
NOTES ON FOURIER ANALYSIS (XXY):

QUASI TAUBERIAN THEOR™ °

By

Genichirό Sunouchi.

The first general treatment of quasi-Tauberian theorems was given by

N. Wiener C16J. In this note the author proves another quasi-Tauberian

theorem concerning absolute limit under Wiener's conditions. Wiener

derived the Cesaro summability theorem of Fourier series frcm his general

theorem. In this paper further applications of his theorem and analogues

concerning absolute limit are given. Some of theorems proved in this

paper are known and the other are new. It is interesting that theεe theo-

rems are derived fi om two key theorems which are given in § 1. In § 2,

the Cesaro and absolute Cesaro summability theorems due to Paley [11J

and Boεanquet [ l j C2j are derived frcm the key theorems. In § 3, we prove

the Cesaro and absolute Cesaro summability theorems of the conjugate

Fourier series. These theorems include the essential parts of the results

due to Paley [ l l j and Boεanquet-Hyslop [5^. The Cesaro summability

problems of the derived Fourier series are discussed in § 4. The essential

part of the results due to Takahashi (13^, Wang [14J (Ί53, Zygmund C173,

Bosanquet £3^ £4J and Hyslop [TJ are derived frcm our key theorems. It

is well known that these results are interpreted as the relation between

Cesaro summation and Riemann summation of the first kind and their

a nalogues concerning absolute summation. In § 5, the relations between

the generalized jump of a function and its Fourier constants are discussed.

This problem was treated early by Zygmund [18J and Szεεz Γ12> Theεe

results are known as the relation between Cesaro summation, Riemann

summation of the second kind and their analogues concerning absolute

summation. As applications of these theorems, we can also prove theorems

analogous to the results due to Misra C9D and Moursund C10>

In the sequel we shall fully use the notations and theorems of Chapter

VII in the Wiener's work Clβ^ without references.

*) Received Sept 1,1949.
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1. The key theorems.

Wiener's key theorem (cf. Wiener C16J, Theorem XXIΓ and XXIIΓ) reads

as follows.

Theorem 1. Let f(x) be of limited total variation over every finite

interval. Let

( l c ) Kλ (x) be bounded and continuous,

(2°) / I d (KΪ CO έr*") | < αwίsf., and XiCO

(λ > 0, A,* 0) as AΓ-> - oo,

(3°) Kι(x) 6 jLaC — °°J °°)

r
OO ~ \ Ki CO 0"* fifa; 0' = 1,2) ##J fe/ &2 C^O/̂ i C«) ̂ ^ analytic over

ϋ S λ + 6, tfw^ feί zϊ belong to Lz over every ordinate in that strip.

Then if

lim I KΊ(y- x) dfdx) = A Kj (AT) rfjr,
0 - o o

it follows that

lim I K2 (y ~ x) df(x) ^ A] K2 (AT) rfAΓ.
0 - o o

/ft ί/te hypothesis, if KY Ĉ ) = 0 (x> 0), tc e may replace the strip — 6 <i

g λ + 6 6y //̂ ^ narrower strip - 6 $ Re(u) ^ θ.

The proof has been given in Wiener C16J, Chapter VII.

Theorem Γ. Under the hypothesis of Theorem \,

/

oo ΛCO

implies

J dyj Kt(y-x)dfζxϊ < oo.

Proof. Under the hypothesis of the theorem, Wiener concludes (see

C16J p. 75), that
p Λoo - c o . C O

(1) / dzR(y — z) I Ki(z — x) df(x) = / df(x) I Kγ(y — x — z} dR (z).
J J J J

0 0

Put
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j K, (y - x) df(x) = F
0

then

J \dF(y)\ <oo.

By the convolution theorem of Fourier transform,

Kλ 00 = J K^x - 2) dR O),

where

and

(2) J μi?C*)|<oo. (Wiener C16J, pp. 72-77).
— oo

It is sufficient to prove J \dG 001 < oo, where
— CO

G 00 - J iΓ2 Cj' - x) df(x).
υ

Now

G 00 = J ^/CΛ:)J ^ O - x ~ z) dR (z)

= J d,R(y - 2 )J Ky (z - x) d/(x) (by (1))
- c o 0

= J dzRCy-z^Fίz)
— oo

- z) F(z)f - j R(y- z):dF(z).
-oo J

Using the hypothesis and Theorem 1, we see that F( + oo) exists

(we assume F( — oo) exists, this is permissible in the following applica-

tions) and that R ( -f oo) and R ( — oo) exist by (2). Thus the first term

of the right hand side is constant, so we have

r /»oo /»oo

\dG(y)\=J \dvj R(y-z)dF(z)\.
— oo — c o — oo

But, by the unsymmetric Fubini's theorem (cf. Cameron and Martin



170 GEN-ICHIRό SUNOUOHI

and C2), we have

r r r
/ \dG(y)\<,\ \dF(z)\ I \dyR(y — z)\ < oo .

J j J
— oo —oo - c o

Thus we get the theorem.

2. The Cesaso and absolute Cesaro summaMIities of Fourier series*

Theorem 2. Let f(x) <ζ L with period 2τt or defined over C — oo, oo)

and zero outside ( — A, A). Let

lim (C, m) ψ (y) = lim rnX I ψ 0 0 ( 1 — λjy)™"1 dy
λ->oo J

0

lim CC, m) 6 Ĉ D = l i m — XI ψ (y) dy I Cl - ^ ) m cos
,\-> % 7* J J

0 0

poo

= lim ω I ψ CO 7i+»* CωO J/
ω->oo J

0

where
Λl

= {/(# + JV3 + /C^ — 30 — 2 s}/2 and γa(x) = I Cl — O Λ - 1 cos ijr^, (
o

Ci) (/" (C, m) φ (y) -> 0, «rs jy -> 0, ί/̂ ŵ © Ĉ D ^ CC, m + εysummable

to zero, where m > 1, 6 > 0, (ii) z/ © Ĉ O *̂5 CC, mysummable to zero, then

(C, in + 1 + S)φ 0 0 —> 0, <2S j> —> 0, where m^0, S >0,

Proof. After Wiener we put,

w + 1) Cl - exynex, (x < 0)

0, (x > 0)

and

2 Γ(w°ϋΓ (ΛΓ) = - ^ r tx\ Cl — 2) w cos (zex) dz Qm > 0),

I)

then the condition C2°) in Theorem 1 is satisfied for λ = 1, and we can put

Kj (x) = ϋΓcw) CΛ) or UΓICΛ:) = Oίi)UL (x) in Theorem 1. If we put

and

m(ι0 = /
Γ(nι + 1 — u) cos-s—
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then as \Im(u)\ -> oo

Im{u)

Thus from Theorem 1 if n > m, then

f /»c

0 - c o

implies

(4) lim I K^ (y - x) df(x)
j

= ,4 /
J

while if m > w + 1, (4) implies (3).

Theorem 2'. Using the notations of Theorem 2, (i) if Ψiy} is \C, tn\

-summable in ( — oo, oo) {( — τr} TΓ) /<?r ί/ί̂  Fourier series case}, then & 0?O

is \C, M + £ I -summable, where m >: 1 /w ί Aβ Fourier integral case, m > 1

m /Aβ Fourier series case, and Cii) if(ζ>ί<P'} is \C,rn\-summable, then Ψ 00

/5 I C, m + 1 + 6 I -summable in C — oo, oo), where m > 0 /w /Â  Fourier

integral case, m > 1 m ί/?̂  Fourier series case.

Proof. In the proof of Theαrem 2' we use Theorem 1' instead of
Theorem 1. In the Fourier series case, since <p 00 is | C, m| -summable in

C — 7τ, 7τ) but not in ( — oo, -f oo) we need to prove

r
where

/ Cω) == ω J CO 0).

The Riesz kernel yΛ (ΛΓ) satisfies the following relations (cf. Bosanquet

(5)

(6)

(7)

(8)

(9)

We have

yΛ (x) + iJΛ (x) = J (1 - O*"1 ̂ c Λ U > 0, a > 0)

, where p = Min (2, ,8).

= a
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(ωty\<Pφ\dt

" - * -it

and then

» oo.

1 1

Thus © Ĉ O, where the function ψ (x) vanishes in C — 7r, π^), is |C, β\

-summable (β > 1).

Thus the theorem is proved completely.

3. The Cesaro and absolute Cesaro summaMlities of the conjugate

Fourier series.

Let fix) 6 L with period 2π or defined over ( — oo,oo) and zero outside

C - A, A). Let

then it is known the existence of the integral

We put, after Paley C81

/
l/λ

ψ(t)(l - \t)m~2 dt (m > 1)

and

lim (C, m) © CjO == H

/*oo

= lim λ Γ ( l + m) \ CλO" ( 1 + w ) CΪ+TO (λi) ψ CO Λ
λ->oo »/

0

where Cm(t) is Young's function. Then we have

Theorem 3. (i) // conj. lim (C,m) Ψ(O = s, thenΈ>CΩ is (C, m + 8)

summable to s, where m^Λ, έ > 0, and (ii) ί/©C/3 *5 (C, tή)summable

to sf then conj. lim (C,m + 1 + 6) -^(/) = 5, where mϊ>0, 8 > 0.
t-X)

N. B. Paley proved the theorem m ̂  0, but the caεe 1 > m ̂  0 the

definition of ccnj. lim ψ(y) is different, so that the theorem needs to be

formulated in another form, but we don't enter in this caεe.
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/

l/λ

ψφ (1 - λO™"2 dt is of bounded variation in ( - oo, oo) | ( - TΓ,

)*r) for the Fourier series caεer, then we say that ψ(t) is conj. \C, m\

-summable.

Theorem 3'. (i) Ifψ(O is conj. \C, m\-summable, then ©C/3 *5 |C,

m -f £| -summable where m > 1 yfrr 2λe Fourier integrel case, m > 2 /or ί/?̂

Fourier series case, and (ii) //* © ff J /s |C, m\-summable, then ψ (O /5 conj.

|C, tn+l + £\-summable, where, m > 0 /or 2λe Fourier integral case, m > 1

/or ί/ẑ  Fourier series case.

Proof. If τ/rOO ~Σ#» * sin/zy, then we have (cf. Paley Γ8

Γ
= Γ (1 + wθ λj κo(λί) Φ(O dt

where

my C 2 + m a t ) Ψ ω d i

Γ > O Ω

^ { ω Cm (0 },
and

%>(*) = 0(1/ί σ ), σ = min(m,2).

For the place of ΛLΊOO or ^ (x), we take

I (m + 1) (1 — ̂ w * e*, (x < 0)
W 1 0, (*>0)

and

("€(i) - %o(^)^.
Then we have

im'ΌKXt) tu dt,/

CO Λ O O /»O

% 0 ( ^ ) ^ elίaΓrfΛr = J %u(O Z« Λ = J i

where ( m- i : ) /Γ(O is defined in Theorem 2, and the dash denotes differentia-

tion with respect to t. By the integration by parts the above integral beco-

mes

tu~J - u Γm^KCt) P1'1 dt
o J

= ~uj «n-»K(t) t11-1 dt,
o

since for m > 1, <'">-1>/TGO f1+e-> 0 as t->oo.
Evaluating the integral we have
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-~uΓ(m) uT (m)
:

T(m + 1 - fθ cos

Similarly we have

Since

and

as

ΓOw + 1 - u) sin
), say.

^ = T-CtO, say.

Γ(m)

ΓCw + 2)

oo; we have

τn(u)
2Γ0ιθ

2)

and k2(u)/kι(u') belongs to L, over every ordinate in the strip, provided that

2 ( - m -f 72 + 3/2) < - 1,

that is n + 2 <m. Since other conditions are evident, conj. lim(C, m)ψ(y)
V-50

= 5 implies
Km © COCC, m + 6) = s (m > 1).

The proof of Theorem 3' is analogous.

4. The Cesaro and 'absolute Cesaro summabilities of the derived

Fourier series.
Suppose that there is a polynomial

such that for — π <; t ^ π,

is integrable in the sense of Cauchy. In the sequel we suppose P (O = 0

without any loss of generality. The (C, m)-mean of the r-th derived

Fourier series (S(r) 00 * s denoted by

ί ( W

where

and

- Γ(m) J (1 -

= J C1 ~ c o s

'"1 cos

dz
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_ ( - lγ ^ (r\ ΓCm + r - i + 1) m

<cf. Jacob C8̂ ) For the the sake of brevity, we investigate the case r = 1.

Then

:'«. (ω) = ( - l )-^r ω 2 j yύ C»0 Ψit) dt
o

2
7Γ j ^ ' . . 2 s i n (2ft

0

ί/α-«.
o

2 Γ f ,= —- / φ CO dt / ω2 (1 -
7t J J

0 0

7C J J
- C O 0

f •* l -
/

"ϋ

(11) σ-TO(«) = i^C^) eMX dx = / ^M+1 dtl (1 — z)m z s in 2/
J J J

- 0 0 0 0

= Jtu+ιy[+m(t) (by (10))
0

/

CO

,M ,, Γ ΓCm + 2)
1 (m + 1)

0

z)
- C O 0

Let

Γ1

: sin

then
< 1

Γ(ι« + 1)

0

Γ Cm + 2 ) Γ C m

I (m + 1 -— w) cos-g— 1 Cwί — w) cos

= Γ (m + 1.) C2w + 1 - M)

In order to deduce this formula, it is necessary to make some restriction

on m and u, but the resulting formula is valid in the analytic domain of u

by the principle of analytic continuation.

Put

/
l/ω

ci - ωty-1
 Φ co dt,

0

then the kernel becomes

κ w (χ) = ( W + r> (l - e

xyn ex
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and

When σm (u) is numerator the range of analyticity of k,(u)/kι(u), is

sufficient to be — £< Re(u) < £, since KSmKx) = XiOO = 0 C#>0) in Theorem

1, but when σm(u) is denominator the range is — £ <Re(u) < 2 + £, by
wK(x) = Kι(x) ~ elκ as x-+ oo in Theorem 1. In the latter caεe m should

be limited to be > 1, for the poles of Γ (m — u + 1). Since the order of

asymptotic formula of σm(u)/τn(u) as |/mOO|-> oo,is |/m(«)| i t e^- ί n + l ι + 1 /-+ 1.

by Theorem 1, in order to conclude τn(u)/σm.(u) € L2i it is sufficient

2(Re(u) - m + ^ + 4 ) < - 1 Cm > - 1)

that is, n + 2 < m.

Similarly σm(u)/τn(u) € £*, when

C«)-w + Λ + \ + l ) < ~ 1 Cm < 1),

that is n> m — 1.

Thus we get the following theorem.

Theorem 4. CO // ΦCO = ~^{f(x+f) - f(x - 0 } is (C, mysummable

to zero as 2->0, then ©'CO 2*5 CC, m -f 1 + sysummable to zero, where

m > 0, £ > 0, α?2ί/ (ii) ί/©' CO ^ CC, mysummable to zero, then CC, M + £)

φ (/) _> 0 as t -* 0 ivhere m > 1, £ > 0.

Theorem 4'. Ci) // Φ CO is |C, m\summable in ( — π, π), then ©'CO

is I C, m + 1 + £ \-summable, where m > 1, αw<i Cϋ) ί/ ©' CO is | C, m |

-summable, then Φ CO ί"s \C,m + β\-summable, where m > 1.

More generally in the caεe of the r-th derived series, instead of (11),

we have from (10) for σc

rp (u) which denotes the Mellin transform of the

__ Γ Cm î- 1) Pr(u)

cos -g— V (m + 1 — u)

where P r (w) is a polynomial of ^ of order r. When σ%?(u) is denominator,

kι(u)/ki(u) is sufficient to be analytic in — £ <Re (u)<r+l + £ by Kλ(.x) ~

eir+i)χ a s x ^ CO) a n ( j j | - i s sufficient to suppose m > r. Let τ^p be the

Mellin transform of Φ r (t), then τ^°(«)/σ^(«) € L2, when 2{Re(u) — m-ϊ
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n+ί-\-r}< —1, that is n + r <nι, but σ%Ku')/τ?Ku) € L2i when-2 ίjRe
1 ) ^

(w) — m + ^- + r \ < — 1 Cm > r), that is n> m — r.
Theorem 5. (i) If lim CC, m) Φ r (0 = 0, λiα ©<r>(/) *s (C, m -f r + 6)

-summable to zero, where m>0, and (ii) if <50) CO /s (C, m)~-summable to

zero, then lim (C, m - r + 1 + θ) Φ r (O - 0 where m> r^>l.

Theorem 5'. (i) If ΦrCO is \C, m\~summable in (—7r,π),then θ ( r )(X)

/s \C, nι + r -f ε\~summable, where m>l and Cϋ) 7̂ ©cr) CO & |C, m\

-summable, then φr (t) is \ C, m—r + 1 + £\-summable in (—π,π), where m >

r >0.

5. Relations between generalized jump of a function and its
Fourier coefficients and certain of its applications.

Let ψ CO - ψrCt) = /(Λ + f) - C - 17/Gr + O and let ψr CO = ψr(O/rl ίr.

If lim $Y(O = 5 n Zygmund C15J called it the r-th jump of f(χ) at * and
proved that

& = lim CC, Λ) C«r« cos w* + ^ sin nxyic+1\ (a > ^ + 1)

which denotes the (k + l)-th derivative for x. We shall generalize this

result as follows. According to Zygmund £15},

lim CC, a) (an cos nx + bn sin nx)ik+i:>

4 ϊ n A ? " 1 3 (O Λ (where Jί™ (0

is CC, «0-kernel)

- » - w - (•¥•
0

- 5?
0 0

Comparing with Theorem 1, the kernel

J (1 - \)«-i χ*+i cos
o

is of the same order as the kernel of derived series. For instance, let

ft = 0, then

WK 00 = <Π (1 ~ λ^-'λ sin (\ex) Jλ,
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<τm(u) = jK(x)enx dx^ J evx e"J (1 ~ \y~l sin (\ex) d\
- c o _ o o 0

o cos ~Γ(m — u + 1)

Theorem 6. (i) If lim (C, α) ψ^CO = /(* 4- O - /(* - 0 = /,

//tew lim (C, 1 + # rh ̂ .) (nbn cos nx — nan sinw#) -> jjπ where a ^ 0, 6 > 0,

α ώ conversely Cii) 7/* lim (C, oO WnCos nx — nan, sin >2Λ;) ->j/7r, then

lim (C,Λ + £) ψχW->j, where a>l.

Theorem 6'. (i) If ΨM) is \C, a\-summable in {—π,τr},then (nbncos

nx — Λflίi sin wx) is \ C, 1 4- a + £\-summable, where a>l and £ > 0 #/2ί/ (ii)

ι/ (nbncosnx~ nansinnx) is | C, a\-summable, then ψx(t) is \ C, oc + £ |

suminabley where a>l.

N. B. I f / ( 0 ^ 2 ^ s i n ^ t h e n

^Λsin--n nt

This is the (J?', 2) -summation of nbn. Theorem 6 and 6' denote the relation

between (R, 2) and (C, 2 + 8), and |i?r, 2) and |C, 2 + £|, respectively.

More generally

Theorem 7. If Φkit) is (C, a)-summable to j as t-+Q, then (ancosnx

-f bn sin nx)^+v is (C, & + 1 -f «ί 4- £)~surnmable to j/π, where a > 0, £ > 0,

#m/ (ii) z/* Cί7wcpswx+ bn sin^Λr)^+1) is (C, a)-sunιynable to jjπ, then φfc(O

is (C, a — k + 1 + S)-sum}nable to j , where a > k, S > 0.

Theorem 7'. (i) If Φk(t) is \C,a[-smnmable inC—π.πXthen (ancosnx

4- ̂ » sin nx)^+ι>> is | C , H l + « + £| -summable, ivhere <x>l, 8 > 0, αnJ

( i i ) //" ( ί 7 , t c o s M + ^ , s i n ; ^ ) ( / ( + 1 ) is \C,a\-summable, then Φ A ( O /*5 \C,a — k

4-14- c I -summable, where ac> k, 8 > 0.

From these theorems, we can εee the relation between the generalized

jump and generalized Gibbs' phenomenon by Szasz's Theorem

Theorem 8. If the conjugate Fourier series 2+ (Pn cos nx — an sin nx)
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Abel-summable and )iψ.(C, oc)ψ(t) = 0, then the series is (C, a + S)-summable

and exists
ε->0

e

oo

Theorem 8' If the conjugate Fourier series ^£(bn cos nx — an sin nx) is

\ A\ -summable and ψ(t) is \C, a \ -summable in ( — π, π), then the series is

\C,oc + £\-summable (a>l) and the integral— I is \C, oc\-summable.
'7T J t

e

Proof. Since (C, a) ψ(t) -> 0, (nbn cos nx — nan sin nx) is (C, 1 + a + S)

-summable to zero by Theorem 6. Using the well known Tauberian

theorem, the Abel summability of the series implies (C,oc + £)-summability.

The existence of lim (C, a)— I xί-2- i s due to Paley [ΊlD
e

Theorem 9. When (C, a) ψ (t) -> 0 as t-> 0, in order that the conjugate
oo

Fourier series^?^ (bncosnx — tf^sin^jt) is summable to 4- oo by Abel's method,
n-i

the necessary and sufficient condition is lim (C, a) I -̂ -~— dt = +°°

Theorem 9'. W7/̂ /? ΨCO ^ |C,a\-summable in ( — π,π\ in order that

the conjugate Fourier series is not summable by \A\ -method, the necessary

and sufficient condition is

— i
7T J t

is noι \A\-summable ( — π,π) where a > 1.

Proof The necessity is analogous to the proof of the Theorem 9

The sufficiency is due to Theorem 1, where A = 4- oo.

β Cesaro and absolute Cesaro simimability of the derived series of

conjugate Fourier series.

Let
OO CO

/ ( # ) ~ 2 (an C 0 S ™X + ^n S*Π HX^ Ξ 2 An (X),

and its conjugtea series be
oo oo

2 (bn cos nx — an sin nx) = ^ΣBn(x),
7 1 = 1 W = L

then its derived series is
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>. — (n an cos nx Λ- nbn sin nx) = ̂  — ?z A&(#)

The (C, &>mean of this series is (cf. Sayers

<,. « r
τ t W " (HD*J

0

where

Then we have

(12) τfc(α>)^lim . " •/ ^ ( « - ^ -

/

2V

0

= lim A\ ω2 I <P(t) yί
0

= Km A I (ω
0

where

We have' /ico

J
c CO

Hence, if we put

f Zψ
then £* ψι cε) -> 0, as 6 -> 4- 0, applying the second mean value theorem-
Then, by the integration by parts,

TΛ(ω) = lim A Γ - ?

where

Since, for k > 0,

as ί -^ 00, and
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~ dt^ OW,

as t -» oo; we get

lim Aω / ψ ^ ί ) X (ωί) dt = A I ψi(
0

But

If we put

then

* dt
Consequently,

(13) 4j

where

and

If we put as the kernel of the key theorems in §1,

then its Mellin transform is

J <fc> K(x) eux dx = J ̂  £** Ύ
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_ l\k){u* - 4(k - l)(u - 1) - (u - 1) + 4 (jfe - 1)* + 4(fc - 1) + 1} - , .
Γ (A? + 1 - «) cos r »/2 "

say.
As \Im(u)\-+oo, its asymptotic behaviour is

The ordinary Cesaro kernel has the Mellin transform

as

When σvό(» is the denominator, the range of analyticity of &*(«)

is sufficient to be - £ < Re(u) <2 + S since <w>uf(#) = K,(x) ~ ex as

in Therem 1. Hence in this case m should be limited to be > 1.

If
2(Re(u) - m -V 3/2 + n + 1 ) < - 1,

that

then

and

that

then

is

if

is,
- 2(Re(u)

n + 3<

- m + 3/2 + n

n > m —

U

+

2,

- 1, (w > 1),

Thus we have the following theorem.

Theorem 10. If we put

/
c

then, (i) ί/lim (C, m) Φ x (0 = s (*farf is conj. lim (C, m + l)<P(t)/t = s) ,

ί ^ n ©' CO is (C, m 4- 2 + S)'Summable to s, where m^>0, £ > 0", #;zd (ii) if

©' CO is (C, m)-summable to s, then lim (C, m — 1 + £) Φi(ί) = s {that is,

conj. lim (C, m + £) <P (t)/t = s, tc ̂ r β m > 1 βwrf £ > 0.

Theorem 10'- The same is true for the absolute Cesa.ro summability,

where in the case (i) m ί> 0 must be replaced by m > 1.

N. B. When

A. Zygmund C19J proved that if

: - 0 - 2F(x)
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exists then ^an is summable (ϋf,2). Hence we get the following Corollary

of Theorem 10.

Corollary. l/Σ—~cosnx is a Fourier series, then the (K,2ysumntab-
cc n = l

ility of ^ On implies its (C, 2 -f Sysummability.

Similarly estimating as in § 5, we have

lim (C, a.χ ~ bn cos nx 4- an sin nx)
II ->co

-lim — ^ ^ \ψx(t)Λ-K^-ιHt)dt (where A'̂ -'XO is
0

conjugate (C, # — l)-kernel)

/

°° i //
Ψ-,Φ~~^r—τr\ϊiΛ-\<JΊ^y\ dt (where A is a constant)

o

ω I φx

ί)

= lim Aω I φxφ 7Λ_T (ωt) dt

= lim -A (c» 0s ^ - } f;_, (»0 Λ.

Comparing with (12), put

^ Λ - a r , co,

then we have, similarly as (13),

lim (C, oί) ( — &w, cos ̂ jr + an sin n^)'

Γ
= lim ̂ ω / 3fi

ω^oo J
0

where

Hence the kernel is

which is the same order as the kernel of the derived series of the conjugate

series. Thus we get

Theorem 11. (i) If

7t JJ I
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then lim (C,a -f 2 + £) (na» cos nx + nbn sin nx) = 5, w/^re a ;> 0, £>0

conversely (ii) z/lim (C,tf) («α«cosΛ# + w n̂ sinrc*) = 5, then lim (C,

- 1 + <?) -— ί / ^ ^ J ί - 5, where a>l, ε>0,
t

Theorem 11'. The same is true for the absolute Ceskro summability.

N, B. If

f4Sin

J 4 s i«>+o π J t' .„<& πn

exists at # = 0, we say that the sequence (n An) is (K', 2)-summable.

This is the conjugate analogue of (/?', 2)-summability. Then Theorem 11

implies that (if, 2)-summability implies (C, 2 + θ)-summability, provided

that 2 (βn c o s nχ ~ί- bn sin nx) is Fourier series. Concerning this sort of

summability we shall retura in ancther occasion.
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