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1.

1. Let E be a bounded Borel set of points on ^-plane. We distribute a

positive mass dμ(a) of total mass 1 on E and let

u (z) = \ l°β i j dμ (a

then # (̂ ) is harmonic outside of E. Let Vμ. be the upper limit of u (%) for

M < oo and 1/ = mίVμ., then C(J3) = e~v is called the logarithmic capacity
μ

of £ . Hence if C(JB) > 0, i.e. V < oo, then we can distribute a positive mass

dub on 12, such that Vμ < oo.

EvansX) proved the following theorem, which we use in the proof of

Theorem 5»

LEMMA 1. (EVANS.) Let E be a bounded closed set of logarithmic capacity %ero

on %-plane, then we can distribute a positive mass of total mass 1 on E, such that

u (ίζ) tends to + oo, when «ζ tends to any point of E.

Beurling2) proved the following important theorems:

THEOREM L (BEURLING.) Let w=zf(%) be regular in | ^ | < 1 and the area A

on wplane, which is described by n>=f(z) (l ζl < 1) be finite, i. e.

A= \\ \f'(reiΘ)\2

\z)<l

then the set E of points eiθ on | ^ | = 1, such that

*) Received October 5, 1949,
1) G. C. Evans: Potentials and positively infinite singularities of harmoΏic functions.

Monatshefte fur Math* u, Phys. 4 3 (1936). Evans proved for Newtonian potentials
and the proof can be easily modified in the case of logarithmic capacity. This
is done by K.Noshiro in his paper : Contributions to the theory of the singularities
of analytic functions. Jap. Jour. Math. 19 No.4 (1948).

2) Beurling: Ensembles exceptionelles. Acta Math. 7 2 (1940)*
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is of logarithmic capacity %ero.

Hence the set of points <?*?, such that \\mf(reiΘ) does not exist or

lim \f(reiθ)\ =00 is of logarithmic capacity zero.

THEOREM 2 (BEURLING.) Letw=f(%) be meromorphic in [jζ| < 1 and the

area A on wsphere<> which is described by w ==/(ίζ) (1^1 < 1) be finite^ j . e.

then the set E of points eiθ on | ^ | = 1, such that lim f(reiθ) does not exist is βf

logarithmic capacity %ero.

We will prove the following more general theorems:

THEOREM 3. Let w=f(%) be regular in |jζ| < 1 and

\f(reiθ)\2 rdrdθ<«>,

then there exists a certain set E on |jζ| = 1, which is of logarithmic capacity

%ero, such that if eiθ does not belong to 23, then a rectilinear segments which

connects eiθ to any point % in \%\ < 1 is mapped on a rectifiable curve on wplane.

THEOREM 4. Let w = f(%) be meromorphic in |jζ| < 1 and

ι * i < i

then there exists a certain set E on | ζ[ = 1, which is of logarithmic capacity

%ero, such that if eiθ does not belong to E, then a rectilinear segments which

connects eiθ to any point % in |;ζ| < 1 is mapped on a rectifiabk curve on w-sphere.

} I f lreiθ) I

Hence the set of points eiθ, such that I ΓT Λ/ ikr2 dr— 00 is of loga-

rithmic capacity zero,

r ! f (reiθ) \
I f S ϊ + τ f ϊ t ϊ ψ d r < ° ° t h e n ^ f { r e i β ) e x i s t s

2. We use the following lemmas in the proof.

LEMMA 2. Let w=f(%) be meromorphic in a domain D:

^ ^ ί ^ reiθ) and take certain three values finite times in D.



BEURLING'S THEOREM 115

(i) Ij lim/(r) = α, Kmf(reie°) = β exist> then a = β = ω and fM tends to ω

uniformly > when *ζ /tf#Λ /# «ζ = 0 /r̂ Λ̂  /A* //w/Vfe #/* Iλ

(ii) i/* l im/(r)= ω exists, then fig) tends to ω uniformly', »Άtf0 *ζ /̂ »Λ /^ ίζ= 0

/ Â  w/ώ ζ/* <ί« angular domain Di : 0 < r ^ R , 0 ^ ^ ^ ^ 0 - δ /<?r' Λ/y

(i) is due to Dndelδf and (ii) is MonteΓs theorem, when /"(jζ) is bounded
in D. The general case can*be reduced to this case by means of modular
function in the well known way.

f f / f'(reiθ) V
REMARK. If \\ (_^—— ^—) rdrdθ < oo , then fOA takes almost all values

•y vl -t- |/(r^)r/ J x

finite times in D, so that satisfies the above condition.

LEMMA 3. (FEJER AND F. RIESZ.)3> Let n>=f(z) be regular in |^ | g l , then

\ 1/(̂ )1 1̂ 1 ̂  \- \ 1/(̂ )11̂ 1.
- 1 1*1-1

where the left hand side is integrated on the diameter ( - 1, 1) of | ζ | = 1.

If we apply the lemma on /' (^), we have

- i " ί . l - 1

the left hand side is the length of the image of the diameter (— 1, 1) and the
right hand side is that of |^ | = 1,

When /( ζ) is regular in ] ζ j ^ l . except at ^ = 1 and is continuous in
|ίζl ^ 1> ft i s easily proved that the same relation holds.

LEMMA 4. Let w=f{%) be regular in a domain D: 0 < r ^ R , 0^0^ :θ Q

(tζ = reiθ) and takes certain three values finite times in D. If

then

where K

R

0

R

L(0)= f \f(reiθ)\ d)
Θ

^Maxl/M,.

0

°)\dr

,oS,

3) L* Fejer u. F. Riesz: IJber einϊge funktionentheoritischeUngleichungen,Math. Zeits ,
11 (1921).
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R R

PROOF. Since f \f (r)\ dr < oo, f \f (reiθ°)\ dr < *>, l i m / ( r ) , l i m / ( r ^ )
J J

exist, so that by lemma 2, /(«ζ) is continuous in the closed domain Zλ We

map D conformally on a unit circle \ζ\ < 1, such that the segm nt %= reiθ°l2

( 0 < 5 r < R ) is mapped on a diameter of \ζ\ = 1. Since [/'(^)| \d%\ is invariant

by conformal mapping, we have by lerima 3,

/ (r^*) Ur g \ \ \f if) \dr + I

jr J 1/ (Rί'β) I Rdθ < L + ltR^0/2. ( 1 )

We divide the interval (0, ΘQ) into 2W equal parts, then we will prove by

induction, that

I(PΘ0/2*)£L+KRΘQ(2'-I+ - + 2-»), ( i .= 0,1, 2 , - , 2"). (2)

By (1), (2) holds for » = 1.

Suppose that (2) holds for n~m> then

... + 2-*), ( 0 ^ i ; ^ 2«),

0 (2- 1 + ... + 2-»), ( 0 ^ * ^ 2 »-1).

Similarly as (1), we have

VΘQ 2»»

α/2*+i = L +

L (2* 0o/2»+i) = L (^o/2») ^ L + KR 0O (2-1 + ... + 2-

so that (2) holds for » = /» + 1, ( 0 ^ z / ^ 2 W + 1 ) . Hence by induction, (2) holds

for any n*

From (2), we have

o. ( 3 )

Let 6 be any value in (0., θ0), then we can find vni such that vn θo/2n

(«->oo), so that by (3),
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( 4 )

REMARK. Hence

R R

L(θ)^\f (r)| dr+ j I/(«'•») I </r + ίCR0o. (5)
0 0

LEMMA 5. Let w=f(%) be meromorphic in a domain D: 0

0 5g 0 <J 0O Oζ = r#*θ) #W / ^ certain three values finite times in D. If

} 1+ l/(r)l }l+\f(reiβ

then there exists a comiant K, such that

PROOF. From the hypothesis, lim/(r) = α, lim f(rei9°) = β exist, so that

by Lemma 2, a = β = ω and/Oζ) tends to ω uniformly, when ^ tends to

fζ * 0 from the inside of D. By a suitable rotation of ^-sphere, we may

assume that ω = 0 and/(ίζ) is regular and bounded in D, such that |/(ίζ)j ^ M

in D} then by the remark of Lemma 4.

^\ \f'(r)\ dr+\ \f\reiQ)\ dr-V KRΘ0

o J

+ (1+ Λί

so that L (θ) is bounded for 0 ̂  6> ̂  ^0

3. PROOF OF THEOREM 4.

We will prove Theorem 4, since Theorem 3 can be proved similarly. Let

eiθ be a point on [ίζl = 1 and K be a circle ^ — ~ — = ~ , which has a radius

-j- and touches |^j = 1 internally at eiθ.

Let / be a seg nent through ei9, which makes an angle ψ( — -£- < ψ < -^-

with the radius of |^[ = 1 through ei9 and 4 be the part of /, which is con

tained in K.

We put
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ίf/2

= f L(ψ)cosψdψ. (2)
- * / 2

is the length of the image of lψ on ^-sphere by w^
First we will prove that the set E of points eiΘ on |«ζ[ = 1, such that

χ (#) = oo is of logarithmic capacity zero.

Suppose that C (E) > 0, then E contains a closed sub-set of positive
capacity, so that we may suppose that E is closed. Since- C (E) > 0, we can
distribute a positive mass of total mass 1 on JE, such that for [«ζ| < oo,

*kd = H(rei}) = J log-j^rjπdu(Φ)^V,,<co. (3)
E

u Oζ) is harmonic in [ ζ [ < 1 and its Fourier expansion is

«Oζ) = Σ - ^ - (̂ Λ cosnθ+ kn sin«^), (4)

where

ΛM = 3 cos «^Jμ (0), /fen \ sin «<9 du{β)y (5)

so that

( u (reiθ) du (θ) = Σ J ? - (A» + >fe2) ̂  l/μ,
E n=i n n n

whence

Σ
Hence

I, 2 J^ n

If we put
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then

Now on [«ζ[ = r, we have

-jg- « / * = - $ < / arg (r«"«» - ^ ) <fe

so that

Hence if we put

1 ( < p ) =ί d r Γ
we have

I=\l{φ)dμ.{q>). (11)

We will prove that I (φ) = oo for any point eiφ e E.

Suppose that ^ = 1 (φ — 0) belongs to Ey then

X (0) = oo. (12)

If we put

- ψ == arg{reiθ - 1), ( ~ ^ ~ < < ^ r < ~ y ~ ) (13)

then

I(0) = \dr f . ^ ^ P A o ^ * ί14^

Since sinψ = —— r s i n , we have on M = r,

Vl + r2 - 2rcosθ ^

Hence if we put cos-V = ^0, then dψ>0 for [ 0 ! ^ 0 O and dψ^Q for

1̂ 1 ^ τr> so that
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We remark that the point |^ | ^--reiΘ(θ0^ \0\ t=kπ) lies outside a circle

- J_ - !
2 2*

Since for βa ^ 'β\ <: τt9 0 <g ——-;^~ C Q S ^ - - ^ . _ ? : — ^ j , we have |^ψ[

^rdθ) so that

Hence

ι A U i +

N o w we change variables in t h e d o u b l e integral (17) f rom (r, ψ) t o (/,ψ )
by ^ = r^*θ = 1 - /^- *>, then

j j , COSψ - t

Since 1 -f /2 - 2/ cos ψ ±g 1 in «ζ - -i- ^ -~, we have

C O S ί / ;

. 1).^ v x + i/(?) ί3 _L2

 j x + i/w: 2 v / 1 + f Z -?t c o s "̂ll2 1
2 (.GOS<//}/2

so that from (I?), 7(0) = oo. Similarly we have /(ψ) = x> for any eiφ € E.

Hence 7 = oo, which contradicts (9), so that C(B) ~ 0.

Hence there exists a certain set Jϋ on J ζj = I, which is of logarithmic

eapacity zero, such that if eid does not belong to E, then %{θ) < oo. If χ (0)

< oo, we have from (2), L (ψ) < oo for almost all ψ, so thar by Lemma 5,

L (Ψ1) < °° for all ψ, which proves the Theorem.

REMARK. If in the proof, we replace 1/(^)7(1+ ί/(ίζ)l~) by ί/(ίζ)ί

use Lemma 4 instead o^ Lemma 5, we have Theorem 3.
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2.

Let n>—f{%) be meromorphic in |«ζf < 1 and F be its Riemann surface
spread over #>spere K- Let a be a point on K and iCP be a spherical disc of
radius p with α as its center. Let s (p) be the total area of the part of F,
which lies above JCP.

If

n(α) = ϊϊϊn j (p) (τrp2) < oo, / j )

then # is called an ordinary value of /(%)
Evidently n(a)^n{a), where n(a) is the number of zero points of f(%)-a

in \z\ < 1 .
If

I * ! < 1

then by Lebesgue's theorem, n(a)= n (a) for almost all # on JC.

Beurling proved: Let»;=/(^) be meromorphic in |sζ| < 1 and A < oo

and a be an ordinary value of /(sζ), then the set of JE of points eiθ on [iζ|=l,

such that lim/(r£<9) = a is of logarithmic capacity zero. We will prove the

following more general theorem *

THEOREM 5. Let &=/(%) be meromorphic in \^\ < 1 and take certain three
taluesfinite times in |tζ| < 1 and a be an ordinary value of /Oζ). Then the set E
of points eiθ on \%\ = 1 , such that lim/ίre ί β) = # is of logarithmic capacity %erβ.

PROOF, Without loss of generality, we may suppose that a = 0. Since

n(0)^n(0), /(ίζ) has only a finite number of zero points !&,-,!£„ in |^[ < 1.

If p is small, then the part of the Riemann surface F of w=f(%) above a

disc \jμ\ (1+ \w\2)~H^p is mapped on domains IX1), •••, D » , Δp, where D'&

contains ^ and is bounded by a Jordan curve lying in [^|< 1 and ΔP consists

of connected domains {AW}, which have boundary points on | ζ[ = 1 and at

every boundary point in Ijζ| < 1, |/( ζ)| (1 + |/0ζ)|2)-1 / s = p.

Then by definition, for a suitable constant JC,

Suppose that C{E) > 0, then as in the proof of Theorem 4, if we put
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Δp

then

= ft _ L C « L Jlrrfn/*, (4)
JJ l+ |/(n,«) | * ?>r

Since

we have

Δp

so that

HI ^ ε P> where ε -• 0 with p -* O { 5)

As in the proof of Theorem 4, we have

J = Jl(<e)A*(φ), (6)
Έ

where

Suppose that jζ = 1 (φ = 0) belongs to E, then l i m / ( r ) = 0 , hence by

Lemma 2, lim/(r) = 0 uniformly, when ^ tends to sζ = 1 in an angular domain

ω, which has its vertex at ^ = 1 and symmetrical to the radius of |sζ| = 1

through jζs=Λ and is of aparture τr/2, so that the part of ω in the vicinity of

ξ = 1 belongs to ΔP.
Let ΔP (L) be the common part of ω and ΔP, then if p is small, Δp (1) lies

in a circle

ί(0)>

= -s-, so that as the proof of Theorem 4, we have
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( 8 )

X
where εx -> 0 with /o->0 and ?ψ is the part of the line ψ = const., which is
contained in ΔP (1). As remarked before, lψ contains a segment, which con*
nects «ζ= 1 to a boundary point of ΔP, so that the im ge of lΨ on ^-sphere
contains an arc, which connects w = 0 with a point on a circle [#>[/(l + \wψ)y*
= p, so that

hence J (0) ;> /o/ y Ύ - εA/o. Similarly we have I(φ)^ p Λ/~2 - εip for any eiθe E,

so that from (6), I;> ftV2" - εiP>

From (5), we have

p/V~2 -*ιP ^I^-εp or 1/yT - ^ ^ β,

which is absurd, since e->0, e!->0 with p->0. Hence C(E) = 0

3.

Let D be a simply connected domain on- #>*ρlane, which does not contain
w = oo as an inner point and Γ be its boundary.

We map D conformally on | ζ| < 1 by jp=f(^)t Let a be an access ble

boundary point of D and e be the set of points eiθ on |^ | = 1 , such that

lim/(r^ίθ) = a. Since a is an ordinary value of /(ίζ), we have by Theorem 5,

as Beurling remarked, e is of logarithmic capacity zero. We will prove:

THEOREM 6. Let E be a closed set of accessible boundary points on Γ, which

is of logarithmic capacity %ero and E correspond to a set e on [sζ| = 1, then e is of

logarithmic capacity %ero.

PROOF. Since any simply connected domain can be mapped on a bounded
domain, we may assume that D is bounded.

Since E is closed, by Lemma 1, we can distribute a positive mass dμ(a) of
total mass 1 on Ey such that

« » = j log -J-1 dβ (a) (/* (E) = 1) f 1)

tends to oo, when w tenda, to any point of JE. Hence the niveau curve CV :
# (#/) = const. = r consists of a finite number of Jordan curves, which cluster
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to E as r->oo •

If we put

ί l o g 75Γ~Γ7| dμ {d) = " M + iv M> f2 >

then

JΉ-g-Ή**-2* <*>
where ds is the arc element and v is the inner normal of Cr

Let

then / (jζ) is regular in |«ζ| < 1. Since # -> oo, as »/ tends to E and D is bounded,
we can find a positive constant ^ > 0, such that u (w) -h c ^1 for any point w
of D, hence if we put

then f («ζ) is regular in |jζ| < 1. Let A hd the area on ξ'-plane, which is

described by ζ = ζ(z) (\z\ < 1), then since dζ = - | - —it we have

/,_ 1 [[ dudv

where Δ is the Riemann surface on / = (u + ^)^plaαe, which is described by

/ = u (w) + iv (n>), when w varies in D.
Let Cr (D) be the part of Cr contained in D, then by (3),

J dv ̂  2τr,

so that

< 2τt_ Γ jh
= 9 ) T*

: ^ < = O .

Hence by Theorem 1, the set e' of point eiθ on [ s ζ [ = l , such, th^it
lim \ζ(rei9)\ =oo is of logarithmic capacity zero. From
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we see that e' coinciαle with e* Hence C(e) = 0. q. e. d.
In the general case, where E is not closed, if the boundary of D is a

Jordan curve Γ, then we can prove that C (e) == 0 as follows.
Suppose that C(e)>0, then e contains a closed subset ι', such that

'C{e')>0 Let e correspond to H on Γ, then E is closed and C(£ϊ') = 0
Hence by Theorem 6, C(e') = 0, which contradicts C(ef) > 0, so that C{e) — 0.
Hence we have:

THEOREM 7. Let Γ be a Jordan curve on wplane and E be a set of logo*

rithmic capacity %ero on Γ. If we map the inside of Γ on [jζ[ < 1 conformally,

then E corresponds to a set of logarithmic capacity %ero on |«ζ| = 1.
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