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In this paper it is proved that, if

(1) 'J%φΛ(u)du = ^</logl), as «-»o;

then the Fourier series of f(t) is summablθ. (0, 1) a t ί = # , and if
and

( 2 ) Γφx(u)du = o(ί1/rt), as ί -> 0,

then the Fourier series oίf(t) is summablθ (O3 α) at i=x. These theorems
are known (Wang [7], [8]), but we give two kinds of proof. Each method
is generalized to prove more general theorem. We prove that o in (1)
and (2) cannot be replacd by 0 in these theorems.

§ 1 . THEOREM 1. If

( 1 ) Γφ(u)du = oft/log JL\ as t-+Q,

wheve
φ(u) = φx(u) - {f(x + u) +f(x -u)~ 2f(x)}/2,

then the Fourier series of f(t) is summable (0,1) atj=x.
ΛVe prove this theorem in two ways, one using Young's function and

the other using the Fejer kernel, respectively.
THE FIRST PROOF OF THEOREM 1. For α>0,> Young's function is

defined by (Hobson [2] and Bosanquet [1])

y1+Λ(u) = I (1 — t)"ooβtudt.

Then, as is well known, yι+Λ(u) and its derivative y[+cc(u) are bounded
for n^>Q and

( s ) "
and y[+Λ(u) has the behaviour of the derivative of the right hand side of
(3) as u->oo. Especially, for
( 4 ) ΎιM^

The necessary and sufficient condition that the Fourier series of f(t)
is summable (0,1) at t—x, is that

*i Received Apr. 3rd., 1950.
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( 5 ) σω = —— I y2(ωu)φ(u)du = θ(l) (ω -* oo),
7Γ Jo

where
y2(u) = O(l/uη (u-*oo), y,(u) = O(l) (u-*0)

by (4).
Letting 0<τ<l/2, we divide the integral (5) into two parts such as

J2,
7r Γ* Γ1/(°r Γ°°

. Then we have

and
I/ω

Jo
^ J1 -^ J 2 ?

say, where φx{n)— I φ(t)dt. We have

J, = Oίβ-^l^l/ω') !
and

ψ ω3 I yf

2(ωu)φt(u)du = i ζ -f- if3,

say, where

g r
Taking 0<r<l/2, J a=o(l) and J1= f/1 + o(l)=o(l). Thus we geΓ (5),
which is the required.

By this method of proof, wo get the following generalization.
THEOREM 2. If ayO and

*• W = vk'l'i1 ~ T Γ ' M * 1 = »(1/lo8T>
ί/ιen ίft6 Fourier series of f(t) is summable (C,a) at t=x.

For, putting β^>a>0, the Cesaro mean of the Fourier series of f(t)
of order β is equivalent to (Bosanquet [1])
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where

as t-+oo. Thus we can prove σ^=o(l) as the proof of Theorem 1.
THE SECOND PROOF OF THEOREM 1. The Cesaro mean of the Fourier

series of f(t) of the first order is, using the Fejer kernel,

sin2ί/2

+ °M

, where 0 < r < l / 2 . Then we have

and, by the integration by parts,

7Γ\Λ «/l/n / L ί W ι

+ Φ i ( 0 — ^ - = Jτ + J2 + /35

L 7rri r J o

say, where

Φi(0 = <Pi(OA = -f Γφ{u)du.

By the hypothesis Φx(ί) = of I/log—\ whence

Uog—

Thus the theorem is proved.

§2. THEOREM 3. 1^ Theorem 1, 0 m (1) cannot be replaced by 0.
PROOF. It is sufficient to construct a function /(t) such ihat the

Fourier series is not summable (C, 1) at ί = x and

( 6 ) J%φ(u)du = 0^/log-l).

Let (cfc) be a sequence of positive numbers and (Mk), (mk), (nk) be
increasing sequences of integers, which will be determined later. Let us
take a sequence of intervals

( 7 ) Ik = (^,^ + ^-) (4 = 1,2,...)
\nk nk m/
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which are disjoint mutually. Let f(t) be an even periodic function such
that

( 8 ) f(t) = ( - l)kclt cos MJ, + - ί s i n Mkt
L Mk

in I f c(£=l,2, ...) and f(t)=O in (Q,π)-\/Ik. Supposing x=Q,φ(u) =
<Po(u)=f(t)

f\f(t)\dt = ck

n 1 c m k

t cos Mkt -\ sin Mkt

4.

dt

If we suppose that

. ( 9 ) . m * | J

in order that / is integrable, it is sufficient that

nk
M

k (* =

We have also
fc=j nkmk

J
ί*

jk

itlnk+ τtlmk

k

=0,
and then

Γf(u)du = Γf(u)du = sin

for ί in I*. Taking
(11) m,/%^0 (i-^oo),
(6) is satisfied when
(12) ck log mk/Mk -> a Φ 0.

Let us now consider the Fourier series of f(t) and
mean of the first order. Then,

σw be its Cesaro

0(1)

say, where

*J1=

Putting nΞ=Mk and dividing the above sum into three parts,
fc-l

—Λ — 2 ι
8 i-i

say. We have
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1 C

m
log

° mk ' \MiJ-'
If we suppose that
(13) n t = mi ( t = l ,2 , : . : ) ,

then log^:=rlogm f c, whence (— l)kK2-> a/2 by (12). Concerning Kly

Ύz NΓi/ ^ \/ /* Ci sin Λfί sin il/^ 7,
ι^ —- ^ / i l l ι

 WΓ

= Σ ( - 1 ) ' - ^ / [«*
1 = 1 Zittί t / Λ / w < • " .

- o f 2 ^ --' Ϋ
ΛirΐJf, Mk- M-JIf we suppose that (il4) is convex and

then iζ=o( l ) . Similarly iζ=o( l ) , when

Thus σTC does not converge when (Mk), (mk) and (nk) satisfy the conditions
(9),(10),(11),(12),(13), (14) and (15).

Let us define the sequence (Mb), (mfc), (%) satisfying the required
conditions. Firstly, let

MΎ = 25, w^ =. 21, 9h = 24, cx = 25/(2 log 2).
Taking /̂ 2 such as μly^^

M2 = /4 m2 = Ml, rί2 = μ% c2 = /^/'(2 log μ2).
Further, taking /̂ 3 such as ^ > 2 n 2 , If,, m3, n3, c3 will be defined as above.
In general, if Mk_j, rafc_i, %_i and C^Ϊ are defined, then we take ^,such
as μl>2nk_ι and put

Mk = μi, mk ΞΞ μl nk = ^2, cfc Ξ=μ*l(2 log μfc).

Thus (-Mi), (^fc), (%) and (cfc) are completely defined and, as easily may
be verified, satisfy the required conditions.

§3. THEOREM 4. If 0<a<ί and

( 2 )
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then the Fourier series of f(t) is summable (C,a) at t~x.

We will also give two proofs.
THE FIRST PROOF OF THEOREM 4. The necessary and sufficient condi-

tion that the Fourier series of f(t) is summable (C,a)i is that

(16) σ* ΞΞ I yi+a(6»u)φ(u)du = o(ϊ) (ω -» oo).
7Γ Jo

Let 0 < r < l and ψ^ψ(ω) tend to oo sufϋciently slowly. Dividing the
integxal (16) into two parts,

/»co nψ\J poo
^σZ = ω / =ω / +ω ^ It + I2,
Δ JQ JO Jψiωr

say, where
Z eo

(17) I2 = ω \ (ωu)-<-1+«>\φ(u) \du

•= O(ω~Λ+a+06:>rψ~cl+*')) = o(ω~Λ^1+a^r)
a n d

I1 rz Q) I fyi+rt(<W/l6)^(it)c?16
•̂  0

[ ~|ψ/ωr pφiω7"

^ e/i + «̂2>

say. Since 9>i(w)= I φ(t)dt=o(ullΛ)y we have

= o(ω- f l 5 + c l + α ) r('ψ'1 / Λ-1-Λ/ω r / Λ)).
We caα suppose that

Thus
(18) Λ — θ(ω- Λ + c l + α 5 ) r ).

Concerning J2, we put

+ ω3 / = i ζ + i ζ .
w *^1 /ω

Then
(19) i ζ = «2 Γ'ωo(uιι«)du = oίω1-1'") = o( l) .

If we take X=X (.w) such as X(u) tends to zero aiid

then

ΛΓ2 ' f= ω2 f*y
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= o(ωί-*X(ω-rl2) / u-ι-Λ-l

^ «Λ/ω

If we suppose
yi*~« = 0(1) (ω -* oo),

which is always possible, then -
(20) KΆ = o(ω«-w-»).

Let us take r=a/(l + a). Then, by (17), (18), (19) and (20),

^< = ii + /, = (Ji + Λ) + J2

- (/i + i ζ + ίΓ2) + Ja = o(l) .
Thus the theorem is completely proved.

REMARK. Hsiang [3] has proved that if

(*) lim f*φ(u)lullΛdu

exists, then the Fourier series is summable (C, 1), but not summable (0,
β) for 0 < / 3 < Λ . Since

(*) implies (2). Hence Theorem 4 shows that if (*) holds, then the
Fourier series is summable (C,a), Theorem 4 has early proved by Wang
[7]. But by the method used here, we can generalize the Wang theorem
in the following form.

THEOREM 5. If Ύ>β^>l, and

then the Fourier series of f(t) is summable (C,β—(y—β)/(ry-'β-\-l))t>

PROOF. Put y—β—η>Q, then the theorem is equivalent to

(21)

implies (C,β—ηl(ί + η))-summability.
Using the formula in the proof of Theorem 2, we have

= J(«) + 0(1)
and

a+1

as aτ*-> oo.
If we put β = δ + l, then (21) is equivalent to
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(22) φi+i(u).= o(t>).

So φδ(u) is integrable in the sense of Cauchy-Lebesgue. Put

Φ(t) = Γ<p8(u)du,
*J o

then by (22), we get

Φ ( ί ) = 0(t1+r>).

Then

φ,(t)J*(tat)dt = ω j + ω /

say, Firstly

I2 = ω Γ φδ(t)J8

a(ωt)dt

- ΓωΦ(«) Ji(ω.θΐ - ω%Γ Φ(t)J'l(ωt)dt.

If we assume
S = a ~ 8 ;0 and r = 8/(1 + 6),

then by applying the second mean value theorem, we have

sin ίcot — — (1 + a •+• 8) j.

J ω~rφ (ωt)1+a~s

sin jωί.'— — ( 1 + α: + 8)
ω~rθ\ ' ^

Next we get

J = ω Γ ' Ψφδ(t)Jt(ωt)dt

by the analogous method to the proof of Theorem 4, for the kernel is same

order. The order of summabllity a is determind by

a = 8 + 1/(1 + η) = β - 1 + 1/(1 + 97)= y8 - τ;/(l + 97)
where .

REMARK. The order of summability by Wang's; theorem is

β-η(β + ΐ-n)/(n+η),

where n^>y>n—1 and yι^2. Since

-- ί— > ί ^ - A l l ^ , (for n - /β > 0, n ^ 2)
I + 77 n + 77'

our theorem is better than Wang's.

THE SECOND PROOF OF THEOREM 4. Let the Cosaro mean of Fourier

series of f(t) of the a-th. order σ*. Then
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K%(t) being Fejer kernel. It is known that

(23)

C being an absolute constant. This is proved for l < t f < 2 by Zygmund
[10, p. 48 and p. 56] using AbeΓs transformation twice, but in our case it
is sufficient to use it once. Now

L.J0 J 1 / n . J U J .
+ \φ1{t)K%(t)~\ * + J φ(t)Kl{t)dt

= Λ + J2 + is + 4
say, where -ψ-= ψ (n) increases indefinitely and sumciently slowly. Using

(28)' i - ( - r * >

I 3 =

Thus we get σ =o(l) .
THEOREM 6. In Theorem 4, o in (2) connot be replaced by 0.
Proof runs similarly as Theorem 3. (cf. the succeeding paper, Izumi

[5])
REMARK. Theorem 6 is better than the second part of Hsiang's

theorem [3]. For, if ^1('u) = O(u 1 ^)(0</3<^) 5 then

rm4u
exists as η->0.

u11* Jη a Jη

§ i. ΛVe can now generalize Theorem 5.
THEOREM 7. If 0<β<y and

φβ(0 - i 4 Γ^ - ^)β">(^)^ = o(P),

ίfoe Fourier series of f(t) is (C,oί) suminable at t—x, ivhere

PROOF. It is known that
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(F. T. Wang [9]) and
σcγ+e = (nβ-v) ( £ > 0 )

(F.T.Wang [7] and Hyslop [4]). Thus by Riesz's convexity theorem [6],
we get the theorem.

THEOREM 8. If 0<β<%β<l+ (y-β) and
Φβ(t) = o(tη,

then the Fourier series of f(t) is summable (C, β/(y—β + 1)) at t=x.
EEMARK. It is conjectured that the condition /3<1+ (γ—/3) is super-

fluous, that is, may be taken such as

a ^ βffr -β + 1)
in Theorem 7. We could prove this for integreal β.

PROOF. We will begin by the case 0 < β < l . This case is contained
in the next case, but the proof of this case suggests that of the general
case. Let us consider the Cesaro mean of Fourier series of f(t) order a,
which we denote by σ£. We have, putting a=β/(y~β-^l),

σ- = -ί Γφ(t)K*(t)dt
n Jo

φ(t)Kt(t)dt + ± / φ(t)K*(t)dt

n
as in the proof of Theorem 4. If we denote the last integral by I, then

dt I du + I dt J du Ξ=Ξ Iτ 4- J 2,

say. By (22)

Γnp-^ιdt\ = 0<n?/»1»-'l+ϊ) = 0(l/ft »-β)

Concerning J 2,

Jr ψ/nβ^1+*

l/»

= I du I dt + I du I dt

Xl/w /»w+l/». /»ψ/Λ*^1+Λ^ ί*u+\\n

du j dt — I du I

dt
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= Jτ -f- J2 + J3"~ Λ?
say. By (23)

u*du I rϊ-t

l/Λ « t̂*

= olnι-« I v?—->dΰ I {t-u)-Ht\

for 7>α and (l + α)(/8-α)—α(7-α)=0. Now

Φp(«)d« / [Ώ(01'(
l/n ^ M + 1 / W

i/» ( L J « + i / n

By (21), we have

m

 UydU\ (u7l/nΓ + t ^ V ^ - "

= ()(??/'-'• I , ( » - ' • * • + — • • ' uγ(—ί- - u

4- -τ4^

= 0(1).
Since J 3 + /4==:o(l), we get I2=o(ί), and then. J = o ( l ) . Thus the theorem
is proved for the case 0</3<l.

Let us now turn to the case 0<α~βl(y—/9 + l ) ^ l . There is an
integer ifc>l such that k—l<,β<ik. ΛVe suppose that k—l'<β<k, for the
case i8=fc can be easily deduced by the following arguαnent. As we have
already seen,

σt = — I φ{t)Kt(t)dt + θ(l),
τry0

By k time application of integration by parts, the last integral, which we
denote by T, becomes

X
^ / wα>/(l+α0

2
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s(-l) Jί+Ĵ
say. Now, since

Φ1(ί> = o(l), Φβ{t)=ό(P),
we have

Φ f t + 1(0 = o(ί*«"-I})
by the M. Biesz theorem [6]. On the other hand, by Zygmund [10, p.
259], we have

(24) [Kt(t)Jh> = O(-^— + - — + 2 — ^ )

for n ί ^ l , s being sufficiently large integer and

(25) [2^(0 F = O(ίi"+1)

for all t. Since 0<α<Ξl, we have, for h^>0,

r+ 1 ~ fίί nJt)+

Hence we have
(26) [i
Thus

= o
for Λ^O. Therefore l:2=o(l).

[ i Γ - ( 0 F ^ I Φβ(n) (t - n ) f c - ^ - ^

Φβ(u)dύ ' [K«(t)jk>(t - uγ-^dt

— I dw I dt + I du I dt

•̂ 0 '^i* '*^0 ^w+l/w

du I Λ

^ Jί + J2 — Ĵ ,
say, and

say. Then we have, by (25),

and, by (26)
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= of—

Hence J ί ~ o ( l ) .
Concerning J2, if we use integration by parts k times in the inner

integral, then we have

J:= Φβ(u)du I lK*(t)Jb>(t -
Jθ "u + ljn

Λ«0 L

say, where (7 and CΛ are constants arising by differentiation.
By (21)

/ 1

= of -ί

and by (26)
/ / nh' r*ι n

Thus ,72=0(1). Since we have easily Jl — o(l), we get I' = o(l)j Λvhich is
the required.
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