ARITHMETIC MEANS OF SUBSEQUENCES*)

By

Tamotsu Tsuchikura

Introduction. Let $\left\{s_{n}\right\}$ be a sequence of real numbers which is summable $(C, 1)$ to $s:\left(s_{1}+s_{2}+\cdots+s_{n}\right) / n \rightarrow s$ as $n \rightarrow \infty$. Let $\left\{r_{n}(x)\right\}$ be the Rademacher system. If the limit of

$$
\begin{equation*}
\boldsymbol{\Phi}_{n}(x)=\left(\sum_{k=1}^{n} s_{k} \frac{1+r_{k}(x)}{2}\right) /\left(\sum_{k=1}^{n} \frac{1+r_{k}(x)}{2}\right) \tag{1}
\end{equation*}
$$

for $n \rightarrow \infty$, exists for almost all x, we shall say that almost all the subsequences of $\left\{s_{n}\right\}$ are summable ($C, 1$); if the limit of (1) does not exist for almost all x, we say that almost all the subsequences of $\left\{s_{n}\right\}$ are not summable ($C, 1$) (cf. [2]). These two cases are the all which may occur, since the existence set of the limit of (1) is homogeneous. If the limit of (1) exists only for x belonging to a set of the first category, it is called that nearly all the subsequences of $\left\{s_{n}\right\}$ are not summable ($C, 1$).
R. C. Buck and H. Pollard [2] proved the following theorem.

Theorem. If $\left\{s_{n}\right\}$ is summable $(C, 1)$ to s, then in order that almost all the subsequences of $\left\{s_{n}\right\}$ are summable $(C, 1)$, it is sufficient that

$$
\begin{equation*}
\sum_{k=1}^{\infty} s_{k}^{2} / k^{2}<\infty, \tag{2}
\end{equation*}
$$

and it is necessary that

$$
\begin{equation*}
\sum_{k=1}^{n} s_{k}^{2}=o\left(n^{2}\right) \quad \text { as } n \rightarrow \infty \tag{3}
\end{equation*}
$$

In $\S 1$ of this paper we shall give another sufficient condition, and in $\S 2$ we shall construct an example which shows not only that this condition is the best possible one in a sense but also give a negative answer for the BuckPollard problem [2] whether the condition (3) is a sufficient one. In the last \S we shall concern ourselves the summability $(C, 1)$ of nearly all the subsequences.
*) Received May 20, 1950.
§ 1. By easy consideration, we may see that the existenc̣e almost everywhere of the limit of (1) is equivalent to :

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} s_{k} r_{k}(x)=0 \tag{4}
\end{equation*}
$$

almost everywhere, provided that ' s_{n} \} is summable $(C, 1)$ (See [2]).
Theorem '1. If $\left\{s_{n}\right\}$ is summable $(C, 1)$ to s, and if

$$
\begin{equation*}
\sum_{k=1}^{n} s_{k}^{2}=o\left(n^{2} / \log \log n\right) \quad \text { as } n \rightarrow \infty \tag{5}
\end{equation*}
$$

then almost all the subsequences of $\left\{s_{n}\right\}$ are summable $(C, 1)$ to s.
Proof. Let us put

$$
\begin{aligned}
B_{n}=\sum_{k=1}^{n} s_{k}^{2}, \quad S_{n}\left(x_{i}\right)=\sum_{k=1}^{n} s_{k} r_{k}(x) \text { and } S_{n}^{*}(x)=\operatorname{Max}_{1 \leqq k \equiv n}\left|S_{k}(x)\right| \\
(k=1,2, \ldots) .
\end{aligned}
$$

For $\delta>0$, we denote by $E_{k}(k=1,2, \ldots)$ the set of all x such that $\left|S_{n}(x)\right|>n \delta$ for at least one value of $n, 2^{k-1}<n \leqq 2^{k}$. If we put

$$
G_{k}=\left[x ; S_{2 k}^{*}(x)>2^{k-1} \delta\right] \quad(k=1,2, \cdots)
$$

we have evidently $F_{k} \subset G_{k}(k=1,2, \cdots)$. Hence if the inequality

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|G_{k}\right|<\infty \tag{6}
\end{equation*}
$$

holds for every $\delta>0$ we can deduce that $\left|S_{n}(x)!\right| n \rightarrow 0$ as $n \rightarrow \infty$ almost everywhere, and by the remark at the beginning of this \S we may complete the proof. To prove (6), we use the Marcinkiewicz-Zygmund inequelity ([4]; [5] Remark 1 §3)

$$
\begin{equation*}
\int_{0}^{1} \exp \left(a S_{n}^{*}(x)\right) d x \leqq 32 \exp \left(\frac{1}{2} a^{2} B_{n}\right), \quad a=a_{n}>0 \tag{7}
\end{equation*}
$$

From this we have

$$
\left|G_{k}\right| \exp \left(a 2^{k-1} \delta\right) \leqq \int_{0}^{1} \exp \left(a S_{2 k}^{*}(x)\right) d x \leqq 32 \exp \left(\frac{1}{2} a^{2} B_{2 k}\right)
$$

and if we take $a=2^{k-1} \delta / B_{2 k}$, we have

$$
\begin{equation*}
\left|G_{k}\right| \leqq 32 \exp \left(-\frac{\delta^{2}}{2} \frac{2^{2(k-1)}}{B_{2^{k}}}\right)=32 \exp \left(-\frac{\delta^{2}}{8} \frac{\left(2^{k}\right)^{2}}{B_{2^{k}}}\right) . \tag{8}
\end{equation*}
$$

On the other hand, from (5) it follows that

$$
B_{2^{k} /\left(2^{k}\right)^{2} \leqq \delta^{2} /\left(16 \log \log 2^{k}\right)}
$$

for large k ($>k_{0}$ say). Consequently we have from (8)

$$
\left|G_{k}\right| \leqq 32 \exp \left(-2 \log \log 2^{k}\right)=32 /(k \log 2)^{2} \quad \text { for } k>k_{0},
$$

which is a term of a convergent series, and (6) is proved, q.e.d.
§2. Theorem 2. There exists a sequence $\left\{s_{n}\right\}$ summable $(\mathcal{C}, 1)$, which satisfies the condition

$$
\begin{equation*}
\sum_{k=1}^{n} s_{k}^{2}=O\left(n^{2} / \log \log n\right) \quad \text { as } n \rightarrow \infty \tag{9}
\end{equation*}
$$

and such that almost all the subsequences of this sequence are not summable $(C, 1)$.
This theorem gives us a negetive answer for the Buck-Pollard problem, and comparing Theorem 1 and 2, we may say that the condition (5) is the best possible one of this form.

For the proof we will construct an example.
Let us put $s_{1}=0$ and $s_{n}=(-1)^{n} \sqrt{n} \log \log n(n=1,2, \cdots)$, then, as easily be seen, $\left\{s_{n}\right\}$ is summable $(C, 1)$ to 0 . We have

$$
B_{n}=\sum_{k=1}^{n} s_{k}^{2}=\sum_{k=1}^{n} k / \log \log k \sim n^{2} / \log \log n \quad \text { as } n \rightarrow \infty^{1)},
$$

and (9) is satisfied. Since $B_{n} \rightarrow \infty$ and $s_{n}=o\left(\sqrt{\left.B_{n} \log \log B_{n}\right)}\right.$ as $n \rightarrow \infty$, tч conditions of the law of the iterated logarithm are fulfilled [3]. Henc $\limsup _{n \rightarrow x} S_{n}(x) / \sqrt{2 B_{n} \log \log B_{n}}=1$, that is, $\limsup _{n \rightarrow \infty} S_{n}(x) / n=$ constant $\neq 0$ almost everywhere. Thus the example was established.
§3. Theorem 3. If $\left\{s_{n}\right\}$ is summable $(C, 1)$ but not convergent, then nearly all the subsequences of $\left\{s_{n}\right\}$ are not summable (C.1).

Proof. If all the subsequences of $\left\{s_{n}\right\}$ are summable ($C, 1$), then $\left\{s_{n}\right\}$ must be convergent (See.e.g. [1]), hence from the assumption of the theorem there exists a subsequence $\left\{s_{n_{i}}\right\}$ which is not summable $(C, 1)$. Let $\left\{s_{n_{i}}\right\}=\left\{s_{n} \frac{1+r_{n}\left(x_{0}\right)}{2}\right\}$,

[^0]$0<x_{0}<1$, where the te1ms with indices n such that $\frac{1}{2}\left\{1+r_{n}\left(x_{0}\right)\right\}=0$, are regarded to be omitted; evidently x_{0} belongs to the set R of all dyadic irrationals.

Since $\left\{\boldsymbol{\varphi}_{n}\left(x_{0}\right)\right\}$ is divergent, there exists a positive integer p_{0} and a sequence of positive integers $m_{1}<n_{1}<m_{2}<n_{2}<\cdots \rightarrow \infty$, such that

$$
\begin{equation*}
\left|\boldsymbol{\varphi}_{m_{2}}\left(x_{0}\right)-\boldsymbol{\phi}_{n_{2}}\left(x_{0}\right)\right|>\frac{1}{p_{0}} \quad(i=1,2, \cdots) \tag{10}
\end{equation*}
$$

If we put $E_{p q}=\mathrm{R} \cap\left[x ;\left|\boldsymbol{q}_{m}(x)-\boldsymbol{\varphi}_{n}(x)\right| \leqq 1 p(m, n>q)\right] \quad(p, q=1,2, \ldots)$, then the set of $x \in R$ for which the limit of (1) exists, may be represented as

$$
E=\prod_{p=1}^{\infty} \bigcup_{q=1}^{\infty} E_{p q} .
$$

If we suppose that the set E is of the second category in R, so is the set $\bigcup_{q=1}^{\infty} E_{2 p_{0}, q}$ and then for some q_{0}, the set $E_{2 p_{0}, q_{0}}$ is still of the second category $\stackrel{q=1}{i n} \mathrm{R}$. The function $\boldsymbol{\varphi}_{n}(x)$ being continuous in R , the set $E_{2 \phi_{0} q_{0}}$ is closed in R , and hence it contains an interval $I \subset R$. Since there is a point $x_{1} \in I$ such that the difference $\left|x_{0}-x_{1}\right|$ is dyadically rational, we have

$$
\frac{1}{n} \sum_{k=1}^{n} r_{k}\left(x_{1}\right)-\frac{1}{n} \sum_{k=1}^{n} r_{k}\left(x_{1}\right), \quad \frac{1}{n} \sum_{k=1}^{n} s_{k} r_{k}\left(x_{0}\right) \simeq \frac{1}{n} \sum_{k=1}^{n} s_{k} r_{k}\left(x_{1}\right)
$$

as $n \rightarrow \infty$. Hence from (10) we have

$$
\left|\boldsymbol{\varphi}_{m_{2}}\left(x_{1}\right)-\boldsymbol{\varphi}_{n_{i}}\left(x_{1}\right)\right|>\frac{1}{2 p_{0}}
$$

for large i, which contradicts the fact $x_{1} \in I \subset E_{2 p_{0} q_{0}}$.
Consequently the set E is of the first category in R. The complement of $R,(0,1)-R$ being enumerable, the set E is of the second category in $(0,1)$, q.e.d.

References

1. Buck, R. C., A note on subsequences, Bull. Amer, Math. Soc., 49 (1943) 898-899.
2. Buck, R. C. and Pollard, H., Convergence and summability properties of subsequences, ibid., 49 (1943) 924-931.
3. Kolmogoroff, A., Ueber des Gesetz des iterierten Logarithmus, Math. Ann., 101 (1933) 126-135.
4. Marcinkiewicz, J. and Zygmund, A., Remarque sur la loi du logarithme itéré, Fund. Math., 29 (1937) 215-222.
5. Tsuchikura. T., Remark on the Rademacher system, (To appear in the Proc. Jap. Acad.).

Mathematical Institute, Tôhoku University, Sendat.

[^0]: 1) $P_{n} \sim Q_{n}$ means that P_{n} and Q_{n} are of the same order as $n \rightarrow \infty . P_{n} \sim Q_{n}$ means that $P_{n} / Q_{n} \rightarrow 1$ as $n \rightarrow \infty$.
