HILBERT ALGEBRAS®

By

Hipecoré Naxkano

W. Ambrose? defined a proper H*-algebra ©:$ is a Hilbert space and a
1ing subject to the conditions: 1) if zx=0 for all x ¢, then g=0, and 2) for
any g e 9 there is g7 ¢  such that

(ax19) = (x2a™) » (xa,)) = (x)ya*%)
for all x, y¢®, and proved that if § satisfies the condition

(B) sup  [lxyll < + o,

ial=lyl=1

then 9 is a direct sum of simple 2-sided ideals ¥ 9, such that 9, | 9 for
AtA

p=+x and ) is isometric to a full-matrix algetra: for some set A all complex
valued functicns z (A. p) (A, p e A) with
2ila (P2t
P

constitute a proper H*-algebra, being called a ful/-matrix algebra, if we put

ab (A p) = 2 a(r 7), 6 (7. p)s

a* (N p) = a (o, N,

@b =-1Sa0 00 p)

Ap

o’

for some positive number «, wich we shall call the order of a full-matrix
algebra. He used the condition (B) essentially in his proof, while it will be
proved that any H*-algebra satisfies the condition (B) (cf.§2). He remarked
further that a group ring on a compact group is a proper H=<-algebra: let § be
a compact group. All complex valued measurable functions (o) (o ¢ @) with

Sia(a')f‘“’ do <+ ®

for Haar measure constitute a proper H*-algebra if we put

*) Received Nov, 25, 1949,
1) W.Ambrose: Structure theorems for a special class of Banach algebras, Trans, Amer.
Math, Soc. 57 (1945) 364-386.
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ab (o) = S a(er™) b(1)d,
a* (@) =a(a™)
(@ b) = S a (o) b (o) do-.
If a group @ is locally compact, then its gioup ring is not necessatily a

Hilbert space as remarked by I.E.Segal.® But all complex valued measurable
functions « (o) (o € @), such tbat 4 (o) = 0 except for some compact set As and

Sla(a)l”da< + 0,

satisfy the condition of proper H* algebra, except completeness, and for Haar
measute 7 (As) we have

lab | < m (M) 2| all | b
for all such functions 5 (¢), if  has a 2-sided Haar measure. Thus we need

to consider proper H*-algebra, which is not complete. This is the purpose ot
this paper.

§1. Fundamental definitions.
Let § be a Hilbert space, which need not be separable.

DeriviTION, A linear manifold % of 9 is called a Hilbert algebra, if

(1) %is dense in $;

(2) %is a ring: for any g, b e A there is defined 4b e A such that

(@b) c=a (be), a(b+¢) =ab+ac, (a+b) c=ac+ be

and (aaq) b=a (ab)=aab for any complex number «;

(38) for any 4 ¢ there exists an adjoint element a*e A such that
(ab, ¢) = (by a* ¢)s (be, ¢) = (b, ca’);

4) for any g e there exists a positive number aa such that

ax =da x . for all xe;

(5) by (1) and (4), for every z ¢ we obtain uniquely a bounded lineat
operator T, on § such that

Tax = ax for all x ¢ 9.

For an element fe 9, if T:f =0 for all x¢%, then we have f=0.
First we shall write fundamental properties of Hilbert algebra. Let % be a

2) ILE,Segal: The group ring of a locally compact group, Proc, Nat, Acad, Sci. U,S.A.
27 (1941) 348-351,
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Hilbert algebra in a Hilbert phace  in the sequel.

TueoreM 1. 1. For an element ae¥, if ax=0 for all x €N, then we have
a=0.

Proor. By (3), for any x. y¢ A we have

(Tx a, 9) = (xa, y) = (@, x*9) = (ay*, x*) = 0.

Since % is dense in $ by (1), we have thus Tra =0 for all xe%, and hence
a=0 by (5).

By this theorem we have obviously :

THEOREM 1. 2. Ta=Tb if and only if a = b.

TueoreM 1. 3. For any acWN we have Ta = Ta* and hence the cdjoint
element a* is detemined uniquely.

Proor. For any x, ye %A we have by (3)

(Tax, p) = (ax, y) = (%, a*y) = (x, Ta*y).

Since % is dense in by (1), we have thus Tux = T%.
By definition we see easily :

THEOREM 1. 4. g** = g, (aa)* = Aa*,
(ab)* = b*a*, (a+b)* = a* + b*.
THEOREM 1. 5, Tas=aTs Ta=Talt, Tats=Ta+ Tb

TrEOREM 1. 6. AU is complets in D: there is no element except 0 in 9,
which is orthogonal to xy for all x, yeU.

Proor. For an element fe, if (xy, /) =0 for all x, ye¥, then we have
by theorem 1. 3

(T"f’j’):'(f’ T;)’)z(f‘ T’*J})Z(j’ x*y) =0
for all x, ye %, and hence f=0 by (1) and (5).

TuEOREM 1. 7. For any a. b e we have
(@, &) = (&%, a*), la ="a*l.
Proor. For any x, y, z ¢ % we have by (3) and theorem 1. 4
(3 33) = (%, ) = Ry x*) = ()" ™)

By the previous theorem, for any g e % there exist ;v e A (v =1, 2, ), as linear

forms from A%, such that lim & =4 and (x, &) = (av*, x*) for all xe% and
V>0

v=1,2.. As xe% may be arbitrary, we have then
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Yov—ar P= @t —an* ) (viu=1,2, "'),
and hence there exists e$ for which lim 4y*==;. Then we have (x, a)

Vs

= (f, x*) for all 2-e . Therefore we have

(s 209) = ((c0)* a) = (a*, x9)
for all x, y ¢ %, and hence f = z* by the previous theorem.
By (4) and theorem 1. 7 we obtain immediately :

THueorEM 1. 8. For any g e % there exists a positive number B such that
[xa| =< Baix! for all x e %.

By this theorem, for every 4e¢% we obtain uniquely a bounded linear
opetator S, on 9 such that

Sax =xa for all x e ¥.

By definition we see easily :

THEOREM ]. 9. Agu == :a*. Sab = S‘bXa, :TaSb = SbTa, Sua = (X.S‘a,
Sa+b = :n -+ 5b-

TueoreM 1. 10. S = Sb if and only if ¢ = 5.

Proor. If S§. =0, then we have T.g = Sax =0 for all xe%, and hence
a=0 by (5).

THEOREM 1. 11, For an element fe9, if Ssf=0 for all xe¥, then we
bave f=0.

Proor. For any x, y ¢ % we have by theorems 1.3, 1.9

(T=f,9) = (fs TH) = (f, x9) = (/s Syx*) = (S /o x¥).

Therefore if S: f =0 for all x¢%, then we have T:f=0 tor all xe%, and
hence f= 0 by (5).
By definition we have obviously

(Tab)* = Sa*b*, (Sﬂb)* =Ta b*
for all 4, » ¢, and hence by theorem 1.7
1Tab = Saxb*|, 1) =1b*|.

Therefore we obtain Ta = So+ =.S5%! =|Sa] by theorem 1.9, that is, we
have:

TueoReM 1, 12, ! Ta = Sa jor all ae¥.
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§2. Closed algebras.
Let % be a Hilbert algebra in a Hilbert space 9. Fitst we will prove:
THEOREM 2. 1, val_i)in av=ay aveA (=012, ) and |[Ta, |y (v =1
2, ) for some <y > 0, then we have
lim Ta =Tas, lim Ta} = Ta,
i 5o S T i 5

Proor. Since Tax = Ssav for all x e, we have by assumption

lim Tay = S:a,=Tax  for all xe.

For any fe® there exist x,¢e (»=1,2, ) by §1 (1), such that lin; xv=f.
We have then

| Ta, f—TafIl = (ITa, |+ | Tay!) | f—xui+ " Taxu— Tapxu|
for any v, u=1, 2, ... Therefore we obtain

im | To, f— Teof | < (y + | Tap ) |f — 5ul,

-
and hence lim Ta f= Ta,f for all fe9.

Since liyr_:a, =g,* by theorem 1.7 and |Ta [=|T&IZy (=1, 2, --)
by theore;r_; ?.3, we have also lim Ts* = Ta, as proved above, Furthermore,
since | Ta," =54 | by theorer;T.lz, we can prove similarly also the other
-equations.

Cerinttion. A Hilbert algebra % is said to be closed, if 1’1_1:? a=fe9,

avel (v=1,2, ) and sup | T, | < + o imply fe .
v=21

Derinition. A Hilbert algebra % is called an extension of a Hilbert
algebra 9, if 9 contains A as a subalgebra.

Derinition. A Hilbert algebra % is said to be maximal, if there is
no extension of A except itself.
By Zotn’s lemma or transfinite induction we see easily :

THEOREM 2. 2. Every Hilbert algebra has a maximal extension.
THEOREM 2. 3. If a Hilbert algelra % is maximal, then N is closed.

Proor. Let % be a maximal Hilbert algebra. If lim 4= fe 9, ave ¥ and
{Ta| <o (r=1,2,-), then we have
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lim gy —au]=0, | TCV-G“ I=2y (v, u=1, 2,-4),
V, M0
and hence 11m (Ta,— T. =0 by theorem 2.1. Consequently there exists a
bounded lmear operator T7 on § such that lim Ta,= Ts. Such Ty is de-

Vo

termined uniquely corresponding to f, because if

lim gy = lim &y, 1Ta 0=, Ts, =7,

V=0 Vo0
‘then we have lim (¢, —4#) =0, (Ta —Ts =1y, and hence lim Ta = lim
V-0 V>0 V>
Ts, by theorem 2.1.

We denote by % the set of all such elements fe9. Then we see easily
that 9 is a linear manifold of 9, % o A, and

=Ta for all gz ¢ %,
For any f, ge W there exist 2 e A and by e A (» =1, 2, --) such that
lim gy = f, hmbl—g, 1Ta, S, 1T =Sy

V>0

for some positive number . Since
lav by — ngigu Tav“ I by ——g1!+ !?Tayg—ng!l,

‘we have then lim gv by = T g and further [Ta 5 | <% and hence
‘Since hm | av* — au* |=0 by theorem 1.7 and | Tax| =[Ta, =7 by cocenven

1.2, there exists f* &% for which hm @*=f* and we have Ty.= T}, beca-
use for all x, ye %A we have

(Tr*x, 3) = hm (Ta,ux, y) = hm (av*xs 9)
hm (%, Ta,y) = (x, T1y).

Furthermore if hm cv="hbeW, v e, and | Te,|<v (=1, 2,-) for some po-
‘sitive number 'y, . then we have

(Tgf, /]) =}1m ([hdv, [v) = %in} ([h, cv av*) = (g' ’lwhf*)o

Therefore, putting fg = Ty g forf, g ¢, we obtain a Hilbert algebra %, which
is an extension of M. If %A is not closed, then A dose not coincide with A by
its construction, contradicting the assumption that % is maximal. = Thus % is
-closed.

Let % and 9l be two extensions of A. For any common element f of A

and 9, puttig Trg=fg for geﬁ and ffé\:fg for §e‘ﬁ, we have for all
2y
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(T‘fx,y) = (fi yx*) = (T1 2y
and hence Tr= Ty by §1 (1). Therefore the intersection of all closed exten-

sions of ¥ is also a closed extension of %, which is called the ¢/osure of .

DerinitioN. A Hilbert algebra % is said to be bounded, it A satisfies the
condition

(B) sup  [xy] < + =,

Nzl = iyl =1
and this value is called its order.

TueoreM 2. 4. If a Hilbert algebra W is bounded, then the closure of %A
coincides with the whole space 9.

Proor. For any fe® there exist e (v =1, 2, ) by §1 (1) such
that 11m av=f. If A is bounded. then we have sup |T4v < + » and hence f

=0

belongs to the closure of %A.

THEOREM 2. 5. If the whole space 9 is an extension of a Hilbert algebra W,
then W is bounded.

Proor. Let  be a Hilbert algebra. If  is not bounded, then there exist
xv and 5 €9 (v=1, 2, ) such that

lixvli= !U’V l1=1, lev]v llgll?,
and we have tor any ye 9

(5 = 2)|=1(5

vy (»=1, 2, ) is weakly convergent, contradicting

SRS

Thus

1
fim [ | =+

Remark. Every proper H*-algebra defined by W. Ambrose is a Hilbert
algebra. Indeed a proper H*-algebra $ satisfies obviously the condition of
Hilbert algebra except (4). 9 satisfies further (4), because if § dose not
satisfy (4), then there exist ze¢ 9 and xv e such that 'x' =1, axv|=2?
=1, 2, -), and we have

lim (-J—ax,,, y>_11m< 11/ X, a"iy>= 0

V- ndd

for all ye9, that is,

axy (v =1,2,~-) is weakly convergent, contradicting

lim “—};—— axy ‘J= + 0, Fu1tnetmore 9 is bounded by theorem 2. 5.

V>
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§ 3. Associative operators.
Let % be a closed Hilbert algebra in a Hilbert space §.

DerFiNITION. A bounded linear operator 4 on 9 is said to be associative
with %, if A% A and we have '
(Ax) y= Axy for all x, ye¥,
that is, A5:= S: A4 for all x .

By definition we have obviously :

TueoreM 3. 1. The set of all associative operators comstitutes a ring of
operators: if A and B are both assoiative with N, then a A+ BB, AB are. all
associative with U.

TuEOREM 3. 2. Ta is associative with N for all a €.
Tueorem 3. 3. If A is associative with W, then we have ATa= Taa for
every aeU.

Lemva 3. 1. For a sequence of bounded linear operators Av(v=1,2, -)
on 9, if im (A x, y) exists for any x, y €9, then we have sup A< + .
V->® v;

Proor. If sup | A, )= + oc, then there exist xve9, w (v=1, 2, ---) such
v
that [x, '=1 and ! Aux | = »?, and we have for any ye 9

lim (—11}— Am,xv,y> = 153 (——,1,— Xy Aﬁw)) =0,

)
1
14

that is, A, xv (v=1, 2, ---) is weakly Jconvergent, contradicting

lim '1 ‘:)— .AM.VX'V

V>0 i

= 4 0.

Tueorem 3. 4. If Ay (v=1,2, =) are all associative with N and lim
V=0
Av= A, then A is also associative with N.

Proor. By the previous lemma 4 is obviously a bouded linear operator
on . For any 4z¢ N we have by theorem 3.3

[ T ava ” = ﬂ Ay Ta !l § ll Ay " ” Ta ” al’ld lim Av a= Aﬂ’

V-
and hence Ag ¢ ¥, since A is closed by assumption. For any x, y ¢ % we have
furthermore

(Ax)J’= lim J‘y Avx= lvim Av Syx_—_ Axy'

For a system of projection operators Py (A eA) on 9, N P means the
projection opetator of the intersection of all Px © (A e A), and U Py the projection
A
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operator of the closed linear manifold spanned by all Px (A & A).
LemMA 3. 2. For any projection operators P and Q, we have
11:2 POr=PngQ, PUQ=1—((1—P)N(1- Q).
Proor. Since PQP is a positive definite self-adjoint operator and | POPx|
=<|x| for all xe®, by spectral theory we obtain a projection operator P, as
Py= %:rrxl (PCP) .
As POP (PNQ)=PNQ, we have then obviously P,=P N Q. On the other
hand, since for any x¢ 9
x1="1Px | = | OPx = POPx )= | Pex!, PyPox = Pex,

we have | Pﬂx {=1PPx|=1QPPex|=|Pyx| for all xe9. Therefore we obtain
Px = PPx= QPPx, and hence P, < PN Q. Thus we have

P n Q=lim (PYP) = lim (PO,
V-0 V=
since (P N Q) Q=P N Q. By definition we have obviously the other equation.
TuroreM 3. 5. For a system of projection operators Px (M€ A), if Px (A eA)

are all associative with N, then Q Px and \} Px are both associative with .
A

Proor. By theorem 3.4 and lemma 3. 2 we can assume that for any
A1, Az €A there exists A e A such that Py < Pa N Pr. Putting P= N Py, we
have then

| Px} =inf | Pa x| for all xe AP
AEA

For any a, b e there exists M e A (v =1, 2, «------.) such that Pay = Pag = =
and

1im [P, al= inf |Pxal, lim | Py ab 1\=§nlfllPA ab|.
For Py= 11m P,\,,, we have thus |Pal= |' Pal|, |Pwab|=|Pab|. As obvionsly

P,=P, we have hence P.a = Pa, P.ab = Pab. Since P, is associative with %
by theorem 2. 4, we obtain therefore

Pae¥, (Pa)b=(P.a)b= Pab = Pab.
Similarly we can prove the other relation.

THEOREM 3. 6. If a bounded self-adjoint operator H is associative with %,

3) H.Nakano: Funktionen mehrerer hypermaximaler normaler Operatoren, Proc. Phis.-
Math. Soc, Japan, 21 (1939) 713-728, Satz 2.
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then for its spectral system Ex(— <\ < + ©):

H=S” AdE\, lim Ei=En,
—% A-AQ+0

Ex is associative with U for any \.

Proor, As H is bounded, we assume | Hx| < v [x| for all x 9. Since

| kel 9 o 21) —_— 1
|7\,I= 2 ay A’ (1—‘),")“, Ay = 1, Ay = T &y-1,
v=1
is uniformly convergent for A!=<1, putting
H=—2t(H-\), —y=n=qy

v+ il
we see easily by spectral theory?)
(1—En) Hi= — Hi+ &3 oo Hy (1— HPP,
v=1
Eao=lim {1— (1 — Ea)) Hy)™

‘Therefore we obtain by thecrems 3.1, 3.4 that Fa, is assciative with .

§4. Units.

Let % be a closed Hilbert algebra in a Hilbert space 9.

DerINITION. An element b e U is said to be se/f-adjoint, if h = b*.

By theorems 1.3 and 1.9 we have then obviously :

13

TueoreM 4. 1. An element aeN is self-adjoint if and only if Ta is self-

adjoint, or Sais self-adjoint.

DerFINITION. An element ze ¥ is called a g#uiz, if # is self-adjoint and

idempotent : # = #* and s = 5.
By theorems 1.5 and 1.9 we see at once:

TueoreM 4. 2. An element a €W is a unit if and only if Ta is a projection

operator, or Sais a projection operator.

DeriNiTION. For units #, #.eW we shall write #, = # if Tu =74, as

projection operators.

By theorem 1.5 and caiculus of projection operators we see easily that

4) Cf, ]. von Neunann: Allgemeina Eiganwerttheorie Hermitescher Fuaktionalopara-
toren, Math, Ann. 102 (1930) 49-131, M.H,Stone: Linzar transformations in

Hilbert space, New York (1932).
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for units we have :

THEOREM 4. 3. If uy = #> and u> = us, then #,= uss uy = u: implies uyn,=
U 44y =t for wi = u, we obtain a unit a1 — u = uy; and if w4, =0 and u, = u;,.
then we have w4 = t;4,=0.

THEOREM 4. 4. For anits, uy#: = O implies (#1, #:) = 0.
Proor. (lﬁ, llz) = (ﬂl, /5 uz) = (#1 %2, ﬂz) =0.

TueorReM 4. 5. For @ unit u and an associative projection operator P=Ta.
we obtain a unit Py for which we have Tp, = P.

Proor. By theorem 3.3 we have Tsy, = PT« = P, and hence Pz is a unit

by theorem 4.2.

THEOREM 4. 6. Let heWN be self-adjoint amd Ex (—co <A<+ o) the
spectial system of Th. For any positive number € there exists ap associative self-
adjornt operator H such that Hb is a unit and Thv=1— Ee.

Proor. By spectral theory we have for any € > 0
[ Thoel = €2 for x e (1— E) 9.
As T is bounded, we assume | Tax = v'x| for x¢$. Then we obtain the

inverse A of ——%/— Tr in 1 — Ee) 9, as
Ax:'Z\l-_TTh> P for xe(l — Ee) 9,

and —;—ATI. x=x for xe(l — E.) 9. Putting H = —%—A(l — Ee), we obtain a

bounded self-adjoint operator H on $ and

HTkx—:—rl;—ATh(l-—Es)x:(l — Ee) x for x €.

Sinec H= ", ( 1— —'1)7 Th)v (1—E:), H is associative with % by theorems 3.1
v=1 /

and 2.4, and hence Twuw= HTs»=1—E: by theorem 3.3. Consequently Hj
is a unit by theorem 4.2.

TueoreM 4. 7. Ewery closed Hilbert algebra U has a anit u = 0.

Proor. For any a e, ¢+ «* and /a - ia* are both self-adjoint. Therefore
there exists a self-adjoint element /4 = 0. For a self-adjoint element 4 =+ 0, since
one of Tx and T - is not negative definite, we can assume that Tk is not
negative definite. Then, for the spectral system FEa of T, there exists a positive
numker e such that 1 — Ee. + 0, and by the previous theorem there exists a
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it 4 for which we have Tuw =1 — E: + 0, and hence # = 0 by theorem 1.2.

DEFINITION. A unit ¢ =+ 0 is said to be minimal, if there is no unit » < #
-except itself and 0.

TurorReM 4. 8. In order that a unit ueW be minimal, it is necessary and
sufficient that uN u is ons-dimensional.

FrooF Let W s be not one-dimensional. Then there exists xex#WAxu
such that x = 0 and (%, x) = 0. Since

x* = (axay* =ux*neaVa, (4, x*)=(x, 8)=0,
there exists then a self-adjoint element / € # % # such that
(#, 5)=0, 1al=1h|=0.

T is self-adioint by theotem 4.1. Let Ea (—o < A < + ) be the spectral
system of Th As #h= hu= b, we have Ty Th = Ts Tw = T» by thnorem 1.5,
and hence T is commutative with Ea for all A by spectral theory. We will
now prove that there exists A, for which

TuErng+0, Tu(l— Ea)+0.

If there is no such 2, then we have
Te=TsTu= Sim AdEATu=ATu=Thru

for some A, and hence 4 = Az by theorem 1.2, contradicting
1512= (\a, b) =X (#, h)=0.

If TuEx #+0and Tu (1 — Ex,) = 0, then, since Ex is associative with % by
theorem 2.6, we obtain a unit y = Ty Exg# = # by theorem 4.5, and we have
To=TuFEan=0, Tu - Ty %9, that is, » + 9, 4+ » by theorem 1.2. Therefore
# is not minimal.

Convérsely if a unit # = 0 is not minimal, then there exists a unit » < 4
such that » = 0 and # — » + 0. Then, since » (¥— ) = 0, we have (s, #-- ) =0
by theorem 4.4, and

v=avucalu, u—v=un—v)acaNu.

Therefore #% # is not one-dimensional.

§ 5. Discrete algebras.
Let % be a closed Hilbert algebra in a Hilbert space 9.

DerinitioN. A linear manifold p < % is calld an jdeal, if p satisfies
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(1) xpycp forall x, ye¥;
(2) x ep implies x* ep;
(3) ayep, lim @y =aeW implies aep.

TueoreM 5. 1. If a projection operator P is associative with U ana
commutative with Ty for all xe¥W, then P is an ideal and closed as a
subalgebra.

Proor. Since for any x, y ¢ % we have
(Px) y = Pxy, x(Py) = Tx Py= PT»y= Pxy,
P satisfies (1). Since for any x, 5, ¥ ¢% we have,
(Px)y, g) = (x (Py), ) = (B, x*3) = (1, (Px*)3),
we obtain by definition,
(Px)* = Px* .

and hence P ¥ satisfies (2). Furthermore for lim Pay=ae% we have lim
Vo ‘ Vo

Pa, = Pa= a, and hence ae P ¥, that is, P9 satisfies (3).
Iflima =a aeP¥ and | Tox|=vyix| for xePA (v=1, 2, --), then

V=

we have for any x e
| Tayx!=[Tea, x| ="PTayx|=|TaPxI = y|Px| =« xl|.

Since % is closed by assumption, we have then ¢¢%, and obviously Pa = a.
Therefore PN is closed as a subalgebra.

DeriniTION. An ideal p is said to be simple, if there is no ideal contained
in p except itself and {0).

Let #e% be a minima! unit, and ex e » (AeA) a maximal orthogonal
system contained in % # such that

iexn'=1ul, exg=u fos some AjeA

that is, % # contains no element except 0, which is crthogonal to all ex (A €
As ¢x = ex 4, we have then

exep = un*epneuy.

Since %% # is one-dimensional by theorem 4.8, there exists a complex numl
8x0 such that

( ex* ep == On,p 4,

and Sxpl # 12 = (8r o 5, #) = (e:* ¢°, #) = (eo, €2). Therefore we have by assumpti
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5 (1 for A =p,
**=1o for A+ p. -

By ( * ) we see easily :

(**) (60 ex*) (en ex*) = Ox pep ™,
(60 ex*, e 0c*) = (en* €p, 0 1) = 8p, uOnk | 2 [P,

Thus ¢, ea* (p, A ¢ A) constitute an orthogonal system. Since ex ex* is a unit by
(**), we obtain a projection operator P as

P=U T, e
AgA
which is associative with % by theorem 3.5. For any A e A we have by (*)
Pex = Pexextex = PT,, ofex=T,, ¢ ex =ex,
and hence (1—P) Ax= {0}, because ex(reA) is a maximal orthogonal
system in A . Since A is dense in P, we have (1 — P) Su =0, namely P = S,
and ex (L€ A) is a complete orthogonal system of S« 9. For any peA, since
by (*) we have §,* Su = Sc%, and
(Sex o, ex eo%) = (2, ex e* €5) = (Su 2, €x)

for all x ¢ and A e A, we see easily that ex e,* (A € A) is a complete orthogonal
system of S . Furthermore we have by (**)

L — 3
Te, e% O 6* =0, 65,

and hence we obtain P> U S,, ,* On the other hand, ex* (A e A) is a ma-
ximal orthogonal system ('\)'é\ # %, because (x, y) = (y*, x*) for any x, yeA by
theorem 1.7. Therefore we can prove similarly that for any p e A, ¢, ea* (A € A)
is a complete orthogonal system of T, § and [}\J Tepot=US,, &, Con-
sequently we have

szTehe:‘:lgSe)‘ﬁA*

and e, ex*(p, A e A) is a complete orthogonal system of P . Since S,, ,* is
commutative with T, for all 2e%, P is commutative with T, for all 4z&%.®
Thetefore P% is an ideal by theorem 5.1.
Since ¢, ex* (, A€ A) is a complete orthogonal system of P A and e, ex*|
={u| by (**), every element s P is represented uniquely as
a= S apreper*, S lapal*= _”f.lf_
by an lal®>

55 ‘ H. Nakano: Funktionen -, Satz 3,
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and for b = %Bm o 2x* e PA we have by (*¥)
o,

ab= Z {ap,)\ ¢p ex* “Z Bp., kCu e:(*}
P, A K

= Z Z Qp,u By, €p 6™ = Z ( 2 0o, Br.x) €p €,
pr R

b K K

(@, D)=1212> ok Bo, s
p, K
Therefore we see easily by Schwarz’s inequality that we have
(%) gyl < L1l 1yl for x, ye P

and hence P¥ is bounded as a subalgebra. Since P is closed as a subalgebra
by theorem 5.1, we have hence P% = P $ by theorem 2.3.

We can prove easily that P is a simple ideal, in customary way: for an
ideal p ¢ P, if 0+ gep, then there exists p,, A€ A such that

a= 2 O, A 6p 3)\*, Opp,\g F 0,
e, A

and then p contains (1/cpy, ro) € Er0c* @epprg* = eppers*, and hence all ¢, ex*,
since we have by (**)

ep ex* = (ep epo*) (€np €20*) (€20 €0%)

for any p, A ¢ A. Consequently we have p D P .

Fot any minimal unit » ¢ P% we obtain similary a projection operator O,
such that Q% is a simple ideal and Q%s». Then the intersection of P A
and Q% is also an ideal containing », and hence P = QA. Therefore we
have [#]=]»| by (***).

Since (L—P)¥ is also an ideal and closed as a subalgebra by theorem 5.1,
we obtain by Zorn’s lemma or transfinite induction :

TtuEOREM 5. 2. For any closed Hilbert algebra N there exists uniquely a
system of associative projection operators Pa (N € A) such that Px is commutative
with Ta for all aeN; PxPo=0 for X\ + p; PN is a simple ideal and isometric
to a full-matrix algebra with the order 1[|u)| for any minimal unit u of Pr%U;
PoUA = Pr9; and (1 — L}J\ PN has no minimtl anit.

DerinitioN. A Hilbrt algebra % is said to be discrete, if for any unit
# = 0 there exists a minimal unit » < #.

TuEeorReM 5. 3. In order that a closed Hilbert algebra W be discrete, it is
necessary and sufficient that for every self-adjoint element he¥N, Th has no
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COntinuonus spectram.

Proor. If % is not discrete, ghen we see easily by theorems 4.3, 4.4, and
4.5 that there exists a system of units s (0 <A =1) such that ;m < gufor A< u
and | | is a continuous function of A for 0 <A < 1. By spectral theory as

H= g; A d)\ Tu’\,

we obtain then a bounded self-adjoint operator H with continuous spectrum.
Furthermore H is associative with % by theorem 3.6. Putting 4= Hzx,, we
have then T = HTu, = H by theorem 3.3.

Conversely if there is a self-adjoint elemenet 4 e for which T has a
continuous spectrum, then for the spectral system Fa (—ow <A < 4 ®) of Th,
putting

P= &1 (Ex — Ex-o),

we obtain an associative projection operator P by theorems 3.4 and 3.6, and
putting £= (L — P) 4, we obtain a self-adjoint element 4 ¢, for which the sp-
ectral system of T consists only of continuous spectrum, since T = (1—P) T
by theorem 3.3. Then we see easily by theorem 4.6 that there exists a system
of units s (0<A=<1) such that m <u#. for A< pu, #+v, and [m]| is a
continuous function of A. Putting = #,— #,, we obtain then a unit # by
theorem 4.3, and for any positive number ¢ there exists a finite number of
units »,, » -+, v such that

I"

a=0v1+ -+ v, wou=0forvEyu |[n|iZe

If there exists a minimal unit » < #, then we obtain an associative projection
operator P by theorem 5.2 such that P is commutative with T, for all z¢%,
PAsy, and

oy < leT It iyl for all x, ye P

Since Py = Py, + «+ + Pys, we have Py, + 0 for some ».

For such », since Tpy, = PTs, and PT,, is also a projection operator Py,
is a unit by theorem 4.2, and | Py, | < |». ! < ¢, cotradicting that ' P,,1=|» " and
¢ > 0 may be arbitary.

‘TueoReM 5. 4. In order that a closed Hilbert algebra 2 be bounded, it is
necessery and sufficient that for amy unit w=+0 there exists a finite number of
minimal units uy, #,, -, #c such that
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#=1th+ -+ s, ta=0 forv=+p
PrOOF. If jxyj < |x| [y] for all x, y e, then we have ;4|=1/y for any
unit # = 0. Since for two units # = », # — » is also a unit by theorem 4.3 and
lulP=1vi*+u—»[?
by theorem 4.4. Therefore we see easily that the condition of theorem is

satisfied.

Conversely if the codition in theorem is satisfied, then A is obviously
discrete by definition, and there exists a system of associative projection
operators Px (A €A) indicated in theorem 5.2 with u Pi=1. Let m be a

minimal unit in P A. Then we have by theorem 5.2

?’9{7155 o] Lyl for all x, ye Py .

le"

If inf | un | = 0, then there exists \v e A (v =1, 2,--) for which we have
AgA
S i<t
v=1

Since m, #r, = (P, #ny) (Pay ) = Pay Pa, any i, = 0 for v = pu, my+ -+ m

is a unit and | Ty, + - +u, | = 1. Therefore we obtain a unit s = s+ .+ .
For such unit », by assumption there exists a finite number of minimal units
v1, vz, -+, vk Such tbat
=y, + -+ vk, ”V”A*:Ofory:::u,

We have then wny = Pry vyt Py, v« =1, 2,'“), and; since Pa,vu= Pa, Tv, 00,
Py, vu is also a unit by theorem 4.5. Thus v,, 2;, -, »« must coincide with a
finite number of s, #r,, -+, contradicting m, =0 (v=1, 2, ---). Therefore
there exists a positive number & such that |4 | = ¢ for all A e A, and we have
then for any x, ys¥%

Faey 2 =1 § (Pax) (Pay)|? = MZA I (Pax) (Pay)]?

5—}9, S IPax)? HPAJ/ME IProi?) (1 Py y[?)

AENA A

—_— ] 21 2
= —3 s oy 2

THEOREM 5. 5. In order that a. closed Hilbert algebra % be bounded ana
every simple ideal be finite-dimensional, it is mecessary and sufficient that Ta is
completely continnons for all ae?.
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Proor First we assume that T, is completely continuous for every .
Since % is discrete by theorem 5.3, for any unit # + 0 there exists a sequence
of minimal units # (v=1, 2, ---) by theorem 4.3 such that

a=ua+a+ -, s 4.=0forv=pu

As T, is completely continuous by assumption, T, must be finite-
dimensional, and

TuD3Tum=un (V:],Z, ).

Thus #, = 0 except for finite », and hence U is bounded by the previous
theorem. Let Px(AeA) be a system of projection operators indicated in
theorem 5.2. For any minimal unit z¢Pa %, since T, § is finite-dimensional,
PA% is also finite-dimensinal by its construction. Therefore every simple
ideal is finite-dimensional.

Conversely if T, is not completely continuous for some ze¥, then Ta«w
is also not completely continuous, because if T, is completely continuous,
then lim (s, x)= 0 for all x ¢ implies lim T, 24y = 0, and hence

Vw0 nde)

lim ” Ta ay nz = lim (Ta,'a av, ﬂv) = 0,
V-2 g

contradicting that T, is not completely continuous. Since Tar, is self-adjoint
and positive definite, by theorem 4.5 there exists a unit # for which T, 9 is
infinite-dimensional. If % is further bounded, then by the previous theorem
there exists a finite number of minimal units #;, #,, --,# such that

#=a+ 4+, wu=0forv=upu

Then, as Tu= Tu;+ +* + Tue, Tw, D is infinite-dimensional for some ». Let
Px (A e A) be a projection operators indicated in theorem 5.2. There exists
reA for which P.%su, namely Pa# = #, and hence PiTu,= Tu, by
theorem 3.3, that is, Pa A D Tu,A. Therefore Px A is a simple ideal but not
finite-dimensional.

§6. Maximal algebras.

In the sequel we consider only maximal Hilbert algebra. Let % be a
maximal Hilbert algebra in a Hibert space §. % is naturally closed by theorem
2.3.

THEOREM 6. 1. If a projection operator P is commutative with Ta and Sa
for all ae¥, then P is assoziative with N, PN is an ideal and PN ~is walso
maximal as a subalgebra.
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Proor. First we will prove that PX < %. If 4, b, Pa, Pb e, then, since
P is commutative with T, and S5 by assumption, we see easily that

(Pa) b= a(Pb) = Pab, (1—P)a)b=a((l—P)b)= (1 — P)ab.

Therefore, denoting by % the set of Pa + (1—P) b for all @, b A, we obtain
a Hilbert algebra, if we define
(Pa;+ (1= P)by) (Pa, + (1—P)b2)=Pa1a2+ (L—P) by b,
(Pa+ (1 —P) b)* = Pa* + (1 — P) &*,

and % contains obviously % as a subalgebra. Since % is maximal by assumption,
we have A =%, and hence PA=A. Thus P is associative with A, and
consequently P % is an ideal by theorem 5.1.

For any extension % of P in the Hilbert space P §, we see also similarly
that 9 + (1 — P)% is a Hilbert algebra, if we define,

(x+a) (y+ b)=xy+ ab, (x + a)* = x* + a*

for ux, ysﬁ and a, be(l—P)%A, and & + (1—P)A contains A as a
subalgebra. Since % is maximal by assumption, we have hence 9l=P%, that
is, P % is maximal as a subalgebra.

THEOREM 6. 2. For any ideal p of W there exists a projection operator P
such that P is commutative with Ta and Sa for all aeW and PA =y,

Proor. Let P be the projection operator of the closed linear manifold
spanned by p. Since p is an ideal by assumption, for any & ¢ we have

TaPx=ax=PT,Px for all xep.
As p is dense in P9, we have hence T,P=PT.P for all ae¥, and
furthermore

PTa-"—"- (Ta*.p)*= (PTa*P)* ‘-'=PTaP-

Thus P is commutative with T, for all ze%. Similarly we can prove that P
is commutative with S, for all ze%. Therefore we have P% c A by the
previous theorem. Since p is dense in P, we have hence p=P%A by
definition of ideals.

THEOREM 6. 3. If two projection operators P and Q are both commutative
with Ta and Sa for all aeN, then we have PQ = QP.

Proor. By theorem 6.1 P and Q% are both ideals of A. First we
assume that P% and Q% have no common element except 0. Then we have
obviously
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P (A ={0}.
Therefore for any ¢, b eP U and x ¢ QA we have
(@b, x) = (b, a*x)=0.
Since (P ) (P %) is complete in P $ by theorem 1.6, we obtain hence PQ A =
{0}). As % is dense in §, we have thus PO = 0. and consequently (P = 0.

In general, the intersection p of P and QU is obviously also an ideal
of A. Therefore there exists a projection operator R such that p= R % and
R is commutative with T, and S, for all ae%. Then, since P% > R A and
% is dense in 9, we have P=>R. S'milary we can prove that O =>R.
Furtheremore (P — R)% and (Q— R)¥ have no common element except O.
Thus we have

P—R)(@—R)=(¢Y—R) (P—R)=0,
and consequently PQ = QP.

Let P be the set of all projection operators, which are commutative with
Ta and S, for all ze%A. By the theorems proved above, we see that $ is a
Boolean algebra of projetion operators and Pz Pr(reA) implies Pz liP,\,
Q P\®

For any atomic element P e, PU is a simple ideal by theorem 6.2. Let
Pa (x e A) be the system of all atomic elements of $. Then we have obviously
PAP, =0 for \ + p. Putting O=1— AU Py, we obtain/,Q eP, and QP has no
atomic element, and hence Q% contains no simple ideal by theorem 6. 2.
Thetefore we have :

TumormM 6. 4. For a maximal Hilbert algebra N there exists a system of
prejection operators Px (N € A) such that Px Po =0 for N+ p, Px is commutative
with Ta and Sa for all ae¥N. PxW is a simble ideal, and (L — \J P\)N contains

A

7

no simple *7- -
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