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Introduction

Klein's definition of geometry can be stated as follows. Suppose that

a point-set M and a group G of 1-1 transformations, each of which maps M onto

itself, are given. An arbitrary subset A of M is said to be a figure and a

figure A is said to be congruent to a figure B when B is a image of A under

a transformation of G. We denote this relation by A^B. Then, as G is

a group, the concept of congruence satisfies the following three conditions

(equivalence relations):

1) Every figure is congruent to itself.

2) If a figure A is congruent to a figure B, then B is congruent to A*

S) If a figure A is congruent to a figure B and B to C, then A is con-

gruent to C*

It therefore enables us to divide the figures in M into mutually disjoint

congruence classes. It is the Klein's geometry to study the common properties of

all figures of the same classes, namely the properties which are invariant under

all transformations of G.

But a kind of geometry will be constructed, if the set of transformations

Λ satisfies the above conditions, even if it does not form a group.

Thus there arises a question that whether Λ forms a group or not as an

implication of the fact that the concept of congruence satisfies the above

three conditions.

This question was pointed out by Professor S. Sasaki, but there exists

a very simple example such that Λ is not a group.

On the other hand, the developments of the theories of projective, afϊίne,

Euclidean and Mδbius' geometries are based on the fact that G's are groups

of projective,affine, Euclidean, and Mobius' transformations respectively. And

it will be hard to expect fine theories, if the concept of congruence satisfies

only the above three conditions.

Therefore it will be necessary for the foundation of Klein's geometry to

find conditions other than the above three which express the conditions of

congruence, in order that Λ forms a group.

*) Received Aug. 30, 1950.
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The purpose of the present paper is to explain the relations between the
concept of congruence and that of group, and to give a sufficient condition
for Λ in order that it forms a group.

§1., We here give a simple example of a set of transformations of M
which satisfies the conditions 1), 2), and 3), but is not a group.

EXAMPLE 1. Let M be a set consisting only three points and G be the set
of all 1-1 transformations of M onto itself. And let Λ be the subset of G
which exclude only the identity transformation. Then Λ is not a group, but
the pair (M, Λ) satisfies the conditions 1) 2) and 3)-

To prove this we remark first that when a set M and a set of transfor-
mations of M are given, then in general the conditions 2) and 3) imply the
condition 1), if Λ is not empty.

Hence it is only sufficient to verify that the conditions 2) and 3) are satisfied,
but it is easy.

As we have seen from this example, the fact that figure A is congruent
to itself merely implies the fact that there exists a transformation which maps
A onto A, but each point of A. may be different from its image and by this
freedom Λ is not always a group.

In order to restrict somewhat this freedom, we shall extend the concepts
of figures and of congruence as follows:

A figure is an ordered finite system A - {Aι\ (i = 1, . •., nί) such that each
Aι is an arbitrary subset of Λί And we define that a figure A = {Λ{} (i = 1,
• ••,/») is congruent to a figure B = [Bj (/ = 1, •.., n)> if m = n and there exists
a transformation f of Λ such /(A*) = JB, . for /== 1, . . . , m We denote this
relation by 4 = B or B=--j(A) We call Ai components of the figure A*

Hereafter we always consider the figures and congruences in the above
>>nse. Thus an arbitrary finite subset of M can be considered as such a figure

chat each point of this set is a component, when an order is given.

Now, we assume that the pair (M, Λ) satisfies the conditions 1), 2) and 3)
for every generalized figures. Then, if M is a.finite set, so Λ must be a group.

In fact, if we consider M as the figure each component of which is one
point, then conditions ]), 2) and 3) are equivalent to the following conditions
1), 2) and 3) respectively:

1*) Λ includes the identity transformation.

2*) If / e A, then /-1 e Λ-

3*) If/, g eh, then f g eA.

§2. Our problem was solved when M is finite, but we can not con-
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elude that the set of transformations in consideration forms a group when M is
infinite.

We shall give such an example.

EXAMPLE 2. Let M be an infinite point-set. We consider only 1-1 transfor-
mations of M onto itself, each of which operates as identity except a certain
finite point-set. Such transformations form a group G. Let Λ be the subset
of G which exclude only the identity transformation. If we consider the pair
(Λί, Λ), we can prove that (M, A) satisfies the conditions ]), 2) and 3) for
generalized figures.

By the same remark stated in § 1, it is sufficient to prove that conditions
2) arα 3) are satisfied. But if feA, then f^eA, so condition 2) is satisfied.
Hence there remains only to prove that the condition 3) is satisfied.

Let f, geA be transformations which define the congruences A^B and
]3 ΞΞΞ C respectively.

CASE i). All components of the figure A are finite.

Let A-- {Ai}, then M— U A% is an infinite set, so it contains two di-
i

fferent points a, G2- We define the transfoimation h: M~>M by

h \M - (tfi, a2) = gf \M - tfi, a2),

and

h(ai) = a2,

Then he A and h (Ai) = gf(Ai), so we have A = C

CASE ii). At least one of the components of the figure A is infinite.

Let A = {Ai, Ajr\ be a figure whose components ^4t .are all infinite, while

./!/ are all finite. Then \\Aι - \]Ajr is a infinite set, so every point of this

set is fixed under transformations f and g except a finite number of points.

Hence there are two points ai, a2 in A\ which are fixed both under transfor-

mations f and g. We now define the transformation h : M -> M by

h\M- (ai, a2) - g •/1 M - (au a2),

and

h(aι) « ^2, ^(^2) = î

Jhen /zf Λ and Λ defines the congruence A Ξ= (Γ
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§'3. The important cases in Klein's geometries are those in which M is a
topological space, Λ is a set of homeomorphisms which operate continuously
on M.

So we introduce topologies in the following way.
Let Afbea topological space, εnd Λ be a set of homeomorphisms of M

onto itself which is topologized so as continuously operates on Λί In other
words, there is a hcmeomorphicm Tg of M onto itself which corresponds one
to one to a point g of Hausdorff space Λ, and the transformation T : Δ x
M->M defined by

T(g, m) ^Tg{m) (ge&> meM)

is continuous.

When M and Λ are locally bicompact, we expect by the examples of pro-
jective and affine geometries that by the conditions 1), 2) and 3) Λ forms a
group, namely a topological group.

But the Example 2 shows that in this case we can not conclude that Λ
forms a group in general.

In order to obtain a sufficient condition for Λ to form a group, we shall
now introduce the concept of the Fundamental figure of (M, /V).

Fundamental figure F is a figure every component of which is one point
and has the following property:

Let F' be an arbitrary figure congruent to F, and ΛF' be the subset of Λ
Such that every transformation corresponding to an element of ΛF' defines the
congruence Fr = F, i- e.

Then ΛF' is always bicompact.

We can prove the following theorem.

THEORDM 1. If a topologized bair (M, Λ) satisfies the conditions 1), 2) and 3)

for generalised figures, and furthermore admits a fundamental figure F* then Λ is

a topological group-

PROOF. It is sufficient to show that {Tg \ geA} forms a group. In order
to do it, we have to prove the following two facts:

I) For an arbitrary element feΛ, there exists an element f-1 in Λ such

that T/-1 - ( Γ / K

II) For arbitrary two elements f, geA, there exists an element h in Λ

such that Th = T>7V
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Set F ' * / ( F ) , Fm = {F, a*}., and F ' w = IF', /"(.w)}, where m is a poim of

M Then the figure F,» is congruent to the figure F',n, hence by 2) F ' m is

congruent to F l7ί Let A,, be the subset of such that every transformation

corresponding to an element of A,,, defines the congruence F'm == Fm, i. e.

Then Am is a closed sublet of the bicompact set A F ' And the system

{Am I fflβM} has the finite intersection property*

In fact, when "Am; (m^M, ϊ = 1, •.., n) are given, the figure (F, nh •.., ^«)

is congruent to the figure (F'» <»i', .- . , .w'n), where m'i=f{mD- Hence (F ' ,

/βri', . . . , m'n) is congruent to (F, M, -.-, /»»)• Let Tg0 (.go^Λ) be a transfor-

mation which defines this congiuence. Then we have goeAmi for / =-1, ; * . , » .

Hence Π Ami * 0 Therefore we have
i

n Am Φ o.

Let f-χ be an element of this set. Then we have

Thus it was proved that condition I) is satisfied.

Next, let •/, geA and F ' = Γ/ T* (F) B7 the condition 3), the figure

Fm = iFiPi) is congruent to the figure F'm - {F7, Γ/ Tg {m)}> so F ' Λ is con-

gruent to Fm* Let A.» be the subset of A such that ever/ transformation

corresponding to an element of Am defines the congrunce F'm = Fm, i. e.

Then Λ,7, is a closed subset of the bicompact set ΛF' And the system {A& \

meM* has the finite intersection property as w:ll as the proof of I). Hence

we.have Π Λ,,, Φ 0. Let k be an element of this set. Then we have Tk =
mzb/i

(T/ Tg)-1- Hence by I) there exists an element h in A such that Th = T/ T g.
Thus Theorem 1 is proved.

In particular, if A is bicompact, then (M, A) admits a fundamental figure.

Hence we heve:

COROLLARY. If a topologi^ed pair (M, A) satisfies the conditions 1), 2) and 3)

for generalised figures, and A is bicompact, then A is a topological group-

Moreover, from Theorem 1 we can easily obtain the following results:

THEOREM 2. In the projective (aβne, Enclidecn, and Mobius) spacey if a set
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of projective (affrne, Euclidean, and M'όbiπs') tranformations satisfies the conditions

1), °) and 3) for %emrali^ed futures, then the set is either the group of projective

(affine, Ewlidean, and M'όbius'l transformations or a subgroup of the group*

Let n bd the dimensions of this space. Then the fundamental figure

consists of n + 1 points which are linearly independent. So we have Theo-

rem 2 from Theorem 1.
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