
HILBERT ALGEBRAS*'

By

HlDEGORό N A K A N O

W. Ambrose 0 defined a proper 1A*'algebra ξ> * £> is a Hubert space and a

τing subject to the conditions: 1) if aχ=^0 for all x ε φ, then a = 0, and 2) for

any a e § there is a?' e © such that

for all x, j ε ξ>, and proved that if ξ> satisfies the condition

(B) sup || xy || < + oo,

l ί * l l - l | y J = » i

then § is a direct sum of simple 2'Sided ideals Σ *Q\ such that «ξ>P JL ©λ for
λεΛ

/>4=λ and ξ)λ is isometric to a full-matrix algetra : for some set Λ all complex

valued functions a (λ, p) (λ, p e A) with
Σ \a (λ, io)
λ p

constitute a proper H*-algebra, being called a full-matrix algebra, if we put

Λ£ (λ, p) = Έι a (λ, T) 6 (T, I??),

Λ* (λ, p) = a (p, λ),

λ p

for some positive number a, wich we shall call the order of a full-matrix

algebra. He used the condition (B) essentially in his proof, while it will be

proved that any H* -algebra satisfies the condition (B) (cf. §2). He remarked

further that a group ring on a compact group is a proper H '-algebra: let © be

a compact group. All complex valued measurable functions a (σ) (σ ε ©) with

j | a (σ) !2 dσ < + oo

for Haar measure constitute a proper H*-algebra if we put

*) Received Nov. 25, 1949.
1) W Ambrose: Structure theorems for a special c^ass of Banach algebras, Trans. Amer.

Math. Soc. 5 7 (1945) 364-386.
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(a, £) = I tf (<r) £ (

If a group (S is locally compact, then its group ting is not necessarily a

Hubert space as remarked by I E. SegaL2) But all complex valued measurable

functions a (σ) (σ ε ©), such that a (σ) = 0 except for some compact set Λ* and

(cr) I2 dσ < + oo,

satisfy the condition of proper H* algebra, except completeness, and for Haar

measure m (Λα) we have

for all such functions b (σ), if ® has a 2-sided Haar measure* Thus we need

to consider proper H*-algebra, which is not complete. This is the purpose of

this paper.

§1. Fundamental definitions.

Let © be a Hubert space, which need not be separable.

DEFINITION, A linear manifold % of ί> is called a Hubert algebra* if

(1) % is dense in €>

(2) % is a ring : for any a9 b e S( there is defined ab e 51 such that

(μb) c = a {be), a(b+ c) —ab+ac> (a + b) c = ac+ be

and (aa) b — a (ab)=aab for any complex number a

(3) for any ae% there exists an adjoint element a*ety. such that

(ab, c) = (by a* c)> (be* c) = (b, ca );

4) for any a e 51 there exists a positive number αα such that

#;*• < αΛ x for all x ε 51

(5) by (1) and (4), for every a ε 51 we obtain uniquely a bounded lineai

operator Ta on ξ) such that

Tax = ax for all x ε 31.

For an element / e §, if T * / = 0 for all λ* e 51, then we h a v e / = 0.

First we shall write fundamental properties of Hubert algebra. Let 51 be a

2) I.E.Segal: The group ring of a locally compact group, Proc. Nat Acad Sci U.S.A.
27 (1941) 34&-351.
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Hubert algebra in a Hubert phace £ in the sequel.

THEOREM 1, ] . For an element aε% if ax = 0 for all χε% then we have

4 = 0.

PROOF, By (3), for any χ%yε% we have

(Tx a,y) = (xa, y) = {ay x*y) = (ay*, ΛΓ*) = 0.

Since 91 is dense in £> by (1), we have thus Tx a = 0 for all x ε 91, and hence
Λ = 0 by (5) .

By this theorem we have obviously :

THEOREM L 2. Ta = Tb if and only if a = b.

THEOREM 1. 3. For any a sty we have Ta ~ T«*. and hence thj adjoint

-element a* is detemined uniquely*

PROOF. For any x, y ε 91 we have by (3)

(Tax,y) = (axsj) = (ΛΓ, a*y) = (x, Ta*y).

Since 5ί is dense in § by (1) , we have thus T«* = T$*

By definition we see easily:

THEOREM l. 4 a** = ώ, (aaY = α<j*,

(^)*' = b*a*, (aΛ- bY = a* + b*.

THEOREM 1. 5, T«a = aTa, Tab = TαTδ, Tα+ft = Ta + T&

THEOREM 1Φ 6. 5l5ί j complete in $ : //6̂ r̂  /V #0 element except 0 /» ξ),

»Ά/VA /J orthogonal to xy for all x> y e 5ί.

PROOF. For an element / ε ξ), if {xy, f) = 0 for all x, j ; e 8, then we have

by theorem 1. 3

(Tχf,j) = {f Tϊy) = {f Γ,*j) = (/, xy) = 0

for all x,yε% and h e n c e / = 0 by (1 ) and (5) .

THEOREM 1. 7. F^r #/y/ ί7, ^ € 51 ^e /&^^

(Λ, *) = (**, a% ϊa:=ιla*l-

PROOF. For any χ,y, ^ε5l we have by (3) and theorem 1. 4

(x,yZ) = ( ^ , j) = (o*> **) = ((π)*» *̂)*
By the previous theorem, for any a ε 5ί there exist #v e 31 (i> = 1, 2, •••), as linear

forms from 3131, such that lim a* = a and (ΛΓ, av) = (̂ v*, x*) for all x ε 31 and
v-*oo

1/ = i, 2, . As ΛΓ ε 3ί may be arbitrary, we have then
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L rv — a* 2 = a** — ̂ * ί - (z>, # = 1,2, •••),

and hence theie exists / ε £> fo** which lim ώ v* = / . Then we have (x, a)

= (y, x*) for all r̂ e €>• Therefore v, e have

(/> *?) = (0*7)** a) = (**, #j>)

for all x,ye% and hence f=a* by the previous theorem.

By (4) and theorem 1. 7 we obtain immediately:

THEOREM 1. 8 For any # e % there exists a positive number βa such that

• xa i < /β i, x ϋ for all Λ «Λa.

By this theorem, for every ^e5l we obtain uniquely a bounded linear

opetator Sa on £> such that

Jα x = xa for all x ε 5ί

By definition we see easily:

THEOREM 1. 9 Sά == JΓα*. Jαδ = i'δJα, I^i** = SbTa, Saa = αi*α,

THEOREM 1. 10. Sa = J*δ if and only if a = έ.

PROOF. If ^ α = 0, then we have T*tf = Saχ = 0 for all Xe% and hence

THEOREM 1. 11. For an element /«€>, if Sχf=0for all χε% then we

havef^O.

PROOF. For any χ,y ε 51 we have by theorems 1.3, 1.9

Therefore if Sxf=0 for all ΛΓ e a, then we have T * / = 0 tor all χe% and

h e n c e / = 0 by (5).

By definition we have obviously

(Tab)* = Sa*b*, {Sab)* = Ta b*

for all a, b e2ϊ, and hence by theorem 1.7

Therefore we obtain Ta = 5α* = 5J I = IIΛI by theorem 1.9, that is, we

have:

THEOREM 1. 12. ? Ta = J β
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§2* Closed algebras.

Let 21 be a Hubert algebra in a Hubert space £>. First we will prove:

THEOREM 2. 1. If lim a* = a0, a* e21 (v = 0, 1, 2, —) W ]|T*v ISy (v —l

-2, ...) /<?r Λ?/^ y > 0, Afrj* #>e have

lim T« = T* , lim T«* = T 4 ,

lim Sa = J v lim J«j = j ^ * .

PROOF. Since Tayx = S*av for all are21, we have by assumption

lim Ta,x = Jtr^o = TΛ^ΛΓ for all ΛΓ e %.
V-»50

For any / ε § there exist AT e (v = 1, 2, —) by §1 (1), such that lim xv =/•

We have then

! Taj- Taof\\ S (1 T.v 1 + ί| To, [) If- X^ ϋ + Ί Tαvλ μ - T« o ^ !|

for any i/, μ = 1> 2, •••• Therefore we obtain

115 II Taj- Taj!| < (y + «T*o ϋ) ] / - x.II,

-and hence lim TaJ= Taj for al l/eξ).

Since lim ** == ̂ 0* by theorem 1.7 and II Tat 5 = || Tίv II -< y {v = 1, 2, —)

t y theorem 1-3, we have also lim J** = T«ΐ, as proved above. Furthermore,

since ]|Tαv

!, = ]Say \\ by theorem 1.12, we can prove similarly also the other

^equations.

EEFINITION. A Hubert algebra 21 is said to be closed, if lim av~fεφ,
V-» QO

-tfv € 21 (z> = 1, 2, -.) and sup || T«v II < + oo imply / e 21-

DEFINITION. A Hubert algebra 2ϊ is called an extension of a Hubert

-algebra 2ί, if Φ contains 21 as a subalgebra.

DEFINITION. A Hubert algebra 21 is said to be maximal, if there is
no extension of 21 except itself.

By Zorn's lemma or transfinite induction we see easily:

THEOREM 2. 2 Every Hilbert algebra has a maximal extension*

THEOREM 2 3. If a Hilbert algelra % is maximal, then 21 // closed.

PROOF. Let 21 be a maximal Hilbert algebra. If lim ^ v = / e § , tfvβSί and

Λ\Tβy II < y (*= 1, 2, ), then we have
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lim I av — aμ.} = 0, !| Ta-au |i < 2γ (v, u -= 1, 2,-),

t ind h e n c e l im (Ta — Ta ) = 0 by t h e o r e m 2 . 1 . C o n s e q u e n t l y t h e r e exists a

bounded linear operator Tf on £> such that lim TY= T Λ Such T/ is de-
V-*0O

termined uniquely corresponding to /, because if

lim av = lim £v. | TV ]! 5Ξ 7, : T& " < 7,

then we have lim {a> — bv) = 0, ] Tα — T* !^$ .?γ, and hence lim Ta = lim

T&v by theorem 2.1.

We denote by 5 the set of all such elements fε ξ>. Then we see easily

that % is a linear manifold of £>, 51 D $, and

T* = f α for all a e %.

For any/, g e S there exist a\> e 51 and bv e 5ί (7̂  •= 1, 2, •••) such that

lim a, = / , lim *v = g, 1 Tαv || < 7, | T&v ϋ < γ
V->oo V-»αo

for some positive number 7. Since

% ΐi TαvII UK — g I I + I! T « v ^αvI

we have then lim av bv = Tf g and further || T«v &v |l < 7?, and hence

Since lim [| av* — a^ | = 0 by theorem 1.7 and j Ta * ] = || Ta 1 S 7 by «.

1.?, there exists /* e 51 for which lim * „ * = / * , and we have T/*= Tf, beca-

use for all x, y ε 51 we have

(f/*x» y) = lim (Tαv*χ , j ) = lim (ΛV*ΛΓ, j )

Furthermore if lim ^ = h ε 5ί, rv ε 31, and || Tc I < 7 (z/ = 1, 2, •••) for some po-

sitive number 7, then we have

(Tg/, /;) = lim (bvav, Cv) = lim (£v, Λ ^V*) = (g, T*/*)
V-> X V-» X

Therefore, putting fg=Tfg for/, σ ε^ί, we obtain a Hubert algebra 5Ϊ, which

is an extension of 31. If 51 is not closed, then 51 dose not coincide with 51 by

its construction, contradicting the assumption that 51 is maximal. Thus 51 is

•closed.

Let 51 and 5ί be two extensions of 5ί. For any common element / of 31

and 51, puttig Tfg=fJ for gε% and Tfg=fg for g ε 5ί, we have for all
.ΛΓ, y ε %
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and hence TV = TV by §1 ( 1 ) . Therefore the intersection of all closed exten-

sions of 51 is also a closed extension of 91. which is called the closure of 5ϊ.

DEFINITION. A Hilben algebra 9ί is said to be bounded, if 91 satisfies the

condition

( B ) sup \χy\ < + oo,
ll*l)-liyl!-i

and this value is called its order*

THEOREM 2. 4. If a Hilbert algebra 9ϊ is bounded, then the closure of %

coincides with the whole space ©•

PROOF. For any/ε£> there exist av e 91 (v = l9 2, ) by §1 (1) such

that lim av = / . If 9ί is bounded, then we have sup || Tαv || < + oo and hence /

belongs to the closure of 91.

THEOREM 2. 5. If the whole space €> is an extension of a Hilbert algebra %

then 91 is bounded.

PROOF. Let © be a Hilbert algebra* If £> is not bounded, then there exist

Xv and j/v fc€> (v = 1, 2, •••) such that

and we have tor any

Thus —— xvjv (^= 1, 2, •••) is weakly convergent, contradicting

lim

REMARK. Every proper H*-algebra defined by W, Ambrose is a Hilbert

algebra. Indeed a proper H*-algebra § satisfies obviously the condition of

Hilbert algebra except (4)* § satisfies further (4) , because if £> dose not

satisfy ( 4), then there exist a e ξ> and x* ε ξ> such that xv | = 1, ΛΛ V || > v2

(v = 1, 2, •••), and we have

lim (J_ ^ X v , ^ ) = lim f- i-xv, a*y ) = 0

f o r a l l j e ξ ) , that is ,-i—^xv (̂  = 1,2, ) is weakly convergent, contradicting

axv I = + cc. Fuitαermore © is bounded by theorem 2. 5.
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§3. Associative operators.

Let a be a closed Hubert algebra in a Hubert space §•

DEFINITION. A bounded linear operator A on © is said to be associative

with 8, if A a C a and we have

(Ax) y = Axj for all χ> y ε %

that is, ASx = Sx A for all x ε a.

By definition we have obviously:

THEOREM 3* !• TZ>£ set of all associative operators constitutes a ring of

operators * if A and B are both assoiathe with % then a A + βB, AB are- all

associative with a.

THEOREM 3. 2. Ta is associative with a for all a ε a.

THEOREM 3. 3. If A is associative with % then we have AT<r= TA* for

every a ε a.

LEMMA 3. 1. For a sequence of bounded linear operators Av (v = 1, 2, •••)

-on ξ>, if lim (Av χyy) exists for any x,yεtQ, then we have sup \\Av \\ < + °o

PROOF. If sup l| A* J = + oo, then there exist ΛΓV ε £, /xv (i> = 1, 2, •••) such

that !! xv ! = 1 and I1 ylμ̂ Xv || ̂  i'2, and we have for any y ε §

lim -A^xvy y) = Hm ( - 1 - * v , y l ί v v))= 0,

that is, Aμ.>,xv (v = li 2, ••) is weakly ^convergent, contradicting

lim = + oo.

THEOREM 3. 4. If Av (̂  = 1,2, •••) are all associative with a and lim

ylv = A% then A is also associative with a.

PROOF. By the previous lemma A is obviously a bouded linear operator

on £>• For any a ε a we have by theorem 3.3

! TAVU || = ί! Av Ta \ < |! ̂ 4v II II Ta I and lim j ^ a =

and hence ^1^ e a, since a is closed by assumption. For any χy y ε % we have

furthermore

(Ax) y = lim JV Av x = lim Av Syχ= Axy.
V-*30 V-»00

For a system of projection operators Pλ (λ ε Λ) on ξ>, Π Pλ means the

projection operator of the intersection of all Pλ <ξ> (λ ε Λ), and υ Pλ the projection
λ
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operator of the closed linear manifold spanned by all P\ £ (λ e Λ)»

LEMMA 3. 2* For any projection operators P and Q, we have

PROOF. Since PQP is a positive definite self<adjoint operator and || PQPx ||

^ | ;x | | for all x « § , by spectral theory we obtain a projection operator P o as

Po = lim {POPY .

As P O P (PΠO) = PViQ , we have then obviously P o ^ P Π Q • On the other

hand, since for any x e £>

x ! ̂  i Px 1 ^ 1 ^ P x ^ I! P &Px J ̂  i| PcX \ f P 0 P c χ - PCΛΓ,

we have jPcx | = ||PPox|l = i!£PPox| | = IPoxι| for all xeξ). Therefore we obtain

PLx = PP cx = QPP, xt and hence P o < P fl β Thus we have

P Π Q = lim (P6!P)V = lim (P^)*,
V-*x V-*oc

since (P Π £ ) β = P Π. j2 ^Y definition we have obviously the other equation.

THEOREM 3. 5. For a system of projection operators P\ (λeΛ), if P\ (λeΛ>

are all associative with SI, then Γi PK and U Pλ are both associative with 31.
\ λ

PROOF. By theorem 3, 4 and lemma 3. 2 we can assume that for any

\ u X2 « Λ there exists λ e Λ such that P λ < P M Π Pλ2 Putt ing P = Π Pλ, we

have t h e n

I P x I = inf f P λ x || for all x β Sί.3>
λεΛ

For any a, b eSl there exists λv εΛ (y = 1, 2, ) such that Pλi S Pλ2 ^

and

lim I P> v * l = inf ;| P λ <z ||, lim | PΛV Λ* I = inf | Pκab\
v-»» λεΛ v->oo λεΛ

For P o = lim P λ v , we have thus J PLa \\ = f P̂ z ι|, J Pcab | = il Pab [|. As obvionsly
V-*oc

P o ^ P, we have hence Pta = PΛ, P0^έ - P ^ . Since P o is associative with %

by theorem 3. 4, we obtain therefore

Pa ε a, (P*) ^ = (P t ώ) ^ = p 0 ^ = Pab.

Similarly we can prove the other relation.

THEOREM 3. 6. If a bounded self-adjoint operator H is associative with Si,

3) H Nakano: Funktioneα mehrerer hypermaximaler normalεr Operatoren, Proc. Phίs.-
Math. Soc. Japan, 2 1 (1939) 713-728, Satz 2.
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ihen for its spectral system E\(— co < λ < + oo):

J — 3O λ^λθ+0

Eλ is associative with 51 for any λ.

PROOF* AS H is bounded, we assume || Hx || ̂  γ ! x 1 for all ΛΓ e φ. Since

2
v = l

is uniformly convergent for λ!<^l, putting

H l = 7 T ^ Γ ( ί ί " λ l ) ί - 7 ^ λ 3 ^ 7

we see easily by spectral theory4)

(1 - Exo) H, = -4- ft + -~ Σ α, Hr (1 - H,*r,

Bλ(, = lim {1 - (1 - Eλ0) Hi)\
V—» X

Therefore we obtain by theorems 3.1, 3.4 that £λ0 is assciative with 9L

§4. Units.

Let % be a closed Hubert algebra in a Hilbert space £>.

DEFINITION. An element h e 31 is said to be self^adjoimt, if h — b*.
By theorems 1.3 and 1.9 we have then obviously:

THEOREM 4. 1. An element ae% is self-adjoint if and only if Ta is self*

-adjoint, or Sa is self-adjoint*

DEFINITION. An element u e H is called a unit, if u is self-adjoint and
idempotent: u = u* and uu = #•

By theorems 1. 5 and 1.9 we see at once:

THEOREM 4. 2. An element a ε'$1 /j # ##// // ^»i ĉ /j; //* Tα /V ^ projection

operator, Gr Sais a projection operator*

DEFINITION. For units u , #, e 3ϊ we shall write uL ̂  ^2 if TMi > TWj as
projection operators.

By theorem 1.5 and calculus of projection operators we see easily that

4) Cf. J. von NeuΏann: Allgainsina Eig^nwerttheorie Hermitescher Fυnktionalopsra-
toren, Math. Ann. 102(1930)49-131, M. H. Stone: Linsar transformations in
Hilbert space, New York (1932).
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for units we have:

THEOREM 4. 3. If #i > u2 and u2^Ui, then uλ S u* U\ S Ui implies UιUι

Uz UL — «j> for Ui S #_> w obtain a unit Uι — u2 ί=k uύ and if Ui Ui •= 0 ^»^ #2 ;>

have ui Ut, = UiUi = 0.

THEOREM 4. 4. Fί?r ^ / / J , UiU2= 0 implies (ul9 u2) = 0.

PROOF. (^, «2) = (^, »2 »2) = {ux u2, u2) = 0.

THEOREM 4. 5. For tz unit u and an associative projection operator PS T*

we obtain a unit Pu for which we have TPU = P.

PROOF. By theorem 3.3 we have TFU = PTu = P, and hence Pu is a unit

by theorem 4.2.

THEOREM 4. 6. Let h e% be self-adjoint and E\ ( -co < λ < -f co) the-

spectial system of Tk. For any positive number e there exists an associative self*

adjornt operator H such that Hh is a unit and Tm== 1 — £ ε

PROOF. By spectral theory we have for any e > 0

As Th is bounded, we assume || Thx] S γ !1>r|| for χε%. Then we obtain the

inverse A of - ^ ~ Th in (1 — JE8) ©, as

and ~5— ^4TA ΛΓ == x for x β (1 - fi ) ξ>. Putting f ί = - ί - yl (1 — £ε), we obtain a

bounded self-adjoint operator H on ξ) and

HT*x = — y i r * ( l - E t ) x = (l - E )x for xe©.

Sinec H = Σ (l — T*Y (1 — Eβ), H is associative with 9ί by theorems 3.1

and 2.4, and hence Tπ* = HΓ* = 1—Eβ by theorem 3.3. Consequently f&

is a unit by theorem 4.2.

THEOREM 4. 7. Every closed Hubert algebra % has a unit u 4= 0.

FROOF. For any aeVi, a-\- a* and ia - /<z* are both self-ad joint. Therefore

there exists a self-adjoint element h 4= 0. For a self-adjoint element h =^= 0, since

one of TA and T~h is not negative definite, we can assume that TA is not

negative definite. Then, for the spectral system JBλ of TA, there exists a positive

number e such that 1 — JEε 4= 0, and by the previous theorem there exists a
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unit u for which we have Tu = 1 — JBε 4= 0, and hence u 4= 0 by theorem 1.2.

DEFINITION. A unit # 4= 0 is said to be minimal, if there is no unit v S u

except itself and 0.

THEOREM 4. 8. In order that a unit u^% be minimal, it is necessary and

sufficient that u^u is one*dimensionaL

FROOF Let u $ u be not one-dimensional. Then there exists x e u 21 u

such that x 4= 0 and (u, x) = 0. Since

ΛΓ* = (uxu)* = «κ* ueuWu, (u, **) = (x, ») = 0,

there exists then a self-adjoint element h ε u^H u such that

Th is self-adioint by theorem 4.1 Let JBλ (—QO < λ < + 00) be the spectral
system of Th* As uh = bu= h, we have Tu Th — ThTu — Th by thnorem 1.5,
and hence Tu is commutative with E\ for all λ by spectral theory. We will
now prove that there exists λ0 for which

If there is no such λ0, then we have

Th = Th Tu = Γ λdE\ Tu = \Tu = T\u
J-αo

for some λ, and hence h — \u by theorem 1.2, contradicting

!!/&!l2=(λ^, b) = \(u, b) = 0.

If T« Eλ0 4= 0 and Tu (1 — JΞλ0) =f= 0, then, since £x is associative with 5ϊ by
theorem 3.6, we obtain a unit y—Tu E\Q u -ί u by theorem 4.5, and we have
Tv = Tu E\Q =f= 0, Tw - Tυ 4= 0, that is, ^ 4= 0, # 4= v by theorem 1.2. Therefore
u is not minimal.

Conversely if a unit # 4= 0 is not minimal, then there exists a unit v< u
such that v 4= 0 and # — z; 4= 6. Then, since v (u — v) = 0, we have (#, # — v) = 0
by theorem 4.4, and

v = uvuεuWu, u—v = u(u — v)ueu^u*

Therefore u^lu is not one-dimensional.

§ 5. Discrete algebras.

Let 51 be a closed Hubert algebra in a Hubert space §.

DEFINITION. A linear manifold p ςz 3ϊ is calld an ideal, if p satisfies



16 H. NAKANO

(1) x py a p for all χy y ε 91

( 2 ) xεp implies x* εp;

( 3 ) av ε p, lim a* = a ε 51 implies # e p,
V-»oo

THEOREM 5. 1. If a projection operator P is associative with 91 ana

commutative with Tx for all χe5ϊ , then P9Ϊ is an ideal and closed as a

subalgebra.

PROOF. Since for any χy y ε 9ί we have

(Px)y = Pxy, x{Py) = TχPy = PTxy = Pxy,

P 91 satisfies (1 )• Since for any x, y, ζ ε 5ί we have,

we obtain by definition,

(px)* =

and hence P ^ satisfies ( 2 ) . Fur thermore for lim Pa^ = aε% we have lim

Pav = P'a= a, and hence aεPK, that is, P% satisfies ( 3 )

If l im av=-a, to*P% and || Tαv * li 2? 71 AT II for χεP% (y = l , 2, .-•), then
V-*cc

we have for any x ε 5ί

IΓ^ΛΓ'I = JTjPαvXl! = \PTa,x\ = \Ta,PxII < γ I P x | | < 7! ΛΓII

Since 5ί is closed by assumption, we have then a ε 9ί, and obviously Pa = a<

Therefore P% is closed as a subalgebra.

DEFINITION. An ideal p is said to be simple, if there is no ideal contained

in p except itself and { 0 ] •

Let u ε % be a minimal unit, and #λ ε 21 # (λ e Λ) a maximal orthogonal

system contained in % u such that

j: e\ !' = ί «ι!, tfλ0 = » fos some λ0 e Λ

that is, 5ί u contains no element except 0, which is orthogonal to all ex (λ ε ι

As ex = λ̂ «, we have then

^λ^'^p == nix* eP u ε u sll U

Since u 51 /y is one-dimensional by theorem 4.8, there exists a complex numl

δλ,P such that

( ex* eP ~ 8x,p u,

and δλ.pli »||2 = (δλ P«, ») = (̂  * #p, ») -= (̂ P, λ̂)» Therefore we have by assumpti
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f 1 for λ = p,
bλ"~\0 forλΦ/>.

By ( * ) we see easily:

^ (eP ex*) (eμ. e<*) = δλ μ eP e<*y

' (eP e\*y eμ <?«*) = {eμ* eP, e<* ex) = δP, μ δλ,« '| # ψ.

Thus ep λ̂* (/o, λ e Λ) constitute an orthogonal system. Since <?λ £\* is a unit by

(**), we obtain a projection operator P as

λ

which is associative with % by theorem 3.5. For any λ ε Λ we have by (

and hence (1 — P) % ^ = [ 0 } , because ^λ(λeΛ) is a maximal orthogonal

system in 31 u Since 3ί is dense in £>, we have (1 — P) J * = 0, namely P ^ JM,

and ex (λ « Λ) is a complete orthogonal system of Su €>. For any p ε Λ, since

by (*) we have JF$y J« = Se*> a n c t

( ί g * λ , ^\ ί?P*) = (ΛΓ, λ̂ ίP* eP) — {Sux, e\)

for all x ε § and \e Λ, we see easily that <?λ ί?P* (λ e Λ.)' is a complete orthogonal

system of S'e* €>. Furthermore we have by (**)

and hence we obtain P^> U Seχ e*. On the other hand, ex* (λε A) is a ma-

ximal orthogonal system of u 5ί, because (χf y) = (y*9 x*) for any χy y ε VI by

theorem 1.7. Therefore we can prove similarly that for any p ε A, eP ex* (λ ε Λ)

is a complete orthogonal system of Te Φ and [} TCλ e^ < U Seχ c*λt Con-

sequently we have

p = y Te λ ̂ * = yy
Λ

and e?ex*{ρ, λ ε Λ ) is a complete orthogonal system of P ξ). Since Seκ e*κ is

commutative with Ta for all ^ e ^ P is commutative with Ta for all a e5L5)

Therefore P^l is an ideal by theorem 5.1.

Since eP ex* (p, λ ε Λ) is a complete orthogonal system of P 5ί and 1 eP ex* \\

= il u 1 by (•*), every element aεP% is represented uniquely as

* - Σ ^ λ eP ex*, Σ I αP,x I8 = i ^
P, λ P , λ 1 » ; [ - >

5) H. Nakano: Funktioneπ ••-, Satz 3.
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and for b = ΣβP)\eP *λ* e P ϋ we have by (**)
pλ

p , λ μ, K

'^Λ^p^^Σ I Σ ocP,μ

Therefore we see easily by Schwarz's inequality that we have

(***) \\xf\\S~Y\x\\ lljll for x,j/εP9l
II n II

and hence P51 is bounded as a subalgebra. Since P21 is closed as a subalgebra

by theorem 5.1, we have hence Pyi = P& by theorem 2.3.

We can prove easily that P 2ϊ is a simple ideal, in customary way *: for an

ideal p c P 21, if 0 =*= # ε pf then there exists ^ λ0 ε Λ such that

a = Σ aP>λ ep ^λ*> ^ρo,λO =4= 0,
P, λ

and then p contains (l/αP0, x0) ePOe\0* aePoe\0* = ePoe\0*i and hence all tfP£λ*,

since we have by (**)

eP <?λ* ) ( (

for any /o, λ e Λ. Consequently we have p D P 5ί.

For any minimal unit ? ε P 5ϊ we obtain similary a projection operator O,

such that Q 5ί is a simple ideal and J2 $ 3 z>. Then the intersection of P 51

and Q % is also an ideal containing vΛ and hence P 91 •= Q %» Therefore we

have [| u \ = || v II by (***).

Since (1 — P)2ϊ is also an ideal and closed as a subalgebra by theorem 5.1,

we obtain by Zorn's lemma or transfinite induction:

TTHEOREM 5. 2. For any closed Hubert algebra % there exists uniquely a

system of associative projection operators P\ (λ εΛ) such that P\ is commutative

with Ta for all aε%\ P\PP = 0 for λ 4= p; P\ $ is a simple ideal and isometric

to a full'matrix algebra with the order \\\u\for any minimal unit u of P\%;

Px%=Pλ © and (1 — U Pλ) 31 has no minimal unit.
λ

DEFINITION. A Hilbrt algebra 91 is said to be discrete, if for any unit

» Φ 0 there exists a minimal unit v < #•

THEOREM 5. 3. In order that a closed Hubert algebra 51 be discrete, it is

necessary and sufficient that for every self ̂ adjoint tkmtnt Aε5ί, Th has no
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continuous spectrum*

PROOF. If % is not discrete, φen we see easily by theorems 4,3, 4.4, and

4.5 that there exists a system of units u\ (0 < λ < 1) such that u\ ^ Uμ. for λ < u

and ι\uκ '! is a continuous function of λ for 0 < λ < l . By spectral theory as

H=- Γ XdkTu ,
Jo λ

we obtain then a bounded self-adjoint operator H with continuous spectrum.
Furthermore H is associative with 91 by theorem 3.6. Putting h = Huu

 w e

have then Th = HTm = H by theorem 3.3.
Conversely if there is a self-adjoint elemenet h ε 9ϊ for which TΛ has a

continuous spectrum, then for the spectral system B\ (— <*> < λ < + ») of TΛ,
putting

P = U (Eλ — JBλ-o),

we obtain an associative projection operator P by theorems 3.4 and 3.6, and
putting k~ (1 —P)h> we obtain a self-adjoint element k ε9ΐ, for which the sp'-
ectrai system of Tk consists only of continuous spectrum, since Tk = (1—-P) Tλ
by theorem 3.3. Then we see easily by theorem 4.6 that there exists a system
of units ^ ( O g λ 5g 1) such that &λ < #A for λ < μ, ^0 * Ĵ> a n d |! #λ || is a
continuous function of λ. Putting # = uι — »0,

 w e obtain then a unit » by
theorem 4.3, and for any positive number ε there exists a finite number of
units pίy v.,~ , PK such that

II = ^j -{- . . . -f- ^ ĵ ^ v ^ μ = \j t o r ẑ  4= μy I Pv [ί ^ £.

If there exists a minimal unit p ^uy then we obtain an associative projection
operator P by theorem 5.2 such that P is commutative with Ta for all # ε 21,
P 91 3 py and

|l xj !ί < -ΪΛΪΓ f x ί| fly I for all x, y

Since Pu— Pvi + — 4- Pvk, we have P^v =t= 0 for some ẑ .

For such ẑ , since TPUV = PT\<V and PTtv is also a projection operator PVy

is a unit by theorem 4.2, and | PWv I) < || ̂ v! ^ ε, cotradicting that | PVy ί| > ] ̂  ' and
« > 0 may be arbitary.

THEOREM 5. 4. J^ order that a closed Hilbert algebra 91 be bounded, it is

necessary and sufficient that for any unit #4= 0 there exists a finite number of

minimal units Ui, u>, •••, u< such that
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» = « ! + — + Uκy Uv flμ = 0 fθr V^r β.

PROOF. If [ I X J I S Ύ ' I X I I IIJII for all χ,y ε% t h e n we have \< u)^ 1/γ for any

υnit » Φ θ , Since for two units u S tf, u — v is also a unit by theorem 4. 3 and

by theorem 4.4. Therefore we see easily that the condition of theorem is

satisfied.

Conversely if the codition in theorem is satisfied, then 91 is obviously

discrete by definition, and there exists a system of associative projection

operators Pλ(λeA) indicated in theorem 5,2 with u Pλ = 1. Let u\ be a

minimal υnit in Pλ SI. Then we have by theorem 5.2

l ϊvl "for a l l ;

If inf || u\ 1 = 0, then there exists λv ε Λ (v = 1, 2, ) for which we have
λεΛ

00

^ J I »λv |, ^ - T «w *

S i n c e u\v uκμ = (Pλ v u\v) ( P λ μ u\μ) = P λ v P\μ u\v u\μ = 0 f o r v 4= μ , u\i+ ••• + #χ

is a unit and || Tuλl + •• + «λv !| < 1. Therefore we obtain a υnit u — »λi + »x2 4- •• .

For such unit u> by assumption there exists a finite number of minimal units

Vu v-2> "> Vk such tbat

u=== V\Λ~ '" ~h ί̂ ic, ^v Vμ '== 0 f o r v ^ IX*

We have then #λ v = P λ v ^ + •+ Pλv K̂ (z/= 1,2,—), and, since Pλ v ^μ=Pλ v T^^μ,

Pλv^μ is also a υnit by theorem 4.5. Thus vu v^ •••, ̂ « must coincide with a

finite number of u\u uκ2, •-, contradicting # λ v 4= 0 (z/ = 1, 2, •••). Therefore

there exists a positive number fe such that [[ «x 1 > e for all λ e Λ, and we have

then for any ΛΓ, y * 91

II v v i|2 __ II V / p λ vΛ ίPλ v) II2 = T"1 II ίPλ ΛT) ίJΣ
λεΛ

ε λεΛ δ " λ λλεΛ

THEOREM 5. 5. 7# ^ Λ r /^^/ i/ ^to^/ Ήilbert algebra % be bounded ana
every simple ideal be finite-dimensional, it is necessary and sufficient that T* is
completely continuous for all a ε 9ί.
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PROOF First we assume that Ta is completely continuous for every a ε2ϊ.

Since 21 is discrete by theorem 5.3, for any unit « Φ O there exists a sequence

of minimal units u\> {v = 1, 2, •••) by theorem 4.3 such that

u = Hi -f u> 4- •••, us Uμ. = 0 for v Φ μ.

As Tw is completely continuous by assumption, Tu& must be finite-

dimensional, and

Tu$3Tu m = «v (J> = 1, 2, ).

Thus u\> = 0 except for finite z/, and hence 21 is bounded by the previous

theorem. Let Pλ (λ e Λ) be a system of projection operators indicated in

theorem 5.2. For any minimal unit u'εP\ 2ί, since T#€> is finite-dimensional,

Pλ 21 ίs also finite-dimensinal by its construction. Therefore every simple

ideal is finite-dimensional.

Conversely if Ta is not completely continuous for some aε%y then TVα

is also not completely continuous, because if TVα is completely continuous,

then lim (a,, x) = 0 for all x e ξ> implies lim Ta a fa = 0, and hence
V->co V-*co

lim S T Λ rfv I2 = lim (Tβ ^v, tfv) = 0,

contradicting that T Λ is not completely continuous. Since Tata is self-adjoint

and positive definite, by theorem 4.6 there exists a unit # for which Tu § is

infinite-dimensional. If 21 is further bounded, then by the previous theorem

there exists a finite number of minimal units uu »>> ~ ,u< such that

« = » i + — + 0*, uv Uμ = 0 for z> Φ /x.

Then, as Tu = Twi + ••• 4- Tuκ> Tuy 0 is infinite-dimensional for some v. Let

Pλ (λ ε Λ) be a projection operators indicated in theorem 5.2. There exists

λ ε Λ for which Pλ 213 #y, namely Pλ m = #v, and hence Pλ TΊ*V = T«v by

theorem 3.3, that is, P λ 2ί D Twv2ϊ. Therefore Pλ 2( is a simple ideal but not

finite-dimensional.

§6. Maximal algebras.

In the sequel we consider only maximal Hubert algebra. Let 2ί be a

maximal Hubert algebra in a Hibert space ξ). 21 is naturally closed by theorem

.2.3.

THEOREM 6. 1. If a projection operator P is commutative with Ta and Sa

for all # e2l, then P is associative with 21, P 21 is an ideal and P 2ϊ "is &ho

maximal as a subalgebra.
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PROOF. First we will prove that P 21 c 2t. If a, by Pa, Pb ε % then, since

P is commutative with Ta and Sb by assumption, we see easily that

(Pa)b=a(Pb) =* Pab, ((1 - P ) a)b = a((1 -P)b) = (1 - P ) a h

Therefore, denoting by \ the set of Pa + (l — P)b for ail a> b ε%, we obtain
a Hubert algebra, if we define

(Pa, + (1 - P) ίi) (P*2 + (1 - P) fe) - P*! *2 + (1 - P) bx b2i

(Pa + (1 - P) £)* - P** + (1 - P ) **,

and 21 contains obviously 21 as a subalgebra. Since 2ί is maximal by assumption,

we have 31 = 2ί, and hence P2ί d 2ί. Thus P is associative with 21, and

consequently P 2ί is an ideal by theorem 5, ].

For any extension % of P % in the Hubert space-P©, we see also similarly

that 21 + (1 — P) 21 is a Hubert algebra, if we define,

(x + a) (j+ b) = xy+ ab, (x + a)* = ΛΓ* + a*

for X) j ε•» and a, bε(l — P) 21, and k + (1 — P) 21 contains 21 as a

subalgebra. Since 2ί ίs maximal by assumption, we have hence 21 = P 2ί, that

is, P 21 is maximal as a subalgebra.

THEOREM 6- 2. Fflr tf/y; /Wtfrf/ p of 21 /&** Λ̂Γ/V/̂  a projection operator P

such t h a t P is commutative with TΛ and S a for a l l a ε % and P21 = p.

PROOF. Let P be the projection operator of the closed linear manifold

spanned by p. Since p is an ideal by assumption, for any a ε 21 we have

TaPx = ax^PΎaPx for all xεp.

As p is dense in Pξ), we have hence TaP~PTaP for all aε% and

furthermore

PTa = (Γ** P)* = (PTa* P)* = PΓα P.

Thus P is commutative with Tα for all ^e2ί. Similarly we can prove that P
is commutative with SΛ for all >a ε 2ί. Therefore we have P 21 c 21 by the
previous theorem. Since p is dense in P 21, we have hence p = P 21 by
definition of ideals.

THEOREM 6. 3. If two projection operators P and Q are both commutative

with Ta and Sa for all a ε 21, then we have PQ = QP.

PROOR. By theorem β 1 P 21 and Q 21 are both ideals of 21. First we

assume that P 21 and O 21 have no common element except 0. Then we have

obviously
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Therefore for any a, b s P 51 and x e Q 5ί we have

(*£, x) = (£, tf*x) = 0.

Since (P 51) (P 51) is complete in P © by theorem 1.6, we obtain hence Peg5I =

{ 0 }. As 51 is dense in ξ), we have thus PQ = 0, and consequently ^ P = 0.

In general, the intersection p of P 51 and Q 51 is obviously also an ideal

of 5L Therefore there exists a projection operator R such that p = R 5ί and

R is commutative with Ta and J*β for all aε%. Then, since P5ί D R 5ί and

5ί is dense in § , we have P > R. S;milary we can prove that Q > R.

Furtheremore (P — R) 5ί and (Q — R) 5ί have no common element except 0.

Thus we have

and consequently

Let ^ be the set of all projection operators, which are commutative with

Ta and Sa for all a e 5ί By the theorems proved above, we see that $ is a

Boolean algebra of projetion operators and Sβ 3 Pλ (λ elΛ) implies $ 3 U Pλ,

Π PA.6 )

λ

For any atomic element P e $ , P5ί is a simple ideal by theorem 6.2. Let

Pλ (λ e Λ) be the system of all atomic elements of 5β. Then we have obviously

Pλ PP = 0 for λΦjo. Putting J 2 = 1 — U Pλ, we obtain β e φ , and jg $ has no
λ

atomic element, and hence Q 51 contains no simple ideal by theorem 6.2.

Therefore we have:

THMORMM 6. 4. For a maximal Hubert algebra 51 there exists a system of

prβjection operators P\ (λ ε A) such that P\ PP = Ofor λ 4= ρy P\ is commutative

with Ta and Sa for all aε%. Pλ 51 is a simhle ideal, and (1 — U Pλ)51 contains

no simple TJ~~7

Mathematical Department,

Tokyo University, Tόkyδ.

6) H. Nakano: Funktionon - . Satz.3.




