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After G. Birkhoίί [2], in the Banach lattices the lattice operations are
uniformly cotinuous with respect to the strong (norm) topology. This
theorem does not hold for the weak topology. For, let χn (t) (n = 1,2,.••)
be the sequence of Rademacher functions, considering in the Banach lattice
U (p ;> 1), its positive' part converges weakly to 1/2, however χn (/) converges
weakly to zero. The first part of this paper is devoted to investigate Banach
lattices in which the lattice operations are weakly continuous. This is given
by the character of the intervals. In the second part, we give characteristic
properties of the /fe-space, whose definition is given in Definition 3.

Throughout this paper, we shall use the technical terms and notations in
Birkhoff's book [2] without any explanation.

1. We,will prove firstly the following

THEOREM j . The lattice operations of the conjugate space of a separable

Banach lattice are continuous with respect to the weak topology as functionals if

and only if the interval of the Banach lattice is strongly compact.

PROOF : Suppose that the lattice operations are weakly continuous in the
conjugate space E* of a separable Banach lattice £ . Then

/+ (*) = sup {/();) O^y^ x}

converges to zero whenever fn converges weakly to zero. Hence it holds

\fn(y)\ ^ίfn(y) ~~fn(j) ^ ε ^ o r a n y P Q 3 i t i v e number s, sufficiently large n

andj; with 0 < ; J ^ Λ Γ . That is, {fn(y)\ converges uniformly on the interval

(0, x), and so the interval is strongly compact by a compactness theorem

due to L Gelfand [51 and R- S. Phillips [9].

Conversely, if each interval (0, x) is compact in the strong topology, then

lfn(y)} converges uniformly on it whenever fn converges weakly to zero,

whence sup^ f(y) converges to zero for any j belonging to the interval, and

*) S^ceiv^d September 11, 1949.
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so /+ converges weakly to zero. This completes the proof of the theorem.

We shall now introduce the following definitions.

DEFINITION 1. A complete Banach lattice is said to be a lί'-space if it

satisfies the following:

CONDITION F : χn [0 implies \xn\ -> 0.

DEFINITION 2. A separable K'-space is said to be a /έ'-space if it has a

positive orthogonal bζise.
Under these definition we will prove nextly the following

THEOREM 2. A separable Banach lattice is a k!-space if and only if its each
interval is strongly compact.

We need several lemmas.

LEMMA 1. If each interval of a Banach lattice is compact, then it is a com-

plete lattice.

Proof: Let S be a metrically closed Moore-Smith subset of an interval
(0, a) and L be a metrically closed simply ordered subset of 5̂*. Then S and
L are compact by the hypothesis. Let χn be the supremum of the centers of
the 1/̂ -net of L. We may assume without loss of generalities that χn ^ ΛΓΛJ-J

holds for any n. Then {χn} converges metrically and so it has a limit x in
L Evidently by the construction x becomes the supremum of L, that is, S
is inductively ordered, whence it contains at least one maximal element by the
Zorn lemma. On the other hand, since S has the Moore-Smith property, it
has at most one maximal element, and so it becomes supremum of S. This
proves the lemma.

LEMMA 2. If each interval of a Banach lattice is compact, then it holds the
Condition F.

PROOF : Suppose χn [ 0. Then by the compactness of interval a suitable
subsequence {χn'} converges metrically to some x with 0^χgLχn', whence
x — o by the assumption, and so j xή f -> 0 holds. Thus the proof follows
from the monotonity of the norm.

Here we state a known theorem as a lemma, which will be used later.

LEMMA 3 (Ogasawara [ 7 ]). If in a separable Banach lattice (hence it has a
principal unit 1 by a theorem of H. Freudenthal [4]) each interval is compact,
then the structure lattice (and so the unit lattice (cf. 6 Def. 3)) is an atomic
Boolean algebra with enumerable atoms.

LEMMA Ί A separable K'-space is a k'-space if and only the structure lattice
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(/. e* tht lattice of all ideals or the complemented normal subspaces of G.Birkhoff)
is atomic*

PROOF : Since the necessity is obvious, it is sufficient to prove the con-
verse. The atomicity of the unit lattice implies the existence of a orthogonal
positive maximal independent set {̂ } with the norm unity in virtue of Zorn's
lamma. Let e{ be the components of 1 in the atomic ideal including #f then
F j = 1 ^ order-converges to 1, whence 1 - V?=1ei = V™=n+1 s{ order-converges
to zero, and so by Conditon F it converges metrically. On the other hand
βi = cii ai for some α f, whence {<%} is a base.

LEMMA 5. A separable Banach lattice, whose each interval is compact, it a
k'-space.

PROOF: By Lemmas 1 and 2 such Banach lattice becomes a K'-space which
becomes a /fe'-space by Lemmas 3 and 4.

LEMMA 6. If a Banch lattice has an orthogonal positive base {aι\, then x ^'y
holds if and only if ξi ^ 77$ for any i, ξi and ηt being the coefficients of x andy
with respect to a{ respectively.

PROOF : It suffices to show that x :> 0 implies ξ% > 0. Suppose the con-

trary and ξi < 0 for some /. Then it holds by the distributivity

= 1

where ξ+ = ξ{ V 0, which is a contradiction.

PROOF OF THEOREM 2: Necessity of the condition follows from Lemma 5.
In order to prove the sufficiency, let us suppose

co co

0 5g x = Σ ^ ξt ai ^ Σ cii ai — a*
* = 1 i = l

By Lemma 6 we have

n I " i i °° ι ( ° °

ξt aλ ^ . 2 J ?, aΛ ^ Z J ^ at \ ^ \2J a{ a{ - a\ < ε

for any positve ε and all n with « ^ «(«), namely, 2» ?i ^ converges uniformly
on the interval (0, ^). Hence by the compactness theorem of R.S. Phillips [9J,
the interval is stronly compact. Thus the theorem is proved.

Combing Theorems 1 and 2 we have

THEOREM. 3 The lattice operations of the conjugate space of a separable
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Banach lattice are weakly continuous if an only if the Banach lattice is a U-

space.

2. We will now introduce the following definitions

DEFINITION 3. A complete Banach lattice is said to he a £-space if it is a k-

space satisfying the following

CONDITION L: 0<^χn^xni-i and \xn\ ^ λ for all n imply the existence of

Vn Xn. '

DEFINITION 4 (Dunford*Morse [3]). A Banach space is said to have a

Dunford-Morse base if it has a base a{ such that

CONDITION D : if | 2 ? = i ^ Ui' — λ holds for a sequence of real numbers {£;}

then the series >£ .ξ% aι converges mterically.

Then we have

THEOREM 4 A K'-space is a k-space if and only if it has an orthogonal positive

Dunford'Morse base*

PROOF : Let E be a &-space and partial sums of the series ^\.ζi a>i be

uniformly bounded. If the coefficients are non-negative, then the partial sum

xn = 2Γ=i^» a* f ° r m s a n increasing sequence with the unifomly bounded

norm, which by Conditions F and L converges metrically to the supremum

of χw, and so E has a Dunford-Morse base. In the general case, if we put

where ξt- = ξ{ V 0 and ξ- = ξf A 0, then \xn| ^ λ implies j χ+ | ^ λ and I χ~ |

^ λ by the montonity of norm, whence {x+j and {x~} converge metrically

to χ+ and χ~ respectively, and so χn =AΓ^ + x~ converges metrically to χ+ +

x~

Conversely, let E has a Dunford-Morse base{^ } and xn = V . ξfai be an

increasing seqnence of elements with \xn\ ^ λt and moreover χn be the m^th
tn

partial s u m of t h e series χn+ T h e n {f j} is a b o u n d e d decreasing sequence of

real numbers for each /\ whence ξi = lim» ξj exist. Let us n o w p u t xm «

2 & i ^*ώl* T h e n \χ^\ order^converges, and so metrical ly converges t o xm> H e n c e

1 *** I ^ I Xn I ^ λ implies \xm\ ^ λ f o r any m> a n d so χm converges metrical ly

t o x by t h e h y p o t h e s i s Since t h e metric convergence preserves the order, we
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have χn ^x for all n, and consequently x = v , x* This complete the proof
of the theorem.

As L.Alaoglu [1] proved, a Banch space having a Dunford^Morse base is
isomorphic to a conjugate space of a certain Banach space. Hence it is also
conjectured in the case of the Banach lattices. That is, we have

THEOREM 5. A. Banch lattice is a k-space if and only if it is isomorphic with
a separble conjugate space of a k'-space.

PROOF OF SUFFICIENCY : If JB is isomorphic to F*, the conjugate space of
a £'-space F, then F* (and also E) is a £-space by a theorem of T. Ogasawara
(cf. [6 Thm. 11]). On the other hand, the structure lattices of a iC'-space
and its conjugate space are isomorphic, by a theorem also due to him (cf. [9
Thm. 6]), whence Lemma 4 implies that F* (and so E) is a /έ-space.

To prove the converse here we state without proof a known theorem as
a convenient lemma

LEMMA 7 (Ogasawara [8]). If f and g are linear functionals on a Banach

lattice E satisfying f Λ g = 0, then for a positive element x there exists a pair

of elementsy and «ζ such that y Λ tζ =0, y v ίζ ̂  x and

PROOF OF THE NECESSITY OF THE THEOREM : By a generalized Radon-Nikodym

Theorem [6; Thm, 9], the second conjugate space £** of a A-space E is

decomposed into the direct union of E and E' where E' is the complement

of E in E**. Suppose

Then evid nly F is a normal subspace of E* Since If — gl < e implies O55

x(\g\) < ε \x\ f ° r ΛreΈ7, F is also metrically closed. Hence F is a Banach

lattice. Since each linear functional x of F can be extended to a linear

functional x on the whole space jϋ*, x is decomposed into x = x + xf where

'x e E' and x vanishes on F, whence there corresponds an element x of £

for each x of F*.

On the other hand, if/* is a coefficient functional of the base a% in £,

then fi belongs to F. For, if we assume the contrary and x(β) > 0 for some

0 < x e j&', theri 'x Λ a{ = 0 in E** implies by Lemma 7 the existence of g and

h with g Λ h = 0, g V h gzβ and

0 ^ ^ {β) - aι (g) < e, O^'x(fi) - x(h) < e

for suffici ntly small ε. But this is impossible unless f4 ( f̂) — 0, since, by a
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theorem due t o T . Ogasawara (cf., [β T h m . 6]), t h e s t ructure lattice is atomic
as a consequence of Lemma 4, a n d so e i ther g o r h equals t o zero. Hence
x 4= 0 implies f(χ) ψ 0 for some/e F Therefore the correspondence from F*
to E is one-to-one. Moreover, if x corresponds to xy then it holds

lie! = sup{ |ά(/) | / I/I feF} = sup {\f (x)\ / I/I fεF}

whence E and _F* are isomorphic as Banach spaces by a well-known theorem
of S. Banach. Finally, each coefficient functional belongs to F, whence an
element x is positive if and only if the corressonding x is positive, and so
the correspondence is also a lattice isomorphism.

It remains to prove that I 7 is a k'-space. Since the structure lattice of F
is atomic by Lemma 4 and a theorem of T Ogasawara (cf., [6 Thm. 6]),
using Le.Ίima 4 twice it suffices to show that F is a X'-space. But this is an
immediate consequence of the following

THEOREM 6. As a sublattice of the second conjugate space, a Banch lattice is

normal subspace if and only if it is a K'-space*

PROOF : Since the sufficiency is already proved in [6 Lemma 4], it
remains to show the converse implication. Since a conjugate space of a
Banch lattice is complete by a theorem of G. Brikhoff [2. p. Ill] and the
normality of E. Hence it suffices to prove condition F. Let χn [ 0, then
**»(/) converges monotonically to zero for e a c h / > 0 , whence the weak
compactness of the intersection of the unit sphere and the positive cone of
the conjugate space implies the uniform convergence of {χn (/)} as continuous
functions on it by the Dini Theorem, and so it converges strongly to zero.
This proves the theorem.

In the connection of Theorem 6, we will make a remark on the iC-spaces

in the following form:

THEOREM 7. A Banach lattice is a K-space if and only if it is an ideal in the

second conjugate space.

PROOF : The necessity is already proved in Theorem 9 of [ 6 ], we will
prove the converse. To prove this it is sufficient to show that E satisfies the
condition L. Let 0^χn^xn+i and [χn\ ^ λ , then {χn} converges to x in
£** which is the supremum of χn. Hence by a remark of G. Birkhoff
[3; p. 121] and the hypothesis, x belongs to JB, which is required.
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