HILBERT ALGEBRAS*)

By

Hidegorô Nakano

W. Ambrose¹ defined a proper H*-algebra $\mathfrak{H}:\mathfrak{H}$ is a Hilbert space and a ring subject to the conditions: 1) if ax=0 for all $x \in \mathfrak{H}$, then a=0, and 2) for any $a \in \mathfrak{H}$ there is $a^* \in \mathfrak{H}$ such that

$$(ax, y) = (x, a^*y), (xa, y) = (x, ya^*)$$

for all $x, y \in \mathfrak{H}$, and proved that if \mathfrak{H} satisfies the condition

(B)
$$\sup_{\|x\|=\|y\|=1} \|xy\| < +\infty,$$

then \mathfrak{H} is a direct sum of *simple* 2-sided ideals $\sum_{\lambda \in \Lambda} \mathfrak{H}_{\lambda}$ such that $\mathfrak{H}_{\rho} \perp \mathfrak{H}_{\lambda}$ for $\rho \neq \lambda$ and \mathfrak{H}_{λ} is isometric to a full-matrix algebra: for some set Λ all complex valued functions $a(\lambda, \rho)(\lambda, \rho \in \Lambda)$ with

$$\sum_{\lambda \
ho} |a \ (\lambda, \
ho)|^2 < + \infty$$

constitute a proper H*-algebra, being called a full-matrix algebra, if we put

$$ab (\lambda, \rho) = \sum_{\tau \in \Lambda} a (\lambda, \tau) b (\tau, \rho),$$
$$a^* (\lambda, \rho) = \overline{a(\rho, \lambda)},$$
$$(a, b) = \frac{1}{\alpha^2} \sum_{\lambda, \sigma} a (\lambda, \rho) \overline{b(\lambda, \rho)},$$

for some positive number α , wich we shall call the *order* of a full-matrix algebra. He used the condition (B) essentially in his proof, while it will be proved that any H*-algebra satisfies the condition (B) (cf.§2). He remarked further that a group ring on a compact group is a proper H*-algebra: let \mathfrak{G} be a compact group. All complex valued measurable functions $a(\sigma)$ ($\sigma \in \mathfrak{G}$) with

$$\int |a(\sigma)|^2 d\sigma < +\infty$$

for Haar measure constitute a proper H*-algebra if we put

^{*)} Received Nov. 25, 1949.

W.Ambrose: Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945) 364-386.

$$ab(\sigma) = \int a(\sigma\tau^{-1}) b(\tau) d\tau,$$

$$a^{*}(\sigma) = \overline{a(\sigma^{-1})},$$

$$(a, b) = \int a(\sigma) \overline{b(\sigma)} d\sigma.$$

If a group \mathfrak{G} is locally compact, then its group ring is not necessarily a Hilbert space as remarked by I.E. Segal.²⁾ But all complex valued measurable functions $a(\sigma)$ ($\sigma \in \mathfrak{G}$), such that $a(\sigma) = 0$ except for some compact set Λ_a and

$$\int |a(\sigma)|^2 \, d\sigma < +\infty,$$

satisfy the condition of proper H^{*} algebra, except completeness, and for Haar measure $m(\Lambda_a)$ we have

$$|ab| \leq m (\Lambda_a)^{1/2} ||a|| ||b||$$

for all such functions $b(\sigma)$, if \mathfrak{S} has a 2-sided Haar measure. Thus we need to consider proper H*-algebra, which is not complete. This is the purpose of this paper.

§1. Fundamental definitions.

Let \mathfrak{H} be a Hilbert space, which need not be separable.

DEFINITION. A linear manifold \mathfrak{A} of \mathfrak{H} is called a *Hilbert algebra*, if

- (1) \mathfrak{A} is dense in \mathfrak{H} ;
- (2) At is a ring: for any $a, b \in A$ there is defined $ab \in A$ such that (ab) c = a (bc), a (b+c) = ab + ac, (a+b) c = ac + bc
- and $(\alpha a) b = a (\alpha b) = \alpha a b$ for any complex number α ;
- (3) for any $a \in \mathfrak{A}$ there exists an *adjoint element* $a^* \in \mathfrak{A}$ such that

$$(ab, c) = (b, a^* c), (bc, c) = (b, ca');$$

4) for any $a \in \mathfrak{A}$ there exists a positive number α_a such that

$$ax \leq \alpha_a x$$
 for all $x \in \mathfrak{A}$;

(5) by (1) and (4), for every $a \in \mathfrak{A}$ we obtain uniquely a bounded linear operator T_a on \mathfrak{H} such that

$$T_a x = ax$$
 for all $x \in \mathfrak{A}$.

For an element $f \in \mathfrak{H}$, if $T_x f = 0$ for all $x \in \mathfrak{A}$, then we have f = 0. First we shall write fundamental properties of Hilbert algebra. Let \mathfrak{A} be a

I.E. Segal: The group ring of a locally compact group, Proc. Nat. Acad. Sci. U.S.A. 27 (1941) 348-351.

Hilbert algebra in a Hilbert phace \mathfrak{H} in the sequel.

THEOREM 1.1. For an element $a \in \mathfrak{A}$, if ax = 0 for all $x \in \mathfrak{A}$, then we have a = 0.

PROOF. By (3), for any x. y & U we have

$$(T_x a, y) = (xa, y) = (a, x^*y) = (ay^*, x^*) = 0.$$

Since \mathfrak{A} is dense in \mathfrak{H} by (1), we have thus $T_x a = 0$ for all $x \in \mathfrak{A}$, and hence a = 0 by (5).

By this theorem we have obviously:

THEOREM 1.2. $T_a = T_b$ if and only if a = b.

THEOREM 1.3. For any $a \in \mathfrak{A}$ we have $T_a = T_a^*$. and hence the cdjoint element a^* is determined uniquely.

PROOF. For any $x, y \in \mathfrak{A}$ we have by (3)

$$(T_a x, y) = (ax, y) = (x, a^*y) = (x, T_a * y).$$

Since \mathfrak{A} is dense in \mathfrak{H} by (1), we have thus $T_{a^*} = T_a^*$.

By definition we see easily:

THEOREM 1. 4. $a^{**} = a$, $(\alpha a)^* = \overline{\alpha} a^*$, $(ab)^* = b^* a^*$, $(a+b)^* = a^* + b^*$.

THEOREM 1.5. $T_{\alpha a} = \alpha T_a$, $T_{ab} = T_a T_b$, $T_{a+b} = T_a + T_b$.

THEOREM 1.6. All is complete in \mathfrak{H} : there is no element except 0 in \mathfrak{H} , which is orthogonal to xy for all x, $y \in \mathfrak{A}$.

PROOF. For an element $f \in \mathfrak{H}$, if (xy, f) = 0 for all $x, y \in \mathfrak{A}$, then we have by theorem 1.3

$$(T_xf, y) = (f, T_x^*y) = (f, T_x^*y) = (f, x^*y) = 0$$

for all x, $\gamma \in \mathfrak{A}$, and hence f = 0 by (1) and (5).

THEOREM 1. 7. For any a, be I we have

 $(a, b) = (b^*, a^*), \qquad a = a^*$.

PROOF. For any x, y, z e A we have by (3) and theorem 1.4

$$(x, yz) = (xz^*, y) = (z^*y^*, x^*) = ((yz)^*, x^*).$$

By the previous theorem, for any $a \in \mathfrak{A}$ there exist $a_{\nu} \in \mathfrak{A}$ ($\nu = 1, 2, ...$), as linear forms from \mathfrak{AA} , such that $\lim_{\nu \to \infty} a_{\nu} = a$ and $(x, a_{\nu}) = (a_{\nu}^*, x^*)$ for all $x \in \mathfrak{A}$ and $\nu = 1, 2, ...$ As $x \in \mathfrak{A}$ may be arbitrary, we have then

$$a_{\nu}^{*} - a_{\nu}^{*} = a_{\nu}^{*} - a_{\eta}^{*} a_{\mu}^{*} \qquad (\nu, \mu = 1, 2, ...),$$

and hence there exists $f \in \mathfrak{G}$ for which $\lim_{y \to -\infty} ay^* = j$. Then we have $(x, a) = (f, x^*)$ for all $x \in \mathfrak{G}$. Therefore we have

$$(f, xy) = ((xy)^*, a) = (a^*, xy)$$

for all x, $y \in \mathfrak{A}$, and hence $f = a^*$ by the previous theorem.

By (4) and theorem 1. 7 we obtain immediately:

THEOREM 1. 8. For any $a \in \mathfrak{A}$ there exists a positive number β_a such that

$$xa \leq \beta_a x$$
 for all $x \in \mathfrak{A}$.

By this theorem, for every $a \in \mathfrak{A}$ we obtain uniquely a bounded linear opetator S_a on \mathfrak{F} such that

$$S_a x = xa$$
 for all $x \in \mathfrak{A}$.

By definition we see easily:

THEOREM 1.9.
$$S_a = \mathcal{L}_a *$$
. $S_{ab} = \mathcal{L}_b S_a$, $T_a S_b = S_b T_a$, $S_{\alpha a} = \alpha S_a$,
 $S_{a+b} = \mathcal{L}_a + S_b$.

THEOREM 1. 10. $S_a = S_b$ if and only if a = b.

PROOF. If $S_a = 0$, then we have $T_{xa} = S_{ax} = 0$ for all $x \in \mathfrak{A}$, and hence a = 0 by (5).

THEOREM 1. 11. For an element $f \in \mathfrak{G}$, if $S \mathfrak{s} f = 0$ for all $\mathfrak{s} \mathfrak{s} \mathfrak{A}$, then we have f = 0.

PROOF. For any $x, y \in \mathfrak{A}$ we have by theorems 1.3, 1.9

$$(T_x f, y) = (f, T_x^* y) = (f, x^* y) = (f, S_y x^*) = (S_{y*} f, x^*).$$

Therefore if $S_x f = 0$ for all $x \in \mathfrak{A}$, then we have $T_x f = 0$ for all $x \in \mathfrak{A}$, and hence f = 0 by (5).

By definition we have obviously

$$(T_ab)^* = S_a^*b^*, \qquad (S_ab)^* = T_a b^*$$

for all $a, h \in \mathfrak{A}$, and hence by theorem 1.7

$$T_a b = S_a * b^*$$
, $b = b^*$.

Therefore we obtain $T_a = |S_{a^*}| = |S_a|$ by theorem 1.9, that is, we have:

THEOREM 1. 12. $T_a = S_a$ for all $a \in \mathfrak{A}$.

H. NAKANO

§2. Closed algebras.

Let \mathfrak{A} be a Hilbert algebra in a Hilbert space \mathfrak{H} . First we will prove:

THEOREM 2.1. If $\lim_{\nu \to \infty} a_{\nu} = a_0$, $a_{\nu} \in \mathfrak{A}$ ($\nu = 0, 1, 2, \cdots$) and $||T_{a_{\nu}}|| \leq \gamma$ ($\nu = 1$ 2, ...) for some $\gamma > 0$, then we have

$$\lim_{v \to \infty} T_{a_v} = T_{a_0}, \quad \lim_{v \to \infty} T_{a_v}^* = T_{a_0}^*,$$
$$\lim_{v \to \infty} S_{a_v} = S_{x_0}, \quad \lim_{v \to \infty} S_{a_v}^* = S_{a_0}^*.$$

PROOF. Since $T_{a_{y}}x = S_{*}a_{y}$ for all $x \in \mathfrak{A}$, we have by assumption

$$\lim_{x \to \infty} T_{a_y} x = S_{x a_0} = T_{a_1} x \quad \text{for all } x \in \mathfrak{A}$$

For any $f \in \mathfrak{H}$ there exist $x_{\nu} \in (\nu = 1, 2, \cdots)$ by §1 (1), such that $\lim_{\nu \to 8} x_{\nu} = f$. We have then

$$|Ta_{y}f - Ta_{0}f| \leq (|Ta_{y}| + ||Ta_{0}|) ||f - x_{\mu}|| + ||Ta_{y}x_{\mu} - Ta_{0}x_{\mu}||$$

for any ν , $\mu = 1, 2, \dots$. Therefore we obtain

$$\lim_{\nu \to \infty} \|Ta_{\nu}f - Ta_{0}f\| \leq (\gamma + \|Ta_{0}\|) \|f - x_{\mu}\|,$$

and hence $\lim_{v\to\infty} T_{a_v} f = T_{a_0} f$ for all $f \in \mathfrak{H}$.

Since $\lim_{\nu \to \infty} a_{\nu}^* = a_0^*$ by theorem 1.7 and $||Ta_{\nu}^*|| = ||T_{a_{\nu}}^*|| \leq \gamma$ ($\nu = 1, 2, ...$) by theorem 1.3, we have also $\lim_{\nu \to \infty} Ta_{\nu}^* = Ta_{\nu}^*$, as proved above. Furthermore, since $||Ta_{\nu}|| = ||Sa_{\nu}||$ by theorem 1.12, we can prove similarly also the other equations.

LEFINITION. A Hilbert algebra \mathfrak{A} is said to be *closed*, if $\lim_{\nu \to \infty} a_{\nu} = f \varepsilon \mathfrak{H}$, $a_{\nu} \varepsilon \mathfrak{A}$ ($\nu = 1, 2, ...$) and $\sup_{\nu \ge 1} ||T_{a_{\nu}}|| < +\infty$ imply $f \varepsilon \mathfrak{A}$.

DEFINITION. A Hilbert algebra $\tilde{\mathfrak{A}}$ is called an *extension* of a Hilbert algebra \mathfrak{A} , if $\tilde{\mathfrak{A}}$ contains \mathfrak{A} as a subalgebra.

DEFINITION. A Hilbert algebra \mathfrak{A} is said to be *maximal*, if there is no extension of \mathfrak{A} except itself.

By Zorn's lemma or transfinite induction we see easily:

THEOREM 2. 2. Every Hilbert algebra has a maximal extension.

THEOREM 2.3. If a Hilbert algelra A is maximal, then A is closed.

PROOF. Let \mathfrak{A} be a maximal Hilbert algebra. If $\lim_{\nu \to \infty} a_{\nu} = f \mathfrak{e} \mathfrak{H}$, $a_{\nu} \mathfrak{e} \mathfrak{A}$ and $||T_{a_{\nu}}|| \leq \gamma$ ($\nu = 1, 2, \cdots$), then we have

HILBERT ALGEBRA

 $\lim_{\nu,\mu\to\infty} \|a_{\nu}-a_{\mu}\|=0, \quad \|T_{a_{\nu}-a_{\mu}}\|\leq 2\gamma \ (\nu, \ \mu=1, \ 2, \cdots),$

and hence $\lim_{\nu,\mu\to\infty} (T_{a_{\nu}} - T_{a_{\mu}}) = 0$ by theorem 2.1. Consequently there exists a bounded linear operator \tilde{T}_{f} on \mathfrak{F} such that $\lim_{\nu\to\infty} T_{a_{\nu}} = \tilde{T}_{f}$. Such \tilde{T}_{f} is determined uniquely corresponding to f, because if

$$\lim_{\nu\to\infty} a_{\nu} = \lim_{\nu\to\infty} b_{\nu}, \quad |Ta_{\nu}| \leq \gamma, |Tb_{\nu}| \leq \gamma,$$

then we have $\lim_{v\to\infty} (a_v - b_v) = 0$, $|T_{a_v} - T_{b_v}| \le 2\gamma$, and hence $\lim_{v\to\infty} T_{a_v} = \lim_{v\to\infty} T_{b_v}$ by theorem 2.1.

We denote by $\tilde{\mathfrak{A}}$ the set of all such elements $f \in \mathfrak{G}$. Then we see easily that $\tilde{\mathfrak{A}}$ is a linear manifold of \mathfrak{H} , $\tilde{\mathfrak{A}} \supset \mathfrak{A}$, and

$$T_a = \tilde{T}_a$$
 for all $a \in \mathfrak{A}$.

For any f, $g \in \overline{\mathfrak{A}}$ there exist $a_{\nu} \in \mathfrak{A}$ and $b_{\nu} \in \mathfrak{A}$ ($\nu = 1, 2, ...$) such that

$$\lim_{\nu\to\infty} a_{\nu} = f, \lim_{\nu\to\infty} b_{\nu} = g, \quad |T_{a_{\nu}}|| \leq \gamma, \quad ||T_{b_{\nu}}|| \leq \gamma$$

for some positive number γ . Since

$$\|a_{\nu}b_{\nu}-\tilde{T}fg\| \leq \|Ta_{\nu}\| \|b_{\nu}-g\| + \|Ta_{\nu}g-\tilde{T}fg\|,$$

we have then $\lim_{v \to \infty} a_v b_v = \tilde{T}_f g$ and further $||T_{a_v b_v}|| \leq \gamma^2$, and hence Since $\lim_{v,v \to \infty} ||a_v^* - a_{\mu}^*|| = 0$ by theorem 1.7 and $||T_{a_v^*}|| = ||T_{a_v}^*|| \leq \gamma$ by 1.2, there exists $f^* \in \tilde{\mathfrak{A}}$ for which $\lim_{v \to \infty} a_v^* = f^*$, and we have $\tilde{T}_{f*} = \tilde{T}_f^*$, because for all $x, y \in \mathfrak{A}$ we have

$$(Tf^*x, y) = \lim_{v \to \infty} (T_{a_v} * x, y) = \lim_{v \to \infty} (a_v * x, y)$$
$$= \lim_{v \to \infty} (x, T_{a_v} y) = (x, \tilde{T}_f y).$$

Furthermore if $\lim_{\nu \to \infty} c_{\nu} = b \in \widetilde{\mathfrak{A}}$, $c_{\nu} \in \mathfrak{A}$, and $||T_{c_{\nu}}| \leq \gamma$ ($\nu = 1, 2, \cdots$) for some positive number γ , then we have

$$(\widetilde{T}_g f, b) = \lim_{\nu \to \infty} (b_{\nu} a_{\nu}, c_{\nu}) = \lim_{\nu \to \infty} (b_{\nu}, c_{\nu} a_{\nu}^*) = (g, T_h f^*).$$

Therefore, putting $fg = \tilde{T}fg$ for $f, g \in \tilde{\mathfrak{A}}$, we obtain a Hilbert algebra $\tilde{\mathfrak{A}}$, which is an extension of \mathfrak{A} . If \mathfrak{A} is not closed, then $\tilde{\mathfrak{A}}$ dose not coincide with \mathfrak{A} by its construction, contradicting the assumption that \mathfrak{A} is maximal. Thus \mathfrak{A} is closed.

Let $\tilde{\mathfrak{A}}$ and $\hat{\mathfrak{A}}$ be two extensions of \mathfrak{A} . For any common element f of $\tilde{\mathfrak{A}}$ and $\hat{\mathfrak{A}}$, puttig $\tilde{T}_f \tilde{g} = f \tilde{g}$ for $\tilde{g} \in \tilde{\mathfrak{A}}$ and $\hat{T}_f \hat{g} = f \hat{g}$ for $\hat{g} \in \hat{\mathfrak{A}}$, we have for all $x, y \in \mathfrak{A}$

$$(\widetilde{T}_{f}x, y) = (f, yx^{*}) = (\widehat{T}_{f}x, y),$$

and hence $T_f = T_f$ by §1 (1). Therefore the intersection of all closed extensions of \mathfrak{A} is also a closed extension of \mathfrak{A} , which is called the *closure* of \mathfrak{A} .

DEFINITION. A Hilbert algebra \mathfrak{A} is said to be *bounded*, if \mathfrak{A} satisfies the condition

(B)
$$\sup_{\|x\|=\|y\|=1} |xy\| < +\infty,$$

and this value is called its order.

THEOREM 2.4. If a Hilbert algebra \mathfrak{A} is bounded, then the closure of \mathfrak{A} coincides with the whole space \mathfrak{H} .

PROOF. For any $f \in \mathfrak{H}$ there exist $a_{\nu} \in \mathfrak{A}$ ($\nu = 1, 2, \dots$) by §1 (1) such that $\lim_{\nu \to \infty} a_{\nu} = f$. If \mathfrak{A} is bounded, then we have $\sup_{\nu \ge 1} ||T_{a_{\nu}}|| < +\infty$ and hence f belongs to the closure of \mathfrak{A} .

THEOREM 2.5. If the whole space S is an extension of a Hilbert algebra A, then A is bounded.

PROOF. Let \mathfrak{H} be a Hilbert algebra. If \mathfrak{H} is not bounded, then there exist x_{ν} and $y_{\nu} \in \mathfrak{H}$ ($\nu = 1, 2, ...$) such that

$$\|x_{\nu}\|=\|y_{\nu}\|=1, \quad \|x_{\nu}y_{\nu}\|\geq \nu^{2},$$

and we have tor any $z \in \mathfrak{H}$

$$\left|\left(\frac{1}{\nu} x_{\nu} y_{\nu}, z\right)\right| = \left|\left(\frac{1}{\nu} x_{\nu}, z y_{\nu}^{*}\right)\right| \leq \frac{1}{\nu} \|T_{z}\|.$$

Thus $\frac{1}{\nu} x_{\nu} y_{\nu}$ ($\nu = 1, 2, ...$) is weakly convergent, contradicting

$$\lim_{\nu\to\infty} \left\|\frac{1}{\nu} x_{\nu} y_{\nu}\right\| = +\infty.$$

REMARK. Every proper H*-algebra defined by W. Ambrose is a Hilbert algebra. Indeed a proper H*-algebra \mathfrak{H} satisfies obviously the condition of Hilbert algebra except (4). \mathfrak{H} satisfies further (4), because if \mathfrak{H} dose not satisfy (4), then there exist $a \in \mathfrak{H}$ and $x_{\nu} \in \mathfrak{H}$ such that $|x_{\nu}| = 1$, $|ax_{\nu}|| \ge \nu^2$ $(\nu = 1, 2, \dots)$, and we have

$$\lim_{\nu\to\infty}\left(\frac{1}{\nu}\,ax_{\nu},\,y\right) = \lim_{\nu\to\infty}\left(\frac{1}{\nu}\,x^{\nu},\,a^*y\right) = 0$$

for all $y \in \mathfrak{H}$, that is, $\frac{1}{\nu} ax_{\nu} (\nu = 1, 2, \cdots)$ is weakly convergent, contradicting $\lim_{\nu \to \infty} \left\| \frac{1}{\nu} ax_{\nu} \right\| = +\infty$. Furthermore \mathfrak{H} is bounded by theorem 2.5.

§3. Associative operators.

Let \mathfrak{A} be a closed Hilbert algebra in a Hilbert space \mathfrak{H} .

DEFINITION. A bounded linear operator A on \mathfrak{H} is said to be associative with \mathfrak{A} , if $A\mathfrak{A} \subset \mathfrak{A}$ and we have

$$(Ax) y = Axy \qquad \qquad \text{for all } x, y \in \mathfrak{A},$$

that is, $AS_x = S_x A$ for all $x \in \mathfrak{A}$.

By definition we have obviously:

THEOREM 3. 1. The set of all associative operators constitutes a ring of operators: if A and B are both associative with \mathfrak{A} , then $\alpha A + \beta B$, AB are-all associative with \mathfrak{A} .

THEOREM 3. 2. T_a is associative with \mathfrak{A} for all $a \in \mathfrak{A}$.

THEOREM 3. 3. If A is associative with \mathfrak{A} , then we have $AT_a = T_{Aa}$ for every $a \in \mathfrak{A}$.

LEMMA 3. 1. For a sequence of bounded linear operators A_{ν} ($\nu = 1, 2, ...$) on \mathfrak{H} , if $\lim_{\nu \to \infty} (A_{\nu} x, y)$ exists for any $x, y \in \mathfrak{H}$, then we have $\sup_{\nu \ge 1} ||A_{\nu}|| < +\infty$.

PROOF. If $\sup_{\nu \geq 1} || A_{\nu} || = +\infty$, then there exist $x_{\nu} \in \mathfrak{H}$, $\mu_{\nu} (\nu = 1, 2, \cdots)$ such that $|| x_{\nu} || = 1$ and $|| A_{\mu_{\nu}} x_{\nu} || \ge \nu^2$, and we have for any $\gamma \in \mathfrak{H}$

$$\lim_{\nu\to\infty}\left(\frac{1}{\nu}A_{\mu\nu}x_{\nu}, y\right) = \lim_{\nu\to\infty}\left(\frac{1}{\nu}x_{\nu}, A_{\mu\nu}^*y\right) = 0,$$

that is, $\frac{1}{\nu} A_{\mu_{\nu}} x_{\nu}$ ($\nu = 1, 2, ...$) is weakly convergent, contradicting

$$\lim_{\nu\to\infty}\left\|\frac{1}{\nu}A_{\mu_{\nu}}x_{\nu}\right\|=+\infty.$$

THEOREM 3. 4. If A_{ν} ($\nu = 1, 2, ...$) are all associative with \mathfrak{A} and $\lim_{\nu \to \infty} A_{\nu} = A$, then A is also associative with \mathfrak{A} .

PROOF. By the previous lemma A is obviously a bounded linear operator on \mathfrak{H} . For any $a \in \mathfrak{A}$ we have by theorem 3.3

$$|T_{A\nu a}|| = ||A_{\nu} T_{a}|| \leq ||A_{\nu}|| ||T_{a}|| \text{ and } \lim_{\nu \to \infty} A_{\nu} a = Aa,$$

and hence $Aa \in \mathfrak{A}$, since \mathfrak{A} is closed by assumption. For any $x, y \in \mathfrak{A}$ we have furthermore

$$(Ax) y = \lim_{\nu \to \infty} S_{\nu} A_{\nu} x = \lim_{\nu \to \infty} A_{\nu} S_{\nu} x = Axy.$$

For a system of projection operators $P_{\lambda}(\lambda \in \Lambda)$ on \mathfrak{H} , $\bigcap_{\lambda} P_{\lambda}$ means the projection operator of the intersection of all $P_{\lambda} \mathfrak{H}(\lambda \in \Lambda)$, and $\bigcup P_{\lambda}$ the projection

H. NAKANO

operator of the closed linear manifold spanned by all $P_{\lambda} \mathfrak{H} (\lambda \in \Lambda)$.

LEMMA 3.2. For any projection operators P and Q, we have $\lim_{N \to \infty} (PQ)^{\nu} = P \cap Q, \qquad P \cup Q = 1 - ((1-P) \cap (1-Q)).$

PROOF. Since PQP is a positive definite self-adjoint operator and $\|PQPx\| \leq \|x\|$ for all $x \in \mathfrak{H}$, by spectral theory we obtain a projection operator P_0 as

$$P_0 = \lim_{v \to \infty} (PQP)^v$$

As $PQP(P \cap Q) = P \cap Q$, we have then obviously $P_0 \ge P \cap Q$. On the other hand, since for any $x \in \mathfrak{H}$

$$\|\mathbf{x}\| \geq \|P\mathbf{x}\| \geq \|QP\mathbf{x}\| \geq \|PQP\mathbf{x}\| \geq \|P_{c}\mathbf{x}\|, P_{0}P_{c}\mathbf{x} = P_{c}\mathbf{x},$$

we have $||P_0\mathbf{x}| = ||PP_0\mathbf{x}|| = ||QPP_0\mathbf{x}|| = ||P_0\mathbf{x}||$ for all $\mathbf{x} \in \mathfrak{H}$. Therefore we obtain $P_0\mathbf{x} = PP_0\mathbf{x} = QPP_0\mathbf{x}$, and hence $P_0 \leq P \cap Q$. Thus we have

$$P \cap Q = \lim (PQP)^{\nu} = \lim (PQ)^{\nu},$$

since $(P \cap Q) Q = P \cap Q$. By definition we have obviously the other equation.

THEOREM 3. 5. For a system of projection operators P_{λ} ($\lambda \in \Lambda$), if P_{λ} ($\lambda \in \Lambda$) are all associative with \mathfrak{A} , then $\bigcap_{\lambda} P_{\lambda}$ and $\bigcup_{\lambda} P_{\lambda}$ are both associative with \mathfrak{A} .

PROOF. By theorem 3. 4 and lemma 3. 2 we can assume that for any $\lambda_1, \lambda_2 \in \Lambda$ there exists $\lambda \in \Lambda$ such that $P_{\lambda} \leq P_{\lambda_1} \cap P_{\lambda_2}$. Putting $P = \bigcap P_{\lambda}$, we have then

$$\|P_{\mathbf{X}}\| = \inf_{\lambda \in \Lambda} \|P_{\lambda} \mathbf{X}\| \qquad \text{for all } \mathbf{X} \in \mathfrak{A}^{3}$$

For any $a, b \in \mathfrak{A}$ there exists $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, \dots$) such that $P_{\lambda_1} \ge P_{\lambda_2} \ge \dots$ and

$$\lim_{\lambda \to \infty} \|P_{\lambda, v} a\| = \inf_{\lambda \to \lambda} \|P_{\lambda, v} a\|, \quad \lim_{\lambda \to \infty} \|P_{\lambda, v} ab\| = \inf_{\lambda \to \lambda} \|P_{\lambda, v} ab\|.$$

For $P_0 = \lim_{\nu \to \infty} P_{\lambda_{\nu}}$, we have thus $||P_ca|| = ||Pa||$, $|P_cab|| = ||Pab||$. As obviously $P_0 \ge P$, we have hence $P_ca = Pa$, $P_cab = Pab$. Since P_0 is associative with \mathfrak{A} by theorem 3. 4, we obtain therefore

$$Pa \in \mathfrak{A}, (Pa) b = (P_{a}a) b = P_{0}ab = Pab.$$

Similarly we can prove the other relation.

THEOREM 3. 6. If a bounded self-adjoint operator H is associative with A,

H.Nakano: Funktionen mehrerer hypermaximaler normaler Operatoren, Proc. Phis.-Math. Soc. Japan, 21 (1939) 713-728, Satz 2.

then for its spectral system E_{λ} ($-\infty < \lambda < +\infty$):

$$H = \int_{-\infty}^{\infty} \lambda \, d \, E_{\lambda}, \quad \lim_{\lambda \to \lambda_0 \neq 0} E_{\lambda} = E_{\lambda_0},$$

 E_{λ} is associative with \mathfrak{A} for any λ .

PROOF. As H is bounded, we assume $||Hx|| \leq \gamma ||x||$ for all $x \in \mathfrak{H}$. Since

$$|\lambda| = \sum_{\nu=1}^{\infty} \alpha_{\nu} \lambda^2 (1 - \lambda^2)^{\nu}, \quad \alpha_0 = 1, \quad \alpha_{\nu} = \frac{2\nu - 1}{2\nu} \alpha_{\nu-1},$$

is uniformly convergent for $|\lambda| \leq 1$, putting

$$H_1 = \frac{1}{\gamma + |\lambda_0|} (H - \lambda_2), \quad -\gamma \leq \lambda_2 \leq \gamma$$

we see easily by spectral theory⁴)

$$(1 - E_{\lambda_0}) H_1 = \frac{1}{2} H_1 + \frac{1}{2} \sum_{\nu=1}^{\infty} \alpha_{\nu} H_1^2 (1 - H_1^2)^{\nu},$$
$$E_{\lambda_0} = \lim_{\nu \to \infty} \{1 - (1 - E_{\lambda_0}) H_1\}^{\nu}.$$

Therefore we obtain by theorems 3.1, 3.4 that E_{λ_0} is assciative with \mathfrak{A} .

§4. Units.

Let \mathfrak{A} be a closed Hilbert algebra in a Hilbert space \mathfrak{H} .

DEFINITION. An element $h \in \mathfrak{A}$ is said to be *self-adjoint*, if $h = h^*$. By theorems 1.3 and 1.9 we have then obviously:

THEOREM 4.1. An element $a \in \mathbb{N}$ is self-adjoint if and only if T_a is self-adjoint, or S_a is self-adjoint.

DEFINITION. An element $u \in \mathcal{U}$ is called a *unit*, if *u* is self-adjoint and idempotent: $u = u^*$ and uu = u.

By theorems 1.5 and 1.9 we see at once:

THEOREM 4. 2. An element $a \in \mathfrak{A}$ is a unit if and only if T_a is a projection operator, or S_a is a projection operator.

DEFINITION. For units $u_1, u_2 \in \mathfrak{A}$ we shall write $u_1 \ge u_2$ if $Tu_2 \ge Tu_2$ as projection operators.

By theorem 1.5 and calculus of projection operators we see easily that

Cf. J. von Neunann: Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1930) 49-131, M. H. Stone: Linear transformations in Hilbert space, New York (1932).

for units we have:

THEOREM 4. 3. If $u_1 \ge u_2$ and $u_2 \ge u_3$, then $u_1 \ge u_3$; $u_1 \ge u_2$ implies $u_1 u_2 = u_2 u_1 = u_2$; for $u_1 \ge u_2$ we obtain a unit $u_1 - u_2 \le u_1$; and if $u_1 u_2 = 0$ and $u_2 \ge u_3$, then we have $u_1 u_3 = u_3 u_1 = 0$.

THEOREM 4.4. For units, $u_1 u_2 = 0$ implies $(u_1, u_2) = 0$.

PROOF. $(u_1, u_2) = (u_1, u_2, u_2) = (u_1, u_2, u_2) = 0.$

THEOREM 4.5. For a unit u and an associative projection operator $P \leq T_u$ we obtain a unit Pu for which we have $T_{P_u} = P$.

PROOF. By theorem 3.3 we have $T_{Fu} = PT_u = P$, and hence Pu is a unit by theorem 4.2.

THEOREM 4.6. Let $h \in \mathfrak{A}$ be self-adjoint and E_{λ} ($-\infty < \lambda < +\infty$) the spectial system of Tn. For any positive number ε there exists an associative self-adjornt operator H such that Hh is a unit and Thn = $1 - E_{\varepsilon}$.

PROOF. By spectral theory we have for any $\varepsilon > 0$

$$\|T_h x\| \ge \varepsilon \|x\| \qquad \text{for } x \in (1-E_{\epsilon}) \ \mathfrak{H}.$$

As T_h is bounded, we assume $||T_h x|| \leq \gamma ||x||$ for $x \in \mathfrak{G}$. Then we obtain the inverse A of $\frac{1}{\gamma} T_h$ in $(1 - E_t)$ \mathfrak{H} , as

$$Ax = \sum_{\nu=1}^{\infty} \left(1 - \frac{1}{\gamma} T_{k} \right)^{\nu} x \qquad \text{for } x \in (1 - E_{e}) \mathfrak{H},$$

and $\frac{1}{\gamma} AT_h x = x$ for $x \in (1 - E_t)$ §. Putting $H = -\frac{1}{\gamma} A(1 - E_t)$, we obtain a bounded self-adjoint operator H on § and

$$HT_{h} x = \frac{1}{\gamma} AT_{h} (1 - E_{e}) x = (1 - E_{e}) x \quad \text{for } x \in \mathfrak{H}.$$

Since $H = \sum_{\nu=1}^{\infty} \left(1 - \frac{1}{\gamma} T_{h}\right)^{\nu} (1 - E_{e})$, *H* is associative with \mathfrak{A} by theorems 3.1 and 2.4, and hence $T_{Hh} = HT_{h} = 1 - E_{e}$ by theorem 3.3. Consequently *Hh* is a unit by theorem 4.2.

THEOREM 4.7. Every closed Hilbert algebra \mathfrak{A} has a unit $u \neq 0$.

PROOF. For any $a \in \mathfrak{A}$, $a + a^*$ and $ia + ia^*$ are both self-adjoint. Therefore there exists a self-adjoint element $h \neq 0$. For a self-adjoint element $h \neq 0$, since one of T_h and T_{-h} is not negative definite, we can assume that T_h is not negative definite. Then, for the spectral system E_{λ} of T_h , there exists a positive number ϵ such that $1 - E_{\epsilon} \neq 0$, and by the previous theorem there exists a

HILBERT ALGEBRA

unit u for which we have $T_u = 1 - E_{\varepsilon} \neq 0$, and hence $u \neq 0$ by theorem 1.2.

DEFINITION. A unit $u \neq 0$ is said to be *minimal*, if there is no unit $v \leq u$ except itself and 0.

THEOREM 4.8. In order that a unit $u \in \mathcal{A}$ be minimal, it is necessary and sufficient that $u \in \mathcal{A}$ us one-dimensional.

FROOF Let $u \mathfrak{A} u$ be not one-dimensional. Then there exists $x \in u \mathfrak{A} u$ such that $x \neq 0$ and (u, x) = 0. Since

$$x^* = (uxu)^* = ux^* u \varepsilon u \mathfrak{A} u, \quad (u, x^*) = (x, u) = 0,$$

there exists then a self-adjoint element $h \in u \mathfrak{A} u$ such that

$$(u, b) = 0, \quad |u| = |b| \neq 0.$$

 T_h is self-adjoint by theorem 4.1. Let $E_{\lambda}(-\infty < \lambda < +\infty)$ be the spectral system of T_h . As uh = hu = h, we have $T_u T_h = T_h T_u = T_h$ by thnorem 1.5, and hence T_u is commutative with E_{λ} for all λ by spectral theory. We will now prove that there exists λ_0 for which

$$T_{\mathbf{u}} E_{\lambda_0} \neq 0, \quad T_{\mathbf{u}} (1 - E_{\lambda_0}) \neq 0.$$

If there is no such λ_0 , then we have

$$Th = Th Tu = \int_{-\infty}^{\infty} \lambda \, dE_{\lambda} Tu = \lambda Tu = T_{\lambda u}$$

for some λ , and hence $b = \lambda u$ by theorem 1.2, contradicting

$$\|b\|^2 = (\lambda u, b) = \lambda (u, b) = 0.$$

If $T_u E_{\lambda_0} \neq 0$ and $T_u (1 - E_{\lambda_0}) \neq 0$, then, since E_{λ} is associative with \mathfrak{A} by theorem 3.6, we obtain a unit $v = T_u E_{\lambda_0} u \leq u$ by theorem 4.5, and we have $T_v = T_u E_{\lambda_0} \neq 0$, $T_u - T_v \neq 0$, that is, $v \neq 0$, $u \neq v$ by theorem 1.2. Therefore u is not minimal.

Conversely if a unit $u \neq 0$ is not minimal, then there exists a unit $v \leq u$ such that $v \neq 0$ and $u - v \neq 0$. Then, since v(u - v) = 0, we have (v, u - v) = 0 by theorem 4.4, and

$$v = uvu \in u \mathfrak{A} u, \quad u - v = u (u - v) u \in u \mathfrak{A} u.$$

Therefore $u \mathfrak{A} u$ is not one-dimensional.

§5. Discrete algebras.

Let \mathfrak{A} be a closed Hilbert algebra in a Hilbert space \mathfrak{H} .

DEFINITION. A linear manifold $\mathfrak{p} \subset \mathfrak{A}$ is calld an *ideal*, if \mathfrak{p} satisfies

(1)	$x \mathfrak{p} y \subset \mathfrak{p}$ for all $x, y \in \mathfrak{A}$;
(2)	$x \in \mathfrak{p}$ implies $x^* \in \mathfrak{p}$;
(3)	$a_{\nu} \in \mathfrak{p}, \lim_{\nu \to \infty} a_{\nu} = a \in \mathfrak{A} \text{implies } a \in \mathfrak{p}.$

THEOREM 5.1. If a projection operator P is associative with \mathfrak{A} and commutative with T_x for all $x \in \mathfrak{A}$, then $P\mathfrak{A}$ is an ideal and closed as a subalgebra.

PROOF. Since for any $x, y \in \mathfrak{A}$ we have

$$(Px) \quad y = Pxy, \quad x(Py) = Tx \quad Py = PTx \quad y = Pxy,$$

P A satisfies (1). Since for any $x, y, z \in A$ we have,

$$((Px)y, z) = (x(Py), z) = (Py, x^*z) = (y, (Px^*)z),$$

we obtain by definition,

$$(Px)^* = Px^*$$

and hence $P\mathfrak{A}$ satisfies (2). Furthermore for $\lim_{\nu \to \infty} Pa_{\nu} = a \mathfrak{e} \mathfrak{A}$ we have $\lim_{\nu \to \infty} Pa_{\nu} = Pa = a$, and hence $a \mathfrak{e} P\mathfrak{A}$, that is, $P\mathfrak{A}$ satisfies (3).

If $\lim_{\nu \to \infty} a_{\nu} = a$, $a_{\nu} \in P \mathfrak{A}$, and $||T_{a_{\nu}} x|| \leq \gamma ||x||$ for $x \in P \mathfrak{A}$ ($\nu = 1, 2, ...$), then we have for any $x \in \mathfrak{A}$

$$||T_{a_{\mathcal{V}}} \times || = ||T_{Pa_{\mathcal{V}}} \times || = |PT_{a_{\mathcal{V}}} \times || = ||T_{a_{\mathcal{V}}} P \times || \leq \gamma ||P \times || \leq \gamma ||X||.$$

Since \mathfrak{A} is closed by assumption, we have then $a \in \mathfrak{A}$, and obviously Pa = a. Therefore $P \mathfrak{A}$ is closed as a subalgebra.

DEFINITION. An ideal p is said to be *simple*, if there is no ideal contained in p except itself and $\{0\}$.

Let $u \in \mathfrak{A}$ be a minimal unit, and $e_{\lambda} \in \mathfrak{A} u$ ($\lambda \in \Lambda$) a maximal orthogonal system contained in $\mathfrak{A} u$ such that

$$|e_{\lambda}| = |u|, e_{\lambda_0} = u$$
 fos some $\lambda_0 \in \Lambda$

that is, $\mathfrak{A} u$ contains no element except 0, which is orthogonal to all e_{λ} ($\lambda \in I$ As $e_{\lambda} = e_{\lambda} u$, we have then

$$e_{\lambda}^{*}e_{\rho} = u_{\lambda}^{*}e_{\rho} u \varepsilon u \mathfrak{U} u.$$

Since $u \mathfrak{A} u$ is one-dimensional by theorem 4.8, there exists a complex numb $\delta_{\lambda,\rho}$ such that

$$e_{\lambda} * e_{\rho} = \delta_{\lambda,\rho} u,$$

and $\delta_{\lambda,\rho} \| u \|^2 = (\delta_{\lambda,\rho} u, u) = (e^* e^{\rho}, u) = (e_{\rho}, e_{\lambda})$. Therefore we have by assumption

$$\delta_{\lambda,\rho} = \begin{cases} 1 & \text{for } \lambda = \rho, \\ 0 & \text{for } \lambda \neq \rho. \end{cases}$$

By (*) we see easily:

(**)

$$\begin{array}{c} (e_{\rho} \ e_{\lambda}^{*}) \ (e_{\mu} \ e_{\kappa}^{*}) = \delta_{\lambda} \ \mu \ e_{\rho} \ e_{\kappa}^{*}, \\ (e_{\rho} \ e_{\lambda}^{*}, \ e_{\mu} \ e_{\kappa}^{*}) = (e_{\mu}^{*} \ e_{\rho}, \ e_{\kappa}^{*} \ e_{\lambda}) = \delta_{\rho, \ \mu} \ \delta_{\lambda, \ \kappa} \ \| \ u \|^{2}. \end{array}$$

Thus $e_{\rho} e_{\lambda}^*$ $(\rho, \lambda \in \Lambda)$ constitute an orthogonal system. Since $e_{\lambda} e_{\lambda}^*$ is a unit by (**), we obtain a projection operator P as

$$P = \bigcup_{\lambda \in \mathbf{A}} T_{e_{\lambda}} e_{\lambda}^{*}$$

which is associative with \mathfrak{A} by theorem 3.5. For any $\lambda \in \Lambda$ we have by (*)

$$Pe_{\lambda} = Pe_{\lambda} e_{\lambda}^{*} e_{\lambda} = PT_{e_{\lambda}} e_{\lambda}^{*} e_{\lambda} = T_{e_{\lambda}} e_{\lambda}^{*} e_{\lambda} = e_{\lambda},$$

and hence (1 - P) $\mathfrak{A}_{u} = \{0\}$, because $e_{\lambda}(\lambda \in \Lambda)$ is a maximal orthogonal system in \mathfrak{A}_{u} . Since \mathfrak{A} is dense in \mathfrak{H} , we have $(1 - P) S_{u} = 0$, namely $P \ge S_{u}$, and $e_{\lambda}(\lambda \in \Lambda)$ is a complete orthogonal system of $S_{u}\mathfrak{H}$. For any $\rho \in \Lambda$, since by (*) we have $S_{e_{\rho}^{*}}S_{u} = S_{e_{\rho}^{*}}$, and

$$(S_{e_{\rho}}^{*}x, e_{\lambda} e_{\rho}^{*}) = (x, e_{\lambda} e_{\rho}^{*} e_{\rho}) = (S_{u} x, e_{\lambda})$$

for all $x \in \mathfrak{H}$ and $\lambda \in \Lambda$, we see easily that $e_{\lambda} e_{\rho}^{*} (\lambda \in \Lambda)$ is a complete orthogonal system of $S_{e_{\rho}^{*}} \mathfrak{H}$. Furthermore we have by (**)

$$T_{e_{\lambda}} e_{\lambda}^{*} e_{\lambda} e_{\rho}^{*} = e_{\lambda} e_{\rho}^{*},$$

and hence we obtain $P \ge \bigcup_{\lambda \in \Lambda} S_{e_{\lambda}} e_{\lambda}^{*}$. On the other hand, $e_{\lambda}^{*} (\lambda \in \Lambda)$ is a maximal orthogonal system of $u\mathfrak{N}$, because $(x, y) = (y^{*}, x^{*})$ for any $x, y \in \mathfrak{N}$ by theorem 1.7. Therefore we can prove similarly that for any $\rho \in \Lambda$, $e_{\rho} e_{\lambda}^{*} (\lambda \in \Lambda)$ is a complete orthogonal system of $T_{e_{\rho}}\mathfrak{P}$ and $\bigcup_{\lambda} T_{e_{\lambda}} e_{\lambda}^{*} \leq \bigcup S_{e_{\lambda}} e_{\lambda}^{*}$. Consequently we have

$$P = \bigcup_{\lambda} T_{e_{\lambda}} e_{\lambda}^{*} = \bigcup_{\lambda} S_{e_{\lambda}} e_{\lambda}^{*}$$

and $e_{\rho} e_{\lambda}^{*}(\rho, \lambda \in \Lambda)$ is a complete orthogonal system of $P \mathfrak{H}$. Since $S_{e_{\lambda}} e_{\lambda}^{*}$ is commutative with T_{a} for all $a \in \mathfrak{N}$, P is commutative with T_{a} for all $a \in \mathfrak{N}$.⁵⁾ Therefore $P \mathfrak{N}$ is an ideal by theorem 5.1.

Since $e_{\rho} e_{\lambda}^{*}$ (ρ , $\lambda \in \Lambda$) is a complete orthogonal system of $P \mathfrak{A}$ and $||e_{\rho} e_{\lambda}^{*}|| = ||u||$ by (**), every element $a \in P \mathfrak{A}$ is represented uniquely as

$$a = \sum_{\rho, \lambda} \alpha_{\rho, \lambda} e_{\rho} e_{\lambda}^{*}, \quad \sum_{\rho, \lambda} |\alpha_{\rho, \lambda}|^{2} = \frac{\|a\|^{2}}{\|u\|^{2}},$$

⁵⁾ H. Nakano: Funktionen ..., Satz 3.

and for $b = \sum_{\rho,\lambda} \beta_{\rho,\lambda} e_{\rho} e_{\lambda}^* e P \mathfrak{A}$ we have by (**)

$$ab = \sum_{\rho, \lambda} \{ \alpha_{\rho,\lambda} e_{\rho} e_{\lambda}^{*} : \sum_{\mu, \kappa} \beta_{\mu,\kappa} e_{\mu} e_{\kappa}^{*} \}$$

=
$$\sum_{\rho, \mu} \sum_{\kappa} \alpha_{\rho,\mu} \beta_{\mu,\kappa} e_{\rho} e_{\kappa}^{*} = \sum_{\rho, \kappa} (\sum_{\mu} \alpha_{\rho,\mu} \beta_{\mu,\kappa}) e_{\rho} e_{\kappa}^{*},$$

$$(a, b) = || u ||^{2} \sum_{\rho, \kappa} \alpha_{\rho,\kappa} \overline{\beta}_{\rho,\kappa}.$$

Therefore we see easily by Schwarz's inequality that we have

$$\|xy\| \leq \frac{1}{\|x\|} \|x\| \|y\| \qquad \text{for } x, y \in P \mathfrak{A}$$

and hence $P\mathfrak{A}$ is bounded as a subalgebra. Since $P\mathfrak{A}$ is closed as a subalgebra by theorem 5.1, we have hence $P\mathfrak{A} = P\mathfrak{H}$ by theorem 2.3.

We can prove easily that $P\mathfrak{A}$ is a simple ideal, in customary way: for an ideal $\mathfrak{p} \subset P\mathfrak{A}$, if $0 \neq a \mathfrak{e}\mathfrak{p}$, then there exists ρ_0 , $\lambda_0 \mathfrak{e}\Lambda$ such that

$$a=\sum_{\rho,\lambda}\alpha_{\rho,\lambda}\,e_{\rho}\,e_{\lambda}^{*},\quad\alpha_{\rho_{0},\lambda_{0}}=0,$$

and then \mathfrak{p} contains $(1/\alpha_{\rho_0, \lambda_0}) e_{\rho_0} e_{\lambda_0}^* a e_{\rho_0} e_{\lambda_0}^* = e_{\rho_0} e_{\lambda_0}^*$, and hence all $e_{\rho} e_{\lambda}^*$, since we have by (**)

$$e_{\rho} e_{\lambda}^{*} = (e_{\rho} e_{\rho_{0}}^{*}) (e_{\rho_{0}} e_{\lambda_{0}}^{*}) (e_{\lambda_{0}} e_{\lambda}^{*})$$

for any ρ , $\lambda \in \Lambda$. Consequently we have $\mathfrak{p} \supset P\mathfrak{A}$.

For any minimal unit $v \in P \mathfrak{A}$ we obtain similarly a projection operator Q, such that $Q\mathfrak{A}$ is a simple ideal and $Q\mathfrak{A} = v$. Then the intersection of $P\mathfrak{A}$ and $Q\mathfrak{A}$ is also an ideal containing v, and hence $P\mathfrak{A} = Q\mathfrak{A}$. Therefore we have ||u|| = ||v|| by (***).

Since (1-P) a is also an ideal and closed as a subalgebra by theorem 5.1, we obtain by Zorn's lemma or transfinite induction:

TTHEOREM 5. 2. For any closed Hilbert algebra \mathfrak{A} there exists uniquely a system of associative projection operators P_{λ} ($\lambda \in \Lambda$) such that P_{λ} is commutative with T_a for all $a \in \mathfrak{A}$; $P_{\lambda} P_{\rho} = 0$ for $\lambda \neq \rho$; $P_{\lambda} \mathfrak{A}$ is a simple ideal and isometric to a full-matrix algebra with the order 1/||u|| for any minimal unit u of $P_{\lambda} \mathfrak{A}$; $P_{\lambda} \mathfrak{A} = P_{\lambda} \mathfrak{H}$; and $(1 - \bigcup P^{\lambda}) \mathfrak{A}$ has no minimal unit.

DEFINITION. A Hilbrt algebra \mathfrak{A} is said to be *discrete*, if for any unit $u \neq 0$ there exists a minimal unit $v \leq u$.

THEOREM 5. 3. In order that a closed Hilbert algebra A be discrete, it is necessary and sufficient that for every self-adjoint element be A, Th has no

continuous spectrum.

PROOF. If \mathfrak{A} is not discrete, then we see easily by theorems 4.3, 4.4, and 4.5 that there exists a system of units u_{λ} $(0 \leq \lambda \leq 1)$ such that $u_{\lambda} \leq u_{\mu}$ for $\lambda < \mu$ and $||u_{\lambda}||$ is a continuous function of λ for $0 \leq \lambda \leq 1$. By spectral theory as

$$H=\int_0^1\lambda\,d\lambda\,T_{u_\lambda},$$

we obtain then a bounded self-adjoint operator H with continuous spectrum. Furthermore H is associative with \mathfrak{A} by theorem 3.6. Putting $h = H\mathfrak{u}_1$, we have then $T_h = HT\mathfrak{u}_1 = H$ by theorem 3.3.

Conversely if there is a self-adjoint element $h \in \mathbb{N}$ for which T_h has a continuous spectrum, then for the spectral system E_{λ} ($-\infty < \lambda < +\infty$) of T_h , putting

$$P=\bigcup_{\lambda} (E_{\lambda}-E_{\lambda-0}),$$

we obtain an associative projection operator P by theorems 3.4 and 3.6, and putting k = (1 - P) b, we obtain a self-adjoint element $k \in \mathbb{N}$, for which the spectral system of T_k consists only of continuous spectrum, since $T_k = (1 - P) T_k$ by theorem 3.3. Then we see easily by theorem 4.6 that there exists a system of units u_{λ} ($0 \le \lambda \le 1$) such that $u_{\lambda} \le u_{\lambda}$ for $\lambda < \mu$, $u_0 = v_1$, and $||u_{\lambda}||$ is a continuous function of λ . Putting $u = u_1 - u_0$, we obtain then a unit u by theorem 4.3, and for any positive number ε there exists a finite number of units v_1, v_2, \cdots, v_k such that

$$u = v_1 + \cdots + v_\kappa, \quad v_\nu v_\mu = 0 \text{ for } \nu \neq \mu, \quad \|v_\nu\| \leq \varepsilon_k$$

If there exists a minimal unit $v \leq u$, then we obtain an associative projection operator P by theorem 5.2 such that P is commutative with T_a for all $a \in \mathfrak{A}$, $P\mathfrak{A} \circ v$, and

$$\|x_y\| \leq \frac{1}{\|v\|} \|x\| \|y\| \qquad \qquad \text{for all } x, y \in P \mathfrak{A}.$$

Since $P_{u} = P_{v_1} + \dots + P_{v_k}$, we have $P_{v_v} \neq 0$ for some v.

For such ν , since $T_{Pv_{\nu}} = PT_{v_{\nu}}$ and $PT_{v_{\nu}}$ is also a projection operator $P_{v_{\nu}}$ is a unit by theorem 4.2, and $|P_{u_{\nu}}|| \leq ||v_{\nu}|| \leq \epsilon$, cotradicting that $|P_{v_{\nu}}|| \geq ||v||$ and $\epsilon > 0$ may be arbitrary.

THEOREM 5.4. In order that a closed Hilbert algebra \mathfrak{A} be bounded, it is necessary and sufficient that for any unit $u \neq 0$ there exists a finite number of minimal units u_1, u_2, \dots, u_k such that

$$u = u_1 + \cdots + u_\kappa$$
, $u_\nu u_\mu = 0$ for $\nu \neq \mu$.

PROOF. If $||xy|| \leq \gamma ||x|| ||y||$ for all $x, y \in \mathfrak{A}$, then we have $||u|| \geq 1/\gamma$ for any unit $u \neq 0$. Since for two units $u \geq v$, u - v is also a unit by theorem 4.3 and

$$||u||^2 = |v||^2 + ||u-v||^2$$

by theorem 4.4. Therefore we see easily that the condition of theorem is satisfied.

Conversely if the codition in theorem is satisfied, then \mathfrak{A} is obviously discrete by definition, and there exists a system of associative projection operators $P_{\lambda}(\lambda \in \Lambda)$ indicated in theorem 5.2 with $\bigcup P_{\lambda} = 1$. Let u_{λ} be a minimal unit in $P_{\lambda}\mathfrak{A}$. Then we have by theorem 5.2

$$\|xy\| \leq \frac{1}{\|u_{\lambda}\|} \|x\| \|y\| \qquad \text{for all } x, y \in P_{\lambda} \mathfrak{A}.$$

If $\inf_{\lambda \in \Lambda} || u_{\lambda} || = 0$, then there exists $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, \cdots$) for which we have

$$\sum_{\nu=1}^{\infty} \| u_{\lambda_{\nu}} \|^2 < +\infty.$$

Since $u_{\lambda_{\nu}} u_{\lambda_{\mu}} = (P_{\lambda_{\nu}} u_{\lambda_{\nu}}) (P_{\lambda_{\mu}} u_{\lambda_{\mu}}) = P_{\lambda_{\nu}} P_{\lambda_{\mu}} u_{\lambda_{\nu}} u_{\lambda_{\mu}} = 0$ for $\nu \neq \mu$, $u_{\lambda_{1}} + \dots + u_{\lambda_{\nu}}$ is a unit and $||T_{u_{\lambda_{1}}} + \dots + u_{\lambda_{\nu}}|| \leq 1$. Therefore we obtain a unit $u = u_{\lambda_{1}} + u_{\lambda_{2}} + \dots$. For such unit u, by assumption there exists a finite number of minimal units $v_{1}, v_{2}, \dots, v_{k}$ such that

$$u = v_1 + \cdots + v_\kappa, \quad v_\nu v_\mu = 0 \text{ for } \nu = \mu.$$

We have then $u_{\lambda_{\nu}} = P_{\lambda_{\nu}} v_1 + \dots + P_{\lambda_{\nu}} v_{\kappa} (\nu = 1, 2, \dots)$, and, since $P_{\lambda_{\nu}} v_{\mu} = P_{\lambda_{\nu}} T_{\nu_{\mu}} v_{\mu}$, $P_{\lambda_{\nu}} v_{\mu}$ is also a unit by theorem 4.5. Thus $v_1, v_2, \dots, v_{\kappa}$ must coincide with a finite number of $u_{\lambda_1}, u_{\lambda_2}, \dots$, contradicting $u_{\lambda_{\nu}} \neq 0$ ($\nu = 1, 2, \dots$). Therefore there exists a positive number ϵ such that $||u_{\lambda}|| \ge \epsilon$ for all $\lambda \in \Lambda$, and we have then for any $x, y \in \mathfrak{A}$

$$\|xy\|^{2} = \|\sum_{\lambda \in \Lambda} (P_{\lambda} x) (P_{\lambda} y)\|^{2} = \sum_{\lambda \in \Lambda} \|(P_{\lambda} x) (P_{\lambda} y)\|^{2}$$

$$\leq \frac{1}{\varepsilon^{2}} \sum_{\lambda \in \Lambda} \|P_{\lambda} x\|^{2} \|P_{\lambda} y\|^{2} \leq \frac{1}{\varepsilon^{2}} (\sum_{\lambda} \|P_{\lambda} x\|^{2}) (\sum_{\lambda} \|P_{\lambda} y\|^{2})$$

$$= \frac{1}{\varepsilon^{2}} \|x\|^{2} \|y\|^{2}.$$

THEOREM 5. 5. In order that a closed Hilbert algebra \mathfrak{A} be bounded and every simple ideal be finite-dimensional, it is necessary and sufficient that $T_{\mathfrak{a}}$ is completely continuous for all $\mathfrak{a} \in \mathfrak{A}$. **PROOF** First we assume that T_a is completely continuous for every $a \in \mathfrak{A}$. Since \mathfrak{A} is discrete by theorem 5.3, for any unit $u \neq 0$ there exists a sequence of minimal units u_v ($v = 1, 2, \cdots$) by theorem 4.3 such that

$$u = u_1 + u_2 + \cdots, \quad u_{\nu} u_{\mu} = 0 \text{ for } \nu = \mu.$$

As T_u is completely continuous by assumption, $T_u \mathfrak{H}$ must be finitedimensional, and

$$T_{u} \mathfrak{F} \mathfrak{F} T_{u} \mathfrak{U}_{\nu} = \mathfrak{U}_{\nu} \quad (\nu = 1, 2, \ldots).$$

Thus $\mu_{\nu} = 0$ except for finite ν , and hence \mathfrak{A} is bounded by the previous theorem. Let P_{λ} ($\lambda \in \Lambda$) be a system of projection operators indicated in theorem 5.2. For any minimal unit $\mu \in P_{\lambda} \mathfrak{A}$, since $T_{\mu} \mathfrak{H}$ is finite-dimensional, $P_{\lambda} \mathfrak{A}$ is also finite-dimensional by its construction. Therefore every simple ideal is finite-dimensional.

Conversely if T_a is not completely continuous for some $a \in \mathfrak{A}$, then T_{a^*a} is also not completely continuous, because if T_{a^*a} is completely continuous, then $\lim (a_{\nu}, x) = 0$ for all $x \in \mathfrak{H}$ implies $\lim T_{a^*a} a_{\nu} = 0$, and hence

$$\lim_{\nu\to\infty} \|T_a a_\nu\|^2 = \lim_{\nu\to\infty} (T_{a^{\prime}a} a_{\nu}, a_{\nu}) = 0,$$

contradicting that T_a is not completely continuous. Since T_{a^ka} is self-adjoint and positive definite, by theorem 4.6 there exists a unit u for which $T_u \mathfrak{H}$ is infinite-dimensional. If \mathfrak{A} is further bounded, then by the previous theorem there exists a finite number of minimal units u_1, u_2, \dots, u_k such that

$$u = u_1 + \cdots + v_k, \quad u_{\nu} u_{\mu} = 0 \text{ for } \nu = \mu.$$

Then, as $T_u = T_{u_1} + \cdots + T_{u_\kappa}$, T_{u_ν} \mathfrak{H} is infinite-dimensional for some ν . Let $P_{\lambda}(\lambda \in \Lambda)$ be a projection operators indicated in theorem 5.2. There exists $\lambda \in \Lambda$ for which $P_{\lambda} \mathfrak{A} \mathfrak{s} \mathfrak{u}_{\nu}$, namely $P_{\lambda} \mathfrak{u}_{\nu} = \mathfrak{u}_{\nu}$, and hence $P_{\lambda} T_{u_{\nu}} = T_{u_{\nu}}$ by theorem 3.3, that is, $P_{\lambda} \mathfrak{A} \supset T_{u_{\nu}}\mathfrak{A}$. Therefore $P_{\lambda}\mathfrak{A}$ is a simple ideal but not finite-dimensional.

§6. Maximal algebras.

In the sequel we consider only maximal Hilbert algebra. Let \mathfrak{A} be a maximal Hilbert algebra in a Hibert space \mathfrak{H} . \mathfrak{A} is naturally closed by theorem 2.3.

THEOREM 6.1. If a projection operator P is commutative with T_a and S_a for all $a \in \mathfrak{A}$, then P is associative with \mathfrak{A} , P \mathfrak{A} is an ideal and P \mathfrak{A} is also maximal as a subalgebra.

H. NAKANO

PROOF. First we will prove that $P \mathfrak{A} \subset \mathfrak{A}$. If a, b, Pa, Pb $\mathfrak{e} \mathfrak{A}$, then, since P is commutative with T_a and S_b by assumption, we see easily that

$$(Pa) b = a (Pb) = Pab,$$
 $((1-P) a) b = a ((1-P) b) = (1-P) ab.$

Therefore, denoting by $\tilde{\mathfrak{A}}$ the set of Pa + (1 - P)b for all $a, b \in \mathfrak{A}$, we obtain a Hilbert algebra, if we define

$$(Pa_1 + (1 - P) b_1) (Pa_2 + (1 - P) b_2) = Pa_1 a_2 + (1 - P) b_1 b_2,(Pa + (1 - P) b)^* = Pa^* + (1 - P) b^*,$$

and $\tilde{\mathfrak{A}}$ contains obviously \mathfrak{A} as a subalgebra. Since \mathfrak{A} is maximal by assumption, we have $\tilde{\mathfrak{A}} = \mathfrak{A}$, and hence $P\mathfrak{A} \subset \mathfrak{A}$. Thus P is associative with \mathfrak{A} , and consequently $P\mathfrak{A}$ is an ideal by theorem 5.1.

For any extension $\hat{\mathfrak{A}}$ of $P\mathfrak{A}$ in the Hilbert space $P\mathfrak{H}$, we see also similarly that $\hat{\mathfrak{A}} + (1-P)\mathfrak{A}$ is a Hilbert algebra, if we define,

$$(x + a) (y + b) = xy + ab,$$
 $(x + a)^* = x^* + a^*$

for $x, y \in \tilde{\mathfrak{A}}$ and $a, b \in (1-P)\mathfrak{A}$, and $\hat{\mathfrak{A}} + (1-P)\mathfrak{A}$ contains \mathfrak{A} as a subalgebra. Since \mathfrak{A} is maximal by assumption, we have hence $\hat{\mathfrak{A}} = P\mathfrak{A}$, that is, $P\mathfrak{A}$ is maximal as a subalgebra.

THEOREM 6.2. For any ideal \mathfrak{p} of \mathfrak{A} there exists a projection operator P such that P is commutative with T_{\bullet} and S_{\bullet} for all $\mathfrak{a} \in \mathfrak{A}$ and $P\mathfrak{A} = \mathfrak{p}$.

PROOF. Let P be the projection operator of the closed linear manifold spanned by \mathfrak{p} . Since \mathfrak{p} is an ideal by assumption, for any $a \in \mathfrak{A}$ we have

$$T_a P_x = a_x = PT_a P_x \quad \text{for all } x \in \mathfrak{p}.$$

As \mathfrak{p} is dense in $P\mathfrak{H}$, we have hence $T_a P = PT_a P$ for all $a \in \mathfrak{A}$, and furthermore

$$PT_a = (T_{a*}P)^* = (PT_{a*}P)^* = PT_a P.$$

Thus P is commutative with T_a for all $a \in \mathfrak{A}$. Similarly we can prove that P is commutative with S_a for all $a \in \mathfrak{A}$. Therefore we have $P \mathfrak{A} \subset \mathfrak{A}$ by the previous theorem. Since \mathfrak{p} is dense in $P\mathfrak{A}$, we have hence $\mathfrak{p} = P\mathfrak{A}$ by definition of ideals.

THEOREM 6.3. If two projection operators P and Q are both commutative with T_a and S_a for all $a \in \mathfrak{A}$, then we have PQ = QP.

PROOR. By theorem 6.1 P and Q are both ideals of a. First we assume that P and Q and Q have no common element except 0. Then we have obviously

$$(P\mathfrak{A})(\mathcal{O}\mathfrak{A}) = \{0\}.$$

Therefore for any $a, b \in P \mathfrak{A}$ and $x \in Q \mathfrak{A}$ we have

$$(ab, x) = (b, a^*x) = 0.$$

Since $(P \mathfrak{A})$ $(P \mathfrak{A})$ is complete in $P \mathfrak{H}$ by theorem 1.6, we obtain hence $PQ \mathfrak{A} = \{0\}$. As \mathfrak{A} is dense in \mathfrak{H} , we have thus PQ = 0, and consequently QP = 0.

In general, the intersection \mathfrak{p} of $P\mathfrak{A}$ and $Q\mathfrak{A}$ is obviously also an ideal of \mathfrak{A} . Therefore there exists a projection operator R such that $\mathfrak{p} = R\mathfrak{A}$ and R is commutative with T_a and S_a for all $a \in \mathfrak{A}$. Then, since $P\mathfrak{A} \supset R\mathfrak{A}$ and \mathfrak{A} is dense in \mathfrak{H} , we have $P \ge R$. Similarly we can prove that $Q \ge R$. Furtheremore $(P-R)\mathfrak{A}$ and $(Q-R)\mathfrak{A}$ have no common element except 0. Thus we have

$$(P - R) (Q - R) = (Q - R) (P - R) = 0,$$

and consequently PQ = QP.

Let \mathfrak{P} be the set of all projection operators, which are commutative with T_a and S_a for all $a \in \mathfrak{A}$. By the theorems proved above, we see that \mathfrak{P} is a Boolean algebra of projection operators and $\mathfrak{P} \mathrel{\mathfrak{P}}_{\lambda}(\lambda \in \Lambda)$ implies $\mathfrak{P} \mathrel{\mathfrak{P}}_{\lambda}$, $\bigcap P_{\lambda} \mathrel{\mathfrak{G}}_{\lambda}$

For any atomic element $P \in \mathfrak{P}$, $P\mathfrak{A}$ is a simple ideal by theorem 6.2. Let P_{λ} ($\lambda \in \Lambda$) be the system of all atomic elements of \mathfrak{P} . Then we have obviously $P_{\lambda} P_{\rho} = 0$ for $\lambda \neq \rho$. Putting $Q = 1 - \bigcup P_{\lambda}$, we obtain $Q \in \mathfrak{P}$, and $Q \mathfrak{P}$ has no atomic element, and hence $Q\mathfrak{A}$ contains no simple ideal by theorem 6.2. Therefore we have :

THMORMM 6.4. For a maximal Hilbert algebra \mathfrak{A} there exists a system of projection operators P_{λ} ($\lambda \in \Lambda$) such that $P_{\lambda} P_{\rho} = 0$ for $\lambda \neq \rho$, P_{λ} is commutative with T_a and S_a for all $a \in \mathfrak{A}$. $P_{\lambda} \mathfrak{A}$ is a simple ideal, and $(1 - \bigcup_{\lambda} P_{\lambda})\mathfrak{A}$ contains no simple $: I_{-1}$

Mathematical Department, Tôkyô University, Tôkyô.

⁶⁾ H. Nakano: Funktionen Satz. 3.