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Preface (BY TADAO TANNAKA)

It is well known, for the case of cyclic class field, the principal ideal
theorem of Furtwangler can be generalized in the form, " All ambίgous
ideals in the class field are principal." I conjectured several years ago, that
this allows the following generalization, " If Kjh is the arbitrary abelian
absolute class field, then all the ambigous ideals in the cyclic subfield of K
are principal, when considered as ideals in K."

I found this fact to be true by several ^-groups of low degrees, but
could not prove in general. Recently Mr. Terada took up this problem
again, and he and I tried to solve it with great effort. After a considerably
complicated calculation, he succeeded at last to master the problem. The
following paper is the result of his hard work. I also succeeded to
generalize the arithmetic part of Iyanaga's general principal ideal theorm
in this form. This will be seen in my paper in this same volume+).

1. Introduction. Let h be a finite algebraic extension field of the

rational field, and let K and K be the first and the second absolute class

field of h, respectively. The field K is a normal extension field of h, and

the Galois group & of Kjh is the so-called " zweistufig metabelsche Gruppe "

(Hasse [1], p. 172) that is, the second commutator subgroup @/; of (3 is

an unit group. The subgroup of ® corresponding to Kis, as is well known,

the first commutator subgroup ©' of ($.
Moreover, let Ω be a cyclic extension field of Jc, contained in i ζ and let

ξ> be the corresponding subgroup of (S. The ambigous class C of Ω is an
absolute class of Ω such that CS=C, where s is a generator of the cyclic
group ®/φ. It is clear that this definition does not depend on the choice
of s. An ideal, contained in one of the ambigous classes, will be called

*) Received Sept. 29, 1949.
+) Meanv hile Tannaka has obtained a new treatment, ^vlr.ch needs only few a pages.
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an ambigous ideal in this paper. Any ideal in k is contained in one oί

the ambigous classes of Ω; but the converse is not true in general.

The principal ideal theorem of Furtwangler is that " Any ideal in k

is a principal ideal in K" (Furtwangler [1], Hasse [1]). As stated in the

preface, if Kjk is the cyclic extention field, then this allows the following

generalization " Any ambίgous ideal in K is principal" Prof. Tannaka had

conjectured the more generalized theorem, " Any ambigous ideal in Ω is

principal in K" I shall prove this generalized principal ideal theorem in

this paper.

2 LEMMA 1. The siώfield Ω of i ζ corresponding to the commutator

subgroup ©' of ξ> is the absolute class field of Ω.

PROOF. As is well known, the first absolute class field Ω' of Ω is the

greatest, non-ramified, abelian extension field of Ω. Therefore it is easy to

see. that ΩczΩ'. Since K is a non-ramified abelian extension field of Ω, Kis

contained in Ω'. Then Ω' is a non-ramified abelian extension field of i ζ

and therefore is contained in K, which is the first absolute class field of K;

and therefore, is contained in Ω, for Ω is the greatest abelian extension

field of Ω contained in K.

Following notations will be used in this paper:

s: a fixed representative of the generator of the cyclic group @/j£)

in ©/©' (βc®/©'),

e : the order of s with respect to ©,

ξ, η,... : general elements of ©/©/,

u(x) : a fixed representative of an element £e©/(S',

[x, y]: an element u(x)u(y)u(x)~1u(y)-1 of ($', where x, ye®/®',

gx: an element u(x)gu(x)~1 of @, where xe(§/($f and ge®f,

g^aiχi: an element TL(gτi)*{ of (Sr, where x^j®' and at is an integer.

By the last definition, the group-ring [©/©'] of ©/©' may be considered

as an operator-ring of the group ©', (Hasse [1]).

By the Artin's law of reciprocity, any ideal 9ί in Ω corresponds to an

element A~(—1—j of ξ> mod. ξ>', and also to an element V^^( A) — (—-ί-—J

of W, when considered as an ideal in K. If 3ί is an ambigous ideal, then

W'1 is a principal ideal in Ω, so that we have by the reciprocity law and

lemma ί _

( 1 ) A- =(»

Moreover, it is well known that

( 2 ) Vf
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where the j>rod.uct is extended over all elements T,... of ©/{©', A\, and
v(τ) is the representative of r mod. \(3', A], and / is the order of A with
respect to ©' (Hasse [1] p. 171).

The right side of (2) is equal to

Uv(τ)A(v(τ)A)-1*(v(τ)A)-A(v(τ)Aη-1...

and the elements v(τ), v(τ)A, ..., ^ ( T ) ^ " 1 , (τe©/{©', A\) form a
complete system of representatives of © mod. ©'. Therefore, from (2) we
have

( 3 ) V^(A) = τίu'(ξ)Au'(ξσ)-1

where σ is an element of ©/©''which contains A. Moreover let n\ξ)—gfi{ξ)
then

Tίu'(ξ)Au'(ξσ)-1 = Uu(ξ)Au{ξσ)-\

and wo have from (3)

( 4 ) Ϊ W μ ) = ϊlu(ξ)Au(ξcτ)-\

The necessary and sufficient condition for $ί to be a principal ideal
in K is that

Therefore our theorem is translated to the
REDUCTION THEOREM 1. For any element A of © such that -4*"1e©/ ive

have

V^(A) = Uu{i)Au(ξ<r)-> = 1,

'where this product is extended over all £e©/©; and σ is an element of ©/($'
ivhich contains A.

3. Let ©><?~1 be the subgroup of ©' generated by all the elements
Hs'1=u(8)Hu(8)-1H'\ ίZe©. Then we have

LEMMA 2. ©' - ©s-1©'.
PROOF. 1. It is easy to see that ©s~1©'c©'.

2. A system of generators of ©' consists of all the elements of the form
. If

G2 = u(s)3u(η)g2

then

On the other hand, we get
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[8% S>ηl
= (u(»γu(ξ)) (u(syu(η)) (u(sy
= 1 (mod. ξ) 1 "^ ' ) ,

and

tf-* = jji- 'e = 1 (mod. ft1"1©').

Wo can. prove them by induction with respect to the exponents, for

And we may conclude our lemma 2.
Let the abelian group ©/©' be expressed as a direct product of cyclic

groups Sj, ..., Sn with generators ft, ..., ft,, respectively, and let et be

the order of ξ(. Then, each element of ξ> has the form Tίu(ξi)
aigJ and

then, more precisely than lemma 2, we get
LEMMA 3.

(5) ®' = ir1, ŝ -1, a,«], a, MI
i, j = 1, . , «,

( 6 ) .ft' = {fc->, m~\ [fi, sp-1, [ft, f,]},
w7ιere g runs over all the elements of &' and so is h of ξ)'. The sign { }
means that, ©', or £)r, has these elements as its generators.

PROOF. By an analogous calculation as in the lemma 2, it is easy to
see that
( 6 ) ' &={9^\ [ft, ft]; i,j = l, ...,»}•
Starting from lemma 2, we get, by the same method as above, that

( 5 ) ' © ' = {£', (8-1, [fi, β]; i = l, ..-, n\.
Now, putting (6) into (5)', we may conclude (5), and from (5) and (6)',
we get the expression (6).

If @ is a p-group, by a successive application of lemma 3, as was
carried out by Furtwangler (Furtwangler [1], Hasse [1], p. 185), we get

LEMMA 4. If & is a p~group, then

(7)χ © ' = {[fi, «], [ft, I,]; *, i = 1, - , n],
( 7 )2 €>' = {[ft, s]^\ [ft, t,] i, j = 1, ..., n},
^/iβre the sign { } means that, ©', or ξ>', has these elements as its generators
permitting the symbolic poiver.

4c. As is easily verified from (4),
( 8 ) Vw(AB) = V^W(A)V,^(B), A, Be<Q

(Hasse [1], p. 162), and if ξ is an element of £>/©' then

( 9 )

for Vp^φ(A)=:(—'-—j and δl^=5ϊ. Furthermore, as was shown by deriving
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(4) from (3),

(10) Vξ>j>®>{A) = Tlu(ζ)Au{ζσ)-τ does not dej>end on the choice of
representatives u(£) mod. ©'.

To avoid the complication, we use following notations throughout
this paper.

Mw ! + & + . . . + ξ^-1 (0 < Ίi < et),

From (10) we may change the representatives as follows:
u(ξi) = arbitrary,

(ί) π
Then, as is well known,

(11)

= «(&)'Λ,
((2), Hasse [1], Schumann [1]). Moreover, if σ=Π^I i , (0<γt<e() then

and then, from (8), we have

(12) 7 w ( t . ( σ ) ) = Π F H | ) (

Putting all £<=1 in Γt, we get γ o and therefore from (9), (12), we have

from (11)

(13) = Π«(f t )
e < Γ A

On the other hand

U(σ)- 1 - [β, W(σ)] = [8, TL

By using the relation
[α, δc] = [α, &][α, c]&,

concerning the commutators, we get by a simple calculation

(14) u(σ)-* = Tils, ξtT:
1 = 1

Now let A=u(σ)g, ge®', then
i^s^-y- 1 (mod. ©'),

and therefore the assumption in Reduction theorem 1 is equivalent to the
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condition

(15) Π[«, fff'sl (mod. £')•

From (8) and (13),

(16) *W(Λ) = ΠM&r^V
i = 1

Therefore, the reduction theorem 1 is translated to the
n

REDUCTION THEOREM 2. If the element TL[s, kiT1^'1 °f ®' ̂ s contained

in ξ>', then we have

5. LEMMA 5. It is sufficient to prove the theorem, for a p-group.
PROOF. It is easy to see that, F$.>@/(7ι) = 1, where h is an element

of ξ>', and the ambigous elements of ξ> forms a subgroup 21 of ξ). Then,
from (8), it is sufficient to prove the theorem for a generator Ai of 91/©',
and then, the order of V$^w{Aι) is a power of prime number p.

Now let us assume that we have proved the theorem for a p-group.
Let <£)/£>, U/(S/ and 33/U/ be the greatest subgroup with order prime to p
of ®/£, £)/©' and U/1Γ respectively. Then it is easy to see that U/95 is
the abelian commutator subgroup of @/33. Our elements A of ξ> is ambigous
with respect to £> and is also ambigous with respect to § mod 33. Therefore
applying the assumption for a p-group to the jp-groups (5/33 and £>/33 and
to the elements A, we get 7:^(^1) = 1 mod. 33 and V^n(A)q is contained
in IT, where q is the order of 33/1Γ, which is prime to p. As is easily .verified,
for any element B of U', we have Vn^{B)=l (Hasse [1] p. 178). So
that, we get
(17) V-^Ur=VnMV^n(Λ)")=l.
On the other hand, A is commutative with a generator of the cyclic group
£>/£) mod ξ>', as it is ambigous with respect to ©. Then we have

^ ( ^ ^ ' ( m o d . £>'),
where q' is the order of ξ>/ξ> so that it is prime to p. Therefore, calling
the property (17) in mind, we get

where qq' is prime to p. Thus we conclude our lemma.

§2.

6. From now on, we assume that © is a p-group. Then, by lemma
4, (3r and £>' has as its symbolical generators the elements
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®' = {[ft, £1, [ ^ W ;i<j;i,j = l , - , «},
€>' =• {[ft, STJ&-1, [ft, fc] i < jfc i, j , k = 1, ..., «}.

For any-element. #e©' such that

we consider the exponential system

Let
the exponential system {B[°y .:., ^ £ ) ; ^ , ..., ^*21>n} of u(ξt)

e* be α f ,
the exponential system {B{°\ ..., £«» ^°2\ ..., ^ x , „ } of g be Λ0,
the exponential system {0, ..., 1, ..., 0 ; 0, ..., 0} of [^, s] be δ£,

and the exponential system [Q, ..., 0 ; 0, ...7 1, ..., 0} of [ξi} ξj] be €ijy

where g is the element which occurs in Reduction theorem 2. As Stj was
defined for i<j, we may define for i 2y as follow,

(18) f * i = - θ i < ( i > j ) , θ« = 0.
As is easily seen,
(19) Δ ^ - 0, where Δ, = ξt - 1,
(20) ΔA fc + Δ^ fc, + Δ A = 0,
(21) Δ6,, + Δ A - Δ A = 0,: wfcere Δ = β - 1,
(22) Δ A

(23) Δα

(24) Λ <

r <s ε

α0 was the exponential system of the element g in the Reduction theorem
2. Without loss of generality, we may assume that

For the element ΓI [ft, &F$ is in § r , and then ^

and therefore does not affect our assumption and conclusion.

Using the exponential sybtem, the Reduction theorem 2 is translated

to the
REDUCTION THEOREM 3. If there exists a relation

we have

i? .a, = 0.

Furthermore, by (19) and (22),
ΔActt = 0 for all i, £,
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then, writing simply Γ̂  instead of Γ, 4- ΔJ%0) +

we have

REDUCTION THEOREM 3'. Zβί P, (=[©/©']), δe α commutative ring,
and 9Jί όe α P-modul with generators £tj(iMj), 8t) (ΐ, j=l, ..., n), which
satisfy the condition (18). Furthermore we assume that there exist elements
Δ, Δ o ifί? Γ ί ; wfticft satisfy the conditions (19), (20), (21),

(25)

/or a^y n elements at of ϊ)ΐ which satisfies the conditions (22), (23)
we have

(26) E

7 As we defined θ and θiy we shall define in genearal

ΘK1) < c o = Π ^-.C3) Then we have

(27) θκιy.χrβκ - 0 i/i, £ Φ i ( l ) , ..., i (r) .
For, as is easily seen, MjMk£jk=Q (j, & = 1, 2, ..., ?ι).
As J.rs Λvas defined for r<s, we may define for r|Ξ>s
(28) An=- Λsr (r > s), Arr=Q.
ΛVith this notations we have

(29)

For, from (24) and (27), (Hasse [1], p. 189)

+
and from (28)

and then, from (22), (23), we conclude (29).
Putting (29) into (26), we have

S — —
/Γ>Q\

+ Έ Σ Γ^^Δ^α^^^g^αico +

On the other hand, from (22), we have

(31) 0= 2 Έ ΓtvAmθi*
HI) iC2)Φί(l)

We write the left side of (25), Σ Γ A , briefly Γ, then by (22),
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(32)

Subtracting (31) and (32) from (30), we get

B = S Έ r<

- Δ

Putting (24) into the above expression, we get the following formula.
THE FIRST MODIFICATION THEOREM.

_ v Γ
L r<s

(33)

8. In case of n = 2 , we get our main theorem from the first modification
theorem, and it will be shown in § 3. ΛVe now proceed to the case of

From now on, we write a determinant

simply

and a determinant with a in its r-th row

simply
' i( l), i(2), ..., i (r), ..., i(m)

By these notations (33) has the following description,

H ^ Γ
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Let

a. = Σ
iCi)ίGO

[ I ] ΓJΛhe modification of Ξ2. ΛVe can restrict the summation 2 to

; r=i(2),
for if r=t=i(l), i{%) and sΦi(l), i(2),-'thθn these terms vanish, by (27),
and also the terms r—i(l), s=i(2) and r=ί(2), s=i(l) Λ̂ anish, since
these determinants=0. ΛVe write i(3) instead of r or s, we get(3)

** - V Δ Γ Λ
^ 2 " l f ίcΓ α ) ί c l Λ w

t(2)
l)i(2i(3)Φi(2)

, ^ / ΐ ( l ) , . i(2)

By (18) and (28)
A Γ Ί) \( *(!)» *(2) V

ί(l)=t=ΐ(2)Φt(3)

By (22)

<Cl)'φV2)'φiC3)

*(1), i(2)

We divide the summation 2(*(1), *(2), i(3) i(l)Φΐ(2)Φΐ(3)) into two
parts

In the second term, we exchange the letters ί(2) and -i(3) one another.
Then
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w - V
ί(2), ί(3)

i(2) <ί(3)

Γ/ ^(
iC3)LV^(3) i(D,

i(2|
i(l,i(2)

Calling the equality (22). in mind, we may write

Ml ^Z / , X , JL <i(\\\S<i(

α,

, ( ) (

and this may bo written as follows.

/»(1), i(2), *(3) \
Λ «, ;(2)i(2),;(3)i(3)Λ

Putting (24) into the above expression, we get

( 3 4 ) +

where'the summation is extended over i(l), i(2), i(3), α(l), α(2), α(3),
i(2),i(3); and

( i ) i(l)Φi(2),<(3);.i(2)<i(3),
(35) (ii) α(l),α(2), α(3) with α(l)+α(2) + α(3)=2,

(iii) j(2), j(S) take the value i(l) in α(l) times, i(2) in α(2)
times and i(3) in α(3) times.

[II] The modification of,Ξ2. In the first term of B2? we divide the

summation 2 into 2 ( ^ ^^ί(1), i(2)) and 2(^, ί=i( l), i(2)), and in

the second term of S2, as was in [I], we divide the summation 2 i

2( rΦi( l ) , i (2) ;β=i( l ) , i (2J)-and2( ' =i(l)>β=(2)).
And then, writing i(3) instead of t and r, we get

ί1)' *(2) 
ô»cυ
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Exchanging the letters i(2) and i(3) one another in the second and the
sixth term, and in addition applying (22) and (28) to the first three
terms, and also, applying (21) to the sixth term, we get

Adding the first and the second term, and, exchanging the letters ^(
i(S) one another, we get

(37) wάJ^^^
for, from (22), Δ4 ( 1 )α< ( υ=0. By the same reason, we get from the third

term of (36)

( o 8 ) iσ^w^^

From now on, we say "change the letters i ( l ) , i(2), ..., i(r) as i(l)
->i(2)-> —> i(r)->i(l) J> in the following sense, that is, we write i(l)
instead of ί(r),i(2) instead of i ( l ) , , and ί(r) instead of i(r—1).

Changing the letters i( l), i(2), i(3) as i(l)->i(3)->i(2)->i(l) in
(39), and applying (23), we get

(39)' 2 ^i^Aωβίϊί' i(r)f(2)) 2 Γ ^ ,
id), «(2) V^V-1-;? ^ V ± ^ \ Z / / iC3)Φ*Cl), <C3)
<(l)ΦiC2)

Changing the letters i( l), i(2) as i(l)-^i(2)->i(l) in the fifth term
of (36), and, adding the forth term of (36), we get

Therefore,
Ξ2 - (37) + (38) + (39') + (40)

V Γ β ΔΓΔ W
ίgyg« L v ( h

(2), ί(3)
i(2)i(
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A

Δ ί^ 1 ) ' ^ 2 ) ^ Γ

where the summation in the first term has the following sense,
/i(l),i(2),i(3) with i(l) Φ i(2) Φ i(3) Φ i(l),

α(l)jfl(2),α(3) with 1 + α(l) + α(2) -f α(3) = 2 and

J(3) takes the value.i(l) in α(l) times, i(2) in α(2) times, and
,, i(3) in α(3) times.

Putting (24) into the above expression

[III] The modification of Ξ3. First of all, we divide the summation

2 into Σ(*, <Φi(l), i(2)) and 2(«, t=i(l)9 i(2)) and describe i(2)

instead of ί in the first term, then by (23)

Ξ3 = 2 Δ2Γΐα Ai)ic2)ic3)( ,7 o \' ,7 o{
ί(l), ί( 2), i(3) \^V^/?^V°/
ί(l)ίC2)ίCi)

In the first term, we divide the 2 i^o 2 and 2 and, in the latter,
ί(2)Φi(3) ίC2)<i(3) ί(2)>ί(3)

exchange the letters ί(2) and i(3) one-another. In the second term, we

also divide the 2 into 2 a n d 2 a n d, in the latter, exchange the
ί(n*«(2) i(l) <ίC2) i(χ)> ί(2)

letters i(l) and i(2) one another. Then, arranging the rows and the
columns in order, we get

^ ω « W | ^ ( 2 ) ) ί ( 8 ) )<xm-

ίC2),
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(2),i(3)\
( 2 ) , ΐ ( 3 ) /

2 2it Δ " l i(l)0'i(l)ί(2)ί(3)( * / 9 \ ' •/ O \
i(2), i(3)

V

Changing the letters i( l), i(2), i(3) as i(l)->i(3)-*i(2)-*i(l) in the
second term, and applying (23), we have

V A/? fM1) >*(%)} V r ^

Adding this and the third term of "(43), and putting (24) into the first
term of (43), we get

i(l)ΦiC2),iC3) /(:?), ίC3) L r <s\^ i^) , l^υ j ,
(44) ίC2)ί(3)

y ( ) , ( ) , ( )

Adding (34), (42), (44), and the last term of (33), we get
THE SECOND MODIFICATION THEOREM. In case of n^>3, we get

i(l), i(2), i(3) ]
i(2)i(2)i(3)i(3)JdίJ

^ ^ j(3)i(3)Γ"
ί(l),i(2), ΐ(3)
i(2) j(3)i(3

L ^ ί ( 2 ) , i(3), rs ; e r s

(3)\δ

ίfcβ summation is extended over i(h)y a (I), j(m) as was described in

(35), (41), (44).
9. In general, we get the following
THE m-TH MODIFICATION THEOREM. In case of n ^ m + 1, we get

Έ . sY ft

( )
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+ Γ ( B Λ + Bm.λ + ... + BO,
ί/iβ summation is extended over

( i ) M = = 0 , 1 , 2 , ,m,

( i i ) i ( l ) , i (2), . . , i(ra + l),with i(l) =M(2):Φ ... Φ i(m + l ) , α ώ
i ( 2 ) < i ( 3 ) < ..<i('M + l),i(w + 2 ) < i ( u + 3 ) < . . . < ί ( w + 1),

(47) (iii) α(l),α(2), ...,α(m + 1) wiίfo α(l) , α(2),..., a(m + 1 ) ^ 0 and
u + α(l) + α(2) + ... + a(m + 1) ==m,

(iv) J(it + 2)>(;(u + 3), .. j',(m + 1), taking values i(l) in α(l)
times, i(2) m α(2) times, .. , i (m + 1) m α,(m + 1) times,

and-

τvhere the summation is extened over
( i ) u = O , l , . . . > * - ! ,
( i i ) i ( l ) , ...,i(jfe) Λ i ( l ) Φ i ( 2 ) Φ . . . Φ Ϊ ( έ

• <i(u + l),i(u + 2)< ...<i(Jc),

(49) (iii) a ( i ) , •• , a(h) with a ( l ) , a(2), ...,a(ί;) > 0 and u + a( l )
+ ... + a(fe) = A - 1,

(iv) j(u + 2), ..,j(k), taking values i(l) m a i l ) times, i{2)
in a(2) times, ...,i(h) in a(h) times.

PROOF. We shall prove this theorem by induction. Assume that we
have already gotten m —1-th modification theorem in this form. We shall
prove that, modifying the expression

α(2) M M )
K2) ^ / ( )

(50)

for 0^w<]m, where the summations are extended over all i, α, j analogously
as was described in (ii),(iii),(iv) of (47), we have

where the summations are extended over all i, j , a as was described in
(ii), (iii), (iv), of (47) and (49), respectively. For u=0, or u=m} the
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expression (50) contains only the second, or the first term, and yet we

may prove in these cases as well as in the case of 0<i t<m. This can be

seen easily in the following proof of the case of 0<i6<m. We write the

first and the second term of (50) by (50.1) and (50. 2) respectively. From

now on, we write the summation with respect to a and j simply by Σ

In (50.1), we divide the summation 2 into

(50.1.1) Σ ( ί Φ i ( l ) , . , i ( » 0 ) ,

(50.1.2) Έ(t = i(l)),

(50.1. 3) 2 ( < = i(2), •• ,i(m)) = 2 ( < = i(« + 1), •••,% *(»0).
In (50.1.1), changing the letters t, i(u + 1), .. ,i(m) as£->i(w + l)-»i(ifc + 2)
-»...-»i(m)-*ΐ(m + l ) , and in addition, taking (23) in consideration, we
get

(50.1.1.) = 2 Σ
i(J)ίC2)<...<i(w) i θ + l )
iCw+2 )<...<ί(m+Γ)

where i ( ι t- f l )Φi( l ) , . . . , i ( ra + l ) . Although the term ΔjgJJ^ is wanting
in the above expression, we can assume that it exists, for ΔSf ̂  α ^ + ^ O .

ΛVe say the process in the following sense, to put the letter i(u + l)
into an inequality i (2)<. . .<i(t4), that is, dividing the summation with
respect to i(2), .. ,i(u+l) into the following cases,

( i ) i{u + 1) < i(2) < i(3) < ... < i(u),

( i i ) i(2) < i(u + 1) < i(3) < ... < i(w),

(iii) i(2) < i(3) < ... < i ( i ) < i(u + 1) < i ( * + 1) < ... < i (^) ,

(iv) i(2) < i(3) < ... < i(u) < i(w + 1),

and then, we change the letters i(2),i(S), .. ,i(u + l) as follows,

( i ) in case of (i) above, i(u + l)-+i(2)->i(3)->...-*i(u)-+i(u

( ii ) in case of (ii) above, i{u + l)->i(β)->i(4)-+.. ->i(u)->i(u

(iii) in case of (iii) above, i(w-f-l)-*i(&-fl)-».. ->i(u)->i(u

(iv) in case of (iv) above, all letters are fixed.
Now, putting ί(u + l) into the inequality i(2) <... <i{u) and, arranging
the rows and the columns in order, we get

(50.1.1) — (— l)u 1

<^ J ^ ^jΓκiA(i)...*(w+i)^
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In (50.1..2), after changing the letters ΐ ( l ) , i( 2), ...,i(it) as i(l)—•i('M)
->ϊ(w—1)—•...—>i(2)—^i(l), we put i(u) into the inequality ί ( l ) < . . .
<ί(u—l). Then, arranging the rows and the columns in order, we get

(50.1. 2) = ( - I)*" 1 2 Έ V..«c«At-1Δ;$Δ?!$...ΔJSg

In (50.1.3), we may assume that t=ί(u + l), ..., ΐ(m), for otherwise
the determinants are equal to zero. First of all, we change the letters as
follows,

( i ) iΐ t — i(ιι + 1) all letters are fixed,
( i i ) if t = i('M + 2), i(u + 2) -> i(u + 1) -> i(u + 2), all others

are fixed,

(iii) if t = i(
) , all others are fixed,

(iv) if t — ί(m), i(m)
Then, after arranging the rows and columns in order, we get

Moreover, putting the letter i(u+l) into the inequality i(2)<...<i(it) and
also arranging the rows and columns in order, we have

(50.1.3) = 2 Έ Έ Γ X . . . ^ - ^ . • Λ1S8
i(l) i(2X...<i(M+l) α, j

(5o)

In (50.2), we first divide the summation

(ii)
(iii) 2 ( r < s ; r Φ i ( l ) , ...,i(m),8 = i(l), ...,i(m)),

(iv) 2(»' < 8 ; ^ = ΐ(l), § = all i(k) such that i(l) < i(jfc)),

( v ) 2 ( r <« s = *(!•)> «• = a 1 1 *(*) s u c h t h a t ^ί1) > *(*))»
(vi) 2 ( ^ < « r = i(2), s = all i(/c) such that i(2) < i(h) and
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(vϋ) *Σ(r < s 8 = i(2), r = all ί(β) such that ί(2) > i(β) and

i(i) 4=4(1)),

(viii) Σ ( r < β T =. i(Z), s = all i(β) such that i(l) < i(jfc) and
^ ) φ i ( l ) , i ( 2 ) , . . , i ( ί - l ) ) ,

(ix) 2 ( r < s s = i(Oi r = a 1 1 H*) such that ί(l) > i(ib) and

( X )

According to (27), each term of (i)'is equal to zero. In the case of (ϋ) and

(iii), writing i(ra + l ) instead of r and s, respectively, and. adding them,

we get by virtue of the fact Ai.sεrs=Asrεsr,

(50.2.1) = = ~ ~

• / \ \

Analogously, adding (iv), and (v), we get

'(2)<...<i(w+l) α, j

Also, adding (vi) and (vϋ),

..., *(m)
J ( ) i (

In general, adding (viii), and (ix),

^ j ZΛ ZΛV K ft
id). .i

Finally, in case of (x), we get

Σ X^ "S^ T ft ΛttΛα(l) Λα(m)
ZΛ Zu

<... <iCw+l) a, j
+ 2 ) < </(m)
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Therefore, adding ( iv) , (v) , ..., ( x ) , we get
m-l m

(50.2.2) = Σ w < 2 M + I ) 2Γ«1Aci>...«»)Δ ΔJ^.. Δ g g Σ ^

(57)

(50. 2) is equal to the sum of (50. 2.1) p nd (50. 2. 2), and we shall modify
these expressions as is in (50.1).

First of all, in (56), using the property (22), we get

/en 9, -1 \ "S^ "S7 ^V1 "SΓ1 p Q A«Λα(l)

•iCl) <('2)<. < i ( " + l ) ίCTO+l) α, j

i C a χ < i ( )
0 ;

whore the term Δ^",1^ does not exist at first, and yet we may write as
above because of the property Δ{(OT+i)ακiB+i)=0. Now, the expression

may be written as

Λvhere α(l) + ... +a(m+ 1)=1 and J(m + 1) takes the value i(k) in α(&)
times. And moreover, arranging the columns in order, it is equal to

Therefore

i(«+2), ...

(59) / i ( l ) , •••, i ( ^ ) , i(w + l ) , ..., i ( w ) \
\ i ( 2 ) i ( l ) j ( 2 ) i ( 2 ) j ( l » ^

)

Now, putting the letter ί(m-\-l) into the inequality i(Ί6 + 2 ) < . . . < i ( m ) ,
and, arranging the rows and columns in order, we get

(̂ OU. A, 1) — [— 1) ZU ZA ZLΛ L i(])C7/ςi)...i(m+l)z-* ^*ί(l) • L*i(ί»+l)
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In (50. 2. 2), by means of the relation (21), we get from (57),
""S1 <STΊ ^ „ - Λίi-Uα(l) A φ )

ίCυ<(2X...<iCw+l) α, J
ί ( w 2 χ <ί(">

Exchanging the letters k and I in this first term, and, adding to the second
term, and then, calling the meaning of j in mind, we get

/en 9 O\ ''S1 " ^ "S^1 V I) Λ»-1ΛβO) \<«,m)
\O\J. Δ. Δ) — — Z_, JSJ, έL1 iO.)σίm...Km ) ί * " K i ) • ^iCm)

(61)

Σ ^ 1 V Γ /ί AM-lAα(l) Λ«Cm)

lC«+2χ...<«Cm)

In the first term, the expression (61), changing the letters i ( l ) , i(2), ...,
i(u + l) as i(tt + l)->i(ifc)->...->i(2)-»i(l)->i(u + l ) , and then, putting the
letter i(ifc + l ) into the inequality i(u + 2) <... < i ( m ) , we get

/ -1 \w-l X^ "S^ /3 Λίt-lΛα(l) Affl(w)

ΐ(l)<...<ί(M) a, j
i(u+l)<<iθn)

( 6 o )

(50. 2) is equal to the sum of (60), (62), and (63).
We now proceed to the calculation of (50.1) + (50. 2). Adding (52)

and (60), we get
(50.1.1)+ (50. 2.1)

C ) < . . . < ( )

a,

+ (- i)M-\Σ Σ 2
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. , *(m

In the second term, using the property (23), that is, Δ Λ ^ — M ί o β i o : > , we
get

^ ^ X?
) / C 2 ) < . . . < i ( w + 1 ) a , . / " " "

Exchanging the letters i ( l ) , ..., i ( m + l ) as ί ( l ) - » i (
—>i(2)->ί(l), and by means of the relation ΘK1:> Mm^Km+ι:>—Q, we get

/ -f\w-l X 1 "S^ ύ \u-\\aCV) Λd(m)

2 Γί(m+1

Adding this to (53) and (63), we get

i C l ) < . . . < i C « O a , j l " Λ m % l m )

..., ί(m)

where Γ _ ^ ΓA.
1 = 1

Finally adding (55) and (62), we get

— ^ ^ ^ Γ θ

),..., i(«>,

and this is equal to zero in accordance to the fact described below. For
lc=u + s, we consider j(u-{-s), and if j(k)= i(p))j(u + s)=ί(q), (p, q=l,...,
m) we pick up the cases when j(k)=.i(q) and f(u + 8)=i(p). These two
terms have the opposite sign and cancel one another.

Therefore (50) = (50.1)+ (50. 2) is (65) and the first term of (64),
and is equal to (51) as was required.

In the case of ^ = 0 the expression (50) is only the (50.2) and the

summation 2 ( r < s ) i s divided into

< s ; r , s Φ ΐ ( l ) , . . . , i(m)),

< 8 i r φ i ( 1 ) ' . . .,i(m),s = i ( l ) , ...}i(m) and

Γ = i ( l ) , . . , i H β Φ i ( l ) , . . . , i ( m )
(iii) Σ ( r <s;r = i ( i ) ,8 = i(Z),&, ί = l , . . .,m).

In the case of (i), all the terms are equal to zero. In case of (iii), the
proof of Furtwangler's theorem (Furtwangler [1]) is applicable to our caseC4),
and is equal to zero in all. There remains only the case of (ii), and we
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get (56) with u=0, and then without (50.1.1), we get (64) with u=Q,
that is,

x ZJ ZJ L IQ)σi(l)...i(m +1)^ΐ(i)
i(2)<...</C»»+υ α, J

( ) , ( ) , ,
(5Γ) ' [ > , i(2)ΐ(2), ...Jί

/ i(2), ..., i(m
W ) i ( 2 ) j ( l )

and in the second term, the terms in which j(k)Φi:(l)(k=2, .. , m
are equal to zero in all, for an arbitrary non-zero determinant has one
of opposite sign in this terms .(5) And the terms, such that one of the j(k)
is equal to i ( l ) is also zero because of the property Δ ί ( 1 ) α i α ) =0. Therefore,
there remains only the first terin of the above expression.

In the case of u~m, there is only the expression (50.1), the first term
of (50), and we have only the (SO. 1.1) and (50.1.2), and by a same
method as in (50.1), we have

V y 1 Γ θ

-r [— J-j ZΛ 0κi->...κm )<±

Putting the value of a-, into the expression (51), (51'), (51"), adding
u from 0 to m, we get easily the expession (46) and thus complete the
proof of m-th modification theorem.

10. If n=ra + l, as is easily seen from the proof of the m-th modifica-
tion theorem, we get

B = Γ ( B W + 1 + Ξ m + ... + B 2 + S,)
Therefore

REDUCTION THEOREM 4. Let P be a commutative ring, and 5Jϊ be a P-

modul with generators £tj(ΐ<j)> δ ί ? ( i , j = l , ...,n) which satίfy the condition

(18). Furthermore, we assume that there exist elements ati Δ, Δ f, Mt and Y

which satisfy the conditions (19), (20), (21) and

(25) Γ = 2 Λ Λ ,
r<s

then
(66) Ξ = Γ(Ξ 1 + Ξ 2 + ... +*n) = 0,
τvhere Ξfc is as in (48).

§3.

11. We now proceed to the proof of our theorem. As in the case of
n=l, we get Γ = 0, and it follows S=Ό immediately.

As in the case n^2, putting (25) into (66), we get
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Ξ = ( 2 anεn) [B1 + Ξ 2 + ... + B r e),
r<s

and we shall prove that
^ ( ^ 4 - B 2 + ... + Bn) - 0 ,

for each r<s . Without loss of generality, we may assume that r—1, s=2.
We shall namely prove that
(67) £12(B1 + 3 2 + ... + 3n) - 0 .

First of all, we calculate

*O)

As i ( l ) Φ l , 2 , £ ί 2 0io>=O by (27), we get

Using (22), we get

By means of the property αjΔ^O, this may be written as

Δ,

(68) = - ^

where α ( l ) + α ( 2 ) = l and j takes the values 1 and 2 in α(l) and α(2)
times, respectively.

Secondly, we calculate

4
2 (say).

By virtue of (27)., we divide the summation 2a in Φj into

( i ) i ( l ) = l , i ( 2 ) > 2 ,
( i i ) i ( 2 ) = l , » ( 1 ) > 2 ,
(iii) i ( l ) = 2 , i ( 2 ) > 2 ,
(iv) i(2) = 2, i ( l ) > 2,
( v ) ΐ ( l ) = 1, *(2)..= 2 and i ( l ) = 2, i(2) = 1.

(For n=2, we only have the case (v)). Now, changing the letter 1(2)
to i ( l ) in (i) and (iii), we get

AJί'ΛV

+
Using the property (22), wτe get
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By means of the relations ΔiΛ^

On the other hand

From (24), we have
(70) ^? eB = α( - 2

r<s
(r, S)Φ(1, 2)

Putting this into the above expression, we get

(r, s)Φ(l, 2)

In the second term, there remain only the cases of r=l, s>2 and
2. Changing the letters to ί(l) it is equal to

(Λ 9 \ /1 9

+G;«f
The last summation of (71) can be divided into Σ(te=l> 2) and 2 (^=1, 2).
Changing the letter t to i(l) in the former, we have

by (23)

using (21) in the latter, we get finally

Therefore

(v) =
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Adding this to (69), we get

i(l)>2J,α " ' v ' " ' ' ' ί ( 1 )

1 ' 2 > ^

Now we proceed to the computation of the second term

Φ - ε Ύ θ

According to (27), there remain only the cases where at least one of the
i ( l ) , i ( 2 ) = l , 2 and we get

Changing the letter i(2) to i ( l ) , and using (22), we get
φ==- ,S,M- Δ (vί

And, as is easily calculated,

Thereforeφ =
Adding Φx and Φ2, we get

Π p — ^ S 1 ^ fl AC6C1>Λί*C2)AfflC3/l> 2 , ^

( 7 2 ) - Σ Σ ̂ α3ΔΔ?ωΔ- W ] ' A i
'Λ J,a

12. Jίi general, we get

/1,2, »(1), ...,*(«), i ( « + l ) , ..., t ( i - l )
j i ( l ) i ( ) j ( l ) i ( l ) j ( k ί ) i ( k

where the summations 2 m α ϊ ' e extended over all u, i(r), a(r),j(r) as follows,
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i ( l ) , •• , i(k) such that

2 < i ( l ) < ... <i(u),2 <i(u + l)'< ... < i(k)

α(l) , .. , α(A + 2) swcή ίfcαί i6 + α(l) + • •• + a(k + 2)'=k
and j(u +1), ..., j(k) which take the values

1 in a ( l ) times,
2 in a(2) times,
i ( l ) in a(3) times.

i(k — 1) in a(& — 1) times,

We now proceed to the proof of the above equality (73). Let

and we shall prove the equality

( 7 θ ) (^fcCl2J« — A«-l + -̂ W-1 + ^ Ί , W-l + t*2, M + -̂ W-2

where

2 <i(l") <... <ί(u) α, j

), .., .i(A-2) \
+ l), ,j(k-2)i(k-2)J

(« = 0, . . . , * - 2 ) ,

Σ Σ) Σ
2<im<...«(») a, J
2 i c i χ < i c * i 5

_ / l , i ( l ) , . . , » ( « ) , _ . i ( « + l ) , . ..,_ ΐ ( / c - l ) \

( « = 0 , . . . , * - l ) ,

2<i(iχ...<iCM) 3 <«. *

.!,*(ί-i),

Έ Έ θl2(σ)..Jφ^Δu^mW2)x
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and especially

fc-'j)

λ

( ,

where λ takes the values 1, 2, i ( l ) , ..., i(k—2), and especially

fi"-i = 0,

#*-! = 0.
fc-1 fc-2

It is easy to see that *Σ(Fu + Ghu + G2)U) and 2-^L are equal to the

first and the second term of the equality (73), and therefore, from

we have immediately our equality (73).

13. Next we shall prove the equality (75). Property (27) allows in

(74) only the cases where one of the ί(s)—l, 2, («s—1, 2, .. 9k), and we

divide these cases into the following,

( i ) i ( l ) = 1 , 2 < i ( 2 ) < ... < i(u),2 < i(u + 1) < ... < i ' ( * ) ,
( ii ) 2 < ί ( l ) < ... < i ( u ) , i ( w + 1) - 1, 2 < ί ( w + " 2 ) < ... < i ( * ) ;

( i ϋ ) i ( l ) = 2 , 2 < i ( 2 ) < ... < i ( u ) , 2 < i(u + 1) < ••• < i ( * ) ,
( iv ) 2 < i ( l > < .. < i ( M ) , i ( t t +. 1) =-2,2 ( ) (k)
( v )
( vi )

(v i i ) 2

(viii)

and it is shown that

(78) (i) + (ii) + ( i i i ) .+ (iv) - Fu_τ,

(79) (v) + (vi) + (vii) + (viii) = En_Ύ + GltU-τ + G2,u + Hu.2 ~ Ή.u

M. The proof of (78). In the case ( i ) , changing the letters

i (2) , ...,i(k) as i ( i ) - > i ( f c - l ) - > i ( * - 2 ) - > ' . . . - ^ i ( 3 ) - > i ( 2 ) - ^ i ( l ) , w θ get
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2<iαX. . .<Kw-l) α,J '

• / -4 \ •/ ~ί \ * / \ ' / 7 "f\

Using (22), and calling the relations Δftf^O in mind, we get

2 < i ( i χ . . . < i C « - l ) α, wf ι •*•* - ι fc~1;)

(80)

Similarly, we get

(iϋ) = (-i)«-1 2. Σ^
2<i(l)<...<iCM-l) α, j

In case of (i i), changing the letters i(i6 + 2), ..., i(k) as i(k)->ί(Jc—1)

(ii) = (-I)-* β 2 . Σ ^ / . . ^ - D Δ

Calling the meaning of j in mind,

(ii) = (- I)""1 Σ. Σ

From (20), (19), we get,

for jp, 5 = 1 , ΐ ( l ) , .. , i(^—1) whence

(ii) = (-l)«-1 2 Σ^o>..

On the other hand, we get
Λ / I \u-l Ŝ

2<ίCiχ...<iC«O α
2<i(t*+iχ...<iCfc-l)

For, from (82),
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α' ; s h f c " 1 / i ( l ) , . . . , i ( u ) , 1,

and, exchanging the letter λ, μ in this right side, and transfering this to
the left side, we get our equality (83). Adding (83) to (ii) and calling
the meaning of j in mind, we get

-1 Σ Σ ίW.-icfc-iA*-1^
2<ί(iχ...<<<» a, i
2 < i ( l ) < < i C f c l )

(84)
1 ; ΐAi(l),.,iHi(λ)i(λ))j>+i)i(

. . , t(*-l)

i ( ^ i ) i ( ^
fc-1

λ = l

fc-1 W

The summation 2 is, however, equal to 2 ? for
λ l

= 0 (λ = w + 1 , .. , i ) ,

as is easily verified. Moreover, we change the letters i (1), ..., i (w), as follows,

if λ = l, i(l)-»i(u)-*i(u - l)->

if λ = 2, i(2)->ί(u)->i(u - ! ) - >

if λ = r, i ( l ) , ..., i(r — 1) are fixed

if λ — M7 all letters are fixed.

Then, we get

2 <ί(tί+l) <... <i(fcl) 2

that is,
/ή λ _ / i \u-i X 1 "S7• ^

2 </(l) <... <Ku-1) 2 <ΐ(w) a,
2 < i ( l ) < < i ( f c l )

i(u), .., ί(k-l)
)ί() j{hl)i{h

Moreover, c h a n g e t h e letters i(u),i(u + l), ...,i(k — l) as ί(u)-^i(k—1)->
i(k — 2)-+...-*i(u + 2)-+i(u + l)-+i(u), a n d t h e n , p u t t i n g t h e letter i(k — l)
into the inequality 2<ί(w)<. . . <i(&—2), wre get at last
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(ϋ) = ( - l ) - 1 Σ Σ<W..« («-.,>Δ

Jfc — 1
•̂ —̂  / "I / ? ι i ι o 1 1 1 I ) o ίi / i ό I TΓ — 1 i \
^ ^ I J frllli . • . » | W / J \ / ) " ' ? \ ~~~ • *- / \ Γ

l/
//^ i I / N \ X I ~ί \ X / Λ , " ( \ * / \ * / \ * / 7 ^ \ * / 7 -1 \ 1^

^•^^^^ \ ϊ̂ I Λ ' I /̂  f I I ' # 1 ^ / I L ' i t ' i l t ' i ί ' i g t / Ί l /̂ * I ' I / I I ί '* ^^__ 1 1 /λ
fc-1 fc-1

As is easily seen. 2 — 2 i11 the above equality, and, as was done in the
λ λ lλ = l

calculation of (80), by virtue of the relations (22),

2<iαχ.;. </(
(85) fc < C έ θ < . . . < ί c f c )

/ 1? ί(l),.. ,ί(u-l), ί(u),
λ ) i ( l ) i(l)J()ί(

Similarly, we get

( 8 β )
^ί 2, i ( l ) , .. , i ( u - l ) , i(tz), ..., i(jfe-l)

Now, adding (80) and (85), and, calling the meaning of j in mind
we get

ίl,i(ΐ),<'..",i(«-l), i(«), . . , .i(ifc-l) \

and similarly, from (81) and (86),

2 </(!*)<*. V. <<(fc-Γ)

Adding above two equalities, we get finally our equality (78) as was desired.
lδ. The proof of (79). In case of (v), changing the letters i(2.), ...,

i(u) as i(u)-+i(u—l)-+i(u->-2)->...->i(3)->i(2)->i(l), and also the letters

ϋθt

( V) — (~ 1)
2

< Z J 0121*0)...«Cfc-2)
M-l) α, ./

2<iCwχ...<*Cfc2)

, ί ( l ) , . . . , i ( « - l ) , 2, i ( « , , . . , i ( * - 2 ) A £

\\l,ί(l), .. ,i(u-l),12,j(u)i(u), ...,j(*-2)i(*-2)Λ u

^ - l ) , 2 i(«), ...
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Similary, we get
(vi) = ( - 1 ) - 1

( 8 8 )

^ , ί ( l ) , . . , < ( ^ l ) , 2,
<(1) < ( l ) H (

^ / jc 2 )

Next, we modify the case (vii). First of all, we change the letters
i(k), ..., i(u + 3) as i(k)->i(k—2), .. , ί(r)-ti(r—2), ..., i(
then we get

(vii) — (— I)"*"1 2 Σ ^ - ^Au~1A<ί')\aWA& Λ f̂c).
2<i(l)<...<i« α, i

Calling the meaning of j in mind, we divide this into three parts as was
done when getting (87), (88) that is,

(vii) = ( - I ) - 1 Σ Έθrxσy.w-iA*-1*?

1, 2, i(u+l),

(i(l),...i(u), 1, 2, i(u + l),
l)i()i(\)l12j( ί)i(

2,
%j(u + l)i(u + l)

i(k-2) \ . . .

The sum S of the first and the second term of this equality is equal to

::.',j(k-2)ί(k~2)r
for,
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On the other haαd, exchanging the letter λ, /* we get

'••^"V^l),.. .,*(«), 1, 2, *(« + l ) ,

λ ^ V*(l), , • («)> 12, »(A»)*(λ) J ( « + l ) i ( « + l ) , ...

...J(Jfc-2)i(*-2);r'< ΰ a '
_ ' ' '^''(iil), ..,*(«), 1, 2, i(
~ ^ V ( l ) i ( ) 1 2 ( ) i ( ) (

-» ίί*- 2 )...J(/c-2)ΐ(ifc-2)/
Transfering the right side of this equality to the left one, we may have
easily

1, . . ., fc —" / ' /-4 \ •/ \ -|

Δ fi

Adding (90) and (91), we get

^=(-l)"-1 2 2

i ( l ) , ...,iίw), 1, 2, ί(w + l ) ,

and then we get our equality (89) in the same manner as was done when
we deduced (85) from (84).

Therefore

(vii) - ( - I ) " " 1 2
2<Kl)<...<ίC«-l) a, j

2,
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In the last case (viii), we change the letters i(k), ...,i(3) as i(r)->
i ( r - 2 ) ( r = 3 , ...,&), then

(viii) = (— I)"*"1

i(u-l), ..., i(*—2)
l ) i ( l ) J ( k 2 ) i ( k

We must notice the fact that this occurs only in the cases where u^>2, and
therefore, there exists always the element Δ.

Now, we calculate the sum of the equality (87), (88), (92) and (93).
Adding the first terms of the equalities (87), (88) and (92), we get

(-I)""1 2
2<f(iχ...<ί(ω-l)α
2 <i(ιθ <...<*(*-2)

Putting (70) into the above expression, we get

where

2<ΐ(l)<.,.<i(«-l) α,
2<ί(X...<i(J:-2)

, i ( l ) , . . . , i ( « - l ) , 2 , *(«), . . , i ( i - 2 )
i ( l ) i ( l ) ( ) i ( ) i ( l 2 ) i ( i

Now, adding (87), (88), (92), and (93), we get
(v) + (vi) + (vii) + (viii) = E*_x - Ln_x - Mu_x + P+Q + R + 8,

where L«_i and Mu_1 were already described above, and

2,
(

2,

=(-!)-» 2



262 F. TERADA.

<(1), ...<(«), 1, 2,^

..., i ( * - 2 )

2<ί(iχ....<ί(a-!0
2 < ί ( l ) < ί ( f c

We shall prove in the next section that
(94) Lu_τ - £ = -<?,,„..> - Hu_2 + P+Q + R,

(95) J C - ^ - ^ f + flu-i,
and then we have our equality (79) from these two equalities.

16. The proof of the equality (94). First of all, we calculate Lu_τ.
By virtue of the property (27), there remain only the following cases,

(b) r = i(μ), s > i(μ), s Φ i(λ) such that i(λ) > i(μ)..
s = i(μ), 2 < r < i(μ), r Φ i(λ) such that i(λ) < i(/^);
0* = l , . . . , i - 2 ) ,

(c) r = l,2, β = i(^) ( ^ = 1 , 2 , . . . , * - 2 ) ;
(d) r = i(μ), 8 = i(\)(\,μ = 1, ...,h - 2) such that i(/χ) < i(λ).
In case (a), describing ί(k—l) instead of s, and then, using the property

(22), we get easily,
/ o \ / i\«-i ^S1 V Vd • Λ̂
(aj = -— (—1) £j ZΛ 2LP &ι<y)..Λ<jι-Y)ί^

2 <i(Γ) <... <iC«-l) 2 <ί(fc-l) α, j

In case (b), the summation with respect to r and s may be considered
identical with the sum in which

Therefore, writing i(k — l) instead of s, and calling the property (22) in

mind, we get

(b)=_ (-i)«-* 2
2 <£(1) < . . . <iζ
2 <[ίC*''̂  *C ^^C^ ~ 2)

* / Ί \ */ ~l\ O

Moreover
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, i ( i )> , * ( « - i ) . } % * ( « ) , •••
i i ( ΐ i(l)ξi(X),j(u)i(u), ...

. . , i(*-2) \

...,j(k-2)ί(k-2)J ίiw'

Now, adding (a) and (b), we get

(a) + (b)=-(-ir l 2. Σ

2'
)

and tben, putting the letter i(k—l) into the inequality 2 <i(u) <... <i(&—2),
and finally; arranging the rows and columns in order, we get — GrljiΛ_i.
Therefore, we have only to prove that
(96) -8+ (c).+ (d) = - JΪM_2 + P + Q + Λ.

Ŝ is the expression (93), and, as there exists always the element Δ

in this expression, we get by virtue of the property (21)

- S = ( - 1 ) - '

(97) .-y

* ^ . U £, i(l), .... *(«-2),i(«-l)i(«
..., i ( * - 2 ) \ Λ Λ

The letter j in the first columns of (c) and (d) takes the values 1, 2, i ( l ) ,
. . ., i(i—2), and, if we write 1, 2, i ( l ) , ί( i—2) instead ofj, we must
affix the element Δ1? Δ2, Δί(1), ..., Δ<(fc_2) to it, respective^. Therefore, calling
the property (20) in mind, we get

• 2 2 2 / 1 »*( 1 )> * ( « - ! ) > 2> *(«)» •••

Πϊί=j, i v ί Λ ^ * ( l ) * ( w l ) l " i ( λ ) i ( « ) * ( M )

Similarly, 2
ί
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1, . . . , fc-2

Moreover, by the same method as we get the equality (91), we have

i(
(d) = (- I)- 1 2

2

Then
(c) + (d) = ( - l ) - 1

• Ac»-o Σ Σ U i l , ...
L λ = l l) = l,2,ίdλ-..,iC»-2)V ' ' V >>

...,i(u-l), 2,
i(l)(λ)i

fc-2

2 is really 2In this first term [(c) + (d)]1, the summation 2 is really 2? a n ( i therefore

it remains only in the case of 'u^>2, and then, there exists always the

element Δ.

We can prove that
[(c) + (d)l - S

~~ Ή u-2
/ -[ \u-i X7 "SΓ'/a \ii
\ -1"/ ' ' -<^-Jl/12iCl)...ί(fc-2)^Λ

<iςw)<... <i(fc-2)

- 1 ) , 2,

For, by virtue of (21),

[(c) + (d)l = ( - I)"" 1 2

L Λ = 1 , = l,

...,i(«-l), 2,
(100) ...,i(«-l)i(λ)i
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M(l),...,i(u-1), 2,
( ) ( l ) j ) W

1, i ( l ) , . . . i («- l) , 2, »(«),
( ) ί ( l ) ί ( l ) i ( λ ) ΐ ( ) J ( ) i (

and, by the same reason as we have got (85) from (84), the first and the
second term is equal to

\ 1)
2<iα)<...<iCM-2) α, j
2 < ί C w l ) < < i C f c Z )< C ) < < C )

Γ ^ ξ y i , 2,i(l),...
S ^ . M c υ ^ , ^ - 2 , ί r ί V * ( λ ) , V, i ( l ) , •••

l=κi>, .^cfc-^ίΓW^Hl), ...,*(«-2
..., *(A-2)

i ( ^ 2 ) ΐ ( ^
and, adding — 8 to this, we get — Hu_2,

 a Ώ d then, our equality (99).
The second term of (98) is equal to

/l , i ( l ) , . . . , i («- l ) , 2, i
Ui(l) ..,i(«-l),i(λ)2J(«)i(«

..., *(*—2)

.j(h2)ί(l

2ί\2,ί(l), .. ,i(«-l),li(λ)j(t*)i(«
..
..

> i{l),-,i(u-l), 2,

0 ! ) ( ! ) ( λ

and the first and the second term are P and Q respectively.
Therefore, we have our equality (96), if we prove that R is equal to the

sum of last term of (99) and the last term of above that is

2<ίCw)<...<i(fc-2)

(101)
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1, . i ( l ) , . . . , t ( « - l ) , 2,
( ) i ) ( i ) (

• J\Hy Δ)^\^ Δ) J J

ΛVe shall prove this now. Using the methed by which we may easily
deduce (84) from (85), the r ight side of (101) is equal to

Λw"3 2,
)

2,

To avoid the complication, we write

(-I)""1 Έ

t(*-2)
k2)i(k

simply by 2 ? a i l ( i the determinant
>i(l), ...,i(w),l, 2, i(u + l), ..., i ( i - 2 ) \
Vi(l), .. ,i(^),jpg,rβ,j(u + l)i(tt + l ) , .. j(Jc-2)i(Jc-2)J

simply by (pq, re). Then, calling the property (21) in mind, our
expression is equal to

[
1, ..., fc-2 1, ..., fc-2 -j

Σ (;Ί(> )*(λ),ii(A*)i(λ»))δ«oo«cM+ Σ Σ ( ^ ( λ ^ M i O O J Δ . Λ r t .
λ<μ λ, μ v=l, 2 -J

We divide this expression into the following
( i ) j t = l ,2 (i = l,2,3>;
( i i ) ^ = 1,2, j 2 = i(l),..,i(h-2);

j , = l,2, j 1 = t ( l ) , . . , i ( A - 2 ) ;
;, = *(1), . . . , » ( * - 2 ) ;

(iii) ; 1 ^ » ( l ) , . . . , i ( * - 2 ) , j 2 = i(l),...,i(k-2);
and we shall prove that
(102) ( i ) = R,
(103) ( ϋ ) = β ,
(104) (iii) = 0,
and then, we have our equality (101) as was required.

To calculate the expression (i), we divide it into three parts
(1°) 1 ^ = 1(^=1,2,3) and v = l , then, we have

"Σ "(l*(λ), lWfcioyvo +' 'Σ -(K(λ
L λ<μ
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= o λ"
by virtue of the property (20).
(2°) if jι = % (i=1, 2, 3) and v = 2, then, these terms vanish, by the same
reason. Therefore, there remains only the following terms.

(3°) j i = l , Λ = 2 £ = 2 , ^ = 1 j s = l , " = 2 j s = 2 , v = l and then

*Σ V
λ<μ

+ ' Σ
1 , ..., J f c -

+ Έ

+ " 2

and the sum of the first and the second term is 2 ( l*( λ ) j 2i(/*))
λ, μ

\^i(μVCK) and, from (20), we get
( i ) = 2 ' ' 2 \liW, H/*)*iθAv£*

= R. λ'μ

We have thus the equality (102).
Next

( ϋ ) - ΣΓ "Σ Σ ΣVi
L λ l 2 ξ l1, .2., fc-2 A - 2

+ 2 ΣΣ(
Λ<μ v=l,2 g=l

1, ..., fc-2 fcτ2

+ 2 Σ
λ, μ i/=l,2

Exchanging letters λ,/x in the second term, we get by (20)
1, ...,fc-2ϋ ) = 2 2 22 2 (w(λ), i(ξ)i

= l , 2 λ, μ, ξ

= 2 Σ " 2 '(vi(M,*(f)*
ί/=],2 λ, μ , ^

= 22 Σ

= 0.
Finally,

(iϋ)=2 Σ
λ<μ ξ,
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Putting the letter ξ into λ<μ, we get
1 * - 2

(iϋ) = 2 2 2
λ<μ.<£ 1)

+ 222
and, putting the letter ?; into the inequality X<μ<ξ in the first term, we can
easily see that there remains only the terms η=\ or η=μ or η—ξ. Therefore

(in) = 2 2
λ<μ<£

+ 2 2 2 (i(̂ )i(λ), i(
λ<μ η

and, putting ?? into λ <μ, in the second term, and then, adding to the first
term; we can easily show that (iii)—0 from (20).

17. The proof of the equality (95). To prove the equality (95), we
divide the summation with respect to t of the expression MU_Ύ into two
parts,

(a) ί = l , 2 , i ( l ) , . . . , i ( i - 2 ) ,
(b) ί Φ l , 2 , i ( l ) , . . . , i ( * - 2 ) .

Then the part (a) is really the expression Hu_x.
In case (b), we change the letter t, i(u)} ..., i(k—2) as t-^i(u)-^

^ . . ^ ; (£-3)-+i(£--2)^ΐ(£- l) , then, by (23)

-i), 2,
- l) , ϊ(«), j (

Puttting the letter i(u) into the inequality 2<i(l)<...<i(i6—1), and,
arranging the rows and columns in order, we get really — Gr2, u- Therefore,
we have the equality (95), as was required.

As was described before, we have the equality (73), since we had
proved the equality (94) and (95).

18. From the equality (68), (72), and in general (73), we can prove
by induction that

3)

= 2 2
2 f ( l ) <

2 2 2(-



PRINCIPAL IDEAL THEOREM 269

ί(k-l) \

( ) ( - l ) y
term of the equality {73).

On the other hand, it is easy to see from our proof of the equality (73)
that Bn-S12 is equal to the second term of the right side of the equality
(73) only, where n is the number of the generators ξt of the group ξ>/®'
Therefore, we can conclude that

(Bτ + Ξ 2 + ... + Ξ w ) £ 1 2 ^ 0 ,
as was expected.

REFERENCES

( 1 •) Prof. Tannaka indicated xde that it is not necessary to reduce our
theorem to the case of jp-groups. For, the generators of ®' may be
considered as u(ξi) with β ^ l . (Schuman [1])

( 2 ) This Eeduction theorem is also due to Prof. Tannaka. My original
proof started from Reduction theorem 3, and in § 3, I had to add
the treatment with respect to Δfcδ^ besides £rs, although this can be
seen easily.

( 3 ) In this paper, I use the letters i ( l ) , i(2),...without notice under
the condition i(r) Φ i(s) for r Φ S.

.(A ) By the. same reason as in (5) below, the Δ-product ΔJj$.. Δΐ$ϊg of
this expression is equal to ΔJ5)ζl^..ΔgJ+# as in the paper of
Furtwangler.

( 5 ) When j ( 2 ) = i ( λ ) , we consider ;(λ), and if }(\)=i(μ), we consider
j(μ), and so on. Then we get a permutation (2, λ, μ, . . , v 5 . . } v) , and
from our assumption that j(k)=i(l) for all jfc=2, ...,m + l, this contains
a cycle (v, &,&,., ,ξn-i,ξn,») .In this case, we take a determinant
which corresponds to the inverse of this cycle, that is, (2, λ, μ, ..., v5 £.Λ)

fn-i> )l2>έi>^) Then this determinant is either equal to the former,
and is equal to 0 or is equal to the former with negative sign, and
also the parts of A-product in the former and latter are equal.

( 6 ) In the case of w,=2, we get only the first and the second term.
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