Notes on Fourier Analysis (VIID;

Local properties of Fourier series.

By

Shin-ichi Izumi.

The object of this paper.is to prove three localization theorems of
Fourier series concerning absolute Riesz logarithmic summability. These
are the analogue of theorems concerning absolute Cesiro summability.

Theorem 1. If 0<a < B<2m, then there is an integrable function
which is zero outside the interval (a,B) and whose fourier series is not
summable | R, log n,1| at t = 0. That is, |R, log n, 1| summability is not the
local property (in the ordinary sense).

Proof- Let s,(x) be the (v + 1)-th partial sum of the Fourier series
of f(x) and let
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where D,(t) dnotes the Dirichlet kernel. We have to prove the existence
of a function f{#) which is equal to zero outside the interval («,8) and
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We need the following
LemmaV®. Let {g.(2)} be a sequence of bounded measurable functions in
the interval (a,B3). Then a necessary and sufficient condition that, for any
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integrable function f(t),
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is that z lgw(t)| s essentially bounded in the interval (a,3).
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then, by Lemma, it is sufficint to prove that the series
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If we put @)= (7 —1)/2 in (0,27) and ®(t) = ¢(t + 27), then
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and its partial sum is uniformly bounded in the interval (a.B). Hence
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The right hand side series is divergent for {+ 0 by the Fatou theorem.
Thus the theorem is proved.

Theorem 2. If an = o(1/log*n), by = ¢(1/log*n), then the |R, logn, 1}
su\mmability has local property.

Proof. Let 0 <8 < #. It is sufficient to prove that
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is bounded for every even function f(#) with Fourier coefficients satisfying
the condition in the theorem since
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in (8, m), we have
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Hence it is sufficient to prove that -
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For, the required one is quite similarly estimated. By
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Thus the theorem is proved.
Theorom 3. If f(x) is an integrable function such that for any y in the
closed interval (—m, m) theve ave function f,(x) and a 8 > 0 such as
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Ju(®) = f(x) for |x—y] <8
and the Fourier series of f,(x) is | R, logn,1| summable, then the Fourier series
of f(x) is | R, log n, 1| summable. That is, |R, log n, 1| summability is the
local property in the Wiener sense.
Proof. By the Borel’s covering theorem, there are a finite number of
overlapping intervals (d;, d;) covering (—=, =) and functions fi(x) " which
coincide with f(x) on (d;, d;) and is equal to zero outside the interval (d;, d;)

and whose Fourier series is |R, log », 1| summable. ‘We can suppose that
di<di_ <d,, <d,.
Let g;(x) be defined such that
g(x) =1 @i, = x =< dis),
=0 . (x<d}, d; < %),

and 0 =< g(x) <1, g(x) =1, and that the fcurth derivative g"’(x) exists
everywhere.
The n-th Fourier coefficient ¢.(g) of gi(x) is
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Since 2 gi(x) =1, we have
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the right hand side series evidently being convergent. We use the abbrevi-

ation
Cn(ﬁgl) = Cny Cin (fz) = bu, Cn (g = am.

For the proof of the theorem, it is sufficient to prove that the Fourier

series of fi(x)gi(x) is |R, log »n, 1| summable. Let s,(x) be the (v + 1)-th
partial sum of the Fourier series of 7(x)gi(x), and let
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The first term of the right hand side is O (2 Ia,\l> = 0() by the hy-
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pothesis. Cencerning the second term, the general term of the inner sum is
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which we denote by J,. Then 2 [J:] = OC|A]). For, if (su) is |R, logn,
1| summable, then (a,) is also.®
Thus the theorem is proved.»

Foot Notes
*) Received June 30th, 1949.
1> Randels, Bull. Am. Math. Soc., 1940. Boganquet, Proc. London Math. Soc., 4!
(1936), Bosanquet-Kestleman, ibidem, 45 (1938).
in vt

2) We can easily verify that the difference of this term and that replaced 2=

. ;
by —__dsmg':;"n:// 22>t converges absolutely. But the following arguement holdS taking

sinCo+1/2)t2 instead of sinvt
sing/2 t

3) Mr. N. Matsuyama proved also this theorem after Randel’s idea. See N.Matsu-
yama, Monthly of Real Analysis, 3 (1949) (in Japanese).

4) As an alternative proof, it is sufficient to prove that 2 {an] [nlogn<eco. Now

sn=n[log n+Rr—log{n—1)Ra-1], whence
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This lemma is due to Mr.N.Matsuyama.
5) The author expresses his hearty thanks to Prof. A. Zygmund who
gve me valuable remarks. Especially the original proof of Theorem 3 was

incomplete.





