# NOTES ON FOURIER ANALYSIS (XXXVI): <br> ON CERTAIN APPLICATIONS OF WIENER'S <br> <br> TAUBERIAN THEOREMS*) 

 <br> <br> TAUBERIAN THEOREMS*)}

## By

Gen-ichirô Sunouchi
In this note the author gives two applications of Wiener's theorem. The general convergence theorem and its converse are discussed in §1. Partial solution of the problem of Cheng [4] is also given. In $\S 2$ the Cesàro summability problem of multiple Fourier series is discussed, to which the quasi-Tauberian theorem is applied. §1 and § 2 are closely related but may be read independently.

1. A general convergence theorem and its converse.

We shall begin to state one of the fundamental theorem of Wiener.
Theorem 1. Let $\varphi(\lambda)$ be a function of bounded total variation over every interval $(\varepsilon, 1 / \varepsilon)$ where $0<\varepsilon<1$, and let

$$
\begin{equation*}
\int_{u}^{2 u} \lambda^{-1}|d \boldsymbol{\varphi}(\lambda)| \leqq C \quad(0<u<\infty) . \tag{1}
\end{equation*}
$$

Let $\lambda N_{1}(\lambda)$ be a continuous function for which

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} \max _{2^{k} \equiv \lambda \leqq i^{k+1}} \lambda\left|N_{1}(\lambda)\right|<\infty, \tag{2}
\end{equation*}
$$

and let

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty(0)} \frac{1}{\lambda} \int_{0}^{\infty} N_{1}\left(\frac{\mu}{\lambda}\right) d \varphi(\mu)=A \int_{0}^{\infty} N_{\mathrm{r}}(\mu) d \mu . \tag{3}
\end{equation*}
$$

Let for any real u

$$
\begin{equation*}
\int_{0}^{\infty} N_{1}(\lambda) \lambda^{i u} d \lambda \neq 0 \tag{4}
\end{equation*}
$$

Then if $\lambda N_{2}(\lambda)$ is any continuous function for which

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} \max _{2^{k} \leqq i \leqq i^{k+1}} \lambda\left|N_{2}(\lambda)\right|<\infty, \tag{5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty(0)} \frac{1}{\lambda} \int_{0}^{\infty} N_{2}\left(\frac{\mu}{\lambda}\right) d \varphi(\mu)=A \int_{0}^{\infty} N_{2}(\mu) d \mu . \tag{6}
\end{equation*}
$$

This theorem is a transformation of Theorem IX of Wiener [10] (p. 26). To see this it is sufficient to put

[^0]\[

$$
\begin{array}{ll}
\xi=\log \lambda, & f(\xi)=\int \lambda^{-1} d \varphi(\lambda), \\
\xi=-\log \lambda, & K_{1,2}(\xi)=\lambda N_{1,2}(\lambda)=\int \lambda^{-1} d \varphi(\lambda),
\end{array}
$$ K_{1,2}(\xi)=\lambda N_{1,2}(\lambda) .
\]

Theorem 1.1. Let $f(t)$ be integrable $(0, B)$ and let

$$
\begin{equation*}
\frac{1}{T^{q}} \int_{0}^{T}|f(t)| d t \leqq C, \text { for all } T>0, \quad(q>0) \tag{7}
\end{equation*}
$$

Let $t^{q} K(t)$ be a cintinuous function for which

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} \max _{2^{k} \leq \leq \leq \leq \leq^{k+1}} t^{q}|K(t)|<\infty . \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{T \rightarrow \infty(0)} \frac{1}{T^{i}} \int_{0}^{r} f(t)\left(1-\frac{t}{T}\right)^{\alpha} d t=l \Gamma(\alpha+1), \text { for some } \alpha \geqq 0, \tag{9}
\end{equation*}
$$

implies

$$
\begin{equation*}
\lim _{R \rightarrow \infty(0)} \frac{1}{R^{q}} \int_{0}^{\infty} f(t) K\left(\frac{t}{R}\right) d t=l \frac{\Gamma(q+\alpha)}{\Gamma(q)} \int_{0}^{\infty} K(t) t^{q-1} d t \tag{10}
\end{equation*}
$$

Proof. Put

$$
\begin{equation*}
\int_{\lambda_{0}}^{\lambda} f(t) / t^{a-1} d t=\varphi(\lambda) \tag{11}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{u}^{2 u} \lambda^{-1}|d \varphi(\lambda)|=\int_{u}^{2 u}|f(t)| / t^{q} \leqq \frac{1}{u^{q}} \int_{0}^{2 u}|f(t)| d t \leqq 2^{q} C \tag{12}
\end{equation*}
$$

by (7). Thus the condition (1) of Theorem 1 is valid.
Put
(13) $\quad N_{1}(\lambda)=\left\{\begin{array}{ccc}\lambda^{q-1}(1-\lambda)^{\alpha} / \Gamma(\alpha+1), & \text { if } 0 \leqq \lambda \leqq 1, \quad(\alpha>0) \\ 0 & \text { if } & 1<\lambda,\end{array}\right.$
then we have

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} \max _{2^{k} \leqslant \lambda \leqq 2^{k+1}} \lambda N_{1}(\lambda)=C \sum_{k=-\infty}^{\infty} \max _{k} \lambda^{q}(1-\lambda)^{\alpha}<\infty, \tag{14}
\end{equation*}
$$

$$
\lim _{\lambda \rightarrow \infty(0)} \frac{1}{\lambda \Gamma(\alpha+1)} \int_{0}^{\infty} N_{2}\left(\frac{\mu}{\lambda}\right) d \varphi(\mu)
$$

$$
=\lim _{\lambda \rightarrow \infty(0)} \frac{1}{\lambda \Gamma(\alpha+1)} \int_{0}^{\infty} \frac{f(\mu)}{\mu^{q-1}}\left(\frac{\mu}{\lambda}\right)^{q-1}\left(1-\frac{\mu}{\lambda}\right)^{\alpha} d \mu
$$

and

$$
=\lim _{\lambda \rightarrow \infty} \frac{1}{(0) \lambda^{\tau} \Gamma(\alpha+1)} \int_{0}^{\infty} f(\mu)\left(1-\frac{\mu}{\lambda}\right)^{\alpha} d \mu=l, \quad(\text { by } \quad(9))
$$

$$
\begin{equation*}
\frac{1}{\Gamma(\alpha+1)} \int_{0}^{1} \lambda^{q-1}(1-\lambda)^{\alpha} \lambda^{i u} d \lambda=\frac{\Gamma(q+i u)}{\Gamma(q+\alpha+i u+1)} \neq 0 . \tag{16}
\end{equation*}
$$

Thus the conditions (2), (3) and (4) of Theorem 1 are valid. Putting $N_{2}(\lambda)=\lambda^{q-1} K(\lambda)$,
we get the theorem.
Theorem 1. 2. Let $n$ be a positive integer, $\mu>0$ and $0<q<n(\mu+1 / 2)$.

Let, in addition to (7),

$$
\begin{equation*}
\lim _{T \rightarrow \infty(0)} \frac{1}{T^{x}} \int_{0}^{T} f(t) d t=l \tag{17}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\lim _{R \rightarrow 0(\infty)} R^{q} \int_{0}^{\infty} f(t)\left\{\frac{J_{\mu}(R t)}{(R t)^{\mu}}\right\}^{n} d t=l q \int_{0}^{\infty}\left\{\frac{J_{\mu}(t)}{t^{\mu}}\right\}^{n} t^{q-1} d t \tag{18}
\end{equation*}
$$

Proof. In Theorem 1.1, put $\alpha=0$, and

$$
\begin{equation*}
K(t)=\left\{J_{\mu}(t) / t^{\mu}\right\}^{n} \tag{19}
\end{equation*}
$$

Since,

$$
J_{\mu}(t)= \begin{cases}O\left(t^{\mu}\right), & \text { as } \quad \mu \rightarrow 0 \\ O\left(t^{-1 / 2}\right), & \text { as } \quad \mu \rightarrow \infty\end{cases}
$$

we have

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} \max _{2^{k} \leq \leq \leq \leq ?^{k+1}} t^{q}|K(t)|<\infty \tag{20}
\end{equation*}
$$

if $0<q<n(\mu+1 / 2)$.
Theorem 1.3. Let $\mu>0$ and $0<q<\mu+1 / 2$. Let in addition to (7),

$$
\begin{equation*}
\lim _{R \rightarrow 0(\infty)} R^{q} \int_{0}^{\infty} f(t) \frac{J_{\mu}(R t)}{(R t)^{\mu}} d t=l \frac{\Gamma(q+\alpha)}{\Gamma(q)} \int_{0}^{\infty}\left\{\frac{J_{\mu}(t)}{t^{\mu}}\right\} t^{q-1} d t \tag{21}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\lim _{T \rightarrow \infty(0)} \frac{1}{T^{i}} \int_{0}^{T} f(t)\left(1-\frac{t}{T}\right)^{\alpha} d t=l \Gamma(\alpha+1), \quad(\alpha>0) \tag{22}
\end{equation*}
$$

Proof. Put, in Theorem 1,
and

$$
\varphi(\lambda)=\int_{\lambda_{0}}^{\wedge} f(t) / t^{q-1} d t
$$

$$
N_{1}(\lambda)=\lambda^{q-1} J_{\mu}(\lambda) / \lambda^{\mu}=J_{\mu}(\lambda) \lambda^{-\mu+q-1}
$$

$$
N_{2}(\lambda)=\left\{\begin{array}{cc}
\lambda^{q-1}(1-\lambda)^{\alpha} / \Gamma(\alpha+1), & 0 \leqq \lambda \leqq 1 \\
0, & \text { otherwise. }
\end{array}\right.
$$

Since

$$
\begin{align*}
\int_{0}^{\infty} N_{1}(\lambda) \lambda^{i u} d \lambda= & \int_{0}^{\infty} \frac{J_{\mu}(\lambda)}{\lambda^{\mu}} \lambda^{q+i u-1} d \lambda  \tag{23}\\
= & \frac{\Gamma\{(q+i u) / 2\}}{2^{\mu-(q+i u)} \Gamma\{\mu-(q+i u) / 2+1\}} \neq 0, \\
& \quad(0<q<\mu+1 / 2) \quad \text { (Watson [9], p. 391). }
\end{align*}
$$

Other conditions of Theorem 1 are evident.
Theorem 1.1 is one of the so-called general convergence theorem and many writers have discussed conditions of validity. The condition of our theorem is the best possible one in a sense. Theorem 1.2 is proved by Cheng [4] by direct calculation. The special case of $n=2, \mu=1 / 2$ is Jacob's generalization of Wiener's formula. Littauer [7] has applied the Tauberian method in this case, but his proof is elliptical, since his $R(\xi)$ is not integrable over $(-\infty, \infty)$ for $\alpha=0$. In the case $\alpha=0$ of Theorem 1.3,
more stringent condition is required.
Theorem 2. Let, in addition to the conditions of Theorem 1,

$$
\begin{equation*}
\varphi(\lambda)=\int_{\lambda_{0}}^{\lambda} g(\mu) d \mu \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
g(\lambda) \geqq 0, \quad \text { for all } \lambda>0 \tag{25}
\end{equation*}
$$

then

$$
\lim _{\lambda \rightarrow 0(\infty)} \frac{1}{\lambda} \int_{0}^{\lambda} g(\mu) d \mu=A .
$$

Proof is the repetition of Wiener's argument ([10], p. 31).
Theorem 2.1. Let $f(t)$ be integrable ( $0, B$ ) and let, in addition to (7) and (8) where $t^{q} K(t)$ is continuous,

$$
f(t) \geqq 0, \text { for all } t>0
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} K(t) t^{q-1} t^{i u} d t \neq 0, \quad \text { for all real } u \tag{26}
\end{equation*}
$$

Then

$$
\lim _{R \rightarrow \infty} \frac{1}{R^{q}} \int_{0}^{\infty} f(t) K\left(\frac{t}{R}\right) d t=l q \int_{0}^{\infty} K(t) t^{q-1} d t
$$

implies

$$
\lim _{T \rightarrow \infty(0)} \frac{1}{T^{4}} \int_{0}^{T} f(t) d t=l
$$

Proof. Since

$$
\frac{1}{R^{q}} \int_{0}^{\infty} f(t) K\left(\frac{t}{R}\right) d t=\frac{1}{R} \int_{0^{\prime}}^{\infty} f(t)\left(\frac{t}{t^{q-1}}\right)^{q-1} K\left(\frac{t}{R}\right) d t
$$

we put

$$
g(t)=f(t) / t^{q-1} \geqq 0,
$$

and

$$
N_{1}(t)=t^{q-1} K(t)
$$

then (7) implies (1) and we get the thoorem.
Since in the problem of Cheng [4] $K(t)=\left\{J_{\mu}(t) / t^{\mu}\right\}^{n}$, if $\mu>0$ and $0<q<n(\mu+1 / 2)$, then ( 8 ) is valid, for

$$
J_{\mu}(t)=\left\{\begin{array}{lll}
O\left(t^{\mu}\right) & \text { as } & t \rightarrow 0 \\
O\left(t^{-1 / 2}\right) & \text { as } & t \rightarrow \infty
\end{array}\right.
$$

Consequently the validity of the conjecture depends only on non-vanishing of

$$
\int_{0}^{\infty}\left\{\frac{J_{\mu}(x)}{x^{\mu}}\right\}^{n} x^{q-1} x^{i u} d x
$$

for all real $u$. Especially the cases $n=\mathbf{1}$ and $n=2$ are evident. For, in the case $n=1$ by (23), and in the case $n=2$, by

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\boldsymbol{J}_{\mu}^{2}(x)}{x^{2 \mu-(k+p+i u k+1}} d x \tag{27}
\end{equation*}
$$

$$
\begin{aligned}
= & \frac{2^{(k+q+i u)-2 \mu} \Gamma\{2 \mu-(k+q+i u)+1\} \Gamma\{(k+q+i u) / 2\}}{2 \Gamma\{[2 \mu-(k+q+i u)+1] / 2+1 / 2\}^{2} \Gamma\{\mu+[2 \mu-(k+q+i u)+1] / 2+1 / 2\}} \\
& (2 \mu+1>2 \mu-(k+q)+1>0) . \quad(\text { Watson [9] p. } 397) .
\end{aligned}
$$

Thus we get
Theorem 2.2. Let $0<q<(\mu+1 / 2)$. Let

$$
\begin{equation*}
\frac{1}{T^{T}} \int_{0}^{T}|f(t)| d t \leqq M, \quad \text { for all } T>0 \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t) \geqq 0, \quad \text { for all } t . \tag{29}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{R \rightarrow 0(\infty)} R^{q-\mu} \int_{0}^{\infty} f(t)\left\{\frac{J_{\mu}(R t)}{t^{\mu}}\right\} d t=l q \int_{0}^{\infty} \frac{J_{\mu}(t)}{t^{\mu}} t^{q-1} d t \tag{30}
\end{equation*}
$$

implies

$$
\begin{equation*}
\lim _{T \rightarrow \infty(0)} \frac{1}{T^{q}} \int_{0}^{T} f(t) d t=l . \tag{31}
\end{equation*}
$$

Theorem 2.3. Let $0<q<2(\mu+1 / 2)$ and let (28), and (29). Then

$$
\begin{equation*}
\lim _{R \rightarrow 0(\infty)} R^{q-2 \mu} \int_{0}^{\infty} f(t)\left\{\frac{J_{\mu}(R t)}{t^{\mu}}\right\}^{2} d t=l q \int_{0}^{\infty}\left\{\frac{J_{\mu}(t)}{t^{\mu}}\right\}^{2} t^{q-1} d t \tag{32}
\end{equation*}
$$

implies (31).
Put $k=0$ in (27), then we get the theorem.
Theorem 2.4. Let $1-2 \mu<q<2$ and suppose (28) and (29). Then

$$
\begin{equation*}
\lim _{R \rightarrow 0(\infty)} R^{q-1} \int_{0}^{\infty} \frac{\left\{J_{\mu}(R t)\right\}^{2}}{t} d t=l q \int_{0}^{\infty}\left\{J_{\mu}(t)\right\}^{2} t^{q-2} d t \tag{33}
\end{equation*}
$$

implies (31).
For the proof it is sufficient to put $k=2 \mu-1$ in (27).
Remark. In Theorem 2.1 (consequently in its corollaries), if $K(t) \geqq 0$ for all $t \geqq 0$ and $K(t) \rightarrow M \neq 0$ as $t \rightarrow 0$, then we can dispense with

$$
\frac{1}{T^{q}} \int_{0}^{T}|f(t)| d t \leqq C, \quad \text { for all } T>0, \quad(q>0)
$$

Proof. We prove the case $K(t)=\left\{J_{\mu}(x) / x^{\mu}\right\}^{2 n}$ for the sake of simplicity. Put

$$
\begin{gather*}
g(t)=\left\{\begin{array}{ccc}
f(t), & \text { if } & t<N \\
0, & \text { if } & t \geqq N
\end{array}\right\} \quad \text { for some fixed } N \text { then we have }  \tag{34}\\
 \tag{35}\\
\lim _{T \rightarrow \infty} \frac{1}{T^{T}} \int_{0}^{T} g(t) d t=0,
\end{gather*}
$$

and

$$
\begin{align*}
& \lim _{R \rightarrow 0} R^{q} \int_{0}^{\infty} g(t)\left\{\frac{J_{\mu}(R t)}{(R t)^{\mu}}\right\}^{2 n} d t=\lim _{R \rightarrow 0} R^{q} \int_{0}^{N} f(t)\left\{\frac{J_{\mu}(R t)}{(R t)^{\mu} .}\right\}^{2 n} d t  \tag{36}\\
& \quad \leqq \lim _{R \rightarrow 0} M R^{q} \int_{0}^{N}|f(t)| d t=0 .
\end{align*}
$$

Consequently, if we put

$$
\begin{equation*}
f(t)=g(t)+h(t) \tag{37}
\end{equation*}
$$

then it is sufficient to prove the theorem for $h(t)$, which vanishes near to the origin. As the integrand is non-negative for any $0<R<\eta$ we have
for

$$
\begin{equation*}
K>R^{q} \int_{0}^{\infty} h(t)\left\{\frac{J_{\mu}(R t)}{(R t)^{\mu}}\right\}^{2 n} d t \geqq R^{q} \int_{0}^{c / R} h(t)\left\{\frac{J_{\mu}(R t)}{(R t)^{\mu}}\right\}^{2 n} d t \tag{38}
\end{equation*}
$$

$$
\geqq M R^{q} \int_{0}^{C \mid R} h(t) d t
$$

$$
\lim _{x \rightarrow 0}\left\{\frac{J_{\mu}(x)}{x^{\mu}}\right\}^{2 n}=M \neq 0
$$

that is, for $T>1 / \eta$, we have ${ }^{*}$

$$
\frac{1}{T^{q}} \int_{0}^{T} h(t) d t \leqq C
$$

But, by (34) and (37), we have

$$
\frac{1}{T^{q}} \int_{0}^{T} h(t) d t=0, \quad \text { for } 0<T \leqq N .
$$

Thus

$$
\frac{1}{T^{4}} \int_{0}^{T} h(t) d t \leqq \text { const., }
$$

uniformly in $T$.

## 2. Cesàro summability of multiple Fourier series.

Quasi-Tauberian theorem of Wiener ([10], p. 77) reads as follows.
Theorem 3. Let $K_{1}(x)$ be bounded and continuous over every finite interval. Let $f(x)$ be of bounded variation over every finite interval. Let

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \int_{0}^{\infty} K_{1}(y-x) d f(x)=A \int_{-\infty}^{\infty} K_{1}(x) d x \tag{39}
\end{equation*}
$$

and as $x \rightarrow-\infty$

$$
K_{1}(x) \sim A_{1} e^{\lambda x} \quad(\lambda>0), \quad(A \neq 0)
$$

holds. Let $k_{1}(u)$ and $k_{2}(u)$ be defined by

$$
k_{1}(u)=\int_{-\infty}^{\infty} K_{1}(x) e^{u x} d x
$$

and

$$
k_{2}(u)=\int_{-\infty}^{\infty} K_{2}(x) e^{u x} d x
$$

Let $K_{1}(x)$ belong $L_{2}(-\infty, \infty)$ and let $k_{2}(u) / k_{1}(u)$ be analytic over $-\varepsilon \leqq \Re(u) \leqq \lambda+\varepsilon$, and let it belong to $L_{2}$ over every ordinate in that strip. Then we have

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \int_{0}^{\infty} K_{2}(y-x) d f(x)=A \int_{-\infty}^{\infty} K_{2}(x) d x \tag{44}
\end{equation*}
$$

Let $f(x)=f\left(x_{1}, \ldots, x_{k}\right)$ be a function of the Lebesgue class $L$, periodic in each of the $k$-variables, and having the period $2 \pi$, and put (cf. Bochner
[1] and Chandrasekharan [2])

$$
\begin{equation*}
\varphi(x, t)=\varphi(t)=\frac{\Gamma(k / 2)}{2(\pi)^{k / 2}} \int_{\sum_{i=1}^{k} \xi_{i}^{2}=1} f\left(x_{1}+t \xi_{1}, \ldots, x_{k}+t \xi_{k}\right) d \sigma_{\xi} \tag{45}
\end{equation*}
$$

where $d \sigma_{\xi}$ denotes $(k-1)$-dimenisonal volume element of the unit sphere. If $n>0$, we define

$$
\begin{align*}
\boldsymbol{\varphi}_{n}(x, t) & =\frac{2}{B(n, k / 2) t^{2 n+k-2}} \int_{0}^{t}\left(t^{2}-s^{2}\right)^{n-1} s^{k-1} \varphi(s) d s  \tag{46}\\
& =\frac{c}{t} \int_{0}^{t}\left(1-\frac{s^{2}}{t^{2}}\right)^{n-1}\left(\frac{s}{t}\right)^{k-1} \varphi(s) d s
\end{align*}
$$

where

$$
\begin{equation*}
c=2 / B(n, k / 2) \tag{47}
\end{equation*}
$$

$\boldsymbol{\varphi}_{n}(x, t) \equiv \boldsymbol{\varphi}_{n}(t)$ is called the spherical mean of order $n$ of the function $f(x)$.
Then

$$
\begin{equation*}
\varphi_{n}(x, t) / t^{r}=\frac{c}{t} \int_{0}^{t}\left(1-\frac{s^{2}}{t^{2}}\right)^{n-1}\left(\frac{s}{t}\right)^{k+r-1} \frac{\varphi(s)}{s^{r}} d s \tag{48}
\end{equation*}
$$

and put $t=e^{-y}$, and $s=e^{-x}$, then (48) is
(49) $\quad c \int_{y}^{\infty} \exp \{(k+r)(y-x)\}\{1-\exp (2(y-x))\}^{n-1} \boldsymbol{\varphi}\left(e^{-x}\right) e^{r x} d x$.

In Theorem 3, we put

$$
K^{(n)}(x)=\left\{\begin{array}{cc}
c e^{(k+r) x}\left(1-e^{2 x}\right)^{n-1}, & x<0, \quad(n \geqq 0)  \tag{50}\\
0, & x>0,
\end{array}\right.
$$

then

$$
\begin{equation*}
K^{(n)}(x) \sim c e^{(k+r) x} \quad \text { as } \quad x \rightarrow-\infty, \quad(k+r>0) \tag{51}
\end{equation*}
$$

Let

$$
\begin{equation*}
V_{\mu}(x)=J_{\mu}(x) / x^{\mu} \tag{52}
\end{equation*}
$$

then

$$
V_{\mu}(x)=\left\{\begin{array}{lll}
O(1), & \text { as } & x \rightarrow 0  \tag{53}\\
x^{-(\mu+1 / 2)}, & \text { as } & x \rightarrow \infty
\end{array}\right.
$$

If we denote by $\sigma^{(m)}(R, x)$ the $m$-th spherical Riesz mean of the Fourier series of $f(x)$, then

$$
\begin{align*}
\sigma^{(m)}(R, x)=\sigma^{(m)}(R) & =2^{m} \Gamma(m+1) R^{k} \int_{0}^{\infty} t^{k-1} \varphi(x, t) V_{m+k / 2}(t R) d t  \tag{54}\\
& =d R^{k} \int_{0}^{\infty} t^{k-1} \varphi(t) V_{x+k / 2}(t R) d t
\end{align*}
$$

where

$$
d=2^{m} \Gamma(m+1)
$$

Since

$$
\begin{equation*}
\lim _{R \rightarrow \infty} R^{k} \int_{1}^{\infty} t^{k-1} \varphi(t) V_{m+k / 2}(t R) d t=O\left(R^{-m+\left.(k+1)\right|^{2}}\right) \tag{55}
\end{equation*}
$$

we can neglect this term in the following lines. Put

$$
\begin{equation*}
R^{r} \sigma^{(m)}(R) \equiv d R^{r+k} \int_{0}^{1} t^{k-1} \varphi(t) V_{m+k / 2}(t R) d t \tag{56}
\end{equation*}
$$

$$
=d R \int_{0}^{1} \varphi(t) t^{-r}(t R)^{k+r-1} V_{m+k / 2}(t R) d t
$$

and let $R=e^{y}, t=e^{-x}$, respectively, then (56) becomes

$$
\begin{equation*}
d \int_{0}^{\infty} \exp \{(k+r)(y-x)\} V_{m+k / 2}\left(e^{y-x}\right) \varphi\left(e^{-x}\right) e^{r x} d x \tag{57}
\end{equation*}
$$

Comparing with Theorem 3, we put

$$
\begin{equation*}
{ }^{(m)} K(x)=d e^{(k+r) x} V_{m+k / 2}\left(e^{x}\right), \tag{58}
\end{equation*}
$$

then
(59) $\quad{ }^{(m)} K(x) \sim O\left(e^{(k+r) x}\right) \neq 0, \quad$ as $\quad x \rightarrow-\infty(k+r>0)$
by (53).
$K^{(n)}(x) \in L_{2}(-\infty, \infty)$, but ${ }^{(m)} K(x) \in L_{2}(-\infty, \infty)$, if and only if

$$
\begin{equation*}
m>r+(k-1) / 2 \tag{60}
\end{equation*}
$$

by (53). The Mellin transform of $K^{(n)}(x)$ is

$$
\begin{align*}
k_{n}(u) & =c \int_{-\infty}^{0} e^{(k+r) n}\left(1-e^{2 v}\right)^{n} e^{k x} d x  \tag{61}\\
& =\frac{c}{2} \int_{0}^{1} t^{(i+r+u-2) / 2}(1-t)^{n} d t=\frac{c \Gamma\{(k+r+u) / 2\} \Gamma(n+1)}{2 \Gamma\{(k+r+u) / 2+n+1)}
\end{align*}
$$

and the transform of ${ }^{(m)} K(x)$ is

$$
\begin{align*}
l_{m}(u) & =d \int_{0}^{\infty} e^{(k+r+u) x} V_{m+u / 2}\left(e^{x}\right) d x  \tag{62}\\
& =d \int_{0}^{\infty} t^{(r+k+u-1)} V_{m+u / 2}(t) d t \\
& =d \int_{0}^{\infty} J_{m+k / 2}(t) t^{(r+k+u-1-m-k / 2)} d t . \\
& =\frac{d \Gamma\{(r+k+u) / 2\}}{2^{m-k / 2-r-u+1} \Gamma\{m+1-(r+u) / 2\}} \quad \text { (Watson [9] p. 391). }
\end{align*}
$$

In this case $u \cdot$ is imaginary, the condition of validity of (62) is

$$
0<r+k<m+k / 2+3 / 2
$$

and this is contained in (60). Then we have

$$
\begin{align*}
\frac{l_{m}(u)}{K_{n}(u)}= & \text { const } \cdot \frac{\Gamma\{k+r+2 n+2+u) / 2\}}{\Gamma\{(2 m-r-u+2) / 2\}}  \tag{63}\\
& \sim \text { const. } \mid \Im(u))^{\Re(u)+r+n-m+k / 2},
\end{align*}
$$

as $|\mathfrak{F}(u)| \rightarrow \infty$. From Theorem 3, if

$$
\begin{equation*}
m>n+(k+1) / 2+r \tag{64}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \int_{0}^{\infty} K^{(n)}(y-x) \varphi\left(e^{-x}\right) e^{r x} d x=A \int_{-\infty}^{\infty} K^{(n)}(x) d x \tag{65}
\end{equation*}
$$

implies

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \int_{0}^{\infty}{ }^{(m)} K(y-x) \varphi\left(e^{-x}\right) e^{r x} d x=A \int_{-\infty}^{\infty}{ }_{(m)} K(x) d x \tag{66}
\end{equation*}
$$

and if

$$
\begin{equation*}
n>m-r-(k-1) / 2 \tag{67}
\end{equation*}
$$

then (66) implies (65). In the latter case, the condition of analyticity of $k_{n}(u) / l_{m}(u)$ is contained in (60). Thus we get the follwing theorem.

Theorem 3.1. Let $r>-k$. (a) If $m>n+(k-1) / 2+r, \quad(n \geqq 1)$ then $\lim _{t \rightarrow 0} \boldsymbol{\varphi}_{n}(t) / t^{r}=s$ implies $\lim _{R \rightarrow \infty} R^{r} \sigma^{(m)}(R)=l s$, and (b) if $n>m-r-(k-3) / 2$ and $m>r+(k-1) / 2$, then $\lim _{R \rightarrow \infty} R^{r} \sigma^{(m)}(R)=s$ implies $\lim _{t \rightarrow 0} \boldsymbol{q}_{n}(t) / t^{r}=s / l$, where

$$
l=2^{(k-2) / 2-m-r} \Gamma\{(k+r) / 2+n\}\{\Gamma(m-r / 2+1) \Gamma(n)\}^{-1}
$$

The special case $r=0$ and $k=1$, is the well known theorem of Bosanquet-Paley-Wiener. The case (b) where $k=1$, and $s=0$ is solved by Hyslop [5] under some restrictions and the complete solution is due to Izumi [6]. Most general case (a) is given by Chandrasekharan [2] and the case (b) is new. This indicates that the order condition of the theorem is best possible in a sense.

Theorem 4. Under the hypothesis of Theorem 3,

$$
\int_{-\infty}^{\infty}\left|d_{y} \int_{0}^{\infty} K_{1}(y-x) d f(x)\right|<\infty
$$

implies

$$
\int_{-\infty}^{\infty}\left|d_{y} \int_{0}^{\infty} K_{2}(y-x) d f(x)\right|<\infty .
$$

This is due to the author [8]. Corresponding to Theorem 3.1, we get
Theorem 4.1. Let $r>-k$. (a) If $\boldsymbol{\varphi}_{n}(t) / t^{r}$ is of bounded variation in $0<t<\infty$, then $R^{r} \sigma^{(m)}(R)$ is of bounded variation in $0<R<\infty$, for $m>n+(k-1) / 2+r,(n \geqq 1)$, and (b) if $R^{r} \sigma^{(m)}(R)$ is of bounded variation in $0<R<\infty$, then $\varphi_{n}(t) / t^{r}$ is of bounded variation in $0<t<\infty$ for

$$
n>m-r-(k-3) / 2 \text { and } m>r+(k-1) / 2 .
$$

The case $r=0$ is given by Chandrasekharan [3] with direct calculation.

## Literature

[1] Bochner, S., Summation of multiple Fourier seires by spherical means, Trans. Amer. Math. Soc., 40 (1936), 175-207.
[2] Chandrasekharan, On the summation of multiple Fourier series I, Proc. London Math. Soc., 50 (1948), 210-222.
[3] Chandrasekharan, On the summation of multiple Fourier series II, Proc. London Math. Scc., 50 (1948), 223-229.
[4] Cheng, M.T., Some Tauberian theorems with application to multiple Fourier series, Annals of Math., 50 (1949), 763-776.
[5] Hyslop, J. M., Note on a group of theorems in the theory of Fourier series, Journ. London Math. Soc., 24 (1949), 91-100. .
[6] Izumi, S., On Cesàro summability of Fourier series, appear in Journ. London Math. Soc.
[7] Littauer, S. B., Note on a theorem of Jacob, Journ. London Math. Soc., 4 (1930), 226-231.
[8] Sunouchi, G., Quasi-Tauberian theorems, Tôhoku Math. Journ. 1 (1950), 167-185.
[9] Watson, G. N., A treaties on the theory of Bessel functions, Cambridge, 1922.
[10] Wiener, N., Tauberian theorems, Annals of Math., 33 (1932), 1-100.

Mathematical Institute,
Tôhoku University, Sendai.


[^0]:    *) Received March 26, 1950.

