. If $S \subset T \subset L$, then
(1) $|x|_{S} \geqq|x|_{T}$,
(2) $\|x\|_{S} \geqq\|x\|_{T}$,
(3) $\|x\|_{S} \leqq|x|$.

Proof. There exists a suitable sequence $\varepsilon_{n}\left(\varepsilon_{n} \downarrow 0\right)$ such that

$$
x \in\left(|x|_{S}+\varepsilon_{n}\right) S \text { for } n=1,2, \ldots
$$

Hence $\quad \imath_{\varepsilon}\left(|x|_{S}+\varepsilon_{n}\right) \cdot \operatorname{SC}\left(|x|_{s}+\varepsilon_{n}\right) T$ for $n=1,2, \ldots$.
This implies (1), (2) and (3) are evident by
and
2. Characterization of the linear topological space $L(A)$ depends on the semi-join-lattice.

Let A^{\prime} be a.class of all U^{\prime} such that

$$
U^{\prime}=U(U, \alpha) \equiv\{t x ; x \in U,|t| \leqq \alpha\},
$$

where $U_{\varepsilon} A$ and α is a positive number. B is a class of all V such that

$$
V=D_{i=1}^{n} U^{\prime}, \quad U^{\prime} \in A^{\prime}, n=1,2, \ldots
$$

In this B if $V_{1} \supset V_{2}$ we write. $V_{1}<V_{2}$ and if $V_{1}>V_{2}>V_{1}$ then write $V_{1} \equiv V_{3}$. By this classification of B we have a new set (B), whose point is (V) having V as a representation.
Evidently $\quad\left(V_{1}\right) \vee\left(V_{2}\right)=\left(D\left(V_{1}, V_{2}\right)\right)$.
Theorem 2. For any linear topological space $L(A)$ there exists a semi-join-lattice (B) and A is topologically equivalent ${ }^{3}$ to B.

Proof. The first part of the theorem is evident. Let $V \in B, V={ }_{i=1}^{n} U_{i}^{\prime}$ and $U_{i}^{\prime}=U_{i}^{\prime}\left(U_{i}, \alpha_{i}\right)$, then there exists a U such as $U \leq \sum_{1}^{w} U_{i}^{\prime}$. If we take $\alpha=\min$ ($\alpha_{1} \alpha_{2} \ldots \alpha_{n}$), then $U^{\prime}=U^{\prime}(U, \alpha) \cup V$ and $U^{\prime} € A^{\prime}$. Since $A^{\prime}<B, A^{\prime}$ is topologically equivalent to B. Conseqnently A is topologically equivalent to B.

Theorem 3. B satisfies the following conditions.
(1) If $V \in B$ and $\beta \neq 0$ then $\beta V \approx B$.
(2) If $|\beta| \leqq 1$ then $\beta V<V$.
(3) $V=-V$
(4) B satisfies (N. 1), \ldots, (N. 5).

Proof is easy.
Theorem 4. If $V=D\left(U_{1}^{\prime}, U_{z^{\prime}}^{\prime}\right)$ then $|x|_{r}=\max \left(\left|x^{2}\right|_{U r_{1}},|x|_{U^{\prime}{ }^{\prime}}\right)$.
Proof. Let $|x|_{v_{1}} \leqq|x|_{U^{2}, 2}$. Thenthere exists a sequence $\left\{\varepsilon_{n}\right\}$ such that $\varepsilon_{n}>0$ and $x \in\left(|x|_{c^{\prime \prime}}+\varepsilon_{n}\right) \quad U^{\prime \prime}$, for $n=1,2 \ldots \ldots$. Again by theorem 3 (2) there is $\varepsilon^{\prime}>0$ such that

$$
|x|_{U^{\prime} 1}+\varepsilon^{\prime} \leqq|x|_{U^{\prime} 2}+\varepsilon_{1} \text { and } x \in\left(|x|_{U^{\prime} 1}+\varepsilon^{\prime}\right) U_{1}^{\prime} .
$$

Consequently

$$
x \in\left(|x|_{V^{\prime} 1}+\varepsilon^{\prime}\right)_{U^{\prime}}=\left(|x|_{v^{\prime}, 2}+\varepsilon_{n}\right) U_{1}^{\prime}
$$

and $\quad x \in D\left[\left(|x|_{U^{\prime 2}}+\varepsilon_{n}\right)_{L^{\prime} 1},\left(|x|_{v^{\prime 2}}+\varepsilon_{n}\right)_{v^{\prime \prime 2}}\right]$
and then $\quad=\left(|x|_{U^{\prime 2}}+\varepsilon_{n}\right) D\left(U_{1}^{\prime}, U_{2_{2}^{\prime}}^{\prime}\right)=\left(|x|_{U^{\prime \prime}}+\varepsilon_{u}\right) V,|x|_{V} \leqq|x|_{U^{\prime 2}}$.
On the other hand we have $|x|_{v} \geqq|c| c, 2$ evidently.
Corollary. If $V=\stackrel{n}{D} U_{i}^{\prime}$, then $|x|_{r}=\max \left(|x|\left|r m_{1}^{\prime}, \ldots \ldots,|x|_{V^{r} n}\right)\right.$.
Since $|x|_{\mathrm{r}}$. takes the same value for all $V_{\in}(V)$ we define by $|x|_{V}$.
Theorem 5. If $\left(V_{1}\right),\left(V_{2}\right) \in(B)$, then $|x|_{\left.\left.\left(V_{1}\right)\right)_{\left(V_{2}\right)}\right)}=\max \left(|x|_{\left(V_{1}\right)},|x|\left(V_{2}\right)\right)$. Pronf is easy from above corollary and the definition.
Theorem 6. Each linear topological space $L(A)$ is characterized by the
real valued function $|x|_{l}$ on the domain $L \times L_{1}$ where L_{1} is a semi-join-lattice, satisfying the following conditions.
(1) $|x|_{l} \geqq 0$ and if $|x|_{2}=0$ for all $l \in L_{1}$ then $x=\theta$.
(2) $|t x|_{l}=|t| \cdot|x|_{t}$.
(3) For $\varepsilon>0$ and $l \in L_{1}$ there exist $\delta>0$ and $l_{2} \in L$ such that $|x|_{\ell_{2}}<\delta$ and $|y|_{l_{2}}<\delta$ imply $|x+y|_{x_{1}}<\varepsilon$.
(4) $|x|_{1_{1} L_{2}}=\max \left(|x|_{t_{1}},|x|_{v_{2}}\right)$.

Proof. Evidently the function $\mid+f_{(r)}$ satisfies (1)-(4), conversely in $L\left(L_{1}\right)$ if we put

$$
U=U(l, \varepsilon) \equiv\left\{i:|x|_{l}<\varepsilon\right\}
$$

Then the class of all U satisfies (N.1)-(N.5). Again the neighbourhood system A of $L(A)$ is topologically equivalent to the class $\{U(V), \varepsilon\}$. For if $0<\varepsilon_{1}<\varepsilon, \varepsilon_{1} V<U((V), \varepsilon)$ and $U((V), 1) \subset V$. Hence B is topologically equivalent A as well as $\{U((V), \varepsilon)\}$.

By this Theorem we can understand the linear topological space in the following space. Let L be the linear space and L_{1} be the semi-join-lattice. Then to each element l of L_{1} there corresponds a norm topology of L safisfying (1)-(3), which we call (l)-togology and if we order these (l)topologies by their implication, it becomes a semi-join-lattice, homeomorphic to L_{1}.
3. Characterization of the linear topological space $L(A)$ depends on the semi-meet-lattice.

Let B be the class of all W such that

$$
W=S_{i=1}^{n} U_{i}^{\prime}, U_{i}^{\prime} \in A^{\prime} n=1,2, \ldots \ldots .
$$

If (W) is a set of all (W) which is analogous to (V) of (B),

$$
\left(W_{1}\right) \wedge\left(W_{2}\right)=\left(S\left(W_{1}, W_{2}\right)\right) .
$$

Theorem 7. To each linear topological space $L(A)$ there corresponds a semi-meet-lattice (B) and A is topologically equivalent to L.

Theorem 8. B satisfies the conditions (1)-(3) of theorem 3.
Proof of these two theorems are analogous to those of B.
Theorem 9. If $W=S\left(U_{1}^{\prime}, U_{2}^{\prime}\right)$, then $|x|_{W}=\min \left(|x|_{U^{\prime} 1},|x|_{U_{2}^{\prime 2}}\right)$.
Proof. Let $|\alpha|_{U^{\prime} 1} \leqq|a|_{U^{\prime 2}}$. For some positive sequence $\left\{\varepsilon_{n}\right\}$ converging to 0 ,

$$
\begin{aligned}
& x \in\left(|x|_{W}+\varepsilon_{n}\right) W=\left(|x|_{W}+\varepsilon_{n}\right) \cup\left(U^{\prime}{ }_{1}, U^{\prime}{ }_{2}\right) \\
& =S\left[\left(|x|_{W}+\varepsilon_{n}\right) U^{\prime}{ }_{1}, \quad\left(|x|_{W}+\varepsilon_{n}\right) \quad j^{\prime}{ }_{2}\right] \quad(n=1,2, \ldots \ldots \ldots) .
\end{aligned}
$$

Firstly, if $x \in\left(|x|_{W}+\varepsilon_{n}\right) U^{\prime}{ }_{1}$, then $|x|_{U^{\prime}} \leqq|x|_{W}$, and secondly if $z \in\left(|x|_{W}+\varepsilon_{n}\right) U^{\prime}{ }_{2}$, then $|x|_{U^{\prime}} \leqq|x|_{\sigma^{\prime}} \leqq|x|_{w}$. Consequently $|x|_{W} \geqq|x|_{U^{\prime} 1}$.

On the otherhand, $|x|_{W} \leqq|x|_{V^{\prime}}$ is evident. Hence we have

$$
|x|_{W}=|x|_{U^{\prime} 1}=\min \left(|z|_{U^{\prime},},|x|_{U^{\prime} r_{2}}\right) .
$$

Corollary. If $W={\underset{1}{1}}_{n}^{n}{ }_{U^{\prime} i}$ then $|x|_{W}=\min \left(|x|_{U^{\prime}} ;|x|_{U^{\prime \prime}}, \ldots \ldots \ldots,|x|_{U^{\prime} n}\right)$.
Since $|x|_{W}$ takes the same value for all $W_{\epsilon}(W)$ we define $|x|_{(W)}$ by $|x|_{W}$. This definitions is analogous to the case of (B).

Theorem 10. If $\left(W_{1}\right),\left(W_{2}\right) \in(W)$ then $|x|_{\left(W_{1}\right) \cap\left(W_{2}\right)}=\min \left(|x|_{\left(W_{1}\right)}|x|_{\left(W_{2}\right)}\right)$.
Lemma 1.

$$
|t x|_{W}=|t| \cdot|x|_{W} .
$$

Proof. If $W=\int_{1}^{n} U_{1}^{\prime}$ then we have

$$
\begin{aligned}
|t x|_{W} & =\min \left(|t x|_{U^{\prime} 1}, \cdots \cdots \cdots,|t x|_{U^{\prime} n}\right) \\
& =|t| \min \left(|x|_{U^{\prime}}, \cdots \cdots \cdots,|x|_{U^{\prime} n}\right) \\
& =\left.|t| \cdot|x|\right|_{W} .
\end{aligned}
$$

Theorem 11. Each linear topological space $L(A)$ is characterized by the real valued function $|x|_{2}$ on the domain $L \times L_{2}$, where L_{2} is a semi-meetlattice and is also a directed system satisfying the following conditions.
(1) $|x|_{2} \geqq 0$ and if $|x|_{2}=0$ for all $l \in L_{2}$ then $x=0$.
(2) $|t x|_{l}=|t| \cdot|x|$.
(3) For $\varepsilon>0$ and $l_{1} \varepsilon L_{2}$ there exist $\delta>0$ and $l_{2} \in L_{2}$ such that $|x|_{i_{2}}<\delta$ and $|y|_{l_{2}}<\delta$ imply $|x+y|_{14}<\varepsilon$.
(4) $|x|_{l_{1} \wedge k_{2}}=\min \left(|x|_{l_{1}},|x|_{l_{2}}\right)$.

Proof. By the construction we can easily see that (W) determined by $L(A)$ and $|x|_{\text {(II) }}$ astisfies the conditions (1)-(4). Conversely, in $L \times L_{2}$ the class of all $U=U(l, \varepsilon)=(::|x|: \leqq \varepsilon)$ satisfies $(\mathrm{N} .1)=(\mathrm{N} .5)$, and moreover A is topologically equivalent to $\{U((W), \varepsilon)\}$.

Corollary. In Theorem 11, we can replace the word "directed system" by the condition:
(5) For any x and $l_{1}, l_{2} \in L_{2}$, there exists $l \in L_{2}$ such that $\max \left(|x|_{l_{1}},|x|_{l_{2}}\right)<|x|_{l}$.

4. Convex linear topological space.

In definition N , if any neighbourhood U, satisfies the following condition

$$
\text { (N. 6) } \quad U+U \subset 2 U
$$

then L is said to be convex.
In Definition K if for any neighbourhood U_{θ} there exists a convex neighbourhood V_{θ} such that $V_{\theta} \simeq V_{\theta}$, then L is said to be locally convex. ${ }^{5)}$

Two neighburbod-systems B and Z are called topologically equ valent if for any $l \varepsilon A$ there exists l' l l such that $\operatorname{lc} \in U$ and cmverse.

In Definition H, of the Pseuedo-norms $|x|_{d}$ satisfies the following condition

$$
\text { (H. 5) }|x+y|_{d} \leqq\left|\left.\right|_{a}+|y|_{d} \text { for all } d \in D\right. \text {. }
$$

We say that the pseudonorm satisfies the triangular inequality. It is wellknown that these three notions are mutually equivalent.

If $L(A)$ is a convex linear topological space, then $|x|_{(r)}$ satisfies the triangular inequality ${ }^{6}$, but $\left.\left.\right|_{x}\right|_{(W)}$ does not.
We will now replace $|x|_{w}$ by an equivalent $\|x\|_{\text {r }}$ satisfying the triangular inequality.

We will put

$$
\|x\|_{w}=\text { gr. l. b. } \sum\left|\ldots k-x_{k-1}\right|_{w}
$$

where gr. 1. b. is taken for all chain $\left\{\theta, x_{1}, x_{3} \ldots \ldots, x_{n}=x_{n}\right\}$.
Then we have
Lemma :. $\quad\|t x\|_{\boldsymbol{w}}=|t| \cdot\|x\|_{w}$.
Proof. Let $\gamma(x)=\left\{\theta, \cdot x_{1}, \ldots \ldots, x_{n}=x\right\} ; \gamma^{\prime}(t x)=\left\{\theta, x_{1}^{\prime}, \ldots \ldots, x^{\prime}{ }_{m}=t x\right\}$.

$$
\begin{aligned}
& \|t x\|_{\|}=\underset{v^{\prime}}{\operatorname{gr}} . \lim _{(x)} \mathrm{b} \Sigma\left|x_{k}^{\prime}-x_{k-1}^{\prime}\right|_{W} \leqq \operatorname{gr} \text {. 1. b. } \Sigma|t| \bullet\left|x_{k}-x_{k-1}\right|_{k r} \\
& =|t| \text { gr. . . b. } \sum\left|x_{k}-x_{k-1}\right|_{w}=|t| \cdot\|x\|_{\mathrm{m}} \text {. }
\end{aligned}
$$

If we replace x and t by $t x$ and $\frac{1}{t}$, we get

$$
\|t x\|_{W} \geqq|t| \cdot\|x\|_{W}
$$

Hence

$$
\|t x\|_{W}=|t| \cdot\|x\|_{\mathrm{u}}
$$

Proof. Let $\gamma(x)=\left\{\theta, x_{1}, x_{2}, \cdots \cdots, x_{k}, \ldots \ldots x_{m}=x\right\}$,

$$
\gamma(y)=\left\{\theta, y_{1}, \ldots \ldots, y_{l}, \ldots \ldots y_{n}\right\}
$$

and $y_{l}^{\prime}=x+y_{i}$. We have

$$
\begin{aligned}
& =\underset{\gamma(r)}{\operatorname{gr} .} \text {. b. } \sum\left|x_{k}-x_{k-1}\right| w+\underset{\gamma(y)}{\operatorname{gr}} \text {. b. } \sum\left|y_{l}^{\prime}-y_{l-1}^{\prime}\right|_{W}
\end{aligned}
$$

$$
\begin{aligned}
& \geqq \underset{\gamma(x+y)}{\operatorname{gr} . \operatorname{b.~}} \mathrm{b} . \quad\left|z_{i}-z_{q-1}\right|_{w}=\|\Sigma+y\| \|_{w} .
\end{aligned}
$$

(7) If we put $V=\stackrel{n}{D} U_{i}^{\prime}$, , then

$$
\begin{aligned}
& |x+y|_{\left(V^{\prime}\right)}=|x+y|_{V}=\max \left(\left\{x+\left.y\right|_{V^{\prime},}, \ldots . .|x+y|_{U^{\prime} n}\right)\right. \\
& \leqq \max \left(|x|_{V^{\prime} 1}+|y|_{V^{\prime} 1}, \ldots \ldots,|x|_{U^{\prime} n}+|y|_{V^{\prime} n}\right) \text {, On the other hand } \\
& |x|_{U^{\prime} i}+|y|_{U^{\prime} i} \leqq \max \left(|x|_{U^{\prime} 1}, \cdots \cdots,|x|_{U^{\prime} n}\right)+\max \left(y_{U^{\prime}}, \cdots \cdots,|y|_{U^{\prime} n}\right) \\
& =|\dot{x}|_{r}+|y|_{r} \quad(i=1,2, \ldots \ldots, n) . \\
& \text { Hence } \quad|x+y|_{V} \leqq|x|_{(V)}+|y|_{(n)} \text {. }
\end{aligned}
$$

6) Tych noff, Ein F.xpunkisatz (Math. Ann.. Vol. 111 (1935)).

Lemma 4. $\quad\|x\|_{U_{r}}=|x|_{U^{\prime}}$.
Proof. $\quad\|x\|_{U_{r}} \leqq|x|_{U^{r}}$ is evident.
Conversely $\quad|x|_{V_{r}} \leqq \mathrm{gr}, \underset{\gamma}{\mathrm{l}(x)} \mathrm{b}, \mathrm{\Sigma}\left|x_{k}-x_{k-3}\right|_{U_{r}}=\|x\|_{V_{r}}$. Hence $\quad\|x\|_{U^{r}}=|x|_{U r}$.

Theorem 12. $\|x\| W=\|x\| w^{\text {onv }}$.
Proof. Since $W^{\prime} \subset W^{\text {conv }},\|x\|_{W} \geqq\|x\|_{W^{\infty o n v}}$ is easy. Let $W=\sum_{1}^{n} U_{i}^{\prime}$, then there exists a sequence $\left\{\varepsilon_{n}\right\}$ such that $\varepsilon_{n} \downarrow 0$ and $x \in\left(\|x\| \boldsymbol{w}^{c n n}+\varepsilon_{m}\right)$. $W^{\text {conv }}=\alpha_{m} W^{c o n v}\left(m=1,2 \ldots \ldots\right.$, , where $\alpha_{m}=\|x\|_{W^{\text {coiv }}+}+\varepsilon_{m}$.
Hence we have a finite sequence of positive numbers $\left\{t_{i}\right\}$ and $x_{i \in} U_{i}^{\prime}$ such that

$$
\Sigma t_{i}=1 \quad \text { and } x=\alpha_{m}\left(t_{1} x_{1}+\cdots \cdots+t_{n} x_{n}\right) .
$$

Thus we have

$$
\begin{aligned}
& \|x\|_{W}=\alpha_{m}\left\|t_{1} x_{1}+\cdots \cdots,+t_{n} \quad x_{n}\right\|_{W} \leqq \alpha_{m} \Sigma\left\|t_{i} x\right\|_{w} \\
& \quad=\alpha_{n} \Sigma t_{i}|x|_{W} \leqq x_{n} \Sigma t_{i}\left\|x_{i}\right\|_{U_{i} i}=\alpha_{m} \Sigma t_{i}=\alpha_{m} .
\end{aligned}
$$

Consequently

$$
\|\cdot\|_{W} \leqq\|x\|_{W^{\bullet \theta n v}}
$$

and then

$$
\|\mathfrak{v}\|_{W}=\|\boldsymbol{x}\| \boldsymbol{w}^{: n u v} .
$$

Let $[W\rceil$ be a class of all $W^{\text {conv. }}$. If we define $W_{1}^{\text {conv }}>W_{2}^{\text {convo }}$ by $W_{1}{ }^{\text {conv }}$ こ $W_{2}{ }^{\text {nenv }}$, then (W) and [W 〕 are isomorphic.
Now we say that the function $\|x\|_{W^{\circ n v}}$ defines $W^{c o n v}$-topology of L. If

$$
\left\|\boldsymbol{u}_{W_{1}}{ }^{c o n} \leqq\right\| i \|_{W_{2}^{2}}^{z o n v} .
$$

Then we say that $W_{2}{ }^{\text {sonvo }}$-topology is not weaker than $W^{\text {env }}$-topology with this order relation the class of all $W^{c o n v}$-topology is a semi-ordered system.

Theorem 13. The class of all $W^{\text {convo}}$-topology and (W) are meetisomorphic.

Proof. For any $W_{1}{ }^{\text {conv }}$ and $W_{2}{ }^{\text {eonv }}$ we have

$$
\begin{aligned}
\|x\|_{W_{1}}^{\text {conv }} \cap \boldsymbol{w}_{2}^{c o n v} & =\|x\|^{c o s}\left(W_{1}, W_{2}\right)^{\operatorname{conv}}=\|x\| S\left(W_{1}, W_{2}\right) \\
& \leqq\|x\|_{W i}=\|x\|_{w_{i}}^{c o n v}(i=1,2, \ldots \ldots) .
\end{aligned}
$$

If $\|x\|_{w^{c o n v}} \leqq\|x\|_{w_{i}}^{c o n v}(i=1,2$,$) , then \|x\|_{W} \leqq\|x\|_{W} \leqq|x|_{W}(i=1,2)$.
Hence

$$
\begin{aligned}
& \|x\|_{W} \leqq \min \left(|x|_{W_{1}},|x|_{W_{2}}\right)=|x| S\left(W_{1}, W_{2}\right), \\
& \|x\|_{W} \leqq \sum_{1}^{n}\left\|x_{k}-x_{k-1}\right\|_{W} \leqq \sum\left|x_{k}-x_{i-}\right| S\left(W_{1}, W_{2}\right)_{2} \\
& \|x\|_{W} \leqq\|x\| S\left(W_{1}, W_{2}\right) \leqq\|x\| S\left(W_{1}, W_{2}\right)^{{ }^{c o n v}}=\|x\|_{W_{1}}{ }^{c o n v_{\lambda}} W_{2}{ }^{\text {envv }} .
\end{aligned}
$$

Hence we see that the correspondence between (W) and $W^{c o n v}$ topoogy is meet-isomorphic.

Theorem 14. Any locally convex linear topological space $L(U)$ is characterized by the real valued function $\|x\|_{2}$ on the domain $L \times L_{3}$, where L_{3} is a semi-meet-lattice and is also a directed system. satisfying the following conditions.
(1.) $\|x\|_{2}>0$ and if $\|x\|_{z}=0$ for all $l \in L$, then $x=\theta$.
(2) $\|t x\|_{l}=|t| \cdot\|x\|_{l}$.
(3) $\|x+y\|_{l} \leqq\|x\|_{l}+\|y\|_{l}$.
(4) Meet of l_{1} and l_{2}-topologies is $l_{1} \wedge l_{2}$-topology, where the phrase l-topology is defined by the function $\|x\|_{l}$.
Proof. If we consider $L([W])$ in $L(A),\|x\|_{w^{c o n v}}$ satisfies (1)-(4). Conversely let $U=U(l, \varepsilon)=\left(x ;\|x\|_{l}<\varepsilon\right)$. It is easy that the class of all U satisfies (N.1)-(N. 6), and A is topologically equivalent to $\left\{U\right.$ ($\left.\left.W^{\text {conv }}, \varepsilon\right)\right\}$. For any $U\left(W^{c o n v}, \varepsilon\right), \varepsilon U^{\prime} \subset U^{(}\left(W^{c o n v}, \varepsilon\right)$ where $\varepsilon_{1}<\varepsilon$ and $U^{\prime} \subset W$. Conversely for any U^{\prime} and $0<\varepsilon<1, U\left(U^{\prime}, \varepsilon\right) \subset U^{\prime}$.

Math. Inst., Tohoku Univ., Sendai.

[^0]: *) Received Oct. 23rd, 1943.

 1) Kolmogoroff, Zur Normierbarkeit Eines Alljemeinen Topologischen Linear Raumes (Studia Math., Tom. V).
 2) von Neumann, On complete Topological spaces (Trans. Amer. Math. Sov. XXXVII (1935)).
 3) Hyers, Pseudo-normal Linear Space and Abelian Groups (Duke Math. Journ. Vol. 5 (1939)).
 4) Wehausen, Transformations in Linear Topological space (Duke Math. Journ. Vo!. 4 (1938)).
