
NOTES ON ΪOTRIEK ANALYSIS (XXXVI):

ON CERTAIN APPLICATIONS OF WIENER'S

TAUIHERIAN THEORE1*S*>

By
GEN-ICHIRO SUNOUCHI

In this note the author gives two applications of Wiener's theoreα n.
The general convergence theorem and its converse ame discussed in § 1.
Partial solution of the problem of Cheng [4] is also given. In § 2 the
Cesaro summability problem of multiple Fourier series is discussed, .to
which the quasi-Tauberi&n itheorem is applied. § 1 and § 2 are closely
related but may be read independently.

1. A general convergence theorem and its converse.
We shall begin to state one ,of the fundamental theorem of Wiener.
THEOREM 1. Let φ(X) be a function of bounded total variation over

every interval (£, l/£) where 0 < £ < l , and let

( 1 ) I X~ι\dφ(X)\^C (0<u<oo).
Ju

Let λiV^λ) be a continuous function for which
oo

( 2 ) 2 niax

and let

Let for any real u

( 4 ) f^N^X^dX Φ θ.

Then if λiV2(λ) is any continuous function for tυhich

( 5 ) 2 -max λ|iV^(λ)|<oo,

we have

( 6 ) lim 1 ΓN2U)dφ(μ) = A ΓNt(μ)dμ.

This theorem is a Φransformation of Theorem IX of Wiener [10] (p.

26). To see this it is sufficient to put
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f = lggλ,

or ξ = - log λ,

THEOREM 1.1. Let f(t) be integrable (0, B) and let

( 7 ) —q f
T\f(t)\dt<^C, for all T> 0, (q > 0).

Let tqK{t) be a cintinuous function for which
oo

( 8 ) 2 max f\K(t)\< oo.

( 9 ) ^ 1 jΓ/(θ(l - ~ ) r f ί = ̂ Γ(« + 1).
implies

PROOF. Put

(11)

then

(12) / λ-^9>(λ)ί= / \f(t)\jt<^±

by (7). Thus the condition (1) of Theorem 1 is valid.
Put

(13) NJX) = Λ""1*1 " λ ) α / Γ ( ^ + !)> i f 0 ^ λ ^ 1, (α > 0)

1 0 if 1 < λ,
then we have

oo oo

(14) 2 max λiV^λ) '= C 2 max λβ(l - λ) < oo,

(15) lim ϊ ΓW—W(/*)

= lim 1 fM

= lim / Γ7(A*)(l - f ) % = «> (by (9))
and

(16) 1 — - Γ λ -'M - λ)*λίMdλ = Γ ( g + *") Φ 0.
V ' Γ(α + l ) J v ' Γ(g + α + i« + l)

Thus the conditions (2), (3) and (4) of Theorem 1 are valid. Putting
Nt(\) =\*-*

we get the theorem.
THEOREM 1.2. Let n be a positive integer, μ>0 and 0<q<Cn(
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Let, in addition to (7),

then we have

(18) lira R* f "f(t) \MM ΐdt = Iq f°°\<MQ 1 V

PBOOF. In Theorem 1.1, put a=0, and
(19) κ{t) = \J,(t)i#γ.

Since,

j(t) = | ° ( r ) ' a s '
μV ; 10(ί-1/a>, as /

we have
(20)

if

max

THEOREM 1.3. Let /A > 0 and 0<</</«&+1/2. £eί w addition to (7),

V 7 κ-̂ oc~) J0

JyJ(Rty T(q) Jo I P )
then we have
(22) Λ k f ' K 1 ~ ^)"Λ = 'Γ(α

PROOF. Put, in Theorem 1,

V

]> { a > 0 )

and

Since
o,

^ l (α>0)
otherwise.

(23)

/2|- _ - . φ 0

i ) / 2 + 1}
(0 < q < μ + 1/2). (Watson [9], p. 391).

Other conditions of Theorem 1 are evident.
Theorem 1.1 is one of the so-called general convergence theorem and

many writers have discussed conditions of validity. The condition of our
theorem is the best possible ono in a sense. Theorem 1. 2 is proved by Cheng
[4] by direct calculation. The special case of w=2, • μ = l / 2 is Jacob's
generalization of Wiener's formula. Littauer [7] has applied the Tauberian
method in this case, but his proof is elliptical,, since his R(ξ) is not
integrable over ( — oo, oo) for a — 0. In the case a=Q of Theorem 1. 3,
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more stringent condition is required.
THEOREM 2. Let, in addition to the conditions of Theorem 1,

(24) φ(\) - Γg(μ)dμ

and
(25) g(\) ^ 0 , for all λ > 0,
then

1 Γλ

lim — I g(μ)d'μ = A

Proof is the repetition of Wiener's argument ([10],. p. 31).
THEOREM 2.1. Let f(t) be integrable (0, B) and let, in addition to (7)

and (8) ivhere tqK(t) is continuous,

fity ^ 0. for all t ^> θ
and

(26) f°°K(t)tq-ψudί^Q, for aB

implies

(9 ')

PROOF. Since

we put

and

then (7) implies (1) and we get the theorem.
Since in the problem of Cheng [4] K(t)~{Jμ(t)ltμ'}H

3 if μ>Q and
0<q<n(μ + t/2), then (t8) is valid,, for

as t -> 0

Consequently the validity of .the eosg'βetαrβ dθpθn<is only on. non-vaaisMβg
©f

Jo I xμ I
fi>» all real «. Especially the cases » = 1 and n = 2 are evident. For, in
the ease n~~k by (23)^, and' in the case n = 2 , by

(27) f"—M?UL_c
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(2/A + 1 > 2/* - (* + q) + 1' > 0). (Watson [9] p. 397).

Thus we get

THEOREM 2.2. Let 0<q<(μ + l/2). Let

(28) ~ Γ\f(t)'\dt ^ M, for all T > 0

and

(29) /(£) ̂  0, for all L

Then

(30) lim

implies
(31)

THEOREM 2.3. Lei 0 < g < 2 ( ^ + 1/2) and Zβί (28), awd (29). 77

(32) lim B*-» Γf(t)ί^βl^ = Iq f l ^ iVw

iviplies (31).

Put Λ—0 in (27), then we get thθ theorem.
THEOREM 2. 4. Let l — 2μ<q<2 and suppose (28) and (29). Then

(33) lim i?9"1 Γ^MRt)^dt =* ?g (°°\JM\^~^
R^Q(oo ) J Q ί J o

implies (31).
For the proof it is sufficient to put &=:2μ—1 in (27).
REMARK. In Theorem 2.1 (consequently in its corollaries), if K(t)^Q

for all £Ξ>0 and K(t)-+ -MΦO as ί-^ 0, then we can dispense with

ψfW) [* ̂  C, for all Γ > 0, (? > 0).

PROOF. We prove the case K(t) = \J^{x)jxμγn for the sake of simplicity.
Put

(34) g(t) = j ^ ' ή t < ] ί \ for some fixed N then we have

(35) lim

and

(36) limR« ["giήi^^Γdt = limEQ Γflt)ί^iβl^d

^limJfiP f"\f(t)\dt = Q.
*#> Jo

Consequently, if we put
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(37) f(t) = g(t) + h(t),
tfhen it is sufficient to prove the theorem for h(t), which vanishes near to
the origin. As thβ integrand is non-negative for any 0<cR<Cη we have

κ> « f;π»{Jfffiμ s ϋ.ĵ *( ) | i ^ f*
\ h(t)dt,

) ( X*
that is, for Γ> 1/η, we have

for limίί^ί

0

But, by (34) and (37), we have

— Γlι{t)dt = 0, for 0 < T^ N.
1 qJ0

Thus
-— / h(t)dt <: const.,

uniformly in T.
2. Cesaro summability of multiple Fourier series.
Quasi-Tauberian theorem of Wiener ([10], p. 77) reads as follows.
THEOREM 3. Let Kλ{x) be bounded and continuous over every finite

interval. Let f(x) be of bounded variation over' every finite interval. Let

(39) Hm f^K^y ~ x)df(x) = A f^K^dx,

(40) f^dlK^e-^W^C

and as •#->.— oo

(41) iζ(^)~Λ« λ r (λ > 0), .(4 Φ O)
holds. Let Jc^u) and Jc2(u) be defined by

(42) hτ(u) = fβ°JKL(x)ewdx

(43) k2(u) = Γκ2(x)euxdx.

Let KΎ{x) belong L2( — oo? oo) and Zβί ^2(i6)/ί:1(u) δe analytic over
— £<ΞseR(it)<^λ + £5 and Zβί iί belong to L2 over every ordinate in that strip.
Then tve have

(44) lim Γ"ίΓ2(y - x)df(x) = 4 (~K2{x)dx.

Let /(^)z=r/(^i, ..., ̂ ) be a function of the Lebesgue class Z, periodic in
each of the k-variables, and having the period 2π, and put (cf. Bόchner
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[1] and Chandrasekharan [2])

(45) φ(χ,t)

. ft
where dσ% denotes (k — l)-dimenisonal volume element of the unit sphere.
If ^ > 0 , we define

<4e> < • • < * • " = w

where
(47) ~c=2lB(n,hβ).
φn(x,t)=φn(t) is called the spherical mean, of order n of the function /(a;).
Then

and put t=e~y, &nά s—e~x, then (48) is

(49) c pexpK* + r)(y - «)}{! --

In Theorem 3, we put

(50) E»(χ) = ί ^ + r > ί ( l - O " - 1 . ^ < 0. (~ ^ 0)

then
(51) JPM)(fl5) ~ C6cfc+r> as α; - > - oo, (h + r > 0).

Let
(52) F μ (^) = J- μ (^)/^
then
/KON F / \ _ (0(1), as x-*0,

If we denote by σ^(BΊ x) the m-th spherical Eiesz mean of the

Fourier series of f(x), then

(54) σ^(R, x) = ir<»>(R) = 2 T ( m + l)P,fc Γ>->(a?, t)Vm+lcβ(tR)dt

where
d = 2wΓ(m + 1).

Since

(55) lim

we can neglect this term in the following lines. Put

(56) Rrσ^(R) ~dRr+k Γf-1φ(t)Vm+m(tR)dt
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= dR Γφ(t)t-'-(tRr^ψm+kl,(tE)dt,
Jo

and let R=ey,t=:e~x, respectively, then (56) becomes

(57) d f"exp{(i + r)(y -
Jo

Comparing with Theorem 3, we put
(58) «»K{x) )
then
(59) ™K(x) ~ 0(<fk+r*) Φ 0, as x-^- - oo(k + r>0)
by (53).

K^(x)€L2(-co> e»), but ( m )ίΓ(a;)6i2(-oo, oo), if and only if

(60) m>-r+ ( * - l ) / 2 ,
by (53). The Mellin transform of KM(x) is

(61) *„(«) = c ΓV+r>"(l - β 'J βP dβ

2 Λ 2Γ{ (4 + r + «)/2 + n + 1)
and the transform of (m)iϊΓ(x) is

(62) lm(u) = d

= d

(Watson [9] p. 391).

In this case t̂  is imaginary, the condition of validity of (62) is
0 < r + k<m + Jc/2 + 3/2

and this is contained i n (60). T h e n we have

(63) M}tL = const Γ μ + > + 2 f 2 + ^ ) / 2 I
V } K(u)

const
Kn(u) Γ{(2m - r - u + 2)/2}

as |3(u)|->oo. From Theorem 3, if
(64) m > n + (k + l)/2 + r,
then

(65) lim (EF>(y - x)φ(e-χ)erxdx = A

implies

(66) lim f°°^K(y - x)φ{e-
χ)erxdx = A f°°wK(x)dxy
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and if
(67) n > m - r - (k - l)/2,
then (66) implies (65). In the latter case, the condition of analyticity
of kn(u)βm.(u) is contained in (60). Thus we get the follwing theorem.

THEOREM 3.1. Let r>—k. (a) If m>n+(k—l)/2 + r, (n^>l) then

\imφn(t)lf=s implies UmRrσ^m')(R)=ls, and (b) if n>m — r—(k—3)/2

and m>r-\- (k—ί)/2, then lim i2 rσc w )(R) = s implies \im φn(t)/F=s/l, where
i?->oo ί->0

I = ^k-2^-m-rT{(k + r)/2 + n}\T(m - r\2 + I ) Γ ( Λ ) } " 1 .

The special case r = 0 and k=l, is the well known theorem of Bosanquet-
Paley-Wiener. The case (b) where k=l, and s=Q is solved by Hyslop
[5] under some restrictions and the complete solution is due to Izumi [6].
Most general case (a) is given by Chandrasekharan [2] and the case (b)
is new. This indicates that the order condition of the theorem is best
possible in a sense.

THEOREM 4. Under the hypothesis of Theorem 3,

dy I K\(y — x)df(x)

implies
Γ°°\ Γ°°

I \dy I K2(y — x)df(x)
< oo.

This is due to the author [8]. Corresponding to Theorem 3.1, we get
THEOREM 4.1. Let r>—A. (α) If φn(t)ltr is of bounded variation

in 0<£<oo, then i?rσ(w)(jβ) is of bounded variation in 0<i?<oo ? for
m > n + (& —l)/2 + r, (n^>l), and (b) if i2rσ(m)(jβ) is of bounded variation
in 0<R<oo} then φn{t)jf is of bounded variation in 0<£<oo for

n > m — r— (k—3)/2 and m^>r-\- (k—l)/2.
The case r=0 is given by Chandrasekharan [3] with direct calculation.
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