ON A CERTAIN MOTION IN THE EUCLIDEAN SPACE**

By
Minoru Kurita

In the n-dimensional Euclidean space we consider a moving simplex of d mension r. Let the vertices of the simplex at an instant $t\left(t_{1} \leqq t \leqq t_{2}\right)$ be $x_{0}, x_{1}, \ldots, x_{r}$, whose coordinates are assumed to ke functions of t. Any point of the simplex can be expressed as $x=\sum_{i=0}^{r} \lambda_{i} x_{i}$, where $\sum_{i=0}^{r} \lambda_{i}=1, \lambda_{i} \geqq 0$ and at inner points all λ_{i} 's >0. Let the arc lengths described by these points be L_{0}, L_{1}, \cdots, L_{r} and L. Then

$$
\begin{equation*}
L=\int_{t_{1}}^{t_{2}}(\dot{x}, \dot{x})^{1 / 2} d t=\int_{t_{1}}^{t_{2}}\left(\sum_{i=0}^{r} \lambda_{i} \dot{x}_{i}, \sum_{i=0}^{r} \lambda_{i} \dot{x}_{i}\right)^{1 / 2} d t \tag{1}
\end{equation*}
$$

where dots mean the differentiation with respect to t. Now there exists the relation

$$
\begin{equation*}
L \leqq \sum_{i=0}^{r} \lambda_{i} L_{i} . \tag{2}
\end{equation*}
$$

The proof can easily be accomplished on account of the convexity of the function $(\dot{x}, \dot{x})^{\frac{1}{2}}$ in the velocity vector \dot{x}, which is the integrand of (i). The equality holds good for inner points when and only when the velocities of all the vertices $x_{0}, x_{1}, \ldots, x_{r}$ at any instant are positive multiples of the same vector function b, that is

$$
\begin{equation*}
x_{i}=\beta_{i} b \quad(i=0,1, \ldots, r), \tag{3}
\end{equation*}
$$

where β_{i} are scalar functions. In the present paper we shall compute this case and fird that the paths of moving points in such a motion are generally orthogonal trajectories of the osculating planes of a ceriain curve. We remark that, if the above equality holds for on in net pcint of the simplex, the same is true for any other point of the simpiex and also for the vertices and points of every inner simplex.

[^0]2. First, if all β_{i} 's are equal, our motion is a translation at every instcnt (type (A)).

Next we see by virtue of (3) that, if some β_{i} is not equal to some β_{j},

$$
\begin{equation*}
\left(b, x_{i}-x_{j}\right)=\frac{1}{\beta_{i}-\beta_{j}}\left(\dot{x}_{i}-\dot{x}_{j}, x_{i}-x_{j}\right)=0 \tag{4}
\end{equation*}
$$

because the distance ketween x_{i} and x_{j} is independent of t. Now consider a variable point of the carrier r-plane of the simplex

$$
X=\sum_{i=0} \alpha_{i} x_{i}
$$

where α_{i} 's are functions of t and

$$
\begin{equation*}
\sum_{i=1}^{\dot{\gamma}} \alpha_{i}=1 . \tag{5}
\end{equation*}
$$

Then we have by differentiation $\dot{X}=\Sigma \dot{\alpha}_{i} x_{i}+\left(\Sigma \alpha_{i} \beta_{i}\right) b$. (For the present we assume that the summation ranges frcm 0 to r). If we take α_{i} such that $(\alpha, \beta)=\Sigma \alpha_{i} \beta_{i}=0$, we have.

$$
\dot{X}=\Sigma \dot{\alpha}_{i} x_{i}
$$

and then $\ddot{X}=\Sigma \ddot{\alpha}_{i} x_{i}+\Sigma \dot{\alpha}_{i} \dot{x}_{i}=\Sigma \ddot{\alpha}_{i} x_{i}+(\dot{\alpha}, \beta) l$. In this way if we can take α_{i} such that

$$
\begin{equation*}
(\alpha, \beta)=0,(\alpha, \beta)=0, \ldots, \stackrel{(r-1)}{(\alpha, \beta)}=0 \tag{6}
\end{equation*}
$$

we have

$$
\begin{equation*}
X=\Sigma \alpha_{i} x_{i}, \quad \dot{X}=\Sigma \dot{\alpha}_{i} x_{i}, \ldots, \stackrel{(r)}{X}=\Sigma \stackrel{(r)}{\alpha}_{\alpha_{i}} x_{i} \tag{7}
\end{equation*}
$$

By a slight calculation we see that (6) is equivalent to the following equations

$$
\begin{equation*}
(\alpha, \beta)=0,(\alpha, \dot{\beta})=0, \ldots,(\alpha, \beta)=0 \tag{8}
\end{equation*}
$$

Now we go into the determination of α_{i} 's which satisfy (5) ard (8). We put

Case 1. $\Delta \neq 0$.
By hypothesis $\beta_{i} \neq \beta_{j}$ for every pair of indices i, j such that $i \neq j$, hence (4) holds. As $\Delta \neq 0, \alpha_{i}$'s are determined by (8). From $X=\Sigma \alpha_{i} x_{i}$ we get by virtue of (7) and (5)

$$
\begin{equation*}
=\sum_{i=0}^{r} \alpha_{i}^{(j)} x_{i}=\sum_{k=1}^{r} \alpha_{k}^{(j)}\left(x_{i}-x_{i}\right) . \tag{10}
\end{equation*}
$$

Further we put

$$
D \equiv\left|\begin{array}{c}
\dot{\alpha}_{1} \ldots \ldots \ldots \ldots \ldots . \dot{\alpha}_{r} \\
\ldots \ldots \ldots \ldots \ldots \\
(r) \ldots \ldots \ldots \\
c_{r} \ldots \ldots \ldots \ldots \ldots \alpha_{r}
\end{array}\right|
$$

and divide the case I into the following two subcases :
Case Ia. $D \neq 0$.
In this case ${ }^{(i)} X^{\prime}$'s are linearly independent by virtue of (10), and the simplex in question is on a plane spanned by vectors X with X as their origin. So if we put

$$
\begin{equation*}
x=\sum_{i=1}^{r} \gamma_{i}{ }^{(i)}+X \tag{11}
\end{equation*}
$$

x lies on this r-plane. Taking γ_{i} suitably, let us show conversely that the motion in question, namely the one for which the equality holds in (2), is really possible. From (11) we get

$$
\dot{x}=\left(1+\dot{\gamma}_{1}\right) \dot{X}+\left(\gamma_{1}+\dot{\gamma}_{2}\right) \ddot{X}+\ldots .+\left(\gamma_{r-1}+\dot{\gamma}_{r}\right)^{(r)} X+\gamma_{r}^{(r+1)} X .
$$

Now let x be a fixed point of our simplex. On account of (3), (4) and (10) \dot{x} should be perpendicular to $\dot{X}, \ldots, \dot{X} \underset{X}{()}$, hence we must have from the last equation the following relation :

$$
\begin{array}{r}
\left(1+\dot{\gamma_{1}}\right) \mu_{i 1}+\left(\gamma_{1}+\dot{\gamma_{2}}\right) \mu_{i 2}+\ldots+\left(\gamma_{r-1}+\gamma\right) \mu_{i r}=-\gamma_{r} \mu_{i r+1} \\
(i=1,2, \ldots \ldots, r) \tag{12}
\end{array}
$$

where we have put $(\underset{(i)}{X}, \stackrel{(j)}{X})=\mu_{i j}$. As the determinant $\left|\mu_{i j}\right| \neq 0(i, j=1,2, \ldots, r)$ by virtue of the linear independence of $\dot{X}, \ldots, \stackrel{(r)}{X}$, we get from (12)

$$
\begin{equation*}
1+\dot{\gamma_{1}}=\nu_{1} \gamma_{r}, \gamma_{1}+\dot{\gamma_{2}}=\nu_{2} \gamma_{r}, \ldots \ldots, \gamma_{r-1}+\dot{\gamma_{r}}=\nu_{r} \gamma_{r}, \tag{13}
\end{equation*}
$$

where ν_{1}, \ldots, ν_{r} are functions of $\mu_{i j}(i=1, \ldots, r ; j=1, \ldots, r+1)$, When we write the geheral solution of the differential equation (13) in the vector form $\gamma=\left(\gamma, \ldots, \gamma_{r}\right)$, we obtain

$$
\begin{equation*}
\gamma=\sum_{i=1}^{\gamma} \lambda_{i} \gamma^{i}+\gamma^{0} \tag{14}
\end{equation*}
$$

where λ_{i} 's are constants and γ^{0} is a special solution. As λ_{i} 's vary, the point (11) moves on the osculating r-plane. By calculation we have

$$
\dot{x}=\frac{(-1)^{r}}{\left|\mu_{i j}\right|^{r}}\left|\begin{array}{cccccc}
\dot{X} & \ddot{X} & \ldots & \ldots & . r_{X+1}^{X} \\
\mu_{11} & \mu_{12} & \ldots & \ldots & \ldots & \mu_{1 r+1} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\mu_{r 1} & \mu_{r 2} & \ldots & \ldots & \ldots & \mu_{r r+}
\end{array}\right| \gamma_{r}
$$

Here $\left|\mu_{i j}\right|$ is a determinant and the right side is a linear combination of vectors $\dot{X}, \ldots, \stackrel{(r+1)}{X}$. From the last equation we get $(\dot{x}, \dot{x})^{3 / 2}=\theta\left|\gamma_{r}\right|$, where θ is a function which is independent of $\lambda_{i}{ }^{\prime}$ s. So far as γ^{r} is of the same sign, $(\dot{x}, \dot{x})^{\frac{1}{2}}$ is linear in λ_{i}. So if we denote the points corresponding to $\gamma^{0}, \gamma^{0}+$ $\gamma^{1}, \ldots, \gamma^{0}+\gamma^{\gamma}$ and γ by $x_{0}, x_{1}, \ldots, x_{r}$ and x respectively, we have by (13)

$$
x=\sum_{i=1}^{\gamma} \lambda_{i} x_{i}+\left(1-\sum_{i=1}^{r} \lambda_{i}\right) x_{0}=\sum_{i=0}^{r} \lambda_{i} x_{i} \quad\left(\lambda_{0}=1-\sum_{i=1}^{r} \lambda_{i}\right) .
$$

Hence if γ^{\prime} corresponding to $x_{0}, x_{1}, \ldots, x_{r}$ and x are of the same sign, we have $L=\sum_{i=0 .}^{r} \lambda_{i} L_{i}$. Thus the case I a is settled. Our motion is the one whose paths are the orthogonal trajectories of the osculating r-planes of a curve (type (B)).
3. Case Ib. $D=0$.

Before proceeding further, we state here the lemmi which will be used repeatedly later.

Lemma. Let $z_{0}, z_{1}, \ldots, z_{n}$ be functions of t, and $a_{0}, a_{1}, \ldots, a_{n}$ be constants. not all zero. If
then there exist constants c_{i} 's not all zero such that $\sum_{i=0}^{n} c_{i} \chi_{i}=2$. Especially if $a_{0}=a_{1}=\ldots=a_{11}$. we have in adaition the relation $\sum_{i=0}^{n} c_{i}=0$.

Proof. As at least one of a_{i} 's is not zero, we assume $a_{0} \neq 0$. Now we obtain from the given equality

Hence by Wronski's theorem there exist constants c_{\imath} 's not all zero such that

$$
\sum_{i=1}^{n} c_{i}\left(z_{i}-a_{i} z_{0}\right)=0 .
$$

Putting $c_{0}=-\sum_{i=1}^{n} c_{i} a_{i} / a_{0}$ we obtain $\sum_{i=0}^{n} c_{i} z_{i}=0$. If $a_{0}, a_{1}, \cdots, a_{n}$ are all equal, we have $\sum_{i=0}^{n} c_{i}=0$.

Now we proceed to investigate the case Ib. Owing to $D=0$, there exist constants μ_{i} not all zero such that $\sum_{i=1}^{r} \mu_{i} \dot{\alpha}_{i}=0$. So we have $\Sigma \mu_{i} \alpha_{i}+\mu=0$ (μ constant). From (5), (8) and the last equation we eliminate α_{i} 's, then we get after a slight calculation

By virtue of the lemma $\beta_{1}-\beta_{0}, \beta_{2}-\beta_{0}, \ldots, \beta_{r}-\beta_{0}$ and β_{0} are linearly dependent with constant coefficients, and consequently $\sum_{i=0}^{\gamma} \nu_{i} \beta_{i}=0$ constants, not all zero).

Here it is evident that $\sum_{i=0}^{r} \nu_{i} \neq 0$ by virtue of the assumption $\Delta \neq 0$. If we take ν_{i} such that $\sum_{i=0}^{r} \nu_{i}=1$, then $x=\sum_{i=0}^{r} \nu_{i} x_{i}$ is a fixed point in the space as well as in the plane of the simplex, because by (3) we have $x=\sum_{i=0}^{r i=0} \nu_{i} x_{i}=\sum_{i=0}^{r} \nu_{i} \beta_{i} b$ $=0$. Let us take this point as the origin and denote the r points, which
are fixed to the simplex in question and are forming together with the origin the vertices of a certain simplex 0 : dimension r, by $y_{1} \ldots, y_{r}$. As y_{i} 's are linear combinations of $x_{i}, x_{1}, \ldots, x_{r}$ with constant coefficients, we get by (3)

$$
\begin{equation*}
\ddot{y_{i}}=\delta_{i} b, \tag{15}
\end{equation*}
$$

where δ_{i} are real functions of t. Now we put

$$
X=\sum_{i=1}^{r} \alpha_{i} v_{i}
$$

If we can find $\alpha_{i}(i=1, \ldots, r)$ such that

$$
\begin{equation*}
(\alpha, \delta)=0,(\alpha, \dot{\delta})=0, \ldots,(\alpha,(r-2)=0 \tag{16}
\end{equation*}
$$

where $(\alpha, \delta)=\sum_{i=1}^{r} \alpha_{i} \delta_{i}$ etc., we will have

$$
\begin{equation*}
X=\sum_{i=1}^{r} \alpha_{i} y_{i}, \ldots, \stackrel{(r-1)}{X}=\sum_{i=1}^{r} \stackrel{(r-1)}{\alpha_{i} y_{i}} \tag{1ī}
\end{equation*}
$$

because (16) is equivalent to the following relations:

$$
(\alpha, \delta)=0,(\dot{\alpha}, \delta)=0, \ldots,(\alpha,(\alpha-2),
$$

Now the rank of the matrix
is $r-1$. If not, there would be constants ρ_{i} not all zero such that $\sum_{i=1}^{r-1} \rho_{i} \delta_{i}=0$.
 to this point would be constant. On the other hand, by the lemma and (3), $\Delta=0$ is equivalent to the existence of constants μ_{i} 's not all zero such that $\sum_{i=1}^{r} \mu_{i}\left(\beta_{i}-\beta_{0}\right)=0$, which shows us by virtue of (3) the existence of a fixed direction.

By the hypothesis $\Delta \neq 0$ the rank of (18) is $r-1$. Hence we can find α_{1}, \ldots, α_{r} such that (16) holds.

Next we have

If not, there would be constants ρ_{i} not all zero such that $\sum_{i=1}^{\eta} \rho_{i} \alpha_{i}=0$. From the last equation and (16) we get

So by the lemma this would lead to $\Delta=0$ as above stated which contradicts $\Delta \neq 0$, and hence $D \neq 0$.

By (17) and $D \neq 0, X, \ldots, \stackrel{(r-1}{X}^{-1}$ are linearly independent vectors. Now we can show as in la that the motion in question is really possible. We put $x=\sum_{i=0}^{r-1} y_{i} \stackrel{(i)}{X}$ and proceed as before, and finally get the result that our motion is the one whose paths are orthogonal trajectories of the r-planes which contain a fixed point and oscilating $(r-1)$-planes of a curve. (type (C)).

4. Case II. $\Delta=0$.

By virtue of the lemma we have in this case $\sum_{i=0}^{r} \mu_{i} \beta_{i}=0, \sum_{i=0}^{r} \mu_{i}=0$ (μ, constants not all zero), and hence we get $\sum_{i=1}^{r} \mu_{i}\left(\beta_{i}-\beta_{0}\right)=0$. Accordingly we find by virtue of (3) that $\sum_{i=0}^{r} \mu_{i} x_{i}=\sum_{i=1}^{r} \mu_{i}\left(x_{i}-x_{0}\right)$ is a constant direction. If the maximum number of the linearly independent ones among such vectors of constant direction is $r-k$, we can take them as $a_{k+1}=x_{k+1}-x_{0}, \ldots, a_{r}=$ $x_{r}-x_{0}$. Now we consider the point

$$
X=\sum_{i=0}^{r} \alpha_{i} x_{i}=x_{0}+\sum_{i=1}^{k} \alpha_{i}\left(x_{i} \cdots x_{0}\right)+\sum_{i=k+1}^{r} \alpha_{i} a_{i} .
$$

Putting $x_{0}=\beta_{0} b,\left(x_{i}-x_{0}\right) \cdot=\beta_{i} b(i=1, \ldots, k)$ and taking α such that

$$
\begin{equation*}
(\alpha, \beta)=0,(\dot{\alpha}, \beta)=0, \ldots, \stackrel{(k-1)}{(\alpha, \beta)}=0 \tag{19}
\end{equation*}
$$

where $\alpha=\left(1, \alpha_{1}, \ldots, \alpha_{k}\right), \beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)$, we get

$$
\begin{equation*}
\dot{X}=\sum_{i=0}^{k} \dot{\alpha}_{i}\left(x_{i}-x_{0}\right)+\sum_{i=k+1}^{r} \dot{\alpha}_{i} a_{i}, \ldots, \stackrel{(k)}{X}=\sum_{i=1}^{k} \alpha_{i}^{(k)}\left(x_{i}-x_{0}\right)+\sum_{i=k+1}^{r}{ }_{\alpha}^{(k)} a_{i} \tag{20}
\end{equation*}
$$

(19) is equivalent to the following relations:

$$
\begin{equation*}
(\alpha, \beta)=0,(\alpha, \dot{\beta})=0, \ldots,(\alpha, \stackrel{(k-1)}{\beta})=0 \tag{21}
\end{equation*}
$$

Such α exists. For otherwise we would have by virtue of (21)

This would result in $\sum_{i=1}^{k} \mu_{i} \beta_{i}=0$, where μ_{i} are constants not all zero. Accordingly one more direction $\sum_{i=1}^{k} \mu_{i}\left(x_{i}-x_{0}\right)$ would be constant, which contradicts the assumption on k.

Now let us put

$$
D_{1} \equiv\left|\begin{array}{ccccc}
\dot{\alpha}_{1} & \ldots & \ldots & \ldots & \ldots \\
\dot{\alpha}_{1} & \ldots & \ldots & \dot{\alpha}_{k} \\
\alpha_{1} & \ldots & \ldots & \ldots & \ldots \\
\alpha_{1} & \ldots & \ldots & \ldots & \ldots \\
(k) \\
k
\end{array}\right|
$$

and divide the case II into the following two subcases.
5. Case IIa. $\quad D_{1} \neq 0$.

Then, by virtue of (20), $\dot{\mathrm{X}}, \ldots, \stackrel{(k)}{X}$ are linearly independent. To show the $^{\text {a }}$. existence of the motion in question we put

$$
x=X+\sum_{i=1}^{k} \gamma_{i} \stackrel{(i)}{X}+\sum_{i=k+1}^{r} \gamma_{i} a_{i}
$$

and take $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right)$ so that \dot{x} is perpendicular to $\dot{X}, \dot{X}, \ldots, \dot{X}^{(k)}$ and a_{k+1}, \ldots, a_{r}. Proceeding in the same way as before we obtain the result that our motion is the one whose paths are orthogonal trajectories of the r-planes which contain the osculating k-planes of a curve and are parallel to a fixed plane of dimension $r-k$ (type (D)).

Case IIb. $D_{1}=0$.

Then there exist constants μ_{1}, \ldots, μ_{k} not all zero and a constant μ_{c} such that

$$
\mu_{0}+\mu_{1} \alpha_{1}+\ldots \ldots+\mu_{k} \alpha_{k}=0
$$

From the last equation and (21) we eliminate $\alpha_{1}, \ldots, \alpha_{k}$. Then we get, by virtue of the lemma, the following relation

$$
\sum_{i=0}^{k} \nu_{i} \beta_{i}=0 \text { (} \nu_{i} \text { constants not all zero). }
$$

Hence $\nu_{0} x_{0}+\sum_{i=1}^{k} \nu_{i}\left(x_{i}-x_{0}\right)$ is a constant vector. But as it is not a constant direction on account of the assumption on k, we must have $\nu_{0} \neq 0$. So $x_{0}+$ $\sum_{i=1}^{k} \nu_{i} \dot{\nu}_{0}\left(x_{i}-x_{0}\right)$ is a fixed point in the space. We take it as the origin. Now we put

$$
x=\sum_{i=1}^{k} \alpha_{i} x_{i}+\sum_{i=k+1}^{r} \alpha_{i} a_{i}
$$

and proceed in the same way as in Ib. We have $x_{i}=\delta_{i} b(i=1, \ldots, k)$. If we can find α such that

$$
\begin{equation*}
(\alpha, \delta)=0,(\dot{\alpha}, \delta)=0, \ldots,(\alpha, \delta)=0, \tag{22}
\end{equation*}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right), \delta=\left(\delta_{1}, \ldots, \delta_{k}\right)$, we will have

$$
\dot{X}=\sum_{i=1}^{k} \dot{\alpha}_{i} x_{i}+\sum_{i=k+1}^{r} \dot{\alpha}_{i} a_{i}, \ldots \ldots,{ }^{(k-1)}=\sum_{i=1}^{k}{ }^{(k-1)} \alpha_{i} x_{i}+\sum_{i=k+1}^{r}{ }^{(k-1)} \alpha_{i} a_{i} .
$$

(22) is equivalent to the following relations:

$$
\begin{equation*}
(\alpha, \delta)=0,(\alpha, \dot{\delta})=0, \ldots,(\alpha, \delta)^{(k-2)}=0 \tag{23}
\end{equation*}
$$

Here the rank of the matrix
is $k-1$. For otherwise there would be constants $\mu_{1}, \ldots, \mu_{k-1}$ not all zero
such that $\sum_{i=1}^{k-1} \mu_{i} \delta_{i}=0$ and then $\sum_{i=1}^{k-1} \mu_{i} x_{i}$ would be a fixed point in the space. As a fixed point has been taken as the origin, this would result in the existence of one more fixed direction except a_{k+1}, \ldots, a_{r}. This contradicts the assumption on k. Thus there exists α such that (23) holds. Next we can find that

For otherwise there would be, by the lemma, constants ρ_{i} not all zero such that $\sum_{i=1}^{k} \rho_{i} \alpha_{i}=0$. From the last equation and (23) we eliminate α_{i} and by the lemma we would get the relation $\sum_{i=1}^{k} \mu_{i} \delta_{i}=0$, where μ_{i} are constants not all zero. Then one more direction except a_{k+1}, \ldots, a_{r} would be constant. This contradicts the assumption on k.

Now by virtue of $D_{2} \neq 0, \dot{X}, \ldots,{ }_{(k-1)}^{X}$ are linearly independent. We put $x=$ $\sum_{i=0}^{k-1} \gamma_{i} \stackrel{(i)}{X}_{X}^{i=\sum_{k+1}^{r}} \gamma_{i} a_{i}$, and determine $\gamma_{0}, \ldots, \gamma_{k-1}, \underset{\substack{\left.\gamma_{k+1} \\ k-1\right)}}{ }, \ldots \gamma_{r}$ so as to satisfy the ${ }_{i=0}^{\text {relation }}{ }^{i=k+1} \dot{x}$ is perpendicular to $X, \dot{X}, \ldots, \stackrel{(k-1)}{X}$ and a_{k+1}, \ldots, ar. Thus we find that the motion in question is really possible. Consequently we get the result that our motion is the one whose paths are the orthogonal trajectories of the r-planes which contain the osculating $(k-1)$-plcnes of a curve cnd a fixed plane of dimension r-k (type (E)). Thus our motion, for which the equality holds in (2), must be one of the five types (A), (B), (C), (D) and (E). The restriction on the position of the simplex on each plane is evident from the above discussion.
6. Concerning the motion on the sphere of dimension n the result analogous to (2) does not hold. In this case, if n is odd, there exists even a motion by which all points on the sphere describe the arcs with the same length and it is easy to get all the motion of that nature. Let x be a point that moves on the n-dimensional unit sphere and the position of x at an instant $t=0$ be a. Then x can be represented as $x=P a$, where P is a proper orthogonal matrix whose elements are functions of t. We denote by $d s$ the arc element of the curve which x describes. When we put $P^{\prime} \dot{P}=S, S$ is skew and

$$
(d s / d t)^{2}=(\dot{x}, \dot{x})=(\dot{P} a ; \dot{P} a)=\left(P S_{a}, P S_{a}\right)=\left(S^{\prime} S_{a}, a\right)
$$

Now we suppose $d s$ is the same for all a such that $(a, a)=1$. Then taking s for the parameter t we get the result $S^{\prime} S=E$, where E is the unit matrix. As S is skew, there exists an orthogonal matrix such that $S=O^{\prime} A O$, where

$$
A=\left(\begin{array}{cc}
0 & -\lambda_{1} \\
\lambda_{1} & 0
\end{array}\right) \dot{+}\left(\begin{array}{cc}
0 & -\lambda_{2} \\
\lambda_{2} & 0
\end{array}\right) \dot{+}+\left(\begin{array}{cc}
0 & -\lambda_{m} \\
\lambda_{m} & 0
\end{array}\right) \quad(n+1=2 m) .
$$

Then owing to $S^{\prime} S=E$ we have $S^{\prime} S=O^{\prime} A^{2} O=E$, hence $A^{2}=E$, which results in $\lambda_{i}= \pm 1$. Thus all the matrices S which are orthogonal as well as skew are obtained, namely $S=O^{\prime} A O$, where A is the skew matrix of the form stated above ard O is an arbitrary orthogonal matrix.

Now we solve the matric differential equation

$$
\begin{equation*}
\dot{P}=\left(P^{-1}\right)^{\prime} S \tag{24}
\end{equation*}
$$

with the initial condition $P=E$ at $t=0$. Then $\dot{P}^{\prime} P+P^{\prime} \dot{P}^{\prime}=\left(P^{\prime} \dot{P}\right)=0$ and so $P^{\prime} P=E$ for all t. Hence we have from (24)

$$
\begin{equation*}
\dot{P}=P S \tag{25}
\end{equation*}
$$

It is more convenient to solve (25) with the initial condition $P=E$ at $t=0$ than to solve (24). Owing to the uniqueness of the solution of the differential equation the solutions of (24) and (25) with the same initial condition $P=E$ at $t=0$ are the same. If O is a constant matrix, the motion thus obtained is trivial, while if O contains the parameter t, our motion is of some interest. It is well known that the rotation group of dimension 4 is locally a direct product of the two groups, each of which is locally isomorphic to the rotation group of dimension 3. All the motions of these two groups possess the property stated above, namely all the points on the sphere describe the arcs of the same length.

[^0]: *) Received in revised form, September 25, 1950. This paper owes to the problem suggested ly Frof. F. Cno of Nagoya University. I thank Prof. H, Hombu and S. Sasakj for their kind advices,

