By

SITIRO HANAI

1. Let $\mathfrak{A} = (a_{ik})$ be a matrix of a method of summation which transforms a sequence $x = \{\xi_k\}$ into

$$\{A_i(x)\}, \qquad A_i(x) = \sum_{k=1}^{\infty} a_{ik} \xi_k, \qquad (i = 1, 2, 3, \cdots)$$

when the limit $\lim_{i\to\infty} A_i(x)$ exists, we call it the generalized limit. The method is said to be regular if every convergent sequence $x = \{\xi_k\}$ is transformed into a convergent sequence $\{A_i(x)\}$ with the same limit.

The necessary and sufficient condition for regularity of \mathfrak{A} is given by O. Toeplitz and T.Kojima as follows.

THEOREM A. The necessary and sufficient condition that the method A should be regular is that the following three conditions are satisfied simultaneously:

(1)
$$\sum_{k=1}^{\infty} |a_{ik}| \leq M \quad \text{for all } i = 1, 2, \cdots, \text{ where } M \text{ is a constant},$$

(2)
$$\lim_{i\to\infty} a_{ik} = 0 \quad for \ all \ k = 1, 2, \cdots$$

(3)
$$\lim_{i\to\infty}\sum_{k=1}^{\infty}a_{ik}=1.$$

Moreover S. Banach established the following¹⁾

THEOREM B. Let \mathfrak{A} be a regular method and $y_0 = \{\eta_i^o\}$ be a convergent sequence. If for any sequence $\{\alpha_i\}$ the condition

(4)
$$\sum_{i=1}^{\infty} |\alpha_i| < \infty, \quad \sum_{i=1}^{\infty} \alpha_i a_{ik} = 0 \quad for \ all \ k = 1, 2, \cdots$$

implies $\sum_{i=1}^{\infty} \alpha_i \eta_i^0 = 0$, then, for any $\varepsilon > 0$, there exists a convergent sequence x

^{*)} Received Feb. 23, 1943.

¹⁾ S. Banach; Théorie des opérations linéaires, Warszawa, 1933, p.91.

such that

$$|A_i(x) - \eta_i^\circ| < \varepsilon \qquad for \ a!! \ i = 1, 2, \dots$$

In this paper we shall establish a converse of Theorem B and give its applications.

2. A converse of Theorem B. THEOREM 1. Let \mathfrak{A} be a regular method and $y_0 = \{\eta_i^o\}$ is convergent sequence. If for any $\varepsilon > 0$, there exists a convergent sequence x such that

$$|A_i(x) - \eta_i^\circ| < \varepsilon$$
 for all $i = 1, 2, ..., \frac{x}{2}$

then for any sequence $\{\alpha_i\}$ the comdition (4) implies $\sum_{i=1}^{n} \alpha_i \eta_i^\circ = 0$.

Proof. Since $\sum_{i=1}^{\infty} |\alpha_i| < \infty$,

(1)
$$f(x) = C \lim_{i \to \infty} \xi_i + \sum_{i=1}^{\infty} \alpha_i \xi_i$$

where $x = \{\xi_i\} \in (c)$ and C is a constant, is a continuous linear functional defined in the space (c).²⁾

For any monotone sequence or positive numbers $\{\varepsilon_j\}$ tending to zero, there exists a sequence $\{x_j\}$ of points of the space (c) such that

(2)
$$|A_i(x_j) - \eta_i^{\circ}| < \epsilon_j$$
 for all $i = 1, 2, \cdots$.

On accout of the regularity of \mathfrak{A} , $\lim_{i \to \infty} A_i(x_j) = \lim_{n \to \infty} \xi_n^j$, where $x_j = \langle \xi_n^j \rangle$. Therefore the sequence $\{A_i(x_j)\}$ is a point of the space (c). Let the sequence $\{A_i(x_j)\}$ be denoted by $A(x_j)$. From (2), we get $\lim_{j \to \infty} A(x_j) = y_0$. From (1), we have

$$f \{A(x_j)\} = C \lim_{i \to \infty} A_i(x_j) + \sum_{i=1}^{\infty} \alpha_i A_i(x_j).$$

Since $\lim_{i\to\infty} A_i(x_i) = \lim_{n\to\infty} \xi_n^j$, we get

$$f\{\mathcal{A}(\mathbf{x}_{i})\} = C \lim_{n \to \infty} \xi_{n}^{j} + \sum_{i=1}^{\infty} \alpha_{i} \left(\sum_{k=1}^{\infty} a_{ik} \xi_{k}^{j} \right).$$

On the other hand, by Theorem A,

$$\sum_{i=1}^{\infty}\sum_{k=1}^{\infty} |\alpha_i| \cdot |a_{ik}| \cdot |\xi_k^j| \leq M \cdot ||x_j| \cdot \sum_{i=1}^{\infty} |\alpha_i|,$$

^{2) (}c) is the space of all convergent sequences which is a Banach space with the norm $||x|| = 1, u, b, |\xi_i|,$

therefore

Since

$$f\left\{\mathcal{A}\left(x_{j}\right)\right\} = C\lim_{n \to \infty} \xi_{n}^{j} + \sum_{k=1}^{\infty} \xi_{k}^{j} \left(\sum_{i=1}^{\infty} \alpha_{i} a_{ik}\right).$$

In virtue of $\sum_{i=1}^{\infty} \alpha_{i} a_{ik} = 0$ for all $k = 1, 2, \cdots$, we ge
$$f\left\{\mathcal{A}\left(x_{j}\right)\right\} = C\lim_{n \to \infty} \xi_{n}^{j}.$$

Since $f(x)$ is a continuous linear functional in (c), we get

 $\lim_{j\to\infty}f\left\{A\left(x_{j}\right)\right\}=f\left(y_{0}\right),$

therefore $C \lim_{n \to \infty} \eta_n^0 + \sum_{i=1}^{\infty} \alpha_i \eta_i^0 = C \lim_{i \to \infty} (\lim_{n \to \infty} \xi_n^i).$

From (2), we have

$$\lim_{i\to\infty}|A_i(x_i)-\gamma_i^0|\leq \varepsilon_j,$$

therefore $\lim_{n \to \widehat{\infty}} \xi_n^j - \lim_{n \to \infty} \eta_n^0 \leq \varepsilon_j$. If we put $\lim_{n \to \infty} \eta_n^0 = \eta^0$, then

$$\lim_{j\to\infty} (\lim_{n\to\infty} \xi_n^j) = \eta^0.$$

consequently we get $\sum_{i=1}^{\infty} \alpha_i \eta_i^0 = 0$. Thus the theorem is completely proved.

3. Application. Let $\mathcal{S}(\mathfrak{A})$ be the set of all sequences $\{A_i(x)\}$ where \mathfrak{A} is a regular method of summation and x varies on the space (c). Then we have $S(\mathfrak{A}) \subset (c)$. From Theorem B and Theorem 1 we obtain the following

THEOREM 2. In order that the set $S(\mathfrak{A})$ should be everywhere dense in the space (c), it is necessary and sufficient that (4) implies $\alpha_i = 0$ for all $i = 1, 2, \dots$.

PROOF. Necessity. Let $y_0 = \{\eta_i^0\}$ be the sequence such as $\eta_1^0 = 1$, $\eta_i^0 = 0$ $(i \neq 1)$. It follows from Theorem 1 that (4) implies $\sum_{i=1}^{n} \alpha_i \eta_i^0 = \alpha_1 = 0$. In the same manner we deduce $\alpha i = 0$ $(i = 2, 3, \dots)$.

Sufficiency is evident by the lemma of S. Banach.³⁾ Thus the theorem is completely proved.

The method \mathfrak{A} is said to be reversible if for any convergent sequence $\{\eta_i\}$ there exists only one sequence x (convergent or not) such that

> $A_i(x) = \eta_i$ for $i = 1, 2, \dots$.

66

cf. S. Banach, loc, cit, ,p, 93. 3)

Then we have the following

THEOREM 3. Let the method \mathfrak{A} be regular and reversible. If there is a nonzero sequence satisfying (4), then the cardinal number of the set of all linearly independent divergent sequences summable by \mathfrak{A} is at least enumerable.

PROOF. In virtue of Theorem 2, the set $S(\mathfrak{A})$ is not dense in the space (c). Therefore there exists a sphere K in the space (c) such that $K \cap S(\mathfrak{A}) = 0$. Let $x_0 = \{\xi_k^n\}$ and r_0 be the centre and the radius of the sphere K, respectively. Now let us introduce the convergent sequence $x_n = \{\xi_k^n\}$ such that $\xi_k^n = \xi_k^n$ for $n \neq k$ and $\xi_n^n = \xi_n^n + r$ where $0 < |r| < r_0$. Then $\{x_n\}$ are evidently linearly independent and contained in the sphere K.

On the other hand, since the method \mathfrak{A} is tegular and reversible, all the sequence j_n such that $x_n = \mathcal{A}(j_n)$ $(n = 1, 2, \cdots)$ are linearly independent. This proves the theorem.

Nagaoka Higher Technical School.

· ·-

(at present, Education Department, Shizuoka University)