NOTES ON FOURIER ANALYSIS (XXXIX): THEOREMS CONCERNING CESARO SUMMABILITY*)

By
Shin-ichi Izùmi and Gen-ichirô Sunouchi

In this paper it is proved that, if

$$
\begin{equation*}
\int_{0}^{t} \varphi_{x}(u) d u=o\left(t / \log \frac{1}{t}\right), \quad \text { as } \quad t \rightarrow 0 \tag{1}
\end{equation*}
$$

then the Fourier series of $f(t)$ is summable $(C, 1)$ at $t=x$, and if $0<\alpha<1$ and

$$
\begin{equation*}
\int_{0}^{t} \varphi_{x}(u) d u=o\left(t^{1 / \alpha}\right), \quad \text { as } \quad t \rightarrow 0 \tag{2}
\end{equation*}
$$

then the Fourier series of $f(t)$ is summable (C, α) at $t=x$. These theorems are known (Wang [7], [8]), but we give two kinds of proof. Each method is generalized to prove more general theorem. We prove that o in (1) and (2) cannot be replacd by O in these theorems.
§ 1. Theorem 1. If

$$
\begin{equation*}
\int_{0}^{t} \varphi(u) d u=o\left(t / \log \frac{1}{t}\right), \quad \text { as } \quad t \rightarrow 0 \tag{1}
\end{equation*}
$$

where

$$
\varphi(u)=\varphi_{x}(u)=\{f(x+u)+f(x-u)-2 f(x)\} / 2
$$

then the Fourier series of $f(t)$ is summable $(C, 1)$ at. $t=x$.
We prove this theorem in two ways, one using Young's function and the other using the Fejér kernel, respectively.

The first Proof of Theorem 1. For $\alpha>0$, Young's function is defined by (Hobson [2] and Bosanquet [1])

$$
\gamma_{1+\infty}(u)=\int_{0}^{1}(1-t)^{\alpha} \cos t u d t
$$

Then, as is well known, $\gamma_{1+\alpha}(u)$ and its derivative $\gamma_{1+\alpha}^{\prime}(u)$ are bounded for $n \geqq 0$ and
(3) $\gamma_{1+\alpha}(u) \sim \frac{\Gamma(1+\alpha)}{u^{1+\alpha}} \cos \left(u-\frac{\alpha+1}{2} \pi\right)+O\left(\frac{1}{u^{\alpha+2}}\right)+O\left(\frac{1}{u^{2}}\right)(u \rightarrow \infty)$ and $\gamma_{1+\alpha}^{\prime}(u)$ has the behaviour of the derivative of the right hand side of (3) as $u \rightarrow \infty$. Especially, for $0<\alpha \leqq 1$,

$$
\begin{equation*}
\gamma_{1+\alpha}(u)=O\left(1 / u^{1+\alpha}\right) \quad(u \rightarrow \infty) . \tag{4}
\end{equation*}
$$

The necessary and sufficient condition that the Fourier series of $f(t)$ is summable $(C, 1)$ at $t=x$, is that

[^0]\[

$$
\begin{equation*}
\sigma_{\omega} \equiv \frac{2 \omega}{\pi} \int_{0}^{\infty} \gamma_{2}(\omega u) \varphi(u) d u=o(1) \quad(\omega \rightarrow \infty) \tag{5}
\end{equation*}
$$

\]

where

$$
\gamma_{2}(u)=O\left(1 / u^{3}\right) \quad(u \rightarrow \infty), \quad \gamma_{2}(u)=O(1) \quad(u \rightarrow 0)
$$

by (4).
Letting $0<r<1 / 2$, we divide the integral (5) into two parts such as

$$
\frac{\pi}{2} \sigma_{\omega}=\omega \int_{0}^{\infty} \gamma_{2}(\omega u) \varphi(u) d u=\omega \int_{0}^{1 / \omega^{r}}+\omega \int_{1 / \omega^{r}}^{\infty} \equiv I_{1}+I_{2}
$$

say. Then we have

$$
\begin{aligned}
I_{2} & =\omega \int_{1 / \omega^{2}}^{\infty} \gamma_{2}(\omega u) \varphi(u) d u=O\left(\frac{1}{\omega} \int_{1 / \omega}^{\infty} \frac{|\varphi(u)|}{u^{2}} d u\right) \\
& =O\left(\frac{1}{\omega}\left[\omega^{2 r}+\sum_{k=1}^{\infty} \frac{1}{k^{2}}\right] \int_{0}^{2 \pi}|\varphi(u)| d u\right)=O\left(\omega^{-1+2 r}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
I_{1} & =\omega \int_{0}^{1 / \omega^{r}} \gamma_{2}(\omega u) \boldsymbol{\varphi}(u) d u \\
& =\left[\omega \gamma_{2}(\omega u) \varphi_{1}(u)\right]_{0^{1 / \omega^{r}}}-\omega^{2} \int_{0}^{1 / \omega^{r}} \gamma_{2}^{\prime}(\omega u) \varphi_{1}(u) d u \\
& \equiv J_{1}-J_{2},
\end{aligned}
$$

say, where $\boldsymbol{\varphi}_{1}(u)=\int_{0}^{u} \varphi(t) d t$. We have

$$
J_{1}=O\left(\omega^{-1+2 r}\left|\boldsymbol{\varphi}_{1}\left(1 / \omega^{r}\right)\right|\right)=O\left(\omega^{-1+2 r}\right)
$$

and

$$
J_{2}=\omega^{2} \int_{0}^{1 / \omega}+\omega^{2} \int_{1 / \omega}^{1 / \omega^{r}} \gamma_{2}^{\prime}(\omega u) \varphi_{1}(u) d u \equiv K_{1}+K_{2}
$$

say, where

$$
\begin{aligned}
& K_{1}=o\left(\omega^{2} \int_{0}^{1 / \omega} O\left(u / \log \frac{1}{u}\right) d u\right)=o(1 / \log \omega)=o(1) \\
& K_{2}=o\left(\int_{1 / \omega}^{1 / \omega^{r}} \frac{d u}{u \log 1 / u}\right)=o\left(\log \frac{1}{r}\right)=o(1)
\end{aligned}
$$

Taking $0<r<1 / 2, I_{2}=o(1)$ and $I_{1}=J_{1}+o(1)=o(1)$. Thus we get` (5), which is the required.
By this method of proof, we get the following generalization.
Theorem 2. If $\alpha>0$ and

$$
\varphi_{a}(t) \equiv \frac{1}{\Gamma(\alpha) t} \int_{0}^{t}\left(1-\frac{u}{t}\right)^{\alpha-1} \varphi(u) d u=o\left(1 / \log \frac{1}{t}\right)
$$

then the Fourier series of $f(t)$ is summable (C, α) at $t=x$.
For, putting $\beta \geqq \alpha>0$, the Cesàro mean of the Fourier series of $f(t)$ of order β is equivalent to (Bosanquet [1])

$$
\sigma_{\omega}^{\mathbf{\beta}} \equiv \omega \int_{0}^{\eta} \varphi_{\alpha}(t) J_{\beta}^{\alpha}(\omega t) d t
$$

where

$$
J_{\beta}^{\alpha}(t)=\frac{\Gamma(\beta+1)}{\Gamma(\alpha+1)} \frac{1}{t^{1-\alpha+\beta}} \cos \left(t-\frac{\pi}{2}(1+\alpha+\beta)\right)+O\left(\frac{1}{t^{2}}\right)
$$

as $t \rightarrow \infty$. Thus we can prove $\sigma_{\omega}^{\beta}=o(1)$ as the proof of Theorem 1.
The second proof of Theorem 1. The Cesàro mean of the Fourier series of $f(t)$ of the first order is, using the Fojér kernel,

$$
\begin{aligned}
\sigma_{n} & =\frac{1}{2 \pi(n+1)} \int_{0}^{\pi} \varphi(t) \frac{\sin ^{2}(n+1) t / 2}{\sin ^{2} t / 2} d t \\
& =\frac{2}{\pi 2} \int_{0}^{\pi} \varphi(t) \frac{\sin ^{2} n t / 2}{t^{2}} d t+o(1) \\
& =\frac{2}{\pi n}\left(\int_{0}^{1 / n^{r}}+\int_{1 / n^{r}}^{\pi}\right) \varphi(t) \frac{\sin ^{2} n t / 2}{t^{2}} d t+o(1) \\
& \equiv I_{1}+I_{2}+o(1),
\end{aligned}
$$

say, where $0<r<1 / 2$. Then we have

$$
I_{2}=O\left(\frac{1}{n^{1-2 r}} \int_{0}^{\pi}|\varphi(t)| d t\right)=o(1)
$$

and, by the integration by parts,

$$
\begin{aligned}
I_{1} & =\frac{2}{\pi}\left(\int_{0}^{1 / n}+\int_{1 / n}^{1 / n^{r}}\right)\left[\Phi_{1}(t) \frac{\sin n t}{t}+\frac{1}{n} \Phi_{1}(t) \frac{\sin ^{2} n t / 2}{{ }^{2} t^{2}}\right] d t \\
& +\left[\frac{2}{\pi n} \Phi_{1}(t) \frac{\sin ^{2} n t}{t^{2}}\right]_{0}^{1 / n^{r}} \equiv J_{1}+J_{2}+J_{3}
\end{aligned}
$$

say, where

$$
\Phi_{1}(t)=\varphi_{1}(t) / t=\frac{1}{t} \int_{0}^{t} \varphi(u) d u
$$

By the hypothesis $\Phi_{1}(t)=o\left(1 / \log \frac{1}{t}\right)$, whence

$$
J_{1}+J_{3}=o(1)
$$

$$
J_{2}=o\left(\int_{1 / n}^{1 / n^{r}} \frac{d t}{t \log \frac{1}{t}}\right)=o\left(\left[\log \log \frac{1}{t}\right]_{1 / n}^{1 / n^{r}}\right)=o(1)
$$

Thus the theorem is proved.
§ 2. Theorem 3. In Theorem 1, o in (1) cannot be replaced by 0 .
Proof. It is sufficient to construct a function $f(\mathrm{t})$ such that the Fourier series is not summable $(C, 1)$ at $t=x$ and

$$
\begin{equation*}
\int_{0}^{t} \varphi(u) d u=O\left(t / \log \frac{1}{t}\right) \tag{6}
\end{equation*}
$$

Let $\left(c_{k}\right)$ be a sequence of positive numbers and $\left(M_{k}\right),\left(m_{k}\right),\left(n_{k}\right)$ be increasing sequences of integers, which will be determined later. Let us take a sequence of intervals

$$
\begin{equation*}
I_{k} \equiv\left(\frac{\pi}{n_{k}}, \frac{\pi}{n_{k}}+\frac{\pi}{m_{k}}\right) \quad(k=1,2, \ldots) \tag{7}
\end{equation*}
$$

which are disjoint mutually. Let $f(t)$ be an even periodic function such that
(8) $\quad f(t)=(-1)^{k} c_{k}\left[t \cos M_{k} t+\frac{1}{M_{k}} \sin M_{k} t\right]$
in. $I_{k}(k=1,2, \ldots)$ and $f(t)=0$ in $(0, \pi)-\vee I_{k}$. Supposing $x=0, \varphi(u)=$ $\varphi_{0}(u)=f(t)$ and

$$
\begin{aligned}
\int_{I_{k}}|f(t)| d t= & c_{k} \int_{I_{k}}\left|t \cos M_{k} t+\frac{1}{M_{k}} \sin M_{k} t\right| d t \\
& \leqq \frac{c_{k}}{n_{k} m_{k}}+\frac{c_{k}}{n_{k} M_{k}}
\end{aligned}
$$

If we suppose that

$$
\begin{equation*}
m_{k}\left|M_{k}, \quad n_{k}\right| M_{k} \quad(k=1,2, \ldots) \tag{9}
\end{equation*}
$$

in order that f is integrable, it is sufficient that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{c_{k}}{n_{k} m_{k}}<\infty \tag{10}
\end{equation*}
$$

We have also

$$
\int_{I_{k}} f(t) d t=\left[\frac{c_{k}}{M_{k}} t \sin M_{k} t\right]_{t=\pi \mid n_{k}}^{\pi / n_{k}+\pi ; m_{k}}=0
$$

and then

$$
\int_{0}^{t} f(u) d u=\int_{\pi / n_{k}}^{t} f(u) d u=\frac{c_{k}}{M_{k}} t \sin M_{k} t
$$

for t in I_{k}. Taking

$$
\begin{equation*}
m_{k} / n_{k}^{\prime} \rightarrow 0 \quad(k \rightarrow \infty), \tag{11}
\end{equation*}
$$

(6) is satisfied when

$$
\begin{equation*}
c_{k} \log m_{k} / M_{k} \rightarrow a \neq 0 \tag{12}
\end{equation*}
$$

Let us now consider the Fourier series of $f(t)$ and σ_{n} be its Cesàro mean of the first order. Then

$$
\begin{aligned}
\sigma_{n} & =\int_{0}^{\pi} f(t) \frac{\sin ^{2} n t / 2}{n t^{2}} d t+o(1) \\
& =\int_{0}^{\pi} \Phi_{1}(t) \frac{\sin n t}{t} d t-\frac{1}{n \pi} \int_{0}^{\pi} \Phi_{1}(t) \frac{\sin ^{2} n t / 2}{t^{2}} d t+0(1) \\
& \equiv J_{1}+J_{2}+o(1)=J_{1}+o(1)
\end{aligned}
$$

say, where

$$
\begin{gathered}
\Phi_{1}(t) \equiv \frac{\varphi_{1}(t)}{t} \equiv \frac{1}{t} \int_{0}^{t} f(u) d u \\
\frac{\pi}{8} J_{1}=\int_{0}^{\pi} \Phi_{1}(t) \frac{\sin n t}{t} d t=\sum_{i=1}^{\infty} \int_{I_{i}} \Phi_{n}(t) \frac{\sin n t}{t} d t
\end{gathered}
$$

Putting $n \equiv M_{k}$ and dividing the above sum into three parts,

$$
\frac{\pi}{8} J_{1}=\sum_{i=1}^{k-1}+\int_{I_{k}}+\sum_{i=k i+1}^{\infty} \equiv K_{1}+K_{2}+K_{3}
$$

say. We have

$$
\begin{aligned}
(-1)^{k} K_{2} & =\frac{c_{k}}{M_{k}} \int_{I_{k}} \frac{\sin ^{2} M_{k} t}{t} d t=\frac{c_{k}}{2 M_{k}} \int_{I_{k}}\left(\frac{1}{t}-\frac{\cos 2 M_{k} t}{t}\right) d t \\
& =\frac{c_{k}}{2 M_{k}} \log \left(1+\frac{n_{k}}{m_{k}}\right)-\frac{c_{k}}{2 M_{k}} \int_{2 \pi M_{k} \mid n_{k}}^{2\left(\pi i n_{k}+\pi i m_{k}\right) M_{k}} \frac{\cos t}{t} d t \\
& =\frac{c_{k}}{2 M_{k}} \log \frac{n_{k}}{m_{k}}+O\left(\frac{c_{k} n_{k}}{M_{k}^{2}}\right)+o(1) .
\end{aligned}
$$

If we suppose that

$$
\begin{equation*}
n_{k}=m_{k}^{2} \quad(k=1,2, \ldots) \tag{13}
\end{equation*}
$$

then $\log \frac{n_{k}}{m_{k}}=\log m_{k}$, whence $(-1)^{k} K_{2} \rightarrow a / 2$ by (12). Concerning K_{1},

$$
\begin{aligned}
K_{1} & =\sum_{i=1}^{k-1}(-1)^{i} \int_{I_{i}} \frac{c_{i}}{M_{i}} \frac{\sin M_{i} t \sin M_{k} t}{t} d t \\
& =\sum_{i=1}^{k-1}(-1)^{i} \frac{c_{i}}{2 M_{i}} \int_{\pi \mid n_{i}}^{\pi / n_{i}+n \mid m_{i}}\left[\cos \left(M_{k}-M_{i}\right) t+\cos \left(M_{k}+M_{i}\right) t\right] \frac{d t}{t} \\
& =\sum_{i=1}^{k-1}(-1)^{i} \frac{c_{i}}{2 M_{i}}\left\{\int_{\pi\left(\left[M_{i}-M_{i}\right) \mid n_{i}\right.}^{\left(\pi\left|n_{i}+\pi\right| m_{i}\right)\left(M_{k}-M_{i}\right)} \frac{\cos t}{t} d t+\int_{\pi\left(M_{k}+M_{i}\right) \mid n_{i}}^{\left(\pi\left|n_{i}+\pi\right| m_{i}\right)\left(M_{k}+M_{i}\right)} \frac{\cos t}{t} d t\right\} \\
& =O\left(\sum_{i=1}^{k-1} \frac{c_{i}}{M_{i}} \frac{n_{i}}{M_{k}-M_{i}}\right) .
\end{aligned}
$$

If we suppose that $\left(M_{k}\right)$ is convex and

$$
\begin{equation*}
\sum_{i=1}^{k-1} \frac{c_{i} n_{i}}{(k-i) M_{i}\left(M_{i+1}-M_{i}\right)}=o(1), \tag{14}
\end{equation*}
$$

then $K_{1}=o(1)$. Similarly $K_{2}=o(1)$, when

$$
\begin{equation*}
\sum_{i=k+1}^{\infty} \frac{c_{i} n_{i}}{M_{i}\left(M_{i}-M_{k}\right)}=o(1) \tag{15}
\end{equation*}
$$

Thus σ_{n} does not converge when $\left(M_{k}\right),\left(m_{k}\right)$ and $\left(n_{k}\right)$ satisfy the conditions (9), (10), (11), (12), (13), (14) and (15).

Let us define the sequence $\left(M_{k}\right),\left(m_{k}\right),\left(n_{k}\right)$ satisfying the required conditions. Firstly, let

$$
M_{1} \equiv 2^{5}, m_{1} \equiv 2^{2}, n_{1}=2^{4}, c_{1} \equiv 2^{5} /(2 \log 2)
$$

Taking μ_{2} such as $\mu_{2}^{2}>2 n_{1}$

$$
M_{2} \equiv \mu_{2}^{5}, n_{2} \equiv \mu_{2}^{2}, n_{2} \equiv \mu_{2}^{4}, c_{2} \equiv \mu_{2}^{5} /\left(2 \log \mu_{2}\right) .
$$

Further, taking μ_{3} such as $\mu_{3}^{\prime \prime}>2 n_{2}, M_{3}, m_{3}, n_{3}, c_{3}$ will be defined as above. In general, if $M_{k-1}, m_{k-1}, n_{k-1}$ and c_{k-1} are defined, then we take μ_{k} such as $\mu_{k}^{3}>2 n_{k-1}$ and put

$$
M_{k} \equiv \mu_{k}^{5}, m_{k} \equiv \mu_{k}^{2}, n_{k} \equiv \mu_{k}^{4}, c_{k} \equiv \mu_{k}^{5} /\left(2 \log \mu_{k}\right) .
$$

Thus $\left(M_{k}\right),\left(m_{k}\right),\left(n_{k}\right)$ and $\left(c_{k}\right)$ are completely defined and, as easily may be verified, satisfy the required conditions.
§ 3. Theorem 4. If $0<\alpha<1$ and

$$
\begin{equation*}
\int_{0}^{t} \varphi(u) d u=o\left(t^{1 / \alpha}\right) \tag{2}
\end{equation*}
$$

then the Fourier series of $f(t)$ is summable (C, α) at $t=x$.
We will also give two proofs.
The first proof of Theorem 4. The necessary and sufficient condition that the Fourier series of $f(t)$ is summable (C, α), is that

$$
\begin{equation*}
\sigma_{\omega}^{\alpha} \equiv \frac{2 \omega}{\pi} \int_{0}^{\infty} \gamma_{1+\alpha}(\omega u) \varphi(u) d u=o(1) \quad(\omega \rightarrow \infty) . \tag{16}
\end{equation*}
$$

Let $0<r<1$ and $\psi \equiv \psi(\omega)$ tend to ∞ sufficiently slowly. Dividing the integral (16) into two parts,

$$
\frac{\pi}{2} \sigma_{\omega}^{\alpha}=\omega \int_{0}^{\infty}=\omega \int_{0}^{\psi / \omega^{r}}+\omega \int_{\psi / \omega^{r}}^{\infty} \equiv I_{1}+I_{2}
$$

say, where

$$
\begin{align*}
I_{2} & =\omega \int_{\psi \mid \omega^{r}}^{\infty}(\omega u)^{-(1+\alpha)}|\varphi(u)| d u \tag{17}\\
& =O\left\{\frac{1}{\omega^{\alpha}}\left(\omega^{(1+\alpha) r} \psi^{-(1+\alpha)}+\sum_{m=1}^{\infty} \frac{1}{m^{1+\alpha}}\right) \int_{0}^{2 \pi}|\varphi| d u\right\} \\
& =O\left(\omega^{-\alpha+1+\alpha) r} \psi^{-(1+\alpha)}\right)=o\left(\omega^{-\alpha+(1+\alpha) r}\right)
\end{align*}
$$

and

$$
\begin{aligned}
I_{1} & =\omega \int_{0}^{\psi / \omega^{r}} \gamma_{1+\alpha}(\omega u) \varphi(u) d u \\
& =\omega\left[\gamma_{1+\alpha}(\omega u) \varphi_{1}(u)\right]_{0}^{\psi / \omega^{r}}-\omega^{2} \int_{0}^{\psi / \omega^{r}} \gamma_{1+\alpha}^{\prime}(\omega u) \varphi_{1}(u) d u \\
& \equiv J_{1}+J_{2}
\end{aligned}
$$

say. Since $\varphi_{1}(u)=\int_{0}^{u} \varphi(t) d t=o\left(u^{1 / \alpha}\right)$, we have

$$
\begin{aligned}
J_{1} & =\omega \omega^{-(1+\alpha)} \omega^{(1+\alpha) r} \varphi^{-(1+\alpha)} \varphi_{1}\left(\psi / \omega^{r}\right) \\
& =o\left(\omega^{-\alpha+(1+\alpha) r}\left(\psi^{1 / \alpha-1-\alpha} / \omega^{r / \alpha}\right)\right) .
\end{aligned}
$$

We can suppose that
Thus

$$
\psi^{1 / \alpha-1-\alpha} / \omega^{r / \alpha}=o(1) \quad(\omega \rightarrow \infty)
$$

$$
\begin{equation*}
J_{1}=o\left(\omega^{-\alpha+(1+\alpha) r}\right) . \tag{18}
\end{equation*}
$$

Concerning J_{2}, we put

$$
J_{2}=\omega^{2} \int_{0}^{1 / \omega}+\omega^{2} \int_{1 / \omega}^{\psi / \omega^{r}} \equiv K_{1}+K_{2}
$$

Then

$$
\begin{equation*}
K_{1}=\omega^{2} \int_{0}^{1 / \omega} o\left(u^{1 / \alpha}\right) d u=o\left(\omega^{1-1 / \alpha}\right)=o(1) \tag{19}
\end{equation*}
$$

If we take $\chi=\chi(u)$ such as $\chi(u)$ tends to zero and then.

$$
\varphi_{1}(u)=o\left(u^{1 / \alpha} \chi\right)
$$

$$
K_{2}=\omega^{2} \int_{1 / \omega}^{\psi / \omega^{r}} \omega^{-(1+\alpha)} u^{-(1+\alpha)} o\left(u^{1 / \alpha} \chi(u)\right) d u
$$

If we suppose

$$
\begin{aligned}
& =o\left(\omega^{1-\alpha} \chi\left(\omega^{-r / 2}\right) \int_{1 / \omega}^{\psi / \omega^{r}} u^{-1-\alpha-1 / \alpha} d u\right) \\
& =o\left(\omega^{1-\alpha-(1 / \alpha-\alpha) r} \chi\left(\omega^{-r / 2}\right) \psi^{1 / \alpha-\alpha}\right) .
\end{aligned}
$$

which is always possible, then.

$$
\begin{equation*}
K_{2}=o\left(\omega^{(1-\alpha)-(1 / \alpha-\alpha) r}\right) \tag{20}
\end{equation*}
$$

Let us take $r \equiv \alpha /(1+\alpha)$. Then, by (17), (18), (19) and (20),

$$
\begin{aligned}
\frac{\pi}{2} \sigma_{\omega}^{\alpha} & =I_{1}+I_{2}=\left(J_{1}+J_{2}\right)+I_{2} \\
& =\left(J_{1}+K_{1}+K_{2}\right)+I_{2}=o(1)
\end{aligned}
$$

Thus the theorem is completely proved.
Remark. Hsiang [3] has proved that if

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{t}^{\pi} \varphi(u) / u^{1 / \alpha} d u \tag{*}
\end{equation*}
$$

exists, then the Fourier series is summable $(C, 1)$, but not summable (C, β) for $0<\beta<\alpha$. Since

$$
\int_{0}^{t} \varphi(u) d u=t^{1 / \alpha} \int_{t}^{\pi} \frac{\varphi(u)}{u^{1 / \alpha}} d u-\frac{1}{\alpha} \int_{u}^{t} u^{1-\alpha} d u \int_{u}^{\pi} \frac{\varphi(v)}{v^{1 / \alpha}} d v
$$

(*) implies (2). Hence Theorem 4 shows that if $\left({ }^{*}\right)$ holds, then the Fourier series is summable (C, α), Theorem 4 has early proved by Wang [7]. But by the method used here, we can generalize the Wang theorem in the following form.

Theorem 5. If $\gamma>\beta \geqq 1$, and

$$
\Phi_{\beta}(t) \equiv \frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-u)^{\beta-1} \varphi(u) d u=o\left(t^{\gamma}\right)
$$

then the Fourier series of $f(t)$ is summable $(C, \beta-(\gamma-\beta) /(\gamma-\beta+1))$.
Proof. Put $\gamma-\beta=\eta>0$, then the theorem is equivalent to

$$
\begin{equation*}
\varphi_{\beta}(t) \equiv \frac{1}{t} \int_{0}^{t}\left(1-\frac{u}{t}\right)_{0}^{\beta-1} \varphi(u) d u=o\left(t^{\eta}\right) \tag{21}
\end{equation*}
$$

implies $(C, \beta-\eta /(1+\eta))$-summability.
Using the formula in the proof of Theorem 2, we have
and

$$
\begin{aligned}
\sigma^{\alpha}(\omega) & =\omega \int_{0}^{1} \phi_{\delta}(t) J_{\alpha}^{\delta}(\omega t) d t+o(1) \\
& =I(\omega)+o(1)
\end{aligned}
$$

$$
J_{\alpha}^{\delta}(x)-\frac{\Gamma(\alpha+1)}{\Gamma(\delta+1)} \frac{\cos \left\{x-\frac{\pi}{2}(1+\alpha+\delta)\right\}}{x^{1+\alpha-\delta}}+O\left(\frac{1}{x^{2}}\right)
$$

as $x \rightarrow \infty$.
If we put $\beta=\delta+1$, then (21) is equivalent to

$$
\begin{equation*}
\boldsymbol{\varphi}_{\delta+1}(u)=o\left(t^{\eta}\right) \tag{22}
\end{equation*}
$$

So $\varphi_{\delta}(u)$ is integrable in the sense of Cauchy-Lebesgue. Put

$$
\Phi(t) \equiv \int_{0}^{t} \varphi_{\delta}(u) d u
$$

then by (22), we get

$$
\Phi(t)=o\left(t^{1+\eta}\right)
$$

Then

$$
\begin{aligned}
I(\omega) & \equiv \omega \int_{0}^{1} \varphi_{\delta}(t) J_{\alpha}^{\delta}(\omega t) d t=\omega \int_{0}^{\omega^{-r} \psi}+\omega \int_{\omega^{-r} \psi}^{1} \\
& =I_{1}+I_{2}
\end{aligned}
$$

say, Firstly

If we assume

$$
\begin{aligned}
I_{2} & =\omega \int_{\omega-r}^{1} \varphi_{\delta}(t) J_{\alpha}^{\delta}(\omega t) d t \\
& =\left[\omega \Phi(t) J_{\alpha}^{\delta}(\omega t)\right]_{\omega^{-r_{\psi}}}^{1}-\omega^{2} \int_{\omega^{-r}{ }_{\psi}}^{1} \Phi(t) J_{\alpha}^{\prime \delta}(\omega t) d t .
\end{aligned}
$$

$$
\varepsilon=\alpha-\delta=0 \text { and } r=\varepsilon /(1+\varepsilon),
$$

then by applying the second mean value theorem, we have

$$
\begin{aligned}
I_{2} & =o\left(\omega^{-\varepsilon+r(1+\varepsilon)}\right)+\omega^{2} \int_{\omega^{-r}}^{1} \Phi(t) \frac{\sin \left\{\omega t-\frac{\pi}{2}(1+\alpha+\delta)\right\}}{(\omega t)^{1+\alpha-\delta}} d t+o(1) \\
& =o(1)+\omega^{1-\varepsilon} \omega^{r(1+\varepsilon)} \psi^{-(1+\varepsilon)} \int_{\omega^{-r_{\theta}}}^{1}\left|\sin \left\{\omega t-\frac{\pi}{2}(1+\alpha+\delta)\right\}\right| d t \\
& =o(1)+O\left(\omega^{-\varepsilon} \omega^{\varepsilon} \psi^{-(1+\varepsilon)}\right)=o(1) .
\end{aligned}
$$

Next we get

$$
\begin{aligned}
I_{1} & =\omega \int_{0}^{\omega^{-r} ._{\psi}} \varphi_{\delta}(t) J_{\alpha}^{\delta}(\omega t) d t \\
& =o\left(\boldsymbol{\omega}^{1-\varepsilon+(1+\eta-\varepsilon) r}\right)=o(1),
\end{aligned}
$$

by the analogous method to the proof of Theorem 4, for the kernel is same order. The order of summabllity α is determind by
where

$$
\alpha=\delta+1 /(1+\eta)=\beta-1+1 /(1+\eta)=\beta-\eta /(1+\eta)
$$

$$
\varepsilon=\alpha-\delta=1 /(1+\eta)
$$

Remark. The order of summability by Wang's theorem is

$$
\beta-\eta(\beta+1-n) /(n+\eta)
$$

where $n \geqq \gamma>n-1$ and $n \geqq 2$. Since

$$
\frac{1}{1+\eta}>\frac{1+\beta-n}{n+\eta}, \quad(\text { for } n-\beta>0, n \geqq 2)
$$

our theorem is better than Wang's.
The second proof of Theorem 4. Let the Cosàro mean of Fourier series of $f(t)$ of the α-th order σ_{n}^{α}. Then

$$
\sigma_{n}^{\alpha}=\frac{1}{\pi} \int_{0}^{\pi} \varphi(t) K_{n}^{\alpha}(t) d t
$$

$K_{n}^{\alpha}(t)$ being Fejér kernel. It is known that

$$
\left\{\begin{array}{l}
\left|K_{n}^{\alpha}(t)\right| \leqq C / n^{\alpha} l^{1+\alpha} \quad(n t \geqq 1) \tag{23}\\
\left|\left[K_{n}^{\alpha}(t)\right]^{\prime}\right| \leqq n^{2}, \quad \\
\left|\left[K_{n}^{\alpha}(t)\right]^{\prime}\right| \leqq C n^{1-\alpha} / t^{1+\alpha} \quad(n t \geqq 1)
\end{array}\right.
$$

C being an absolute constant. This is proved for $1<\alpha<2$. by Zygmund [10, p. 48 and p. 56] using Abel's transformation twice, but in our case it is sufficient to use it once. Now

$$
\begin{aligned}
\sigma_{n}^{\alpha}= & -\left[\int_{0}^{1 / n}+\int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}}\right]\left[K_{n}^{\alpha}(t)\right]^{\prime} \boldsymbol{\varphi}_{1}(t) d t \\
& +\left[\varphi_{1}(t) K_{n}^{\alpha}(t)\right]_{0}^{\psi / n^{\alpha /(1+\alpha)}}+\int_{\psi / n^{\alpha /(1+\alpha)}}^{\pi} \boldsymbol{T}(t) K_{n}^{\alpha}(t) d t \\
= & I_{1}+I_{2}+I_{3}+I_{4},
\end{aligned}
$$

say, where $\psi \equiv \psi(n)$ increases indefinitely and sufficiently slowly. Using (23),

$$
\left.\begin{array}{l}
I_{1}=o\left(n^{2} \int_{0}^{1 / n} t^{1 / \alpha} d t\right)=o\left(n^{2} / n^{1+1 / \alpha}\right)=o(1) \\
I_{2}=o\left(n^{-1-\alpha} \int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}} t^{1 / \alpha-\alpha-1} d t\right)=o(1) \\
I_{3}=o\left(\left[t^{1 / \alpha} K_{n}^{\alpha}(t)\right]_{0}^{\psi / n^{\alpha /(1+\alpha)}}\right)=o\left(\frac{\psi^{1 / \alpha-\alpha-1}}{n^{1 /(1+\alpha)}}\right) \\
I_{4}=O\left(\frac{1}{n^{\alpha}} \int_{\psi \mid n^{\alpha /(1+\alpha)}}^{\pi}|\boldsymbol{|}|\right. \\
t^{1+\alpha}
\end{array}\right)=O\left(\frac{1}{\psi} \int_{0}^{\pi}|\boldsymbol{\varphi}| d t\right)=O\left(\frac{1}{\psi}\right) .
$$

Thus we get $\sigma_{n}^{\alpha}=o(1)$.
Theorem 6. In Theorem 4, o in (2) connot be replaced by 0.
Proof runs similarly as Theorem 3. (cf. the succeeding paper, Izumi [5]).

Remark. Theorem 6 is better than the second part of Hsiang's theorem [3]. For, if $\varphi_{1}(u)=O\left(u^{1 / \beta}\right)(0<\beta<\alpha)$, then

$$
\int_{\eta}^{t} \frac{\varphi(u)}{u^{1 / \alpha}} d u=\left[\frac{\varphi_{1}(u)}{u^{1 / \alpha}}\right]_{\eta}^{t}+\frac{1}{\alpha} \int_{\eta}^{t} \frac{\varphi_{1}(u)}{u^{1 / \alpha+1}} d u
$$

exists as $\eta \rightarrow 0$.
§4. We can now generalize Theorem 5.
Theorem 7. If $0<\beta<\gamma$ and

$$
\Phi_{\beta}(t) \equiv \frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-u)^{\beta-1} \varphi(u) d u=o\left(t^{\gamma}\right)
$$

then the Fourier series of $f(t)$ is (C, α) summable at $t=x$, where

$$
\alpha>\beta /(\gamma-\beta+1)
$$

Proof. It is known that
(F. T. Wang [9]) and

$$
s_{n}=O\left(n^{\gamma /(\beta+1)}\right)
$$

$$
\sigma^{(\gamma+\varepsilon)}=\left(n^{\beta-\gamma}\right) \quad(\varepsilon>0)
$$

(F. T. Wang [7] and Hyslop [4]). Thus by Riesz's convexity theorem [6], we get the theorem.

Theorem 8. If $0<\beta<\gamma, \beta \leqq 1+(\gamma-\beta)$ and

$$
\Phi_{\beta}(t)=o\left(t^{\gamma}\right),
$$

then the Fourier series of $f(t)$ is summable $(C, \beta /(\gamma-\beta+1))$ at $t=x$.
Remark. It is conjectured that the condition $\beta \leqq 1+(\gamma-\beta)$ is superfluous, that is, may be taken such as

$$
\alpha=\beta /(\gamma-\beta+1)
$$

in Theorem 7. We could prove this for integreal β.
Proof. We will begin by the case $0<\beta<1$. This case is contained in the next case, but the proof of this case suggests that of the general caso. Let us consider the Cesàro mean of Fourier series of $f(t)$ order α, which we denote by σ_{n}^{a}. We have, putting $\alpha \equiv \beta /(\gamma-\beta+1)$,

$$
\begin{aligned}
\sigma_{n}^{\alpha} & =\frac{1}{\pi} \int_{0}^{\pi} \varphi(t) K_{n}^{\alpha}(t) d t \\
& =\frac{1}{\pi} \int_{0}^{\psi / n^{\alpha /(1+\alpha)}} \varphi(t) K_{n}^{\alpha}(t) d t+\frac{1}{\pi} \int_{\psi / \pi^{\alpha /(1+\alpha)}}^{\pi} \varphi(t) K_{n}^{\alpha}(t) d t \\
& =-\frac{1}{\pi} \int_{0}^{\pi / n^{\alpha /(1+\alpha)}} \Phi_{1}(t)\left[K_{n}^{\alpha}(t)\right]^{\prime} d t+o(1),
\end{aligned}
$$

as in the proof of Theorem 4. If we denote the last integral by I, then

$$
\begin{aligned}
I & =\int_{0}^{\psi / n^{\alpha /(1+\alpha)}}\left[K_{n}^{\alpha}(t)\right]^{\prime} d t \int_{0}^{t} \Phi_{\beta}(u)(t-u)^{-\beta} d u \\
& =\int_{0}^{1 / n} d t \int_{0}^{t} d u+\int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}} d t \int_{0}^{t} d u \equiv I_{1}+I_{2}
\end{aligned}
$$

say. By (22)

$$
\begin{aligned}
I_{1} & =O\left(n^{2} \int_{0}^{1 / n} d t \int_{0}^{i} u^{\gamma}(t-u)^{-\beta} d u\right) \\
& =O\left(n^{2} \int_{0}^{1 / n} t^{\gamma-\beta+1} d t\right)=O\left(n^{2} / n^{\gamma-\beta+2}\right)=O\left(1 / n^{\gamma-\beta}\right) \\
& =o(1) .
\end{aligned}
$$

Concerning I_{2},

$$
\begin{aligned}
& I_{2}=\int_{1 \mid n}^{\psi / n^{\alpha /(1+\alpha)}}\left[K_{n}^{\alpha}(t)\right]^{\prime} d t \int_{0}^{t} \Phi_{\beta}(u)(t-u)^{-8} d u \\
& =\int_{1 / n}^{\psi \mid n^{\alpha /(1+\alpha)}} d u \int_{u}^{u+1 / n} d t+\int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}-1 / n} d u \int_{u+1 / n}^{\psi / n}{ }^{\alpha /(1+\alpha)} d t \\
& +\int_{0}^{1 / n} d u \int_{1 / n}^{u+1 / n} d t-\int_{\psi / n^{\alpha /(1+\alpha)-1 / n}}^{\psi / n^{\alpha /(1+\alpha)}} d u \int_{\psi / n^{\alpha /(1+\alpha)}}^{u+1 / n} d t
\end{aligned}
$$

say. By (23)

$$
\begin{aligned}
J_{1} & =o\left(\int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}} u^{\gamma} d u \int_{u}^{u+1 / n} n^{1-\alpha} t^{-(1+\alpha)}(t-u)^{-\beta} d t\right) \\
& =o\left(n^{1-\alpha} \int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}} u^{\gamma-\alpha-1} d u \int_{u}^{u+1 / n}(t-u)^{-\beta} d t\right) \\
& =o\left(\frac{n^{1-\alpha}}{n^{1-\beta}} \int_{1 / n}^{\left.\psi / n^{\alpha /(1+\alpha)} \cdot u^{\gamma-\alpha-1} d u\right)=0\left(n^{\beta-\alpha-\frac{\alpha}{1+\alpha}(\gamma-\alpha)}\right)}\right. \\
& =o(1),
\end{aligned}
$$

for $\gamma>\alpha$ and $(1+\alpha)(\beta-\alpha)-\alpha(\gamma-\alpha)=0$. Now

$$
\begin{aligned}
J_{2} & =\int_{1 / n}^{\psi / n^{\alpha}:(1+\alpha)-1 / n} \Phi_{\beta}(u) d u \int_{u+1 / n}^{\psi / n^{\alpha /(1+\alpha)}}\left[K_{n}^{\alpha}(t)\right]^{\prime}(t-u)^{-\beta} d t \\
& =\int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)} \Phi_{\beta}(n) d u\left\{\left[K_{n}^{\alpha}(t)(t-u)^{-\beta}\right]_{u+1 / n}^{\psi / n^{\alpha /(1+\alpha)}}-\int_{u+1 / n}^{\psi / n^{\alpha} /(1+\alpha)} K_{n}^{\alpha}(t)(t-u)^{-\beta-1} d t\right\} .} .
\end{aligned}
$$

By (21), we have

$$
\begin{aligned}
& J_{2}=o\left[\int _ { 1 / n } ^ { \psi / n ^ { \alpha / (1 + \alpha) } } u ^ { \gamma } d u \left\{\frac{n^{\beta-\alpha}}{(u+1 / n)^{\alpha+1}}\right.\right.+\frac{1}{\psi^{\alpha+1}}\left(\frac{\psi}{n^{\alpha /(1+\alpha)}}-u\right)^{-\beta} \\
&\left.\left.+\frac{1}{n^{\alpha}} \int_{u+1 / n}^{\psi / n^{\alpha /(1+\alpha)}} \frac{\left.t^{\alpha+1}(t-u)^{\beta+1}\right\}}{}\right)\right] \\
&=o\left(n^{\beta-\alpha} \int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}} u^{\gamma-\alpha-1} d u+\frac{1}{\psi^{\alpha+1}} \int_{0}^{\psi / n^{\alpha /(1+\alpha)}} u^{\gamma}\left(\frac{\psi}{n^{\alpha /(1+\alpha)}}-u\right)^{-\beta} d u\right. \\
&\left.+\frac{1}{n^{\alpha}} \int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}} u^{\gamma-\alpha-\beta-1} d u\right) \\
&=o\left(n^{\beta-\alpha-\frac{\alpha}{1+\alpha}(\gamma-\alpha)}+\frac{1}{\psi^{\alpha+1}}+\frac{1}{n^{\gamma-\beta}}+\frac{1}{\left.n^{\alpha+\frac{\alpha}{1+\alpha}(\gamma-\alpha-\beta)}\right)}\right) \\
&=o(1) .
\end{aligned}
$$

Since $J_{3}+J_{4}=o(1)$, we get $I_{2}=o(1)$, and then $I=o(1)$. Thus the theorem is proved for the case $0<\beta<1$.

Let us now turn to the case $0<\alpha=\beta /(\gamma-\beta+1) \leqq 1$. There is an integer $k>1$ such that $k-1 \leqq \beta<k$. We suppose that $k-1<\beta<k$, for the case $\beta=k$ can be easily deduced by the following argument. As we have already seen,

$$
\sigma_{n}^{\alpha}=\frac{1}{\pi} \int_{0}^{\psi / n^{\alpha /(1+\alpha)}} \varphi(t) K_{n}^{\alpha}(t) d t+o(1)
$$

By k time application of integration by parts, the last integral, which we denote by I^{\prime}, becomes

$$
I^{\prime}=(-1)^{k} \int_{0}^{\psi / n^{\alpha /(1+\alpha)}} \Phi_{k}(t)\left[K_{n}^{\alpha}(t)\right]^{(k)} d t+\sum_{n=0}^{k-1}\left[\Phi_{n+1}(t)\left[K_{n}^{\alpha}(t)\right]^{(n)}\right]_{t=0}^{\psi / n^{\alpha /(1+\alpha)}}
$$

$$
\equiv(-1)^{k} I_{1}^{\prime}+I_{-}^{\prime}
$$

say. Now, since

$$
\Phi_{1}(t)=o(1), \quad \Phi_{\beta}(t)=o\left(t^{\gamma}\right)
$$

we have

$$
\Phi_{h+1}(t)=o\left(t^{\gamma l /(\beta-1)}\right)
$$

by the M. Riess theorem [6]. On the other hand, by Zygmund [10, p. 259], we have

$$
\begin{equation*}
\left[K_{n}^{\alpha}(t)\right]^{h)}=O\left(\frac{n^{h-\alpha}}{t^{\alpha+1}}+\frac{n^{h-s}}{t^{s+1}}+\sum_{j=1}^{s} \frac{1}{n^{j} t^{j+h+1}}\right) \tag{24}
\end{equation*}
$$

for $n t \geqq 1$, s being sufficiently large integer and

$$
\begin{equation*}
\left[K_{n}^{\alpha}(t)\right]^{(n)}=O\left(n^{h+1}\right) \tag{25}
\end{equation*}
$$

for all t. Since $0<\alpha \leqq 1$, we have, for $h \geqq 0$,

$$
\frac{n^{h-\alpha}}{t^{\alpha+1}} \geqq \sum_{j=1}^{s} \frac{1}{n^{j} t^{j+h+1}} .
$$

Hence we have

$$
\begin{equation*}
\left[K_{n}^{a}(t)\right]^{(h)}=O\left(n^{h-\alpha} / t^{\alpha+1}\right) \tag{26}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& \quad\left[\Phi_{h+1}(t)\left\{K_{n}^{\alpha}(t)\right\}^{(h)}\right]_{t=\psi / n^{\alpha} /(1+\alpha)}=o\left(\left[t_{\beta-1}^{\beta-1^{h-\alpha}-1} n^{h-\alpha}\right]_{t=\psi / n^{\alpha /(1+\alpha)}}\right) \\
& \text { for } h \geqq 0 . \quad \text { Therefore } I_{2}^{\prime}=o(1) .=o\left(\psi^{\frac{\gamma}{\beta-1^{h}-\alpha-1} / n\left(\frac{\gamma}{\beta-1} \frac{\alpha}{1+\alpha}-1\right)^{h}}\right)= \\
&
\end{aligned}
$$

$$
\begin{aligned}
I_{1}^{\prime} & =\int_{0}^{\psi / n^{\alpha /(1+\alpha)}} \Phi_{k}(t)\left[K_{n}^{\alpha}(t)\right]^{(k)} d t \\
& =\int_{0}^{\psi / n^{\alpha /(1+\alpha)}}\left[K_{n}^{\alpha}(t)\right]^{(k)} d t \int_{0}^{t} \Phi_{\beta}(u)(t-u)^{k-\beta-1} d u \\
= & \int_{0}^{\psi / n^{\alpha /(1+\alpha)}} \Phi_{\beta}(u) d u \int_{u}^{\psi / n^{\alpha} /(1+\alpha)}\left[K_{n}^{\alpha}(t)\right]^{(k)}(t-u)^{k-\beta-1} d t \\
= & \int_{0}^{\psi / n^{\alpha /(1+\alpha)}} d u \int_{u}^{u+1 / n} d t+\int_{0}^{\psi / n^{\alpha /(1+\alpha)}-1 / n} d u \int_{u+1 / n}^{\psi / n^{\alpha /(1+\alpha)}} d t \\
& -\int_{\psi / n^{(1+\alpha)}-1 / n}^{\psi / \alpha^{\alpha /(1+\alpha)}} d u \int_{\psi / n^{\alpha /(1+\alpha)}}^{u+1 / n} d t
\end{aligned}
$$

say, and

$$
J_{1}^{\prime}=\int_{0}^{1 / n} d u \int_{u}^{u+1 / n} d t+\int_{1 / n}^{\mu / n^{\alpha /(1+\alpha)}} d u \int_{u}^{u+1 / n} d t \equiv K_{1}^{\prime}+K_{2,}^{\prime},
$$

say. Then we have, by '(25),

$$
K_{1}^{\prime}=o\left(n^{k+1} \int_{0}^{1 / n} u^{\nu} d u \frac{1}{n^{k-\beta}}\right)=o\left(\frac{1}{n^{\gamma-\beta}}\right)=o(1)
$$

and, by (26)

$$
K_{2}^{\prime}=o\left(\int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}} u^{\nu} d u \int_{u}^{u+1 /\{n} \frac{n^{k-\alpha}}{t^{1+\alpha}}(t-u)^{k-\beta-1} d t\right)
$$

$$
\begin{aligned}
& =o\left(n^{k-\alpha} \int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}} u^{\gamma-\alpha-1} d u \int_{u}^{u+1 / n}(t-u)^{k-\beta-1} d t\right) \\
& =o\left(\frac{n^{k-\alpha}}{n^{k-\beta}} \int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}} u^{\gamma-\alpha-1} d u\right) \\
& =o\left(n^{\beta-\alpha-\frac{\alpha}{1+\alpha}(\gamma-\alpha)}\right)=o(1) .
\end{aligned}
$$

Hence $J_{1}^{\prime}=o(1)$.
Concerning J_{i}^{\prime}, if we uso integration by parts k times in the inner integral, then we have

$$
\begin{aligned}
J_{2}^{\prime}= & \int_{0}^{\psi / n^{\alpha /(1+\alpha)}-1 / n} \Phi_{\beta}(u) d u \int_{u+1 / n}^{\psi / n^{\alpha /(1+\alpha)}}\left[K_{n}^{\alpha}(t)\right]^{(\alpha)}(t-u)^{k-\beta-1} d t \\
= & \int_{0}^{\psi / n^{\alpha /(1+\alpha)}-1 ; n} \Phi_{\beta}(u) d u\left\{(-1)^{k} C \int_{u+1 / n}^{\psi / n^{\alpha ;}(1+\alpha)} K_{n}^{\alpha}(t)(t-u)^{-\beta-1} d u\right. \\
& \left.+\sum_{n=0}^{k-1} C_{n}\left[\left[K_{n}^{\alpha}(t)\right]^{(h)}(t-u)^{u-\beta}\right]_{t=u+1 / n}^{\psi^{\alpha / u^{\alpha} /(1+\alpha)}}\right\} \\
\equiv & L^{\prime}+\sum_{n=0}^{k-1} L_{h}^{\prime},
\end{aligned}
$$

say, where C and C_{n} are constants arising by differentiation.
By (21)

$$
\begin{aligned}
L^{\prime} & =o\left(\int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}} u^{\gamma} d u \int_{u+1 / n}^{\psi / n^{\alpha /(1+\alpha)}} v^{\alpha} t^{1+\alpha}(t-u)^{\beta+1}\right) \\
& =o\left(\frac{1}{n^{\alpha}} \int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}} u^{\gamma-\alpha-\beta-1} d u\right) \\
& =o\left(\frac{1}{u^{\gamma-\beta}}+\frac{1}{u^{\alpha(\gamma-\beta+1) /(1+\alpha)}}\right)+o(1)=o(1),
\end{aligned}
$$

and by (26)

$$
\begin{aligned}
& I_{l}^{\prime}\left.=o\left(\frac{u^{n-\alpha}}{n^{l-\beta}} \int_{1 / n}^{\psi / n^{\alpha /(1+\alpha)}} \cdot u^{\gamma-\alpha-1} d u+\frac{n^{h}}{\psi^{\alpha+1}} \int_{1 / n}^{\psi / n} \begin{array}{l}
\alpha /(1+\alpha)-1 ; \mu \\
\\
\\
=o\left(n^{\beta-\alpha-\frac{\alpha}{1+\alpha}(\gamma-\alpha)}+n^{\beta-\frac{\alpha}{1+\alpha}(\gamma+1)}\right)=o(1) .
\end{array} \frac{\psi}{n^{\alpha /(1+\alpha)}}-u\right)^{n-\beta} d u\right) \\
&
\end{aligned}
$$

Thus $J_{2}^{\prime}=o(1)$. Since we have oasily $J_{3}^{\prime}=o(1)$, we got $I^{\prime}=o(1)$, which is the required.

Literature.

[1] Bosanques, L.S., On the Cesàro summation of Fourier series and allied series, Proc. London Math. Soc., 37 (1934), 17-32.
[2] Hobson, E. W., The theory of functions of a real variable, Vol. II, Cambridge (1925).
[3] Hstang, F. C., The summability ($C, 1-\varepsilon$) of Fourier series, Duke Math. Journ., 13 (1946), 43-50.
[4] Hyslop, J.M., Note on a group of theorems in the thesy of Fourier series, Journ.

London Math. Suc., 24 (1949) 91-100.
[5] Izumi, S., Notes on Fourier Analysis (XXXIII) : Negative examples in the theory of Fourier series, in the press.
[6] Riesz, M., Sur un théorème de la moyenne et sés applications, Acta Szeged, 1 (1922), 114-126.
[7] Wang, F.T.. A note on Cesàro summability of Fourier series, Annals of Math., 44 (1943), 397-400.
[8] Wang, F.T., A remark on (C) summability of Fourier series, Journ. London Math. Soc., 22 (1947), 40-47.
[9] Wang, F.T., On the convergence factor of Fourier series at a point, II, Science Rep. Tôhoku Imp. Univ., 24 (1935), 665-696.
[10] Zygmuno, A., Trigonometrical series, Warsawa (1935).

Mathematical Institute, Tôhoku University, Sendai.

[^0]: *) Received Apr. 3rd., 1950.

