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Introduction

Klein’s definition of geometry can be stated as follows. Suppose that
a point-set M and a group G of 1-1 transformations, each of which maps M onto
itself, are given. An arbitrary subset 4 of M is said to be,,a ﬁgﬁre and a
figure 4 is said to be congruent to a figure B when B is a image of _4 under
a transformation of G. We denote this relation by 4= B. Then, as G is
a group, the concept of congtuence satisfies the following three corditions
(equivalence relations):

1) Every figure is congruent. to itself.

2) If a figure 4 is congruent to a figure B, then B is congruent to A.

S) If a figure A4 is congruent to a figure B and B to C, then A4 is con-
gruent to C.

It therefore enables us to divide the figures in M into mutually disjojint
congruence classes. It is the Klein’s geometry to study the common properties of
all figures of the same classes, namely the properties which are invariant under
all transformations of G.

But a kind of geometry will be constructed, if the set of transformations
A satisfies the above conditions, even if it does not form a group.

Thus there arises a question that whether A forms a group or not as an
implication of the fact that the concept of congruence satisfies the. above
three conditions.

This question was pointed out by Professor S. Sasaki, but there exists
a very simple example such that A is not a group.

On the other hand, the developments of the theories of projective, affine,
Euclidean and Mobius’ geometries are based on the fact that G’s are groups
of projective,afine, Euclidean, and Mgobius’ transformations respectively. And
it will be hard to expect fine theories, if the concept of congruence satisfies
only the akove three conditions.

Therefore it will be necessary for the foundation of Klein’s geometry to
find conditions other than the above three which express the conditions of
congruence, in order that A forms a group.

*) Received Aug, 30, 1950.



ON THE KLEIN’S GEOMETRY 287

The purpose of the present pagper is to explain the relations Letween the
concept of congruence and that of group, and to give a sufficient condition
for A in order that it forms a group.

. §1. We here give a simple exeample of a set of transformations of M
which satisfies the conditions 1), 2), ard 3), but is not a group.

" ExampLe 1. Let M be a set consisting only three points and G be the set
of all 1-1 transformations of M onto itself. And let A te the subset of G
which exclude only the identity transformation. Then A is not a group, but
the pair (M, A) satisfies the conditions 1), 2) and 3).

To prove this we remark first that when a set M and a set of transfor-
mations of M are given, then in general the conditions 2) and 3) imply the
condition 1), if A is not empty.

" Hence it is only sufficient to verify that the conditions 2) and 3) are satisfied,
but it is easy.

As we have seen from this example, the fact that figure _4 is congruent
to itself merely implies the fact that there exists a transformation which maps
A onto A, but each point of 4 may be different from its image and by this
freedom A is not always a group.

In order to restrict somewhat this freedom, we shall extend the concepts
of figures and of congruence as follows:

A figure is an ordered finite system 4 = {A4;} (/ =1, ..., ») such that each
A; is an arbitrary subset of M. And we define that a figure 4 = {A4;} (i =1,
..., m) is congruent to a figure B = {B;' (/ =1,..., ), if m = n and there exists
a transformation f of A such f(A4)=B; for i=1, ..., w.. We denote this
relation by 4= B or B=f(A4). We call 4; components of the figure A.

Hereafter we always consider the figures and congruences in the above

2nse.  Thus an arbitrary finite subset of M can be considered as such a figure
chat each point of this set is a component, when an order is given.

Now, we assume that the pair (M, A) satisfies the conditions 1), 2) and 3)
for every generalized figures. Then, if M is a finite set, so A must be a group.

In fact, if we consider M as the figure each component of which is one
point, then conditions 1), 2) and 3) are equivalent to the following conditions
1), 2) and 3) respectively:

1*¥) A includes the identity transformation.

2*) If fe A, then /1 ¢ A.

3*) If £, g €A, then f.g €A.

§2. Our problem was solved when Af is finite, but we can not con-
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clude that the set of transformations in consideration forms a group wken M is
infinite.
We shall give such an example.

ExampLeE 2. Let M be an infinite point-set. We consider only 1-. transfor-
mations of M onto itself, each of which operates as identity except a certain
finite point-set.  Such transfcimations form a group G. lLet A be the subset
of G which exclude only the identity transformation. If we consider the pair
(M, A), we can prove that (M, A) satisfies the conditions 1), 2) and 3) for
generalized figures.

By the same remark stated in §7, it is sufficient to prove that conditions
2) ara 3) are satisfied. But if feA, then f~'€A, so condition 2) is satisfied.
Hence there remains only to prove that the condition 3) is satisfied.

Let f, geA be transformations which define the congruences 4= B and
B = C respectively.

Case i). All components of the figure 4 are finite.
Let 4:= {A;}, then M — U A; is an infinite set, o it contains two di-
(2
flerent points 4, g,.© We define the transformation #: M — M by

hiM— (a1, as) = gf | M — ay, ),

and

h(ﬂl) = dg, h(dz = dy-

Then heA and h(A;) = gf (A:), so we have 4= C.

Casg ii). At least one of the components of the figure 4 is infinite.

Let 4 ={A;, Aj't be a figure whose components _4; are all infinite, while
Aj" are all finite. Then |J.A; — U.A; is a infinite set, so every point of this
. v . 7 . .
set is fixed under transformations f and g except a finite number of points.
Hence there ate two points g, @, in 4, which are fixed both under transfor-

mations f and g. We now define the transformation 2: M — M by

th”‘(ab ﬂ2)=g'f|'M—(t21, 612),
and

ha) = as, h(as) = a-

Then heA and & defines the congruence 4= (.
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§2. The important cases in Klein’s geometries are those in which M is a
topological space, A is a set of homeomorphisms which operate continuously
on M.

So we introduce topologies in the following way.

Let M be a topological space, end A be a set of homeomorphisms of M
onto itself which is topologized so as continuously operates on M. In other
words, there is a hcmecmorphicm Ty of M onto itself which corresponds cne
to onc to a point g of Hausdorff space A, and the transformation T: A x
M — M defined by

T (g, m)="Te(m) (geA, meM)

is continuous.

When M and A are locally bicompact, we expect by the examples of pro-
jective and affine geometries that by the conditions 1), 2) ard 3) A forms a
group, namely a topological group.

But the Example 2 shows that in this case we can not conclude that A
forms a group in general.

In order to obtain a sufficient condition for A to form a group, we shall
now introduce the concept of the fundamental figure of (M, A).

Fundamental figure F is a figure every component of which is one point
and has the following property : ‘

Let F’ be an arbitrary figure congruent to F, and Az be the subset of A
such that every transformation corresponding to en clement of Ap defines the
congruence F'=F, i. e.

A = {geA | Te (F)) = F).

Then A is always bicompact.
We can prove the following theorem.

Tureokom 1. If a topologized pair (M, A) satisfies the conditions 1), 2) and 3)
Sfor generalized figures, and furthermore admits a fundamental figure F, then A is
a topological gromp.

Proor. It is sufficient to show that {T, | geA} forms a group. In ordér
to do it, we have to prove the following two facts:

I) For an arbitrary element feA, there exists an element /! in A such
that Ty-i = (Ty) .

II) For arbitrary two elements f, geA, there exists an element % in A
such that T), = T, T,
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Set F' = f(F), F,x = {F, m}, and F’,, = {F’, f(m)}, where  is a point of
M. Then the figure F,, is congruent to the figure F’,, hence by 2) F’, is
congruent to F,,. Let A, be the subset of such that every transformation
corresponding to an element of A; defines the congruence F', = F,,, i. e.

Am = {gé'A I Tg (-Flm) = F:n‘ .

Then A, is 4 closed subset of the bicompact set Ar. And the system
{A,, | me M} has the finite intersection property.

In fact, when Am; (m;eM, i =1, ..., n) are given, the figure (F, n; ..., ma)
is congruent to the figure (F’, »./, ..., #'.), where #'i= f(m;). Hence (F’,
m', ..., m'y) is congruent to (F, 7., ..., m,) Let Tg, (g€ A) be a transfor-

mation which defines this congtuence. Then we have €Ny for 7 =1, ol ne
Hence N Am; = 0. Thetefore we have
i

1’] A-ﬂi #: 0‘

meM

Let f1 be an element of this set. Then we have
Ty =Ty

Thus it . was proved that condition I) is satisfied.

Next, let'f, geA and F’ =TT (F). By the condition 3), the figure
F,, = (F,m} is congruent to the figure F',, = {F’, Ty T¢ (w)}, so F’, is con-
gruent to F,,. Let A, be the subset of A such that every transformation
corresponding to an element of A, defines the congrunce F’,,=F,, i. e.

A:n = {gEA I T{! (F’m) = F:n}"

Then A, is a closed subset of the bicompact set Ar. And the system {A; |
msM" has the finite intersection property as w:ll as the proot of I). Hence
we_have ﬂMA,,, +0. Let & be an element of this set. Then we have T; =
(Ty- Tg)—l"f? Hence by I) there exists an element % in A such that T) = T T,.
Thus Theorem 1 is proved.
In particular, if A is bicompact, then (M, A) admits a fundamental figure.
Hence we heve:

CoroLrary. If a topologized pair (M, A) satisfies the conditions 1), 2) and 3)
for generaliged figures, and A is bicompact, then A is a topological gromp.
Moreover, from Theorem 1 we can easily obtain the following results:

Turorem 2. In the projective (affine, Enclidecn, and Mibins') space, if a set
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of projective (affine, Euzlidean; and Mibius') tranformations satisfies the conditions
1), ®Y anl 3) for sen:ralized fisures, then the set is either the grosp of projective
(affize, Euclidean, and Mibins'y transformations or a suhgroup of the groap.

Let # bz the dimensions of this space. Then the fundamental figure
consists of z + 1 points which are linearly independent.
rem 2 from Theorem 1.

So we have Theo-
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