ON THE SPACE3S WITH NORMAL CONFORMAL
CONNEXIONS AND SOME IMBEDDING
PROBLEM OF RIEMANNIAN SPACES, IT®

BY

ToMmiNosUKE OTsUKT

In the previous paper? we have studied the spaces with normal conformal
connexions whose groups of holonomy fix a point or a hypersphere. The
main results that we have obtained are as follows:

(1) If the group of holonomy of an (n + i)-dimensional space Cu+1 With
a normal conformal connexion fixes a hypersphere ©,, the C,;1 is a space
with a normal conformal connexion corresponding to the class of Riemannian
spaces conformal to each other including an Einstein space with a negative,
vanishing or positive scalar curvature according as the &, is real, point or
imaginary. The converse is also true.

(2) Forn=2m+1{(m=1) and 2 any Riemannian space [/,, and for
n = "m{m=2) any Riemannian space [/, satisfying the condition [} =0 can
be imbedded in a Riemannian space [/,+1 conformal with some Einstein space
as a hypersurface which is the image of a hypersphere &, invariant under the
group of holonomy of the space C,:1 with the normal conformal ccnnexion
associated with this 7, .1.

But the meaning of the immersion of a given Riemannian space 17, in a
Vw+1 as a hypersurface of it as stated above is that at each point P of I7x+1, the
invariant hypersphere €, in the tangent Mobius space M, 1(P) at P under
the group of holonomy of Cut1 contain the point at infinity in 2\/In+1(P)
(with respect to the natural frame of Cu;1), and the image of &, in Vn41 is
the set of points P such that P as a point in Af..1(P) is contained in &,.

In the present paper, we shall investigate the same problem to imbed a
given Riemannian space I/, in an [V,.1 as stated above without the restriction
such that ©, contains the point at infinity in the tanjent Mobius space Mur1 (P)
at each point P of 1+, in other words, without any restriction with respect
to the scalar 3° (in the previous paper, no. 1, 2).

*) Received October 10, 1950.

1) Tominosuke Otsuki, On the spaces with normal conforma! connexions and some im-
bedding problem of Riemannian spaces, I, TChoku Math. Jour., 2nd. 8., Vol. 1, No. 2,
1950, pp. 194-224. We shall refer this paepi by {Ij in the presen; paper.
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We shall use the same notations as those in Part I for the geometrical
_objects with some exceptions.

'§‘l. The space with a normal conformal connexion whose group of
holonomy fixes a real hypersphere.
Let there be given an #-dimensional space with a normal conformal con-

nexion C,. If we take normal frames R*: (4%, Af, A%)» composed of the
hyperspheres such that

A A= A A =0, AA =1, AA =
(6 j=1,2, ..., n)",

where §;; is the Kronecket’s §, the connexion of the space is given by the
following equations :

dA; = o Ay + o™ A%,
dA} = 0" Ay + o'F A + 0" AL,

dAY = 07 AT — o) AL

0.AL,
w*{ + (o*]?' =0,

where ©*), 0", ', ©°? are Pfaffian forms. ~Suppose that the group of ho-

lo omy of C, fixes a real hypersphere ©, 1. If we express it by X = x0.4}

+ xiA; + x° A%, with respect to the normal frame R* (A;, A°, A.) in the

tangent MObius space M, (P) (P = A:) at each point P of C,, then 4X = »X,

where 7 is a Pfaffian form. Since we have

AX ={dx® + x" ") + x* 0"0) A}
+ (dot + x° 0" + xF 0" + X7 ") A7,
+ (@x" + x* 0™ — x° ") AL,
the system of Pfaffian equations

adx’ + x0 0" + xF e’y dxt X0 e + xF e’ + x7 0"

20 i Tt
dx" + 5P 0" — X "
= =
must be integrable. The converse is also true. Since XP = X A4; = — %,

the hypersurface §, .1 of the image of €,_: in C,, that is, the locus of points

2) E.Cartan, Les espaces & connexjon conforme, Ann. Soc. PPol. Math., 2 (1923), pp.
171-221.
3) In §§ 1-2, we assume that indices take the following values.
i.j, kb, ...=1,2, . ., m,
a, b, e, ..., N, pn ...=1,2 ..., nl.
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P which are on &,_; is given by x* =0. As ©,;1 is real, XX = xtxi — 259"
> 0. Accordingly, on F,-1 we have xi xi > 0. Hence, in a coordinate neighbor-
hood of each point on u-1, we may assume that x" + 0. Now, if we put

_ X% o X0 Y
ja__;n" _)’ _'xn’ J’ —A‘x;n’
we can choose frames such that
=0

by virtue of the equations of structure of C,9. Then, 40 and * become
scalars and satisfy the following relaticns

A + o™ =y (Y ™+ y° (f)':) =0,
(‘ ) Cb’w + (D*n __Vym ()0 (D*n +]w wﬁz) — 0’
(o*: +]0 w'e +))°° (u*z = 0.

§2. The image of the invariani hypersphere.
1. Fn-1 and natural frames (Veblen’s frames). From (1) we get
e =1 =3"") o'l =dy,
— (1 __»y()yuu )ﬂ)tn +~ym”yuo mtg — ((yao s

hence we get

0" = — -yw yj,dyq + (1 —,_Jo-)/m)dym _
1 -2y
— — &y 4 dlog(1 - 2757 )%,
00— — =)D+ T
1 - Z]”hy

I

— d]a +° dlog(1 —25°y° )%,
If we put

1“‘&’“] = “{k-=—y; ‘3},‘:_2’

we get by virtue of the above equations and the last one of (1)

(2) o= Pdy W= d,

and

4) (1), §1, no. 1, (3).
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(3) W% — (g™ +y w:") = 0.

Between the scalars +r, y, ¢ there exist the following relation

1
—_— =1
(4) ,‘1,,2 ZJZ ?

and + + 0 by virtue of the assumption that &,_: is real.
Now, let us denote the int-grals of the system of Pfaffian equations

0¥l=p* =, 6 = 1=0

by x!, x?, ..., x»~!. There will happen no confusion of these notations with
those of the components of &,-1 with respect to R* (A4}, A, A.). Then, by
(2) we may consider x*, x% ..., x* !, x"(= y) as a coordinate system.

On the other hand, let us suppose that the space C, cotrresponds to a
Riemannian space [/, whose line element is '

ds® = gij(x) dx* dxd.

Then, the connexion of C, with respect to the natural frame R (.4°, A4;, A.)
is given, as is well known, by the following equations:

dA=dxt A, (A= A,
dA =0} A+ of A + 0 A,

dA, = ot A;
and
; ol = Thdxi, of = g, dxd,
(5) o) =11 axi, ok = 81 @55
where
1 [ Oin Oghj ogii
B — o kR | " I ~ A -
(6) D= 58" o ¥ o 8x">’
o -\ (g K __
(7) 15 = n—2<K” 2(n —1) gif>,
(8) K = g"Ki,
( 9) Kz] = Kz jhy
or. or
(10) Kitip = - _ % + Pfjrgk A P:‘i'

ox* Ox
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Now, we can put
*q A
" = fadx\

From 4,= A4 = A4 and

It

(l/lz ™ A; ——/i doc™ _‘4: + ({y A;

=dAy = dx* Ax + dy Ay,
we get
A=Ay A A
Then, from the above equations we get

dAN = dfe A + fod A,
=[tw" A+ (dfs + [P o) /1;
T A LA
= (og Ay + (o; Ai + wx A,
=’ AL+ w"\‘fff A; + o j]f /1;-%- o A, .

Putting A, = AL, we get

dA, = dyp A + Y (0" A3+ 0" A" + o™ A)
=0 Ao+ o} Ai+ on A,
= wz Ay + w:‘sz( A; + co:\]l‘A:L + wy AL .

Hence, by these relations and (2) we obtain the following relations:

0 — Ja ,3*0 © _ £b,,*b n— £b*n
o, = jrle, [N f/\m y Jr w? f,\ ®'7%,
wfa — Jia b y*a
(o)\fM dje +~/)\ ™,
0

0% = 0", on = ydy, Vot = ar,

A . *
(onff =1 z~

Now, since the line element of the Riemannian space 1/, is given by
d? = dA,dA, = o' o™

= fa fads* dx+ + 2 dy dy
=dAcd Ay = A; Ajdxtdxd,
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we have

= A A= f2 S5
o = AvA, =0,
Zun = Ay An = ¥

(12)

If we substitute these equations in the second equation of (2), we obtain

Yy = o °=‘1;“’Z
1 g Ko
that is
1 K;m _ ___Ii‘!fi_. A =
(13) iy + =5 K do + {;El‘z 2(ﬂ—1)(n-—2)}dj O

Ftom (3) we obtain
b fa = 2 (3 fa doct + yph wf) = 0,

where the matrix (p}) is the inverse of ( /). Since we have

pubi= 8"
we obtain by virtue of the above relation and (5)

(02 — ‘]’2(5( docr +yg)m, w:-)

that is

1 I K
(1) Dm0 - 5K gty gy O S R
(15) BRI A <Y

Hence we obtain the following theorem :

Tueorem 1. If the group of holonomy of the space wikh a normal conformal
connexion corresponding to a Riemannian space VV, fixes a real hypersdhere ©n-n,
there exist.a scalar y with the following properties-  The image of ©u-1 in V'
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is hbe hypersurface determined hy the equation y = 0. If we put the line element
of Va

ds* = gau (25 y) doc dxc + (b (¢, y) dy)?

hy means of the family of hypersurfaces Tn-1(y) such that y is a constant on
every Tn-1(.9) and- their orthogonal trajectories and define 3 by

1 =21+ Zyz),

s >V satisfy the equations (13), (14), (15).  The converse is also true.

2. The family of hypersurfaces T,-1 (). In a Riemannian space with
line element such that

ds*= gau(x, 9)dx* dxr + (Y (9, y) dy)*

in a coordinate neighborhood 1, .... x7-1, y, let 41 (y) be the Riemannian
space induced from the ambient space on the hypersurface Fu-1(y): y=a
constant. Let us denote the Christoffel’s symbols of 17,-1( y) determined by
its fundamental tensor gy, by {2} and the covariant differentiation of 1/4-1( ¥,
by a comma.

Now, the unit normal vector #; on the hypersurface $,-1 () has their

components such that (0, ..., 0, 4). Hence the second fundamental tensor
of Bn-1 () is given by

oxt oxt ;
hay = = mii 5 5 523 = ~ Hap = #i Ly = YT,
where the symbol “;” denotes the covariant differentiation of 17,. On the

other hand, by (6),(12), we have

o Lomoe_ 1 o
ab 9y 242 oy
Hence, we have
Oab _ _ Ofab _ b
(16) o 2 ha o or 5] 2l e

where hab = gar gbu .

On the other hand, by (6), (12), (16). we can easily prove the following
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relations :
Ly, = {&h

(17) T = %hﬂ’“ Lp, = = Whi = — bg® han,
To=3 LR e = —afgiap,a, I = a«p

If we.denote the components o: Riemann tensor, the components of Ricci
tensor, and the scalar curvature of /-1 ( y) by

ore  orv, |
Ria= 5 " e T ToeTha ~ o i
Ree = b A2,

R =g’\l-’-R,\”_

respectively, we have, by means of the formulas of Gauss-Codazzi, the fol-
lowing relations :»

Kacva = Racva — Pab hea + had hev,
\b‘ KZbc = hab,c - hac,b .

Furthermore, by (10), (17), we get easily

.Kn 1 aha,b + h/)‘

1
abn Jr ] $ V> abe

Hence, obtain the following relations:

Kab = g)\y' Kw\by. -+ Kunbn

l ahab A — l
'\]/‘ a-), —h hab + 2 ha hb)\ + Rub 11’. '\I/‘yab)
(18) Kan = “Ka)\mt = '\If'(hf’a - h’;,)\)’
Knn = Kn)\ A = ’\P‘ 'a&‘ - ’\I’Z hi hk = '\!"g)‘"'"!"y?\m
K = 89 Kij = v _~a§ hh — h hﬁ +R - %g*“ Vo

where & = g .

3. Relations between F,-1( y) and the invariant hypersphere. Now,
if we substitute (18) in (13), we get

5) Schouten-Struik, Einf ‘hrung in die neuren Methoden der Differentialgeometrie, 1I,

p. 122
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(19) a = — (n_lzw(h,a — )
and
®x __ 1 _ _Ky? )
oy n—Q)w{K"” (n—1)J
- — 1 __a_;f,__ An _ n»=R
(20) = "m0 q,( 3y "””‘) An=T1)(n—2)

Yy my[ = L (L Oha -1
v ab_][ ”__.2<1!’ 3 h hab + 21 hix + R .ab Tb't]f,ab)
1 2 oh " _2 "
T 2m-1)(n-2)5" (% oy ~ P omME+R Fautan)]
+ 2 gabs
that is
_@aﬁgé = ”———2(kab + Y zgav) + Y (b hab — 22 hsx — Rab) + Y ab
(21) 74 J ‘

: oh
+ 7(5-%)‘{2%7 — v (B + Bl = R) = 2 o),

Substituting (17), (18) in (15), we get
-, -
"!"m ”_z(hm h;‘_)\)°

However, by means of (4), (19), we get

Vo= =y g = 2L (e = 2, ).
Ja ra ”__2 la a’x

Hence, the system of equations (19), (20), (21) is equivalent to the system of
eqations (13). (14), (15).
Now, by virtue ot (16), (21) we have

ok

5 " oy &)

" n—2 _
— 2 T 0 T{h-r(n 1Wz}
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+ o (B = BB = R) + g o

+ {%}LT — G WU+ I = R) = g}

that is

(22) %g{h+(ﬂ*1)wz}+%w(h3—hghz—R)= ,

Lastly, substituting (20) in (21), we get

ahub

(n—2) .
a}’ —7—'—(17'@ + "!" zéab)

+ '\ll‘ (h hab - 2}1«2 hb)\ - Rab) + '\Il‘mb

TN, LA {R — B+ (21 = 3) b} = ¥ g X

2(n—1)(n—2) oy
- g+ I~ R), |
that is
(23) ?a’;_ab (l; 2) (has + v 3ga0) + W ( has — 2 hion — Rap)
— BB U8 = BB, = R) + s~ g a}

Thus, we obtain the system of equations (19), (22), (23) which isequ-i
valent to the system ot equations (13), (14), (15) and is represented by means

of the quantities of §—1 (y). Accordingly, Theorem 1 is reduced to. the
following

Tueorem 1, In a Riemannian space V', take a coordinate system such that
the line element of V', is given by

as® = gau(x% y)dx™dxr + (Y (x% 9) dy)s

then a necessary and sufficient condition that the hypersurface y =0 is the image
of a hypersphere invariant under the group of holonomy of the space with a normal
tonjormal conmexion corresponding to V', is that the fzmdamental tensors gab (x, 9)s
hay (x5 ¥) of the hypersurfaces y = a constant and the scalar determined by (4)
satisfy the equations (19), (22), (23).

§3. The invariant hypersphere and an imbedding problem.
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1. A fundamental system of equations and quantities %,, ¢£. In the

following paragraphs we shall assume that the indices take the following
values :

a by 655 A My Uy oo =1,2, ... #n.

Let us now investingate the problem z0 imbed a given Riemannian space Vin
in a suitable Riemannian space Vi1 such that the group of holonomy of the space
with a normal conformal connexion correspinding 10 Vnvy fixes a real hypersphere
S, and V, is the image of ©, in Vur1

According to Theorem 1, o necessary and sufficient condition that a given
Riemannian space V Mwith line element

ds? = gau(x%)dx dxcv

is the image of the invariant hypersphere ©, in the above-mentioned sense is that
we can solve the following system of equations:

(Il) ——2';}— Zab = — 2'\}/‘ hab,
(L) %hz = ’i}l(hg + 88 + W (ke = R)
= By U = R) g s = e =,

provided that the conditions

(nl) Ea E(h,a - h;,x) + (” - 1)'\!"'zm = 0’
K = l N ‘,.,\!f_{, 2 e — -
(1), L= (ot nvg) + — gy (B = gl —R) = 0

and the initial conditions

Lgab(ﬁﬁj):,y=0 = gab (x)
are satisfied. Then, the line element of 1/,.1 is

ds® = gau (¢ 9)dx* doct + (W (35 y) dy),*

and the hypersurface y = 0 is the image of ©,.
Let us put
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(Iy) ,%_ Bas = ”7“1(;% g ga0) + e (B Bap — 2B o - Ras)
—'_—,l]l;—‘ ? — hehr — m’b a_ai
2(”_1)811’3(]1' h,\h“ R) + \l-" b ‘\l/‘g b ay
and
-1 »
(L) —aa})—h = ’fy—(h + mrz) + §(7‘#:I)_ {(ﬂ —2) (B = R) + nle IL;:}

+ g — 1 %1

which is derived from (I).

Now, suppose that ga (x, y), ha (x, y) are solutions of the differential
equations (I), and consider the quantities £,, { determined by these Zav (%5 9)s
hab (%, y). By means of (6), (L), we get easily

(24) % 1% = g (Y he)n — (W B2 )se — (W iy,

and

oy Tha= = (F

Accordingly, putting

(25) Va = h’a - h}\

asis

we get by (I), (24), (25),

Fvae (B (- e
= (G ) = (), (B e = (1), B
= ’1—}1 {km + ﬂ(‘\lf’az +4 zm)}

+ gty Yol = 2) (0 = R) + i )

v {(, _ . B
+ gy (= 2) @ = Roo) + 2 }

Kra
o 0
+ g)\“ Yrorua = #Yrsa *ajy- —n ‘ay— Rsa

- ”;—]‘ (B + (rax +¥3,0)} = v (b1 = R})
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=W (b + B, = RS L)

* z—(zl'T)"’w"‘% ~H ~R)

+ 4 (n Flrty e = 2R, = Roa)

- Q, __a_z_ _..a__.
g #’\!f’.,)\ m -+ '\If',a a}/ + ‘\l/‘ aJI Zm
+ Y By b+ Ay b bt — \k,ahﬁh”: A BX B

o Mg

_n—1 _ V1
- —]——{Va+(n 1) (Yrag + ¥ 300))

+]§"1f’a(h2_h‘$\"h:}"—R)"(”—]) ('\b'm a‘z——}'\lf zm>

+'\2‘ (2h h}a - R)a) g)\y, R}\vya '\!",v + \1/'))\ Ra
— (BB, — R}

a M)

On the other hand, from 'the Bianchi’s identity, we get

R}\

am

= - ~Rm

as is well known. Hence, the above equations become

3 V= ”jl{Va (n=1) (¢ z)m}

+ %«Jr (B — ey —R) + 4 h Vs — (n—1) (11, .._33_),1.

Then, we obtain easily from (4) the following relatfons :

B Ly gy X
(26) AR ECRS R
(27) Vo= = y¥’g,,
(28) 1]’"“5 = _J} 'l.]/‘s"(zﬁl‘b - 3)) '\]f’ z)a zﬂ?),

Using these equations, we ‘get

5 B s/ o ]
,ga__._r/ +(n 1)1«# oy T ﬂlf‘“‘\zﬂ“%g-)%d

(57 + ) S, =y ¥az,)
=3IV R, (# ~ Il ~ R)
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~(n- 1){«#(%;«),“ A Zoa }
+(—-1) {«Ir —% o — ¥° ( gty %}) zm}
=('£;_} + wh)V,, + i’—’%lf«hzm —n(n— l)xbsiz,a

~ L yaptz,, (2 — A i — R).

233

If we substitute £,, ;‘ in the right hand side of the last equation, we obtain

+ (”—;,L)z?x’fz,a —n(r=1)¥%,,

- 599 %,, (# — it —'R)

_(8-1
=(5° * vh)E
SN et g 00 - - R,
that. is
o _(n—1 _ _ 2
(29) o = (e = - Dy¥is, b

In the next place, let us consider ¢. By (24), (I), we get

_a?y_ R = 7%‘ (g™ Ra) = 24 s RA»

+ g

2 (781’;‘\“ _ ory,
9y \ ox” oxH

= 29 JA» Raw + g+ (—%— F;“),v - g (—;;37 r L),u )

+ I‘iu F; - F’;\V F:u>

that is

(30) —83— R =2 {4 I Ray + g (4 B = (o 1) .

By (I), (3), we get also

Pt bty
% == 7 (B+ny3)
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( ﬁp‘l) [’zy Lt mirg) + g o — EJ’Z_
{ n—2)h ) + nhi h"}]

w)+9( )(h ~ gk = R) -

“1 (0 + z8) + o (1 — RY)
- sy o) (h* — ke b2 — R) + g aprouy — &) _%q
- ,71_1_’*1 [‘W’K R + gheapronu b + 282 Ao o + g hona
— Y = 2 B — |

(557 wh) b+ i)

=1
7
+_(‘«1»,)<_ PN (5 - 2) 0 - R) + nhe i}
¥-

by A _
2(n 1)< *t )(h’ W, — R)
+ 1w, % 82 o
},g Yroru — Y N )’ ]
- Vh N ez — 2
xb(j n— 1>h k, _“bhz
;‘1’1 (28% 4 Vi + 9 Vas)
=%<];2+«Irh>(h+mlrz)
oyr '\!l‘h _ 1 Ak 3 _ pu A —
+ 5 ){ + B - (5+ PO} o = e - R)
2 ov 1
+378“'\1"WL Pt e +y7< TR AL

- ”—‘1,;1 (Zg)‘M Yrsa Vet '\]I‘g)‘"‘ Vhw.)°
Making use of &,, &, the last equation becomes

2 r_ <”7_2. «ph) (B + ng)
o log -+ +”j2){§*~<h+”"’%)}

T e Y Ry M T ‘1'”"?
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e e 9]

+ A gt ‘{EMM - (n = 1) (Yrnr Low T Y Z”‘#)}]

= (”;9 + ok + %— logflr> ¢+ jiz(z +y _%Z_) (b + mhrz)

P ’ o
- ’\P‘S‘g)‘”‘(z”\u '\— '?.’y"l, .Z)/\ Zm) - 1},,2]1/ _éjlz’

- e ,“a_?_ _,}*\]r"’h
y Rt ) 7 rE

- ’;‘]_f‘l {Zg“‘ Yoo Ep + Y g Exow+3(n — 1)}’ Pt g oa s
— (= 1) Pzt

that is

(31) D= ("2 yn+ _,%_ log ) & = ¥ g% (2o B + Whnn)-

2. The rezularization of the system (I). Let us now proceed to the
problem to solve system (I) under (II) and the initial conditions. From now
on, we shall replice the derivatives and the covariant derivatives of + with
tespects y andI;, of 17, (y) by those of ¢ by means of (26), (27), (28). Notice
that the (covariant). derivatives of «» are polynomials of those of g, ¥ and
¥. There exist terms with 1 /y as a factor on the right hand sides of (I,)
.and the left hand side of (II;). We shall endeavor to take off this irregularity
of the system of ditferential equations.

" In the first place, according to the course stated above, let us write (I,)
in the following form:

15) i -1
% hs = ?T(hg + P88 + b (hhg — Ry
" - ¥ . . 9%
(L") | 2—‘”:ﬁ8b(h2 — gk = R) — 8,
B A AT S AN A A Sk B S
Putting
n—1

(32) B = — g8 + EJ”' m

let us dezermine {;{; (=1, 2, ..., n—2) from the last relation, so #hat these
)
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quantities are polynomials of g %, W and derivatives of 3» g and the differential
equations with respect to the unknown qmmfzne: H @ replaced for (Is) become
regular forms as much as possible.

For convenience, let us put
(33) By = — =8

Substituting (32) in (I”y) and using (26), (27), (28), we get

%h‘; == {‘!' 2} - W(z” +Jz-y )} + H;

@t

n—2
+ glf {(Z + J—) H + _— (Hal +}m 1

Hb
_)1 _}’(n1)

(34) =(n-1) Zy x!r<Rg— Q(MR_\S;+..%?73;>

G+1) b - ﬂ—'l)

+ GV Vg R + L%
202 1, =0

+11’k§ 1+]2k{u>m‘ 2(n—1) b (chﬂcn" (%EIII))}

where H = H>. Furtheremore, let us put

@ a
a 2n—-2—14
35 — H& = JK“ i=0,1,2, .., n—2
( ) 9y @b 12: }]’1.7) ( ’ ” )

and determine (K ¢ (bj =012 0 =38 i+j=n—3) as polynomials of g'\“
3)
s Y and derivatives of g g ﬂwordmg to the same principle of determining H“
and do this Simultaneonsly with those of H)“
IG

Now, the constant terms with respect to y on both sides of (34) cancel
out with each other when we define H¢ by the relation
&5}

2 Sa a — {(y — & — o a — R a ” a
W8+ He = (o~ 1) Hy v (Rg o 1)a>+ Wi 8,

that is

a — '\]’\ a — R 3 2 Na
(36) Hy = (Rg T 5) - WL

From the last equation we get at once
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. —Hr=_YR _ 2

Form (33), (26), we obtain easily the following relations :

o= 2 .

37 Ki= («,rp oA z?) 3
a — 3 az a a — ] .
o = IRG % i>1)

Now, comparing the coefficients of y on the left hand side of (3) with
those of the right hand side, let us define H2 by the relation
2,

Wiz R 8 +2H: + K o= (n — 1) Hy = gz,
8) oy @2 o’
' { a 1 _
e (R B o B - B,
whose right hand side becomes by virtue of (33)
—_ a — 3 —_ 2 a
= (n 1)(1;3[ Yighe  — g z(Ig
Accordingly, we have
—_ a — a 3 az a a\ 2 a
(n 3).521}) llg)b'*"]’( S +g ?Iw\)""”‘l’ Z(Ig
In the last equation we have assumed that(K)g has already been determined
1,0
for 4 > 3.
On the other hand, if we make use of the geodesic coordinates of the
Riemannian space 1/, ( y) with line element

ds* = g,, (% 9) dx* doc,
we get easily by (10), (I,)

2 Rg=-2 Rin= f%- (g Rerw)

8] 9y
=2'l!l‘ha"'va.
a _l’ I‘l)v\n__,al‘l);)\ )\»_ A
e - S LT PPI‘}

= 2‘1, h“ R)\ + gﬂ.“-< ] I‘?f"))h - gaM <%— Pb)‘)‘)m'
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Putting (24) into the last relation, we obtain

2]

(39) a.y m]r ha R}‘ + gM ("]’ ha ’ML (‘P hb IuA

= (P B )son 4 g (e h),b)\-
From (39) we get also (30) by contraction.

Now, in order to determine K we put (‘76) (27), (28) into the right
hand side of (39), and get

- Ry =20 IRy + g drna by + 28 roa hton + g b

_a)
- gau ‘1”}")‘ h;;\ - g “ "!”.’")‘ h‘b,z\ 1'[,‘)A hb)y. - 11,‘ g h;w.k
= fryon BN — Ay Tn — ooy h“ I
+ gk + g s B+ g oy + A g B
~ -2k RI 4 Y HIRG
B AN SVE R A e S R
+ P g H YV TIV R, -z,xz,,)} b + 1H‘3,AJ
— IV Rk T DV 8 R
— g H— VR T IV (R T &, z,b)} +JHb,,m]
A Sk SV k) LA Sk
~ ¥ [ (= T 2w IV R+ R3] +y Hot |
Ty g m k2 P g R
+ g™ [ﬂ { — W FIV R0+ 2%,%0) } + {;f)’bk],'

where ~ denotes an equality within terms of the second orders with respect
to y. From the last relation we get

(39° “‘a}T Ry~ [ = 22 Rg = 85 82(%) — (1 = 2) g% 2,05
+ [20 HE R + 2042 {Aa @) 85 + (n = 2 g %, )

+ 4t "Al (R) % + (7 — 2) g™ g z,b}

+ g*“l”“ — g™ Hy,

A
(1)b“

— Hol o+ came}l

(1)

where A, and A, denote the Bertrami’s differenitial parameters of the first
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order and the second order:

A () = g"*2 a0
Az () = & e

and semicolons denote the covariant differentiation for quantities depending ex-
plicitly on r regarding if as a constant. From (39') we get

7R~ - 2 {ZzR +2(n-1) Az(z)}
(30') + (20 HERY +4(n = 1) 93 A )
L )
— o — o) ]
+ 8 (ﬂ 1)‘1‘[,-4 A (z) + 21]/- {g)\ %'_11;}\“ (%AM’A#JJ'
After these preparations, we get by (36)

8 a — '\l/' a a — 1 a a — az
*a_‘y_({{)b <ay R} 2(;1 1) 3 wajlfR> vz oy %

-~ { (R - ’2“<B %) -y vz 5
~ - =R 5, —"Ij %)= (0 =2 8 0]
+%[2¢(;§1R; - Z(n 5 (I;{AR"S">
+2(n = 2) ¥ g (X me + 22 %,0)
b (g HE, — g B — Ho o+ & Hin)

(b

W e (g Fan — Fie)
7o % (& How = Hrvn) |

- ¥z »a} %

B { 3(Rs = 5,0y %) - 2"’2 )

-7 ‘]"5 ‘”aj" {11_—1——2 (Rg 2 (”R 1) > "J"z 2 8“}
Hence, let us put

TR Y

(1)
[, 3 ‘
(40) —_ ,‘!’\5 (gaA z,)\b + g - Z Sa _— 7 ,\II,Z 25 5‘2>

=7 3‘1’2%;11‘; - \P‘S( ar +3 . 82)‘
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_ 20/ 1
T n— Z(Iin 2(n—-1) 1) "(%“Rﬁ)
+ 20° g™ (220 F 220 %)
+ "]" z{g)\u Ha —_ g HA —_ {Il_l)'a)\;b)\ + gai\ (I;I);m

a
b
(1

(41) LR b
— 1 a/ N — I\‘-
71 {8 e = )
% (1 ___R "
¥ oy n—2 2<R 2(n-1) > 2 v 25}

Then, by means of (40) we have H? as follows:
2)

(0= Hr = = vt s = v (g0 + 2 55 31)

+ ‘!’5(2 _32 8 + g %,ax) +n ‘I’QZ(II{‘;',

-3 2 a,
= (n )1!» z({{

Accordingly, if # > 3, we define ,H” by

(42) Ha = * 5 H

(o) c1>”

Now, from the last relation we get

D rre— yio @ fe ;% e 20
,aj,_g;[)b_ I,.ZZ J (Ig ,‘!,2H ‘ —}-‘71‘If-z(nb a_}l

By means of (29), [ot us put

(43) K= 2(%—»—2\1,2 ) Hy + 'z K3

(2,°>b (1 0)

= v (ZE - swe) Hy - (et vt g ).

Lastly, comparing the coefficients of 52 on both sides of (34) with each
other, we have the relation

SEa+ Ko+ Ko=(n =D H + 20272,

@b o

to 3 {HH + 5 by s (He B - HH]

ifi=e \H @’ OMNDM D@

Accordingly, if # >4, by means of (36), (41), (42), (43), we define Hﬂ by the
relation
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( = a — 3qp8 gar
(44) ==l K0+ K~ ey

a 1 A —
~¢2{HH+ Ty % HH HH)!|.

L
ijee (i if)P (G (Utﬂ

3. Tensor [¢. According to the results of the last section, suppose
inductively that we have been able to define H2, K @ for p<p — 3 so that

”1) (s j—s)

(45) I;{“ H“(gM* R%s ; R» HRP S

) M Py Py—1

<a"%> )
oyk /rp1- o

(=12 oo ps kth=i-—1)

and
(46) (S,JISS)Z —(s] P\ (g)‘ﬂ' R)\ T R}):.’pl i 1’ ¥ P¢)
< akz> - .\\
(i:l)?yo..o,p—la.f 1,2,....,j;,@+h5]')

which are polynomials of the quantities enclosed in round brackets as shown
above, and the coefficients of y* (i =1, 2, ...., p —1) on both sides ot (31)-
are equal to each other. ~'We may suppose here p > 3. Then, comparing the
coeﬂic1ents ot )P on both sides of (24) with each other, we defire Has by the

(P

equation
P
(p+1 Hi+ X K i=(-1) Hs
+«1»§pifH t 4 g (s H 2 - HH)|
S oty T2 (72“1) O ¢ ) SNy b
that is
j

(47) (n—p—2) (pﬁ{}ﬁ = & (S’P_sfzf

Pr‘ i}
—«/;E'HH“+7—L—8;(H“H*—H H)

‘cnw iy (n=1) "2 G p—it p—iy

since  — p —2>0. In the last equation, the quantities enclosed in square
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brackets have been alreaddy defined by the hypothesis of induction. We

assume that K a have been defined too.
(s p—s)

On the other hand, since Ha (s=1,2, ...., p) ate known quantities, we
have -

o @ — w a
oy jxf AZ,LZ‘MA (aH ogM)

a ?)
+Z BH /Rum PR -“'R)\

oY K p1PE
(48) o=k b1 ~

of o :
+,-+,§_1’a{;{? AICSNN)E S (C 2NN

_‘1,3<z +y- 8/ )amb/ or.
However, by (24), (39) and the relation
o7

9 pa —(_2 na
—aj_/ R»L, p1pE ( ] R;x ,pl"'Pk—1>,pk + < o \RI 1P -1
B—1

(__~ v > A — A p I RA )
8}) “ep V3P PR —1 o\ 8}7 ph ook "k P PR—1 Y Pp+1PL—1

we can easily see by induction that T Ri’p is a linear form of &7 A7 _
v
l
H Ve T T s
S B ays whose coefficients are polyncmials of gm; Rz ... .;'RT ageay

Y3 Yrsags v e - o3 ‘l'mlwwkﬂ' While, by means of analogous -relations as (26),
(27), (28) derived frcm (4), the coefficients stated above are polynomlals of

g% R ... RT Vrareay B ZBoag 0 Dpagapay -
Then, tor j + < s — 1, we have

%K aaii)”’l Pt} [331 Kg%')wrw—l}]w
§< aj’” Ph "t>< z;'z’ >’91 Pp—1Y Py 1 Pt

and from this we can easily see that

788)1_ {<%§—>,pl.,.p!} = (aaj,;:zl)’m Bt +

aj.—v a]z .
a linear form of(-g%%ﬂl; el <_a)_ﬂ,: oy g whose coefficients
5y _
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are linear forms ot 7%, ..., sy s with polynomials

of ;23 a5 Lyayoa, ) 8 their coefficients.

After these preparations, let us consider the question whether we can
determine K 4 or not, so that it has the properties shown in (46), provided
that p is replaced by p +

Now, in the terms included in the first 3 on the right hand side of (48),

H * are noteworthy and other quantities are supposed to be known by the
(h-s)*

hypothesis ot induction.  In the terms included in the second X the qu-
antities to be noticed ate H Tarag and the orders ot differentiations ot R,
e N

z included in these quantities are clearly < (p—s—1)+ (s +1)=p by (45).

Regarding the terms included in the third =, the quantities H Ny, AT€ 1O
P9

be noticed, but the orders of differentiations of R7, ¢ included in these qua-

ntities are (p—s—1)+(t—1)=p++—-s5s—2<p since 0<f<s—1. The-

refore, we see that K ¢ can be defined by means ot the quantities already

(s p-s)
known by inductiori according to (48) and tormula (35). Hence, we see also

that [ ¢ can be defined by (47) so that it has the properties shown in (45),
(p+1)

putting ; <p+ 1. Thus, we have proved inductively that (45) and (46) hold

good for p=1n — 2, In other words, we can difine successively e, He, ...
(1?7 (2

H @ so that the apparent cofficients of y, y% ..., y»~ % in (34) cancel out with

(n—2

each other respectively and they have the properties shown in (45), putting
i=1,2, .., n—2.

Lastly, if # > 2, the coefficient of y»-2 reduced on the left hand side of
(34) is

n—2

(h-1) Hs+ 3 K s+enviy jaa

kn—) s=1(s, n—2—s)

and the one reduced on the right hand side is

(n=1) H3 +«1f2{H H o4 5 Lod(He H *=H H )

(n—1 Dm-2-if | 2(n=1) 0 G nlait .ty om i)

- €n3"]’ g’“ o + 3€ s ql,.Ega L sns

where €ij=1(/ =), €ij = 0(; * 7). Hence, subtracting these quantities, let
us define an important tensor by means of the quantities already known as
follows :

n—2

o o
(49) Ly=—em 1,03< _% 8 + g% Zm) T 3Em VLN % 2 K &

s=1(s, n—Z—-—s)b
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n—2

+'\Ir21(1)4n—1—1) +2( —1) SZ(H“ H*-H H )}

ONn—2 -t (yin-2-4) )

-
.y

By virtue of (4,5), (4,6) La’ are polynomials of gix; Rﬁ; .3 RA RV

MIPL Py —2

12
(-%Z >m oy kK+h<n-2). We shall show in future that this tensor plays

an important rdle to solve the problem stated in introduction.

4. The regularization of the system (II), (1). Making use of the re-
sults of the last sections, (34) becomes

1=iSn -2

o o 1 . sl b
(50) R R A Zj A
0=i=n—1
He+ 5
+ itf=stn—1 {(i) P + (H“H HH)}—’,

(n 1) 0GR G

where K @ on the right hand side are linear torms of H A and its covariant

[€X)
denvanves determined by the methods in the last Sectlon, as is easily shown.
Now, we have by (32)

Ea = (hm - hz’)\) + (” - 1) "I’Z,a

= gﬁ (o = H2) + (n = 1) vg
Since we get by (27)
He, = Hi — 3z, o Hs (i=0,1,2 ..., 5-2)
let us put
(51) Z 7' Eo
where
(%2) G e Hum ¥ <%’a'—5% Ay z’“—a% CiI——Il)2>

(i=0’ 1’ 2; ....,ﬂ"l)

and
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b = b
n-1% (-1

We can easily see by virtue of (33) that

53 =H, —H\ +(n—1
%) (%:) " (0 (=D, =
Now, since we have H= — s, We can put by (32)
(0

(54) t=-2 (h+nmpz) + oL r (W — k22 —R)

Ty DT 21 AT

n—1

SEG
where

= A} - _"I’\R€i0
(%) (%‘) —w{{l 2(” 1) = (s) u—sJ (I;{I*L(iI:{)" 2(n-1)

(l=0; 1, 2, «e o) n—Z).

We can easily see by (33) and (36) that

— w A
(56) %%Wmu%wﬂﬁkm

=H+ gy n =) yig —R) =0,
Then, we get by (36) and (52)

_ A — 3 ,_a.__ -_— - a—‘ A)
(g? (1)“ (I;I»“;" ¥ (Z’a oy (I;Iv T o g;g“

=¥ R -
Z(n—1) B 7 VR

1
- ,71‘_&_ (R, - 2n=1) R> + VRt (1 =D VR R0

= ""“1;!’:”“ (Roa = ZRQ,A) =0.

By means of the relation above and (42) we get likewise

17 _ — I3
55' e Hon =¥ (z’a o & T o ;ﬁ%ﬁ)

=‘\Ifzz(H HY) +¥° ], H—x,, H)

(D% ’a(1) wm*

245
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— '\I"?{:Z,a (5{_ ”.‘],\3 2) — Z,)\ (H)\ — ,‘!,5 ZSA)}

2
= {(1) (1\‘”‘
=P E, =0.
"pz(‘g)

= (= n3%a + zAzB*)

Furthermore, by (33), (36), (42) and (55), we get

¢ —H+ Y (HH - HHY

M @ #1000 o} m

¥ - Su -
= 1){,22111-)1 4 - - (- ﬁlngg + PS¢ (I;Jﬁ) = 0.

Thus we get the relations

(57) Ea‘:Ea:Ea:O) §.=.§=0.

5. The regularization of the system (II), (2). According to the re-
sults ot the last section, let us prove by induction the following relations:

Eu=ga=‘§a=--'=gu=0’

o M (@ (n-2)
=t =¢ =...=¢ =0.

0 1), @ (n—3)

First, we suppose that the relations

(g),, =<IE\,, =... =§3, =0,
(58) I e @2<p<n-2)

@ & 7 en
hold good, and we shall prove that £, =0, ¢ =0. From (44) and (47) we

+1 (
get P+ )
(n=p-2)Ho=2 K &#-3e9°g93,2,
(47,) (;bl,’l) s=1(sp-s)
—_ . a . Sa A —
‘P.go {g(p~s)b + 2 ﬂ_'l) b (g#ngs)‘L ({%(PI:IS r) }:
and hence
b

—_— — —_ — 5
(n—p 2)@1?1) s;(s,zgs) eV AiR)

b
- Z{an Hr+(@-2)H H |
1 N psH () (p-s)/*
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Accordingly, we get from these relations

4
(” -p- 2 Z K;a 3€2p Y (A (Z)):a

s=1 (s,p—s)

)
14
Z{ +(n-2)HH‘

T - ) rp—-s)’“‘ () (p- J’

»
— — A
(n=p=2 aﬂ sgl & plg B

>

- 362[) Yrd (zxa A, (5{) + g}‘M R z;au)

—¢2{H HA +H, H?

(s)p-s: sy p- sf

+ L (HeHy - H H )}
N p—-s) Aia (s. (p-s)8

and subtracting the latter from the former, we get

?
n—p—2 H*) = Ke.—- K *
( ) (@Ln (pu)‘”‘ S=Z1((s,p—s[; (s,p~s‘)“"\)
P
2 (H H» +H H w—H H* —Ha H_,
s=0 (M p-sfh  (s)ip-s) (52 (p—s )% (s) (pos)

+3e¥° (g, B2() — 80X
The last equation is reduced by (52), (53) and the assumption (58) to

—p=2) (H,— H*) A
(# ) (1:+1\ (p+1y% ; o s,Itg—s)";")

+wZ(H;x H>- He HA
(59) s=0 (&) (p-% ()} (p—s)Ha
—1

— —e 9
¥ szf"us* <z"‘ o pE—l) RONGA <P£I—1)2)
+ (” - 1) 11,‘2 z’a g‘)l-)_lb 362[) ‘\1"5 (z’a Ag (z) - g)\u. Z,A z)ua).
Now, we get by (27) and (35)
2n—2—s

(G m), -(Z v K,

; 0
= i - 3 - b
1'}_20 y <(s 5 )a, ¢ y‘!’ z,c B\b' (s{?)a),‘

247
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Hence, we have

(60) <~%—g) <aj’ !:?) ]g‘))ﬂ j(sﬁ —t${<)\ )
e gy s )

On the other hand,-we get by (24)

o g\ (2 ) =2 -
(@— Zl:—gI))hz <a), (Iga/),)\ a}, (gjj"a g;ga,)\>

_ )
+H- oj T~ 5y Tou
2]
=——(Hy,— H*,) — H A, Hu. N
a_}l (H (s)a"\) s? (‘]f ))\+ (“]’ ) )
that is
0_ ) [ 9 _ o _
( 8v (Is—]) “sa \ aj/ §2>A aj, (({_{:a (Ij)’z,)\)
(61) + o (H R, = Hoh)
{s)

— (z,a I, ==, Hoh)»
Then, by (52) and the assumption (58), we have the relation
— = — aalpd i o A
Ha = iy = = 1 =09 (355 B =% oy 1)

il O s O A
= \Roa o (sf_{y, T oy (31_11)“>

) 2]
(R, g Hagg H2) G =1 200 p)

If we introduce as (35) quantities M @ analogous to Kﬂ by the relation
(8,4

(62)

J a

a < H \
| = M
ov ap) T 1 G
we can see that M¢ can be determired successively so that they have the same

. ('s"’/ . s
properties as (46). Hence, making use of these quantities, we have

o
H;a - H
K3 (<s> «s)"”‘)
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~ (5. (o B, =7 oy B) = (55), (o Hip o p 2]
— iy [\Ir2<z+)' ) (o5 H IopH)+ L H
(63) -2y M +21+1M1J
J=07 (s—13) *§=0 (s,
+¥iz [Q‘l}rz (Z T 5y oy ) <% (SI;{)Z A o (132> a'l]’ :[3)\
2}, MA.}_Z))]"HMA}

j=07 (s—1 i i= Gs,5)% 4

Accordingly, comparing the coefficients ot y»—s of the terms on the terms
on the right hand sides of (60), (61) with each other and making use of (63),
we get the following relations:

4
K;a -
s=21 ((s,p—-s) (s p—s)* }‘)
___‘!,‘51,_1/ ° K _Z Ha” K A)
s=1 kz’“ a'\ll‘ (s,p—s—1) A a'l]l‘ Gs, p—s—11%

A

M. 2]
[Z’“ s=1\(s 1p—s> (si>—s—1>> EZAs 1 cs IP—s)“ isp—s—1)*
—1

3 — H)\
—Y [z’“s 1 (s w—s—l)" z*s—zi (* @_5_1)]
Zp ,
—Hy Ha )
+ 11’5=1<(s (?—S‘““ ()% p—s> i
p—1 5
— 4 — H)\ , H )
v §1< Roa s )‘ a«;» u:—s—l)" T (0 W pmet)

+v+{( a}) £ A gj)* o cﬁw‘x‘}
=902 (2e o %o L)

~ ¥ (2 oy H= % o H))
) (S

+ 34 {zm (2: ‘g% {}:11)— g; o 2 z)
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5]
_z"\(z 8\7@51)2 Ty 3‘1’ (h— 2)

+ 3y

2] o
E7 {Z’“ oF Gy %o (1?];12)2} (1= €w),

where M 2 =0 and we need a factor (1 — €,,) for the last term since p 2,

(b,— 1)

§=1,"2, ..., p. It isclear that M ¢=0 from (33).

(0,p—1)
is readily reduced to

b

=\w’§<

p-1

—Wz > He

@ ST )N ep s 1)“ Z)\

(64) +«;»Z( H* - H H

O NC ) LIS et

p_

—w*g(  H a‘,, SH

—s—1)H

9 yr_., 9
— (z,a S S A lf;{ﬁ)

3€ 2p '\]’5 az

Now, substituting (64) in (59) and making use of (47’),
see that the following relation holds good :

(n=p=2 5= 2)‘(1z+1)

(p+1)

- BT T
¥ (2,57 A A (1;{3/}

—1
(°] o
- .‘1,‘5 s==21 <z:a haf‘p (s'plg—l) B z’A —a_"l"_ (s'p—IS—-l)z>

p—1
*df‘[zaZH

H
s=1 (N (p—s—1)M

o o
1 z:a 81]» (sj,I_<s_.1)— Z”\ a"l" (sp‘—lg—l,a

s=1(s)*rp—s—1)

o o
a_)/ <2:a or (p 2) TR W(ﬁz;‘:)

1
‘%Z:H

s=1 (¥ p—s—1)

The relation above

]
A
TR (I;g“ oY (p—Is:-l»—l)>

(52) and (58), we
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HeFPy — HAHL)
- <m (p)’* e (0% (p
p—1

o - 9.
B q,*s; <z’“ g‘; oy (p—Iil)'A‘ T 533 oy cp_sH_l ))
— o ° - A
¥ (24 o & %A(I;{J

—: % 9 —e 9
362]) Yr® a.y <%m o (P‘[:‘_Iz) LN o (ﬁg)“)

p—1
— ot o )t
v s§° Eg(%’a oy cp—I;I—u A 3\If (PI;I 1)) (n=1)¥'g
+ 3€35 (%00 B2(g) — & A Zoma)

(1= p = 2% (Ru gy H— 2 55 H2)

:a(p)

)*
r1 5
== afpd . A -
¥ z,aLZ(n—l) s=zo { E[g#(p—I_Is—l)“ +( Z)E@_SH_U}
p—1
1 o A —YH-°- H
iz {” (Ig; oY ¢ P—S—lJ * )<s) o (p—s—u}

= 3€q, Y <”Z‘g}7 + Az({)) + 15€3, Yt Ay (Z)]

_"’5%[§{ H ”’2(;11 1)83<Hp H-H H )

(s) (p—s—1)% )M (p—s—1P  (s)(p—s—1)

5 _o_ A O
+ sz=t:> {(13 oY cp-I;I—I)" + w—Ig—I)“ oy g

1) _o_ \
<<s>'* oY «p—s—l)" (13! or cp—sH—1)>f

— 3€q YP* <Z"§‘§— * + gmz,[m> + 1564, Y g+ o z,“]
p—1 p—1

— - A

v LZ’“ sazl gs_g (p—I:I e X s=21 (Is_g“(p-—s-lj

P__

— 4 —

.“b‘ Z <z:a (1:5:1)—/\ a'\],\ (p— I;I__I)I" z A -(Iga a’\‘b‘ rp_£1_1)>
- 5 32 ,_,a_. - . ?__ A

Seu¥ 9 <z’“ oy <pljz> X o (Eﬂ)“>
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p—1 5
— ot — A
¥ §7 ) <?<’“ v CP—I;I—ID R U ¢ Ij—n“)

+ 3€2P .4,,5 (Zw AZ (z) - g)\”' z;)\ z,pa> ” - l) '\!’2 z:a )

v_s
=- H: H *-H H "z He H*
2 z"’s=z<;<<s>*u)—s—1>" <s>c¢—s—1*> vz ’“<0) (h—1
4 A
+ 1‘[,‘ z:a (0 A 81!/' (?HD“ ‘\‘ll‘ Z )‘(1(—)_{ P'El;_)

—«1»4%@;537 H o+ (n=1) ¥z, H

- 362}’ (” - 1) 1P5 Z —3,- fz:a

_ 5 R (, 9 —o 9 A
3€3p Y o7 (z,a o0 (ﬁz) BN oV (Ez/“)

A~ H )+ (0 = 1), H

=0 ‘(M (ps—1F () (- s—) 2(p)

- wi}

— x _ A
362;‘:‘!’5 a] <f{aa.\1, LPI_IZ) zxa\l,(?}lz))

=(n—1)¥z,[H —(-—)E(H H -He H 2

() (p=s—1) sl (p—s—1H*
—_ 5 a{ — _ a N
362p '\]" l:(” 1)%%,3 + Z;a 3*1’ (Pg) ZM —_a'\!f (pI__llz)“]'

Since we have from (33)

3 O gy _ o =
(n =022, + 2 5g H ~ %05y =0

we obtain from the relations above by means of the defintien ot ¢ . (55)
(-1

65 - -2 a =( -1 2 a ’

2 P2 D £

trom which, by means ot the assumption (58), we get lastly the relation
Ea =
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6. The regularization of the system (II), (3). In this section we shall
prove that (C =0. We get by (a7’), (55) the relation
»)

P
(n—p —2):-2 K

s=1(s, p—s)
»
- ¥ S A _
2oy S i+ -2 H H
—3€2p'\]/5A1(Z)
(n —p—4 2) — Ik A
+- 2( ‘PZ((I;{(ES) H(pI_Is“>
that is
»
=953 K, e a0
(66) A ’r
-y S p-2H Hi4pH HE

On the other hand, by (55) and the assumption (58), we have tor
§=23 ... p

s—1
i = _}]"_d 1 i [ _/ 2 \
aj’ (I;)I n— t=0{< ay 5{)‘)('5_1;11) \ a'y (}t:l),)\s Itil)}
s—1
—_ 14”‘5 ,?Z,, M A A
2(n—-1) <z tJ oy >§)<\I;{" (s_;I_I_U" .It—/l.(s—It—{n),
hence we get the relation
? ‘1,\ p s—-1
—_ A
sg‘é s E—s; N n—1 sg?tzzﬂ << t,§ sﬁ' s liI b (¢ p-s) \s—t——.l)>
vy 5 N
(67) S 21 S QI# LRV P
[ p-2

In the next place, let us consider K . Making use of (II,) and the
1, p-1)
assumption (58), we get
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P {('\]/-h),m - («!rﬁ';),pn}
= g [l =B ) =P Ra b~ %, ),
= g W {Ex —(n- 1)«1r~z,A}- L CAURE N
- v Ty b= =1z, R, b=z, "1,

X0

— (W T, 0= D Ba) + 206 = DY A R)

i>p
+ 392 8 (A, (z) h — Ak )
= yp? (A (z) h— L hAw)
= 9P (g ) Pn — w4 0)-

Now, from (36'), (47') we get
2 - RN R 3 4.0
ay(III) '/<2+)1 8})(2(71—1) 2 ‘IJZ)
+ [k R+ g { () — (W) 0} |

x
EEAAE T

If we put the relation above irto the last equation, we get the relation

3 / R
+o-T (1= €2p) ¥° \Al(%) (?I__Is) TRk #I:I;“

_ ¥ —
n— 1( 2(2)@ 2) z"“(pI_Iz))‘M)

__¥ =
A—18" 2 <(1>I:12)'M (152,2”’)

¥ (AR H 2ty HY)

+ €3p [ o2 <H — 2:2> + 25 Al(z)i"

a}’
Cn the other hand, we get by (36), (36")
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¥R
(f%" e &

+ 3w dy) o

_ n=2 ¥ n
- 2wk Hi+Yr (He 5 wie) H

TS (n 1) L4 Repe 1)

”_T{(n—Z)HM Ho+ +4? H.

+HH
Yp—1) (p—1)

Putting the relation into the left hand side of the above one for K , we
@, p-1
have

=V dn-2H: Hi+H H |4yt

K
a,p-1n n—1 MMp—* T B p-D (p n

— 6 ) —
n— 1 (1 =€) <A1(Z)@I_I Iaou (55))

71]’ <A2(z) H —z“‘(pHZ\>

(

(1 - 52')) Wg“‘%\z,u a'\]f rpI_Is)— Ry o) 8'\];' (1;[{5/#)

)
T ¥ (M5 B, o F)

+en - v —ay— (- ) F 2t AR
that is

K- el

,\],,2 2 H
(1, p-1

+H H
(MM p—1#  (1Xp=1) C;b D

)

3
g (\A‘ (Z)( TR z"‘<1>Hzn

(68)
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x ( — 2>+3q1, A,(z)}

+ €2y’ { ay

In the computation above, we have assumed that H # =0 for p =
-zt
Now, we start with the verification of { =0. By means of (66), (68) and
2)
(43), we get the following relation :

(n—4)€= + K — 35 A(g)

2y (11, (20

1
S LS He Ho+H H |

- Y {e-9HH + HH, + w5
rr T D! cx)

n

'\PA Al
v <Az<g—0g) 2o )

~ W R H )+ 305 Ay ()

a)/ (1)

>/ x _ PAN'T Y — 23
+ 2 5«1/‘22;/(% VA (g) — nY°Y 5
—3‘1/5A1(5Z)

- ¥ Z{(n~ H: H*+ H H}

n—1 &0 [OOSR YO

I

_ 4.2 2“]/‘ _ A
st H= Y (- D HEE + B

I

— gt H ot dyig H
4«!fzz(H 1lfzzH)

(€]

It

Hence, if » — 4 + 0, we get by (42) the relation

£=0.
@

In the next place, if p > 2, making use of (37), (40), (41) and (47'), we
obtain the following relation

I

T3 x -

‘ H )
§=2¢=0 \(¢ ﬁ D) (s t e =) —t-1)
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p—2 p—m—1
- > ( K s«Hm- K H)
m=0 =1 \(tp—m—1-D"m*  (tp—m—1-1)(m)
?
+2( K ¢ H2- H )
s= (0 p— 1) (Q—l‘” (0, p—N(s-1)
p—3 - ]~ m—1
=S He[(n=p+m-1) H24o 3 {H H 1
=0 (my* L o—mdt i=0 @D p—m—1-0)F

+ _2—(_711——1) o <L1;_{5 <p—m{{1—i):’ - ch_{ (p»mﬁ~i)>}]

~Z H’(n—p—!-m-])@go

m=0 (m)
pm=1 ]
A —2
30 z(n -1) 120 ( - i 0"+(ﬂ )({?“’ ij_JJ
3 (R0 %, )~ Ax) H)
, %
{3«1/22H“ + P g (?, w TR g >}<1>1312>’t

+ {3q1,22: {—lj)-l- Jrd <A2 (]) +nz %})} (pI.:IZ)

- X xR _y
(n =1z o> H +(n=1)(¥ 5 -¥'z) H.

By means of (67), (68) and the relation above, we get the following
relation

ZP K =¥ [Z(n—p+m—1)<H“ H *-H

H )
P-m)*  (m) (p—m)

$—3 p—m—1
+¥v> X {HH: A
m=o i=0 @) m pmm—1-i*
-+ H (He ‘+H H )
2 my NN pem1-i)* G (pmm—1-0)

b P —
+3v° 2, %, LEDW

Ai(z) <z>}—{5>>

—_ 2 — —_ —
o z\EHn'ch 2)A (fgcﬁn> v (Z “(H ' 2(@@{_12))
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+ (=D —~—~Irz> H |
_'\II‘___ _2 — 4 2
= {(” )gﬁcp-n“ g(ﬁe)}-rw < (}:II)
3
ot (AR B -, M)
—__( ) [ 23—2’*"(1:}—][2;)
1 S
.. | /-] 2 A
2(n—-1) v zg'é \5* (p—Iiu" g(p§_1)>
x5
e’ N A
2(7; 1) v oy ;({g&‘@fi@u Erg@—It-I—ZJ>
P_.
_ v _ -1 A
Sl Z e pem-0(He Ho-H H)
p—3 p—m—1
+v> > {gH: H
m=0 i=0 V() (m) (p-m—1-i)k

_1
He H *+H H_ )
T2 ("t)<(t) p-m—1-DF @) (p-m_1_,3)

((%” (pH2>“ B {gcfz)ﬂ

—_ Z M A
+ {(” )H (f:Hl)" (Ig(fl)}

,,z.zz( ~H H )

Z(n -1) (o = z 1) D (p—t-1

4 <
2 - A
+ oy [(5_11) Z(n -1) tZ: ( ® @ It_I 2) gnaplzl 2 ﬂ

On the other hand, we can see that

-3 p—m-—1
=39 1 HA >

PSS (HH“ H *-L1HH:

m=0 =0 ‘@D m (p-m-1-d)* 2 m)D p-m1-i)
p —l

m:to(ﬂ(ﬂmO
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~H( H «H + H ¢H\) - H HuH
@ NP=-D*(D* - @ (Dp-» @

H H:H+ H HeH+ H HeH?)

+
- O DF T G DM@ (p—2 (DR (M

1
2
p=1  p-m-1

1
= H He H *+n H 2
2 mzad(m) wgo @ p-m—1-id* “l’z(l) (p—2m

— —g '\!/ H o

Hence, making use of the relation ¢ = 0, the relation above becomes
»—2)

-2

v - -1 "
-1 {2 (n=p+m=1) <H) cr»—m)" g)(ﬁm‘.
P

ﬁ( H #-H

H )
m=0 0 @D p-m—i-D @) p-m—i—1)

2 _ B 132
+ ¥ z(Il—)I“(pHa)" 7V zrp{{l)

HH -ny'y -n(He H2-H H )]
(1)(1’ = 1) @M - (@O -2)

Nli—

+7 {(n—z)H'* H*+H H |

M G-v* D pon
p-—
-1 o> (H+ H*-H H
2(n-1) v z¢=z° ((t)" -t-n* (B (p—:—1)>’

Furthermore, by means of (55) and the assumpticn (58), the relation becomes

v 15
=Y _ -1 A
s-x(s,{»(—@ ”"’1lmz( Tptm )(() (P}'{)“ g)<p§n)>

Y +¥% H (HeH -~ HH)
m=0(m)(j: m) (»p-1) (0) Ok () (o

1
+ 5 (# - 3 2
2( ”)'\‘I"Z@_l)

+ —ZH'*H* H
s ) W p-p (1)(1;%] *l"z({g’
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)
- _ - A
n—1 ( go(” ptm l)< *(p m <M><Em)>
-2 - V= =1z H!
— (-9 H g H = HOH) = (= 1) vz ]
+(n~1)fZH - H H+mp\H1
[ o<m><p m (-1 (D
-9 A4 -| — a2 E ;
+ )H“(pI:ID“ gql)(ﬁlﬂ ‘1’{(1;
that is
>3 vy
69 K =¥ _ _1) He A _
( ) s=1(s p—s3) n—1 4= (ﬂ p o ) _il’i?J) (/’I—Im + (P ”1)(1”;1) (PHM)}

If we put p—-m=u, the last relation is also represented as

»
VoS {n-m-0Ht H *+wH H |

m) Cp—m)* m)(p—m)/ >

K =
hence we obtain from the two relations the following one

6%) 23 K =_‘1€_.2 {@n-p-2Hr H 24pH H !

s=1(s p—s) n=11m m™ (p—m)* (m) (p—m) *
Now, if we substitute (69’) into (66), we obtain

n— -2 { = 0;
( P )(P)
accordingly, we get

since n —p—2>0 by.the assumption (58).
Thus we have proved that we obtain

-0, =0

&,
i D)
trom (58). Accordingly, we see that the following relations hold good:

frod
(70) ©@ (D (n=2)
E=¢=...= ¢ =0

0 (@D (n—3)
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7. The imbedding theorem. Owing to the result obtained in the pre-
vious sections, if we put

(71) E.=y*=in, {=ytr, He=Hs,

nlb

we get by (51), (52), (54), (55) and (56)

— o _ )
(72) N = H’a H;\J\ - “],ls <z:a —a—‘\!; (1;[2[2) LN ’51_!7 (n{{)g,)
n—2 '
b- / |
= ‘'H H - H~ A
T=HY G 2(n—1) {2 0 () (=t-s) (DN (n—I—I—s)”‘)
2n—3 f .
A—n 2 _
73 + 2 (- H )

n—2

(H H — He H A
+s ;anz\(s) G—3) (s) (- s)"')}

+2 (HH- H )|

Now, if we put (71) into (29) and (31), we obtain respectively the following
relations :

(29") ~%— Na=Yhn,—(n—1)Vg,T,
(31) f—%— r = k= v (g 4y g5 )} 7

l
s 1)’ "1’48)‘#2)\"7“ P mwgun)\p

We notice that these equations ate linear with respect to 7, = and the co-
efficients of the terms on the right hand sides are regular wish respect to y
near y = 0.

Thus, we see that the condition stated in sectlon 1, § 3 in order that our
problem can be solved is replaced by the following one. ~ We can solve the
system of differential equations for the unknown quantities g,,, Hy,

n—2

9 = - i " \
(Il*) _87 SBab = 2"1" <'=20)} -(%ab + )i ! I‘Iab/J,
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) 1 > @
G0 g Hi- L wzy[ﬂyygy
o2, (HH L s (He - HH)]
et G | 2(=1) C\or G ® O

under the conditions
(III*) Na = 0»
(IL*) -

and the initial conditions

[gab (>, y)]y=0 = Zay (),
where H * = H*

(n-—l)"‘ [
Accordingly, by virtue of (29') and (31’), we see that the condition above

is reduced to the following condition: We can determine a tensor H,, (x)
and a scalar g (x, y) so that

[ Has (x.9)],_, = Hus ()

and
7=0, =0, L¢=0, for y =0

are satisfied.

On the other hand, La is function of gh#; RA; Ri oy R:mwe -
L SR ( %2 , . (k+ h=n—2) as shown in (49). Hence, the con-
Dy /p1-

ditions [Lﬂ (», y) lmo = 0 may be regarded as equations of the given space 1/,

with unknown quantltltlkeq [\ (k+h=n-—-2). We notice that

Jrk /spy ek y=0

4 becomes 1 for y =0 by '(4). If [L“ X, _y)) can be solved ‘with respect
ok ol .

to [( aj% >w1 pr=0’ we can easily see that the equations

_ A o 2] Al -
{7ady-0 = Hya — Ha,x ,—z,a o (”I_Iz) A 50 o (”I'Iz) y=0 0,

n—2

['r]y=o =H+ ET;:T)_ Lzzo ((Ig (n._I;I—s) - (Ig“ (n—-l:I—s)"'):I -0
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are solvable with respect to Ha.

Consequently we obtain the following theorem :

THEOREM 2. A gnecessary and safficient condition that a given Riemannian
spase Vu(n>2) with line element ds* = gau(x)dx*dx* can be imbedded in a
space Vw1 as a bypersurfac: which is the image of a hypersphere inviriant under
the group of holonomy of the space with a normal conformal connexion correspond-
ing to Va1 is that the system of equations

. RA: c o (9% . -
LZ <g\“’ R)p\u’ e R:,Prupn_a’ LR CRREE <—ajk>>1p ey > =0
(k+h=in—2,%=1)
o

. . o .
is f(.)/.vable with respect to g, By et regarding them as wunknown qu-
antities. -

Remark. If a Riemannian space 1/, can be imbedded in a /.. as stated
above, we see from (32) that the relation

hay = — Vg Gape

holds good on the hyperesurface F”.

Hence, we see that jif  (x, 0) =0, &, is a totally umbilical hypersurface of
Va1 and if g(x, 0) =0, §, is a tatally geodesic hypersurface of Vnyr.

§4. The invariant hypersphere and an imbedding problem (Continued).
1. The imbedding problem for V,. In the last paragraph we have ex-
cluded the case of two-dimensional Riemannsan space as an exception. We
shall investigate this case, starting with the fundamental system of equations

(1) and (10).

Let K be the Gaussian total curvature of a Riemannian space [/,, then we
have

R2=K?é, R =2K
as is well-known. As in §3, if we put
bt = — 2 + y H?

and substitute it into (I;), we get by means of
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the following equation :

o a 2] Ta
iRty 5y B
= =W T VLR, 30
+ g {gHﬁ H Hs + 8;<EHO;;H: —ng)}
+ ¥ {HH; + 4 8 (Hy He - HH)}
= =¥ T IV LN R,%0
— gy e g + ¢ (HHg - 8 |F2 )

that is

o a == a oa \| — 2 a
L") o Hi e (g B ) -
+ g (311/-‘g“" %,,n + HHp = fHﬁ|>.

(I,) becomes

(Il”) _a%“gub = 2"1” ("I’Zgab - Hub)’
Then, if we put &, = yy,, (IL,) is replaced by
(IIRH) Na = Hm, - H;,)\ + "]’5 XRa = 0.

Regarding (II,), we get the relation
¢=H+%{(- 245 +yHY
~ (= wzd 4y M) (—¥g 8 +yIL) - R}
= H+ " {252~y g Ho+y*(HH - Hy HY) R}

hence we have

(L") E=H+ ¥ (¥*z* — g H+y* | Hi| — K) = 0.
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In the next place, (29) is replaced by

(29) D= (= g 4y H = Vg,

and (31) becomes by means of (26)
2 / o
@ é‘ = f\— 2’\]/‘22 +)"\hH+ -aTIOg"}"):
=Y g (= 2P e U, L)
= (- 3v% + y¥H - 39 —%‘> Ct g o, = ybghn,
that is
i ={ — 2, — 2 _aK_ 202 ot gA
@) 5 6= (v owH e Z e+t vt g,
=t gy
Hence, we see that if the quantities 7, ¢ calculated from a solution of
(L"), (I,”") satisfy the relations

7,=0, £=0

at y =0, on account of (29”) and (31”), thes¢ relations also hold good for
any y near zero. Now, (II) becomes at y = 0

(75) {H - H\, +33.=0,

H+g-K =0.

The last equations are clearly solvable with respect to H?. Hereby g (x, 5)

may be considered as an arbitrary given quantits. Thus, we get the following
theorem ;

Tuvo:em 3. Any Riemannian space Vs can be imbedded in a Riemannian
space Vs as a surface which is the image of a sphere invariant under the grosp of
holonomy of the space with a normal conformal connexion corresponding to the Vs

Then the surface is rotally umbilical or totally geodesic and the principal carvature
may be taken arbitraily.

2. CasE g(x, 9)=0.2 In this section, we shall investigate especially the
case such that (x, y)=0 and point out an essential difference between even
dimensional Riemannian spaces and odd dimensional ones through properties

6) See [I].
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of La.

Let us put > 2, g(x, y)=0 in the theory of §3. Then, we have r=1
by (4) and we get easily from (33), (36), (37), (40), (41), (42) and (43) the follow-
ing relations:

a a — 1 a R a a —
H= ’Hb——_—<Rb— 3), ‘([;gb_o’

o D n—2 2(n-1) "*
Ki=0 (i=0), Ki=0,
©) (1, o

a 1 a _L_—- an
K~ 2)2{211 R} = =1 RR§+ 51 —qy & R

+ g% R + 4 g% Rom = g RY,, —Ret )

_ 1 a - R2 — "
o g B RERL = gy R + A R))

K=0 «=>0).

(2i)

Then, making use of the relations above, we get from (44)

1 1
a — a 4 a _ ____~ ____§a v HA -

{2R}Rg - R Ré + gwRé

= 2) (n—4) ’z”(n 1)

+ @R — g RE,, — Rl

”n
2(n—1) %

1 T "
T 20n-1) (1-2) (1—4) 5 {3R¢ R} (,,fl) R + 8 (R)}

Now, we see from (45), (46) that H%, K ¢ are determined successively as
(1) (s,§—5) '
follows : &

Ha-—Ha(g)\p. R)\ “,R)\ >

GG kb1 Pi—1
K @ ()\p. R .. A )
(w’—ub G, j—s)° & ’ N R""l Pj
(i=112;"‘;”_2;]=1;2a"':”—3;."‘_"0,1,2,"'.1.)'

Furthermore, since (48) becomes
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9 Ifa— 4

+ Azﬁ*: (8Hg /aR)‘, P1~-pk> a—R'\

T er )
ozhzs—1" €/ 9y T HeL

with coef-

o A 1 1 T T . . T
where =R is a linear form of 47; hv’ AR N

By P1 P
ficients which are polynomials of g=, R .. R? , we see by induction

Vv, @yap
that

=0, K2=0 2 = 0.

a
ey et G
Hence, if # = an is an odd number, we get by (49) the identity

L: (g™ R;);; s R);L, 91-~o,.._2) =0
On the other hand, according to §1, we see that the point at infinity with
respect to the natural frame at any point in the space with a normal conformal
connexion cotrresponding to 17,1 whose group of holonomy fixes a real
hypersphere is on the hypersphere if g=0.
Accordingly, we obtain from Theorem 2 the following theorem:

TueoreMm 4. For n=2m+1 (m>1) any Riemannian space V. can be
imbedded in a Riemannian space V ni, as a hypersurface which is the image of a
bypersphere ©,, invariant under the group of holonomy of the space with a normal
conformal connexion Cuvr corresponding to Vw1 5o that the point at infinity with
rsspect to the natural frame at any point of Cuty is always on ©,.

Analogously, we get the following theorem:

TuroreM 4’ For n = 2m {m > 1) Theorem 4 holds good if and only if
La(gh R3; .5 R ) =0.

By P10y — 2
3. L;. We have seen in the previous arguments that the tensor L¢ plays an
important role for our problem. However, it is generally difficult to represent
explicitly the components of the tensor by means of g+, R, ¥, g In this
section, we shall calculate the components of L: for 4 =3, 4 and should like
to imagine the general case from these examples.

i)y Case  =3. We get from (49)
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Ly=-Ki-% ay % = 8" %

+ w,b{HH + HHe + £ (H*LH'\ HH)}'
(V) (1) Y (0) 2 O @

which is reduced by (33), (36) and (40) to

~

L"—g‘\]’oZHa‘F‘]"a\g m+2*g§'3§)

-3 %— % — 8" % ~ SR = 0.

Accordingly, we get the following theorem.

TureoreM 5. For any Riemannian space Vs the tensor L¢ vanishes for any 3-

ii) Case n =4. We get from (36)
. — «_ (R ’
He= YRy~ (§ + w23l

H = & ¥R = 20
(©)

Then, we get by means of (41), (42), (43) and (49) the relation

a — a — 5 gah .
L = ({?1)" (2K0)b TLIRAR,

+w1r{HH“+HH“+HH“ 18a<H”H -HH
;e @O @ 3 P\ et ©m

+ 1 5a<£u(%a 5[)(}9}

apr 4 osa
= —v*(HiR) - § & HER})
=297 g (X300 + 20 %op)

_‘l’f{u A an _ a
+Z g#({‘)]b“)\-*_gl{), g &l;_')rbt\u

— g Ho 4 Lo H, — )

Ayr @
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@ G a R a a

99

— 5y — 5Py )ggg+«1f5z(g‘“z,kb+z~—]~3“)

+ 29 g0 %
g e — At H82 + o HH? 4 ot 32 FI 8
«lfzgj;,, lrzm ”+‘!f<1)c1)b+wza) b

+ ¥ e (He H2 — HH)
a* @,

alr? 1 .
+ B G (R § Roo) = ¥4 2,0+ 2,07,
1 a
. %ga#<R:,1»\ ~ 8 R’b"\ At Roow TRp ?ﬁ,#)

— 38" Rip = R+ 8 RAR) + Ar(z))

+ Lor (L AUR) ~ 19 (200 (2) + A1 (R) — SR
+ LA (R) + g (Ma(z)+ A R))] ]
bR Ry (§ o+ vex) 8

VA Re R Sa — r‘!,\d P‘ 811 + :)Ra 1 2.‘[, Sa
. IZI{< b6 >; 2/ \ e }
7" 1 R / ](. 1 2
_‘l 811{4 <R" — S}I\L)(R;\.“ 6 8!):')__6 '\!/‘22: R

ppgt = R B yoger — gy
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that is
Lg= ~ [ R}R:~ £ RR2+ L gwRs
(76) + %g‘"‘ R — %g“" R';,M — i— R\

_ 2%3:;(3}{#; R:—R"+ Aa(R)ﬂ.

From the relation above we get the following theorem:

Turorem 6. Whether we can imbed a given Riemannian space Vi in a Ri-
emenn space Vs as a hypersurface in the sense stated in Theorem 2 without regard
to g, or it is entirely impossible.

§5. An application. 1. The invariant hypersphere and the Campbell’s
theorem.

The space 17,41 in Theorem 2 is conformal with an Einstein space with
a negative scalar curvature.” We shall investigate in the last paragraph the
proble n to imbed a given Riemannian space 7, in an Einstein space An41 as
a hypersurface in the sense stated in Theorem 2.

Making use of (16), (17) and (18), we can prove that amy Riemannicn space
Vo with line element

ds? = gau(x)dx* dxv

can be imbedded in an Einstein space Ay with a given scalar curvature (n+1) k&
as a hypersurface and if the line element of Antr is ds® = g (x, y) dx* dx* +
(W (¢ 9) ) (gru(ox, 0) = gau(x)), the following equations hold good

(I) %T“ ZBab = — zﬁll‘hab,
0
(IH) *aj” gy = k«lrgab + (,Qab - hz th) + Voabs
(IV) Va = hla __h’:,)\ = 0;
(V) (n—1k+W—-hh—-—R=(n—-1)k+0=0,

7) See (I}, no. 1.
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where (), = hhy, — B hsx — Ry, and the meanings of notations are similar to
those in §3. This is a generalization of the Camphell’s thegrem.®
Now, (I’;) can be written as

aa] hab },l( ab+"1fzgab)+"1’ b_h’ hb}‘)

v.0 R
= Z(n—1) & + Y — 3 Las:

Comparing the right hand side of the relation above with the one of (III), we
get the relation

"L+ b2 gn) = ¥ g (G5 b+ gy

3y Z(n -1
that is
(77) ha = Wga {— 3+ 2 (—2;—;— +E+ 2—(;?_1) i
Then, from (II;) and (IV) we get

Zoa = 0.

Hence, we see that ¢ must be a function dependent only on y. By virtue of
(4), 4 is also so. Putting (V) into (II,), we get

(78) = (k + ng) —

N]Ev-
o

Putting (V) into (77), we get

hap = ‘!"gab‘{" 2+ —j-)—< 8; + é)}’

hence we get

b= {-z+ <%} +5).

From the relation and (78), we obtain

8) (I}, no. 12 or J.E. Campbell, A course of diﬁ'erentiél geometry, (1926).
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n—-1\ 2

that is

R __ k.

oy 1
Hence, by integration, we get
(79) =0 - £ 9y (e = constant).

n
Then, since we have

e D (R Lk Lk
x n~-1<’ay ty)m ety

(77) can be replaced by
(80) hay = *!r<— a+ % y) gy
(/i
Now by (4) and (79), +» becomes

1 1
81 P2 = = _
( ) }"’?)’Z 1+2ay—‘_’g)12
PE

Since we have
(n— 1)k + B — he I = (5 — 1) (k + na?) ¥,
(V) can be written as

(82) (n--1) (4 ne)y2—-R =0.

Conversely, if we have (79), (80) and (82), then (II,) (IL) (IV) and (V) are
clearly satisfied.

Lastly, if we put (80) into (III), since we get from both sides the relations

o - £ [ o [ k k
3 heem (e e (B e ) A

= ql,{N 211,2<_ o + 5]\)2 + (— o+ f)f)a—i} log+yr + —f—}gab-



ON THE SPACES WITH NORMAL CONFORMAL CONNEXIONS, ETC. 273

k

=pkgy + P —a+ w”’}’y (n — z)gab — YR,

we have

" - R \2
- Rep =0,

that is

(83) Ei= "L (k + 1) gy — Ray = 0.

Thus, we see that g necessary and sufficient condition that a given Riemannian
ipace Vo with lin: element ds* = e () docrdx* can be imbedded in an Einstein
space with the scalar curvature (n +1) & as a bypersurface in the sense Stated in
the beginning is as follows : the differential equations

A\
(V) Toy Be T T L
1+ 20y - '”312
are solvable under the conditions

— (n—1) (k+ na?) - -
(VII) En= “ _l_?ﬂ-aj—":_ @j,g"‘ Zap — Rap =0

and the initial conditions

-
os (2, )]y = g ()
2. Solutions of (VI), (VII).
For any solutions of (VI), let us calculate the quantities £,,. Then, we
get easily from (39) the relation
..a

5 Ry =2 IR} = 2t~ o+ /; v)Re

and
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? 1 ot g Ry 1 .
oy n+2n09/——@2*—"“1’ < Tt > n+ 2noy — ky* -

Accordingly, we have

2 &
(84) o - 2 (- o+ % =3
Fence, we see that if £ = 0 at y= 0, £¢ vanishes near y = 0. Accordingly, at
y = 0 it must be

Rup = 2L (k + 0) g

The 1ast relation showes that 17, must be an Enstein space A4, (»>2) or a
surface with a constant curvature.
Thus, we obtain the following theorem:

Turo«sM 7. A necessary and suficient condition that a given Riemannicn
space V. can be imbedded in an Linstein space Auti as a hypersurface which is
the image of a hypersphere invariant nuder the group of holonomy of the space with
a normal conformal connexion corresponding to Awti is that V. is an Einstein
space (n>2) or a surface with a constant curvcture.

Oxavama University.





