ON THE SPACES WITH NORMAL CONFORMAL CONNEXIONS AND SOME IMREDDING PROBLEM OF RIEMANNIAN SPACES, II*)

BY

Tominosuke Ôtsuki

In the previous paper ${ }^{1)}$ we have studied the spaces with normal conformal connexions whose groups of holonomy fix a point or a hypersphere. The main results that we have obtained are as follows:
(1) If the group of holonomy of an ($\mathrm{n}+\mathrm{I}$)-dimensional space C_{n+1} with a normal conformal connexion fixes a hypersphere \mathbb{S}_{n}, the C_{n+1} is a space with a normal conformal connexion corresponding to the class of Riemannian spaces conformal to each other including an Einstein space with a negative, vanishing or positive scalar curvature according as the \mathbb{S}_{n} is real, point or imaginary. The converse is also true.
(2) For $n=2 m+1(m \geq 1)$ and 2 any Riemannian space V_{n}, and for $n=? m(m \geq 2)$ any Riemannian space V_{n} satisfying the condition $L_{\lambda}^{\nu}=0$ can be imbedded in a Riemannian space V_{n+1} conformal with some Einstein space as a hypersurface which is the image of a hypersphere $\widetilde{\Xi}_{n}$ invariant under the group of holonomy of the space C_{n+1} with the normal conformal connexion associated with this $V_{n ; 1}$.

But the meaning of the immersion of a given Riemannian space V_{n} in a V_{n+1} as a hypersurface of it as stated above is that at each point P of V_{n+1}, the invariant hypersphere \mathbb{S}_{n} in the tangent Möbius space $M_{n+1}(P)$ at P under the group of holonomy of C_{n+1} contain the point at infinity in $M_{n+1}(P)$ (with respect to the natural frame of C_{n+1}), and the image of \mathscr{S}_{n} in V_{n+1} is the set of points P such that P as a point in $M_{n+1}(P)$ is contained in \mathbb{S}_{n}.

In the present paper, we shall investigate the same problem to imbed a given Riemannian space V_{n} in an V_{n+1} as stated above without the restriction such that \mathbb{S}_{n} contains the point at infinity in the tangent Möbius space $M_{n+1}(P)$ at each point P of V_{n+1}, in other words, without any restriction with respect to the scalar y^{0} (in the previous paper, no. 1, 2).

[^0]We shall use the same notations as those in Part I for the geometrical objects with some exceptions.
§1. The space with a normal conformal connexion whose group of holonomy fixes a real hypersphere.

Let there be given an n-dimensional space with a normal conformal connexion C_{n}. If we take normal frames $\mathrm{R}^{*}:\left(A_{0}^{*}, A_{i}^{*}, A_{\infty}^{*}\right)^{2)}$ composed of the hyperspheres such that

$$
\begin{gathered}
A_{0}^{*} A_{i}^{*}=A_{i}^{*} A_{\infty}^{*}=0, \quad A_{0}^{*} A_{\infty}^{*}=-1, \quad A_{i}^{*} A_{j}^{*}=\delta_{i j} \\
(i, j=1,2, \ldots, n)^{3)},
\end{gathered}
$$

where $\delta_{i j}$ is the Kronecker's δ, the connexion of the space is given by the following equations:

$$
\begin{aligned}
d A_{0}^{*}= & \omega_{0}^{*_{0}} A_{0}^{*}+\omega^{* i} A_{i}^{*}, \\
d A_{i}^{*}= & \omega_{i}^{*_{0}} A_{0}^{*}+\omega_{i}^{*_{k}} A_{k}^{*}+\omega^{*_{i}} A_{\infty}^{*}, \\
d A_{\infty}^{*}= & \omega_{i}^{* 0} A_{i}^{*}-\omega_{0}^{* 0} A_{\infty}^{*}, \\
& \omega_{i}^{* j}+\omega_{j}^{* i}=0,
\end{aligned}
$$

where $\omega_{0}^{* 0}, \omega^{*_{i}}, \omega_{j i}^{* i}, \omega_{j}^{* 0}$ are Pfaffian forms. Suppose that the group of holo omy of C_{n} fixes a real hypersphere Ξ_{n-1}. If we express it by $X=x^{0} A_{0}^{*}$ $+x^{i} A_{i}^{*}+x^{\infty} A_{\infty}^{*}$ with respect to the normal frame $\mathrm{R}^{*}\left(A_{0}^{*}, A_{i}^{0}, A_{\infty}^{*}\right)$ in the tangent Möbius space $M_{n}(P)\left(P=A_{0}^{*}\right)$ at each point P of C_{n}, then $d X=\pi X$, where π is a Pfaffian form. Since we have

$$
\begin{aligned}
d X & =\left(d x^{0}+x^{6} \omega_{0}^{*_{0}}+x^{k} \omega_{k}^{* 0}\right) A_{0}^{*} \\
& +\left(d x^{i}+x^{0} \omega^{* i}+x^{k} \omega_{k}^{*_{i}^{*}}+x^{\infty} \omega_{i}^{*_{0}}\right) A_{i}^{*} . \\
& +\left(d x^{\infty}+x^{k} \omega^{* k}-x^{\infty} \omega_{0}^{* 0}\right) A_{\infty}^{*},
\end{aligned}
$$

the system of Pfaffian equations

$$
\begin{aligned}
\frac{d x^{0}+x^{0} \omega_{0}^{* 0}+x^{k} \omega_{k}^{* 0}}{x^{0}} & =\frac{d x^{i}+x^{0} \omega^{* i}+x^{k} \omega_{k}^{*_{i}}+x^{\infty} \omega_{i}^{*_{0}}}{x^{i}} \\
& =\frac{d x^{\infty}+x^{k} \omega^{* k}-x^{\infty} \omega_{0}^{* 0}}{x^{\infty}}
\end{aligned}
$$

must be integrable. The converse is also true. Since $X P=X A_{0}^{*}=-x^{\infty}$, the hypersurface \mathfrak{F}_{n-1} of the image of \mathbb{E}_{n-1} in C_{n}, that is, the locus of points
2) E. Cartan, Les espaces it connexion conforme, Ann. Soc. Pol. Math., 2 (1923), pp. 171-221.
3) In $\$ \$ 1-2$, we assume that indices take the following values.

$$
\begin{aligned}
& i, j, k, h, \ldots=1,2, \\
& a, b, c, \ldots, \lambda, \mu, \ldots=1, n \\
& 2, \ldots, n-1 .
\end{aligned}
$$

P which are on \mathfrak{C}_{n-1} is given by $x^{\infty}=0$. As \mathfrak{S}_{n+1} is real, $X X=x^{i} x^{i}-2 x^{0} x^{\infty}$ >0. Accordingly, on $\mathfrak{\vartheta}_{n-1}$ we have $x^{i} x^{i}>0$. Hence, in a coordinate neighborhood of each point on \mathfrak{F}_{n-1}, we may assume that $x^{n} \neq 0$. Now, if we put

$$
y^{a}=\frac{x^{a}}{x^{n}}, \quad y^{0}=\frac{x^{0}}{x^{n}}, \quad y^{\infty}=\frac{x^{\infty}}{x^{n}},
$$

we can choose frames such that

$$
j^{a}=0
$$

by virtue of the equations of structure of $C_{n}{ }^{4}$. Then, y^{0} and y^{∞} become scalars and satisfy the following relaticns

$$
\left\{\begin{array}{l}
d y^{0}+\omega_{n}^{* 0}-y^{0}\left(y^{0} \omega^{* n}+y^{\infty} \omega_{n}^{* 0}\right)=0, \tag{1}\\
d y^{\infty}+\omega^{* n}-y^{\infty}\left(y^{0} \omega^{*}+y^{\infty} \omega_{n}^{* 0}\right)=0, \\
\omega_{n}^{* a}+y^{0} \omega^{*} a+y^{\infty} \omega_{n}^{* a}=0
\end{array}\right.
$$

§ 2. The image of the invariant hypersphere.

1. $\mathfrak{F}_{\mathrm{n}-1}$ and natural frames (Veblen's frames). From (1) we get

$$
\begin{gathered}
y^{0} y^{0} \omega^{*_{n}}-\left(1-y^{0} y^{\infty}\right) \omega_{n}^{*_{0}}=d y^{0}, \\
-\left(1-y^{10} y^{\infty}\right) \omega^{*_{n}}+y^{\infty} y^{\infty} \omega_{n}^{*_{0}}=d y^{\infty},
\end{gathered}
$$

hence we get

$$
\begin{aligned}
\omega^{*} n & =-\frac{y^{\infty} y^{\infty} d y^{0}+\left(1-y^{0} y^{\infty}\right) d y^{\infty}}{1-2 y^{0} y^{\infty}} \\
& =-d y^{\infty}+y^{\infty} d \log \left(1-2 y^{0} y^{\infty}\right)^{3 / 2}, \\
\omega_{n}^{* 0} & =-\frac{\left(1-y^{0} y^{\infty}\right) d y^{0}+y^{0} y^{0} d y^{\infty}}{1-y^{0} y^{\infty}} \\
& =-d y^{0}+y^{0} d \log \left(1-2 y^{0} y^{\infty}\right)^{1 / 2} .
\end{aligned}
$$

If we put

$$
1-\varepsilon y^{0} y^{\infty}=\psi^{2}, \quad y^{\infty}=-y, \quad \frac{y^{0}}{\psi}=-z,
$$

we get by virtue of the above equations and the last one of (1)

$$
\begin{equation*}
\omega^{* n}=\psi d y, \quad \omega_{n}^{*_{0}}=\psi d z, \tag{2}
\end{equation*}
$$

and
4) $[\mathrm{I}], \S 1$, no. $1,(3)$.

$$
\begin{equation*}
\omega_{n}^{* a}-\psi\left(z \omega^{* a}+y \omega_{a}^{* 0}\right)=0 . \tag{3}
\end{equation*}
$$

Between the scalars ψ, y, z there exist the following relation

$$
\begin{equation*}
\frac{1}{\psi^{2}}-2 y z=1 \tag{4}
\end{equation*}
$$

and $\psi \neq 0$ by virtue of the assumption that \mathbb{S}_{n-1} is real.
Now, let us denote the int grals of the system of Pfaffian equations

$$
\omega^{* 1}=\omega^{* 2}=\ldots=\omega^{* n-1}=0
$$

by $x^{1}, x^{2}, \ldots, x^{n-1}$. There will happen no confusion of these notations with those of the components of Ξ_{n-1} with respect to $\mathrm{R}^{*}\left(A_{0}^{*}, A_{i}^{*}, A_{\infty}^{*}\right)$. Then, by (2) we may consider $x^{1}, x^{2}, \ldots, x^{n-1}, x^{n}(=y)$ as a coordinate system.

On the other hand, let us suppose that the space C_{n} corresponds to a Riemannian space V_{n} whose line element is

$$
d s^{2}=g_{i j}(x) d x^{i} d x^{j}
$$

Then, the connexion of C_{n} with respect to the natural frame $\mathrm{R}\left(A^{0}, A_{i}, A_{\infty}\right)$ is given, as is well known, by the following equations:

$$
\begin{aligned}
& d A=d x^{i} A_{i}, \quad\left(A=A_{0}\right) \\
& d A=\omega_{i}^{0} A+\omega_{i}^{k} A_{k}+\omega_{i}^{\infty} A_{\infty} \\
& d A_{\infty}=\omega_{\infty}^{i} A_{i}
\end{aligned}
$$

and

$$
\left\{\begin{array}{l}
\omega_{i}^{k}=\Gamma_{i j}^{k} d x^{j}, \omega_{i}^{\infty}=g_{i j} d x^{j}, \tag{5}\\
\omega_{i}^{0}=\Pi_{i j}^{0} d x^{j}, \omega_{\infty}^{k}=g_{k j} \omega_{j}^{0},
\end{array}\right.
$$

where

$$
\begin{align*}
\Gamma_{i j}^{k} & =\frac{1}{2} g^{k h}\left(\frac{\partial g_{i n}}{\partial x^{j}}+\frac{\partial g_{h j}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{k}}\right), \tag{6}\\
\Pi_{i j}^{0} & =-\frac{1}{n-2}\left(K_{i j}-\frac{K}{2(n-1)} g_{i j}\right), \tag{7}
\end{align*}
$$

$$
\begin{equation*}
K=g^{i j} K_{i j}, \tag{8}
\end{equation*}
$$

$$
\begin{align*}
& K_{i j}=K_{i}{ }^{h} j h, \tag{.9}\\
& K_{i}{ }^{h}{ }_{i k}=\frac{\partial \Gamma_{i j}^{h}}{\partial x^{k}}-\frac{\partial \Gamma_{i k}^{h}}{\partial x^{j}}+\Gamma_{i j}^{s} \Gamma_{s k}^{h}-\Gamma_{i k}^{s} \Gamma_{s j}^{h} . \tag{10}
\end{align*}
$$

Now, we can put

$$
\omega^{* a}=f_{\lambda}^{a} d x^{\lambda}
$$

From $A_{0}=A_{0}^{*}=A$ and

$$
\begin{aligned}
d A_{0}^{*} & =\omega^{*_{i}} A_{i}^{*}=f_{\lambda}^{a} d x^{\lambda} A_{\lambda}^{*}+\psi d y A_{n}^{*} \\
& =d A_{0}=d x^{\lambda} A_{\lambda}+d y A_{n},
\end{aligned}
$$

we get

$$
A_{\lambda}=f_{\lambda}^{a} A_{a}^{*}, \quad A_{i:}=\psi A_{n}^{*}
$$

Then, from the above equations we get

$$
\begin{aligned}
d A_{\lambda}= & d f_{\lambda}^{a} A_{a}^{*}+f_{\lambda}^{a} d A_{a}^{*} \\
= & f_{\lambda}^{b} \omega_{b}^{* o} A_{0}^{*}+\left(d f_{\lambda}^{a}+f_{\lambda}^{b} \omega_{b}^{* a}\right) A_{a}^{*} \\
& +f_{\lambda}^{b} \omega_{b}^{*_{n}^{n}} A_{n}^{*}+f_{\lambda}^{b} \omega^{* b} A_{\infty}^{*} \\
= & \omega_{\lambda}^{0} A_{1}+\omega_{\lambda}^{2} A_{1}+\omega_{\lambda}^{\infty} A_{\infty} \\
= & \omega_{\lambda}^{0} A_{0}^{*}+\omega_{\lambda}^{\mu} f_{\mu}^{a} A_{a}^{*}+\omega_{\lambda}^{n} \eta A_{n}^{*}+\omega_{\infty}^{\lambda} A_{\infty} .
\end{aligned}
$$

Putting $A_{\infty}=A_{\infty}^{*}$, we get

$$
\begin{aligned}
d A_{i n} & =d \psi A_{n}^{*}+\psi\left(\omega_{n}^{* 0} A_{0}^{*}+\omega_{n}^{*} A_{a}^{*}+\omega^{* n} A_{\infty}^{*}\right) \\
& =\omega_{n}^{0} A_{0}+\omega_{n}^{i} A_{i}+\omega_{n}^{\infty} A_{\infty} \\
& =\omega_{n}^{0} A_{0}^{*}+\omega_{n}^{\lambda} \int_{\lambda}^{a} A_{a}^{*}+\omega_{n}^{n} \psi A_{n}^{*}+\omega_{n}^{\infty} A_{\infty}^{*}
\end{aligned}
$$

Hence, by these relations and (2) we obtain the following relations:

$$
\begin{cases}\omega_{\lambda}^{0}=f_{\lambda}^{a} \omega_{a}^{* 0}, & \omega_{\lambda}^{\infty}=f_{\lambda}^{b} \omega^{* b}, \\ \omega_{\lambda}^{\mu} f_{\mu}^{a}=d j_{\lambda}^{a}+f_{\lambda}^{b} \omega_{b}^{*_{b}}, & \psi \omega_{\lambda}^{n}=f_{\lambda}^{b} \omega_{b}^{*}, \\ \omega_{n}^{0}=\psi \omega_{n}^{* 0}, & \omega_{n}^{\infty}=\psi^{2} d y, \tag{11}\\ \omega_{n}^{\lambda} f_{\lambda}^{a}=\psi \omega_{n}^{* a} . & \psi \omega_{n}^{n}=d \psi,\end{cases}
$$

N.ow, since the line element of the Riemannian space V_{n} is given by

$$
\begin{aligned}
d_{3}{ }^{2} & =d A_{0}^{*} d A_{0}^{*}=\omega^{*_{i}} \omega^{*^{i}} \\
& =f_{\lambda}^{a} f_{\mu}^{a} d x^{\lambda} d x^{\mu}+\psi^{2} d y d y \\
& =d A_{0} d A_{0}=A_{i} A_{j} d x^{i} d x^{j},
\end{aligned}
$$

we have

$$
\left\{\begin{array}{l}
g_{\lambda \mu}=A_{\lambda} A_{\mu}=f_{\lambda}^{a} f_{\mu}^{a}, \tag{12}\\
g_{\lambda n}=A_{\lambda} A_{n}=0, \\
g_{n n}=A_{n} A_{n}=\psi^{2} .
\end{array}\right.
$$

If we substitute these equations in the second equation of (2), we obtain

$$
\begin{aligned}
\psi d z & =\omega_{n}^{* 0}=\frac{1}{\psi} \omega_{n}^{0} \\
& =\frac{1}{\psi}\left\{-\frac{1}{n-2} K_{n i} d x^{i}+\frac{K}{2(n-1)} \overline{(n-2)} g_{n i} d x^{i}\right\},
\end{aligned}
$$

that is

$$
\begin{equation*}
\psi^{2} d z+\frac{1}{n-2} K_{n \lambda} d x^{\lambda}+\left\{\frac{K_{n n}}{n-2}-\frac{K \psi^{2}}{2(n-1)(n-2)}\right\} d y=0 \tag{13}
\end{equation*}
$$

From (3) we obtain

$$
\omega_{n}^{\lambda} f_{\lambda}^{a}-\psi^{2}\left(z f_{\lambda}^{a} d x^{\lambda}+y p_{a}^{\lambda} \omega_{\lambda}^{0}\right)=0
$$

where the matrix $\left(p_{a}^{\lambda}\right)$ is the inverse of $\left(f_{\lambda}^{a}\right)$. Since we have

$$
p_{a}^{\lambda} p_{a}^{\mu}=g^{\lambda \mu}
$$

we obtain by virtue of the above relation and (5)

$$
\begin{aligned}
& \omega_{n}^{\lambda}-\psi^{2}\left(z d x^{\lambda}+y g^{\lambda \mu} \omega_{\mu}^{0}\right) \\
= & \omega_{n}^{\lambda}-\psi^{2} z d x^{\lambda}+y \psi^{2}\left\{\frac{1}{n-2} K_{i}^{\lambda}-\frac{K}{2(n-1)(n-2)} \delta_{i}^{\lambda}\right\} d x^{i}=0,
\end{aligned}
$$

that is

$$
\begin{gather*}
\frac{1}{\psi^{2}} \Gamma_{n, \mu}^{\lambda}=y\left\{-\frac{1}{n-2} K_{\mu}^{\lambda}+\frac{K}{2(n-1)(n-2)} \delta_{\mu}\right\}+z \delta_{\mu}^{\lambda} \tag{14}\\
\frac{1}{\psi^{2}} \Gamma_{n n}^{\lambda}=-\frac{y}{n-2} K_{n}^{\lambda} . \tag{15}
\end{gather*}
$$

Hence we obtain the following theorem:
Theorem 1. If the group of holonomy of the space nikith a normal conformal connexion corresponding to a Riemannian space V_{n} fixes a real hypersthere \mathbb{S}_{n-1}, there exist a scalar y with the following properties. The image of \mathbb{S}_{n-1} in V_{n}
is hbe bypersurface determined $h y$ the equation $y=0$. If we put the line element of V_{n}

$$
d s^{2}=g_{\lambda \mu}(x, y) d x^{\lambda} d x^{\mu}+(\psi(x, y) d y)^{2}
$$

$h v$ means of the family of hvpersurfaces $\mathfrak{F}_{n-1}(y)$ such that y is a constant on every $\tilde{\mho}_{n-1}(y)$ and their orthogonal trajectories and define \approx by

$$
1=\psi^{2}(1+2 y z)
$$

y, τ, ψ satisfy the equations (13), (14), (15). The converse is also true.
2. The family of hypersurfaces ${ }_{\mathfrak{F}}^{n-1}(1)$. In a Riemannian space with line element such that

$$
d s^{2}=g_{\lambda \mu}\left(x^{a}, y\right) d x^{\lambda} d x^{\mu}+\left(\psi\left(x^{a}, y\right) d y\right)^{2}
$$

in a coordinate neighborhood $x^{1}, \ldots x^{n-1}, y$, let $V_{n-1}(y)$ be the Riemannian space induced from the ambient space on the hypersurface $\widetilde{\vartheta}_{n-1}(y): y=\mathbf{a}$ constant. Let us denote the Christoffel's symbols of $V_{n-1}(y)$ determined by its fundamental tensor $g_{\lambda \mu}$ by $\left\{\begin{array}{c}\lambda \mu \nu\end{array}\right\}$ and the covariant differentiation of $V_{n-1}(y)$ by a comma.

Now, the unit normal vector n_{i} on the hypersurface $\mathfrak{F}_{n-1}(y)$ has their components such that $(0, \ldots, \delta, \psi)$. Hence the second fundamental tensor of $\mathfrak{F}_{n-1}(y)$ is given by

$$
h_{a b}=-n_{i ; j} \frac{\partial x^{i}}{\partial x^{a}} \frac{\partial x^{i}}{\partial x^{b}}=-n_{a ; b}=n_{i} \Gamma_{a b}^{i}=\psi \Gamma_{a b}^{n},
$$

where the symbol ";" denotes the covariant differentiation of V_{n}. On the other hand, by (6), (12), we have

$$
\Gamma_{a b}^{n}=-\frac{1}{2} g^{n n} \frac{\partial g_{a b}}{\partial y}=-\frac{1}{2 \psi^{2}} \frac{\partial g_{a b}}{\partial y} .
$$

Hence, we have

$$
\begin{equation*}
\frac{\partial g_{a b}}{\partial y}=-2 \psi \quad h_{a b} \quad \text { or } \quad \frac{\partial g_{a b}}{\partial y}=2 \psi h^{a b} \tag{16}
\end{equation*}
$$

where $h^{a b}=g^{a \lambda} g^{b \mu} \cdot h_{\lambda \mu}$.
On the other hand, by (6), (12), (16). we can easily prove the following
relations:

$$
\begin{align*}
& \Gamma_{b c}^{a}=\left\{\begin{array}{l}
a \\
b c
\end{array},\right. \\
& \Gamma_{a b}^{n}=\frac{1}{\psi} h_{a b}, \Gamma_{b n}^{a}=-\psi h_{b}^{a}=-\psi g_{\delta}^{a \lambda} h_{b \lambda}, \tag{17}\\
& \Gamma_{a n}^{n}=\frac{1}{\psi} \psi, \quad \Gamma_{n n}^{a}=-\psi g_{\delta \lambda} \psi, \lambda, \quad \Gamma_{n n}^{n}=\psi \frac{\partial \psi}{\partial y} .
\end{align*}
$$

If we denote the components oi Riemann tensor, the components of Ricci tensor, and the scalar curvature of $V_{n-1}(y)$ by

$$
\begin{aligned}
& \mathrm{R}_{b c d}^{a}=\frac{\partial \Gamma_{b c}^{a}}{\partial x^{d}}-\frac{\partial \Gamma_{b d}^{a}}{\partial x^{c}}+\Gamma_{b c}^{\lambda} \Gamma_{\lambda a}^{a}-\Gamma_{b d}^{\lambda} \Gamma_{\lambda c}^{a} . \\
& \mathrm{R}_{b c}=\mathrm{R}_{b c \lambda \lambda^{\prime}}{ }^{\lambda} \\
& \mathrm{R}=g^{\lambda \mu} \mathrm{R}_{\lambda \mu}
\end{aligned}
$$

respectively, we have, by means of the formulas of Gauss-Codazzi, the following relations: ${ }^{5)}$

$$
\begin{aligned}
& K_{a c b d}=\mathrm{R}_{a c b d}-h_{a b} h_{c d}+h_{a d} h_{c b}, \\
& \psi K_{a b c}^{n}=h_{a b, c}-h_{a c, b} .
\end{aligned}
$$

Furthermore, by (10), (17), we get easily

$$
K_{a b n}^{n}=\frac{1}{\psi} \frac{\partial h_{a b}}{\partial y}+h_{a}^{\lambda} h_{b \lambda}-\frac{1}{\psi} \psi, a b .
$$

Hence, obtain the following relations:

$$
\left\{\begin{align*}
K_{a b} & =g^{\lambda \mu} K_{a \lambda b \mu}+K_{a b n}^{n} \tag{18}\\
& =\frac{1}{\psi} \frac{\partial h_{a b}}{\partial y}-h h_{a b}+2 h_{a}^{\lambda} h_{b \lambda}+R_{a b}-\frac{1}{\psi} \psi, a b, \\
K_{a n} & =g^{\lambda \mu} K_{a \lambda n \mu}=\psi\left(h, a-h_{a, \lambda}^{\lambda}\right), \\
K_{n n} & =K_{n}^{\lambda}{ }_{n \lambda}=\psi \frac{\partial h}{\partial y}-\psi^{2} h_{\mu}^{\lambda} h_{\lambda}^{\mu}-\psi g^{\lambda \mu} \psi, \lambda_{\mu}, \\
K & =g^{i j} K_{i j}=\frac{2}{\psi} \frac{\partial h}{\partial y}-h h-h_{\lambda}^{\mu} h_{\mu}^{\lambda}+\mathrm{R}-\frac{2}{\psi} g^{\lambda \mu} \psi_{, \lambda \mu},
\end{align*}\right.
$$

where $h=g^{\lambda \mu} h_{\lambda \mu}$.
3. Relations between $\mathfrak{F}_{n-1}(y)$ and the invariant hypersphere. Now, if we substitute (18) in (13), we get

[^1] p. 122.
\[

$$
\begin{equation*}
z, a=-\frac{1}{(n-2) \psi}\left(h_{a}-h_{a, \lambda}^{\lambda}\right) \tag{19}
\end{equation*}
$$

\]

and

$$
\begin{align*}
\frac{\partial z}{\partial y}= & -\frac{1}{(n-2) \psi}\left\{K_{n n}-\frac{K \psi^{2}}{2(n-1)}\right\} \\
= & -\frac{1}{(n-1) \psi}\left(\frac{\partial h}{\partial y}-g^{\lambda \mu} \psi, \lambda \mu\right)-\frac{h^{2}-\mathrm{R}}{2(n-1)(n-2)} \tag{20}\\
& +\frac{2 n-3}{2(n-1)(n-2)} h_{\lambda}^{\mu} h_{\mu}^{\lambda} .
\end{align*}
$$

Substituting (17), (18) in (14), we get

$$
\begin{aligned}
& -\frac{1}{\psi} h_{a b}=y\left[-\frac{1}{n-2}\left(\frac{1}{\psi} \frac{\partial h_{a b}}{\partial y}-h h_{a b}+2 h_{a}^{\lambda} h_{b \lambda}+R_{a b}-\frac{1}{\psi} \psi, a b\right)\right. \\
& \left.\quad+\frac{1}{2(n-1)(n-2)} g_{a b}\left(\frac{2}{\psi}-\frac{\partial h}{\partial y}-h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}+\mathrm{R}-\frac{2}{\psi} g^{\lambda \mu} \psi, \lambda \mu\right)\right] \\
& \quad+₹ g_{a b}^{\prime}
\end{aligned}
$$

that is
(21)

$$
\begin{aligned}
\frac{\partial h_{a b}}{\partial y} & =\frac{n-2}{y}\left(k_{a b}+\psi \tau g_{a b}\right)+\psi\left(h h_{a b}-2 h_{a}^{\lambda} h_{b \lambda}-\mathrm{B}_{a b}\right)+\psi, a b \\
& +\frac{g_{a b}}{2(n-1)}\left\{2-\frac{\partial h}{\partial \vartheta}-\psi\left(h^{2}+h_{\lambda}^{\mu} h_{\mu}^{\lambda}-R\right)-2 g^{\lambda \mu} \psi, \lambda \mu\right\}
\end{aligned}
$$

Substituting (17), (18) in (15), we get

$$
\psi_{, a}=\frac{y \psi^{2}}{n-2}\left(h_{, a}-h_{a, \lambda}^{\lambda}\right)
$$

However, by means of (4), (19), we get

$$
\psi,_{a}=-y \psi^{3} z,_{a}=\frac{y \psi^{2}}{n-2}\left(h,_{a}-h_{a, \lambda}^{\lambda}\right)
$$

Hence, the system of equations (19), (20), (21) is equivalent to the system of eqations (13). (14), (15).

Now, by virtue of (16), (21) we have

$$
\begin{aligned}
\frac{\partial h}{\partial y} & =\frac{\partial}{\partial y}\left(g^{\lambda \mu} h_{\lambda \mu}\right) \\
& =2 \psi h_{\lambda \mu} h^{\lambda \mu}+\frac{n-2}{y}\{h+(n-1) \psi \tau\}
\end{aligned}
$$

$$
\begin{aligned}
& +\psi\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-R\right)+g^{\lambda \mu} \psi \cdot \lambda_{\mu} \\
& +\left\{\frac{\partial h}{\partial y}-\frac{1}{2} \psi\left(h^{2}+h_{\lambda}^{\mu} h_{\mu}^{\lambda}-R\right)-g^{\lambda \mu} \psi, \lambda_{\mu}\right\},
\end{aligned}
$$

that is

$$
\begin{equation*}
\frac{n-2}{y}\{h+(n-1) \psi \tau\}+\frac{1}{2} \psi\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-\mathrm{R}\right)=0 . \tag{22}
\end{equation*}
$$

Lastly, substituting (20) in (21), we get

$$
\begin{aligned}
\frac{\partial h_{a b}}{\partial y} & =\frac{(n-2)}{y}\left(h_{a b}+\psi \tau^{\prime} a b\right) \\
& +\psi\left(h h_{a b}-2 h_{a}^{\lambda} h_{b \lambda}-R_{a b}\right)+\psi, a b \\
& +\frac{\psi g_{a b}}{2(n-1)(n-2)}\left\{\mathrm{R}-h^{2}+(2 n-3) h_{\lambda}^{\mu} h_{\mu}^{\lambda}\right\}-\psi g_{a b}-\frac{\partial z}{\partial v} \\
& -\frac{\psi g_{a b}}{2(n-1)}\left(h^{2}+h_{\lambda}^{\mu} h_{\mu}^{\lambda}-\mathrm{R}\right),
\end{aligned}
$$

that is

$$
\begin{align*}
\frac{\partial h_{a b}}{\partial y} & \frac{(n-2)}{y}\left(h_{a b}+\psi z g_{a b}\right)+\psi\left(h h_{a b}-2 h_{a}^{\lambda} h_{b \lambda}-\mathrm{R}_{a b}\right) \tag{23}\\
& -\frac{\psi g_{a b}}{2(n-2)}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-\mathrm{R}\right)+\psi,_{a b}-\psi g_{a b} \frac{\partial \chi}{\partial y} .
\end{align*}
$$

Thus, we obtain the system of equations (19), (22), (23) which is equ-i valent to the system of equations (13), (14), (15) and is represented by means of the quantities of $\mathfrak{F}_{n-1}(y)$. Accordingly, Theorem 1 is reduced to the following

Theorem 1', In a Riemannian space V_{n}, take a coardinate system suck that the line element of V_{n} is given by

$$
d s^{2}=g_{\lambda \mu}\left(x^{a}, y\right) d x^{\lambda} d x^{\mu}+\left(\psi\left(x^{a}, y\right) d y\right)^{2},
$$

then a necessary and sufficient condition that the hypersurface $y=0$ is the image of a hypersphere invariant under the group of holonomy of the space with a normal conformal connexion corresponding to V_{n} is that the fundamental tensors $g_{a b}(x, y)$, $h_{a b}(x, y)$ of the hypersurfaces $y=a$ constant and the scalar determined by (4) satisfy the equations (19), (22), (23).
§ 3. The invariant hypersphere and an imbedding problem.

1. A fundamental system of equations and quantities ξ_{a}, ζ. In the following paragraphs we shall assume that the indices take the following values:

$$
a, b, c, ; \lambda, \mu, \nu_{0} \ldots=1,2, \ldots n .
$$

Let us now investingate the problem to imbed a given Riemannian space W_{n} in a suitable Riemannian space V_{n+1} such that the group of holonomy of the space with a normal conformal connexion corresponding to V_{n+1} fixes a real hypersphere \mathfrak{S}_{n} and V_{n} is the image of \mathbb{S}_{n} in V_{n+1}.

According to Theorem 1', a necessary and sufficient condition that a given Riemannian space V with line element

$$
d s^{2}=g_{\lambda \mu}\left(x^{a}\right) d x^{\lambda} d x^{\mu}
$$

is the image of the inyariant hypersphere \mathbb{S}_{n} in the above-mentioned sense is that we can solve the following system of equations:

$$
\begin{equation*}
\frac{\partial}{\partial y} g_{a b}=-2 \psi h_{a b} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial y} h_{b}^{a}=\frac{n-1}{y}\left(h_{b}^{a}+\psi \chi_{b}^{a}\right)+\psi\left(h h_{b}^{a}-\mathrm{R}\right) \tag{2}\\
& \quad-\frac{\psi}{2(n-1)} \delta_{b}^{a}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-\mathrm{R}\right)+\zeta^{a \lambda} \psi{ }^{\prime} b \lambda-\psi \delta^{a} \frac{\partial \chi}{\partial \nu},
\end{align*}
$$

provided that the conditions

$$
\begin{equation*}
\xi_{a} \equiv\left(h,_{a}-h_{a, \lambda}^{\lambda}\right)+(n-1) \psi \chi_{a}=0, \tag{1}
\end{equation*}
$$

$\left(\mathrm{II}_{2}\right)$

$$
\zeta \equiv \frac{1}{y}(h+n \psi-z)+\frac{\psi}{(n-1)}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-\mathrm{R}\right)=0
$$

and the initial conditions

$$
\left[g_{a b}(x, y)\right]_{y=0}=g_{a b}(x)
$$

are satisfied. Then, the line element of V_{n+1} is

$$
d s^{2}=g_{\lambda_{\mu}}(x, y) d x^{\lambda} d x^{\mu}+(\psi(x, y) d y),
$$

and the hypersurface $y=0$ is the image of \mathbb{S}_{n}.
Let us put
$\left(I_{2}{ }^{\prime}\right)$

$$
\begin{aligned}
\frac{\partial}{\partial y} h_{a b}= & \frac{n-1}{y}\left(h_{a b}+\psi z_{a b}^{J_{a b}}\right)+\psi\left(h h_{x b}-2 h_{a}^{\lambda} h_{b \lambda}-R_{a b}\right) \\
& -\frac{\psi}{2(n-1)} g_{a b}\left(h^{2}-h_{\lambda}^{u} h_{\mu}^{\lambda}-R\right)+\psi, a b-\psi g_{a b} \frac{\partial \chi}{\partial y}
\end{aligned}
$$

and
(I_{3})

$$
\begin{aligned}
\frac{\partial}{\partial y} h= & \frac{n-1}{y}(h+n \psi \cdot z)+\frac{\psi}{2(n-1)}\left\{(n-2)\left(h^{2}-R\right)+n 7_{\lambda}^{\mu} h_{\mu}^{\lambda}\right\} \\
& +g^{\lambda \mu} \psi, \lambda_{\mu}-n \psi \frac{\partial z}{\partial y}
\end{aligned}
$$

which is derived from $\left(I_{2}\right)$.
Now, suppose that $g_{a b}(x, y), h_{a b}(x, y)$ are solutions of the differential equations (I), and consider the quantities ξ_{a}, ζ determined by these $g_{a b}(x, y)$, $h_{a b}(x, y)$. By means of (6), (I_{1}), we get easily

$$
\begin{equation*}
\frac{\partial}{\partial y} \Gamma_{b c}^{a}=g^{a \lambda}\left(\psi h_{b c}\right)_{, \lambda}-\left(\psi h_{b}^{a}\right), c-\left(\psi h_{c}^{a}\right)_{b} \tag{24}
\end{equation*}
$$

and

$$
\frac{\partial}{\partial y} \Gamma_{\lambda a}^{\lambda}=-(\psi h)_{, a}
$$

Accordingly, putting

$$
\begin{equation*}
V_{a} \equiv h,_{a}-h_{a, \lambda}^{\lambda} \tag{25}
\end{equation*}
$$

we get by (I), (24), (25),

$$
\begin{aligned}
\frac{\partial}{\partial y} V_{a}= & \left(\frac{\partial h}{\partial y}\right)_{, a}-\left(\frac{\partial}{\partial y} h_{a}^{\lambda}\right)_{, \lambda}-\frac{\partial}{\partial y} \Gamma_{\lambda \mu}^{\lambda} h_{a}^{\mu}+\frac{\partial}{\partial y} \Gamma_{a \lambda}^{\mu} h_{\mu}^{\lambda} \\
= & \left(\frac{\partial h}{\partial y}\right)_{,_{a}}-\left(\frac{\partial}{\partial y} h_{a}^{\lambda}\right)_{, \lambda}+(\psi h)_{, \mu} h_{a}^{\mu}-\left(\psi h_{\lambda}^{\mu}\right)_{a} h_{\mu}^{\lambda} \\
= & \frac{n-1}{y}\left\{h_{a}+n(\psi, a z+\psi z,)\right\} \\
& +\frac{1}{2(n-1)} \psi,\left\{(n-2)\left(h^{2}-R\right)+n h_{\lambda}^{\mu} h_{\mu}^{\lambda}\right\} \\
& +\frac{\psi}{2(n-1)}\left\{(n-2)\left(2 h h,_{a}-\mathrm{R}, a\right)+2 n h_{\lambda}^{\mu} h_{\mu, a}^{\lambda}\right\} \\
& +g^{\lambda \mu} \psi, \lambda_{\mu a}-n \psi, a \frac{\partial z}{\partial y}-n \psi \frac{\partial}{\partial y} z,_{a} \\
& -\frac{n-1}{y}\left\{h_{a, \lambda}^{\lambda}+(\psi, a z+\psi z, a)\right\}-\psi, \lambda\left(h h_{a}^{\lambda}-R_{a}^{\lambda}\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
-\psi\left(h, \lambda h_{\lambda}^{a}+h h_{a, \lambda}^{\lambda}-R_{a, \lambda}^{\lambda}\right) \\
+\frac{1}{2(n-1)} \psi,_{a}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-R\right) \\
+\frac{\psi}{2(n-1)}\left(? h h_{a}-2 h_{\lambda}^{\mu} h_{\mu, a}^{\lambda}-R,_{a}\right) \\
-g^{\lambda \mu} \psi, \lambda a \mu
\end{array}+\psi, a-\frac{\partial \eta}{\partial y}+\psi \frac{\partial}{\partial y} z,_{a}\right)
$$

On the other hand, from the Bianchi's identity; we get

$$
\mathrm{R}_{a, \lambda}^{\lambda}=\frac{1}{2} \mathrm{R}, a
$$

as is well known. Hence, the above equations become

$$
\begin{aligned}
-\frac{\partial}{\partial y} V_{a}= & \frac{n-1}{y}\left\{V_{a}+(n-1)(\psi z),_{a}\right\} \\
& +\frac{1}{2} \psi, r_{a}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-R\right)+\psi h V_{a}-(n-1)\left(\psi \frac{\partial z}{\partial y}\right), a
\end{aligned}
$$

Then, we obtain easily from (4) the following relat ${ }^{\text {Pons }}$:

$$
\begin{align*}
\frac{\partial \psi}{\partial y} & =-\psi^{3}\left(z+y \frac{\partial z}{\partial y}\right) \tag{26}\\
\psi,_{a} & =-y \psi^{3} z, a \tag{27}\\
\psi, a b & =-y \psi^{3}\left(z_{a b}-3 y \psi^{2} z, a z, b\right), \tag{28}
\end{align*}
$$

Using these equations, we get

$$
\begin{aligned}
\frac{\partial}{\partial y} \xi_{a}= & \frac{\partial}{\partial y} V_{a}+(n-1)\left\{\psi \frac{\partial}{\partial y} z_{a}-\psi^{3}\left(z+y-\frac{\partial z}{\partial y}\right) z,_{a}\right\} \\
= & \left(\frac{n-1}{y}+\psi h\right) V_{a}+\frac{(n-1)^{2}}{y}\left(\psi z_{a}-y \psi^{j} z z, a\right) \\
& -\frac{1}{2} y \psi^{3} z_{a}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-R\right)
\end{aligned}
$$

$$
\begin{aligned}
& -(n-1)\left\{\psi\left(\frac{\partial z}{\partial y}\right),,_{a}-y \psi^{3} \frac{\partial z}{\partial y} z_{a}\right\} \\
& +(n-1)\left\{\psi-\frac{\partial}{\partial y} z_{a}-\psi^{3}\left(z+y \frac{\partial z}{\partial y}\right) z_{a}\right\} \\
= & \left(\frac{n-1}{y}+\psi h\right) V_{a}+\frac{(n-1)^{2}}{y} \psi z_{a}-n(n-1) \psi^{3} z z_{a} \\
& -\frac{1}{2} y \psi^{3} z_{a}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-R\right) .
\end{aligned}
$$

If we substitute ξ_{a}, ζ in the right hand side of the last equation, we obtain

$$
\begin{aligned}
\frac{\partial}{\partial y} \xi_{a}= & \left(\frac{n-1}{y}+\psi h\right) \xi_{a}-(n-1) \psi\left(\frac{n-1}{y}+\psi h\right) \tau_{a} \\
& +\frac{(n-1)^{2}}{y} \psi \tau_{a}-n(n-1) \psi^{3} \tau_{z_{a}} \\
& -\frac{1}{2} y \psi^{3} \tau_{a}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-R\right) \\
= & \left(\frac{n-1}{y}+\psi h\right) \xi_{a} \\
& -(n-1) \psi^{3} \tau_{a}\left\{h+n \psi z+\frac{y \psi}{2(n-1)}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-R\right)\right\}
\end{aligned}
$$

that is

$$
\begin{equation*}
\frac{\partial}{\partial y} \xi_{a}=\left(\frac{n-1}{y}+\psi h\right) \xi_{a}-(n-1) y \psi^{2} z_{a} \zeta \tag{29}
\end{equation*}
$$

In the next place, let us consider ζ. By (24), (I), we get

$$
\begin{aligned}
\frac{\partial}{\partial y} \mathrm{R}= & \frac{\partial}{\partial y}\left(g^{\lambda \mu} \mathrm{R} \lambda \mu\right)=2 \psi h^{\lambda \mu} \mathrm{R}^{\lambda \mu} \\
& +g^{\lambda \mu} \frac{\partial}{\partial y}\left(\frac{\partial \Gamma_{\lambda \mu}^{\nu}}{\partial x^{\nu}}-\frac{\partial \Gamma_{\lambda \nu}^{\nu}}{\partial x^{\mu}}+\Gamma_{\lambda \mu}^{\rho} \Gamma_{\rho}^{\nu}-\mathbf{\Gamma}_{\lambda \nu}^{\rho} \Gamma_{\rho \mu}^{\nu}\right) \\
= & 2 \psi h^{\lambda \mu} \mathrm{R}_{\lambda \mu}+g^{\lambda \mu}\left(\frac{\partial}{\partial y} \Gamma_{\lambda \mu}^{\nu}\right)_{, \nu}-g^{\lambda \mu}\left(\frac{\partial}{\partial y} \Gamma_{\lambda \nu}^{\nu}\right)_{, \mu}
\end{aligned}
$$

that is

$$
\begin{equation*}
\frac{\partial}{\partial y} \mathrm{R}=2\left\{\psi h^{\lambda \mu} \mathrm{R}_{\lambda \mu}+g^{\lambda \mu}(\psi h), \lambda_{\mu}-\left(\psi h^{\lambda \mu}\right) \cdot \lambda \mu\right\} \tag{30}
\end{equation*}
$$

By (I), (3), we get also

$$
\frac{\partial}{\partial y} \zeta=-\frac{1}{y^{2}}(h+n \psi \gamma)
$$

$$
\begin{aligned}
& +\left(\frac{1}{y}+\frac{\psi h}{n-1}\right)\left[\frac{n-1}{y}(h+n \psi \tau)+g^{\lambda_{\mu}} \psi, \lambda_{\mu}-n \psi \frac{\partial z}{\partial y}\right. \\
& \left.+\frac{\psi}{2(n-1)}\left\{(n-2)\left(h^{2}-R\right)+n h_{\lambda}^{\mu} h_{\mu}^{\lambda}\right\}\right] \\
& +\frac{n}{y} \frac{\partial}{\partial y}(\psi z)+\frac{1}{2(n-1)}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-R\right) \frac{\partial \psi}{\partial y} \\
& -\frac{\psi}{n-1} h_{\lambda}^{\mu}\left[\frac{n-1}{y}\left(h_{\mu}^{\lambda}+\psi \chi_{\mu}^{\lambda}\right)+\psi\left(h h_{\mu}^{\lambda}-R_{\mu}^{\lambda}\right) .\right. \\
& \left.-\frac{\psi}{2(n-1)} \delta_{\mu}^{\lambda}\left(h^{2}-h_{\nu}^{\rho} h_{\rho}^{\nu}-R\right)+g^{\lambda \mu} \psi, \mu \nu-\psi \delta_{\mu}^{\lambda} \frac{\partial \chi}{\partial y}\right] \\
& -\frac{\psi^{r}}{n-1}\left[\psi h_{\lambda}^{\mu} \mathrm{R}_{\mu}^{\lambda}+g^{\lambda \mu} \psi, \lambda_{\mu} h+2 g^{\lambda \mu} \psi, \lambda h, \mu+\psi g^{\lambda \mu} h, \lambda_{\mu}\right. \\
& \left.-\psi, \lambda_{\mu} h^{\lambda \mu}-2 \psi, \lambda^{\lambda} h^{\lambda \mu},{ }_{\mu}-\psi h^{\lambda \mu}, \lambda_{\mu}\right] \\
& =\frac{1}{y}\left(\frac{n-2}{y}+\psi h\right)(h+n \psi r) \\
& +\frac{\psi}{2(n-1)}\left(\frac{1}{y}+\frac{\psi h}{n-1}\right)\left\{(n-2)\left(h^{2}-\mathrm{R}\right)+n h_{\lambda}^{\mu} h_{\mu}^{\lambda}\right\} \\
& +\frac{1}{2(n-1)}\left(\frac{\partial \psi}{\partial \nu}+\frac{\psi^{2} h}{n-1}\right)\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-R\right) \\
& +\frac{1}{y} g^{\lambda \mu} \psi, \lambda \mu-\psi^{2} h \frac{\partial z}{\partial y}+\frac{n}{y} z \frac{\partial \psi}{\partial y} \\
& -\psi\left(\frac{1}{y}+\frac{\psi h}{n-1}\right) h_{\lambda}^{\mu} h_{\mu}^{\lambda}-\frac{1}{y} \psi^{2} h_{z} \\
& -\frac{\psi}{n}-1\left(2 g^{\lambda \mu} \psi,{ }_{\lambda} V_{\mu}+\psi g^{\lambda \mu} V_{\lambda, \mu}\right) \\
& =\frac{1}{y}\left(\frac{n-2}{y}+\psi h\right)(h+n \psi \eta) \\
& +\frac{1}{2(n-1)}\left\{\frac{\partial \psi}{\partial y}+\frac{\psi^{2} h}{n-1}+(n-2) \psi\left(\frac{1}{y}+\frac{\psi-h}{n-1}\right)\right\}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-\mathrm{R}\right) \\
& +\frac{1}{y} g^{\lambda \mu} \psi, \lambda_{\mu}-\psi^{2} h \frac{\partial z}{\partial y}+\frac{n}{y} z \frac{\partial \psi}{\partial y}-\frac{1}{y} \psi^{2} h z \\
& -\frac{\psi}{n-1}\left(2 g^{\lambda \mu} \psi,{ }_{\lambda} V_{\mu}+\psi g^{\lambda \mu} V_{\lambda, \mu}\right) \text {. }
\end{aligned}
$$

Making use of ξ_{a}, ζ, the last equation becomes

$$
\begin{aligned}
\frac{\partial}{\partial y} \zeta= & \frac{1}{y}\left(\frac{n-2}{y}+\psi h\right)(h+n \psi z) \\
& +\left(\frac{\partial}{\partial y} \log \psi+\psi h+\frac{n-2}{y}\right)\left\{\zeta-\frac{1}{y}(h+n \psi \tau)\right\} \\
& +\frac{1}{v} g^{\lambda \mu} \psi, \lambda_{\mu}-\psi^{2} h \frac{\partial z}{\partial y}+\frac{n}{y} z \frac{\partial \psi}{\partial y}-\frac{1}{y} \psi^{2} h \tau
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\psi}{n-1}\left[2 g^{\lambda \mu} \psi, \lambda\left\{\xi_{, \mu}-(n-1) \psi z_{\mu}\right\}\right. \\
& \left.+\psi g^{\lambda_{\mu}}\left\{\xi_{\lambda, \mu}-(n-1)\left(\psi, \lambda z_{\mu}+\psi z_{, ~}\right)\right\}\right] \\
= & \left(\frac{n-2}{y}+\psi h+\frac{\partial}{\partial y} \log \psi\right) \zeta+\frac{\psi^{2}}{y}\left(z+y \frac{\partial z}{\partial y}\right)(h+n \psi z) \\
& -\psi^{3} g^{\lambda_{\mu}}\left(z, \lambda_{\mu}-3 y \psi^{2} z_{, \lambda} z_{, \mu}\right)-\psi^{2} h \frac{\partial z}{\partial y} \\
& -\frac{n}{y} \psi^{3} z\left(z+y \frac{\partial z}{\partial y}\right)-\frac{1}{y} \psi^{2} h z \\
& -\frac{\psi}{n-1}\left\{2 g^{\lambda \mu} \psi, \lambda \xi_{\mu}+\psi g^{\lambda \mu} \xi_{\lambda, \mu}+3(n-1) y \psi^{4} g^{\lambda \mu} z, \lambda z,{ }_{\mu}\right. \\
& \left.-(n-1) \psi^{2} g^{\lambda_{\mu}} z, \lambda_{\mu}\right\},
\end{aligned}
$$

that is

$$
\begin{equation*}
\frac{\partial}{\partial y} \zeta=\left(\frac{n-2}{y}+\psi n+\frac{\partial}{\partial y} \log \psi\right) \zeta-\frac{\psi}{n-1} g^{\lambda \mu}\left(2 \psi, \lambda \xi_{\mu}+\psi \xi_{\lambda, \mu}\right) \tag{31}
\end{equation*}
$$

2. The regularization of the system (I). Let us now proceed to the problem to solve system (I) under (II) and the initial conditions. From now on, we shall replace the derivatives and the covariant derivatives of ψ with respects y and $\Gamma_{b b}^{x}$ of $V_{n}(y)$ by those of z by means of (26), (27), (28). Notice that the (covariant) derivatives of ψ are polynomials of those of \approx, z and ψ. There exist terms with $1 / y$ as a factor on the right hand sides of $\left(\mathrm{I}_{2}\right)$ and the left hand side of $\left(\mathrm{II}_{2}\right)$. We shall endeavor to take off this irregularity of the system of differential equations.

In the first place, according to the course stated above, let us write $\left(I_{2}\right)$ in the following form :

$$
\begin{align*}
\frac{\partial}{\partial y} h_{b}^{a}= & \frac{n-1}{y}\left(h_{b}^{a}+\psi \chi_{b}^{a}\right)+\psi\left(h h_{b}^{a}-\mathrm{R}_{b}^{a}\right) \\
& -\frac{\psi}{2(n-1)} \delta_{b}^{a}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-\mathrm{R}\right)-\psi \delta_{b}^{a} \frac{\partial \chi}{\partial y} \tag{2}\\
& -y \psi^{3} g^{a \lambda} z_{b \lambda}+3 y^{2} \psi^{5} g^{a \lambda}{z,{ }_{b}} z_{, \lambda}
\end{align*}
$$

Putting

$$
\begin{equation*}
h_{b}^{a}=-\psi \tau \delta_{b}^{a}+\sum_{i=1}^{n-1} y_{(i)}^{i} H_{(i)}^{a} \tag{32}
\end{equation*}
$$

let us determine $\underset{(i)^{b}}{H^{a}}(i \equiv 1,2, \ldots, \mathrm{n}-2)$ from the last relation, so that these
quantities are polynomials of $g^{\lambda \mu}, \tau, \psi$ and derivatives of $\tau, g^{\lambda \mu}$, and the differential equations with respect to the unknown quantities $\underset{\left(n-1, b^{b}\right.}{H}{ }^{a}$ replaced for $\left(I_{2}\right)$ become regular forms as much as possible.

For convenience, let us put

$$
\begin{equation*}
\underset{(0)^{b}}{H_{a}^{a}}=-\psi \approx \delta_{b}^{a} . \tag{33}
\end{equation*}
$$

Substituting (32) in ($\mathrm{I}^{\prime \prime}{ }_{2}$) and using (26), (27), (28), we get

$$
\begin{align*}
& \frac{\partial}{\partial v} h_{b}^{a}=-\delta_{b}^{a}\left\{\psi \frac{\partial z}{\partial y}-\psi^{3}\left(z^{2}+y z \frac{\partial z}{\partial y}\right)\right\}+\underset{(1)^{b}}{H^{a}} \\
& +\sum_{i=1}^{n-2} y^{i}\left\{(i+1) \underset{(i+1)^{b}}{H}+\frac{\partial}{\partial y} \underset{(i)^{b}}{H^{a}}\right\}+y^{n-1} \frac{\partial}{\partial y} \underset{(n-1)^{b}}{H}{ }^{a} \\
& =(n-1) \sum_{i=0}^{n-2} y_{(i+1, b}^{i}{ }_{i}{ }^{a}-\psi\left(\mathrm{R}_{b}^{a}-\frac{\mathrm{R}}{2(n-1)} \delta_{b}^{a}+\frac{\partial \chi}{\partial y} \delta_{b}^{a}\right) \tag{34}\\
& +\frac{n}{2} \psi^{3} z^{2} \delta_{b}^{a}-y \psi^{3} g^{a \lambda} z, b \lambda+3 y^{2} \psi^{5} g^{a \lambda} z_{b} \text { z, },
\end{align*}
$$

where $\underset{(i)}{H}=\underset{(i)^{\lambda}}{H^{\lambda}}$. Furtheremore, let us put

$$
\begin{equation*}
\frac{\partial}{\partial y} \underset{(i)^{b}}{H^{a}}=\sum_{j=0}^{2 n-2-i} y_{(i, j)^{j}}^{K_{i}} \quad(i=0,1,2, \ldots, n-2) \tag{35}
\end{equation*}
$$

and determine $K_{(i, j, b}^{a}(i, j=0,1,2, \cdots, n-3 ; i+j \leqq n-3)$ as polynomials of $g^{\lambda \mu}$, $\mathfrak{z} \psi$ and derivatives of $g_{\lambda \mu}, z$ according to the same principle of determining $\underset{(i)^{b}}{H^{a}}$ and do this simultaneously with those of $\underset{(i)^{b}}{\mathrm{H}^{a}}$.

Now, the constant terms with respect to y on both sides of '(34) cancel out with each other when we define $\underset{(1)^{b}}{H^{a}}$ by the relation

$$
\psi^{3} \chi^{2} \delta_{b}^{a}+\underset{(1)^{b}}{H^{a}}=(n-1) \underset{(1)^{b}}{H^{a}}-\psi\left(\mathrm{R}_{b}^{a}-\frac{\mathrm{R}}{2(n-1)} \delta_{b}^{a}\right)+\frac{n}{2} \psi^{3} \chi^{2} \delta_{b}^{a}
$$

that is

$$
\begin{equation*}
\underset{(1)^{b}}{H^{a}}=\frac{\psi}{n-2}\left(\mathrm{R}_{b}^{a}-\frac{\mathrm{R}}{2(n-1)} \delta_{b}^{a}\right)-\frac{1}{2} \psi^{3} \chi^{2} \delta_{b}^{a} . \tag{36}
\end{equation*}
$$

From the last equation we get at once

$$
\underset{(1)}{H}=\underset{r(1)^{\lambda}}{H^{\lambda}}=\frac{\psi R}{2(n-1)}-\frac{n}{2} \psi^{3} z^{2}
$$

Form (33), (26), we obtain easily the following relations:

$$
\begin{align*}
& \underset{(0,0)^{b}}{K}=-\left(\psi \frac{\partial z}{\partial y}-\psi^{3} z^{2}\right) \delta_{b}^{a}, \tag{37}\\
& \underset{(0,1)^{b}}{K}=\psi^{3} Z \frac{\partial z}{\partial \gamma} \delta_{b}^{a}, \quad \underset{(0, j)^{b}}{K a}=0 \quad(i>1) .
\end{align*}
$$

Now, comparing the coefficients of y on the left hand side of (3) with those of the right hand side, let us define $\underset{(2, b}{H}{ }_{b}^{a}$ by the relation

$$
\begin{align*}
& \psi^{3} \approx \frac{\partial z}{\partial y} \delta_{b}^{a}+\underset{(2)^{b}}{2 H^{a}}+\underset{(1,0)^{b}}{K}=(n-1) \underset{(2)^{b}}{H^{a}}-\psi^{3} g^{a \lambda} q, b \lambda \\
& \left.+\psi\left\{\underset{(1)(0)^{b}}{\underset{H}{H} a^{a}}+\underset{(0)}{H}{\underset{(1)}{ })^{a}}_{H^{a}}+\frac{1}{2(n-1)} \delta_{b}^{a} \underset{(0)^{\lambda}}{\left(H_{(1)^{\mu}}^{\mu}\right.} H_{(0)}^{\lambda}-\underset{(1)}{H} H\right)\right\}, \tag{38}
\end{align*}
$$

whose right hand side becomes by virtue of (33)

$$
=(n-1) \underset{(2) b^{2}}{H^{a}}-\psi^{3} g^{a \lambda} z_{, b \lambda}-n \psi^{2} \cdot z_{(1) b}^{H} H^{a}
$$

Accordingly, we have

$$
(n-3) \underset{(2)^{b}}{H^{a}}=\underset{1,0)^{b}}{K^{a}}+\psi^{3}\left(z \frac{\partial \chi}{\partial y} \delta_{b}^{a}+g^{a \lambda} \chi_{, b \lambda}\right)+n \psi^{2} \chi_{(1)^{b}}^{H^{a}}
$$

In the last equation we have assumed that $\underset{(1,0)^{b}}{K_{a}^{a}}$ has already been determined for $n>3$.

On the other hand, if we make use of the geodesic coordinates of the Riemannian space $V_{n}(y)$ with line element

$$
d s^{2}=g_{\lambda \mu}(x, y) d x^{\lambda} d x^{\mu}
$$

we get easily by (10), (I_{1})

$$
\begin{aligned}
\frac{\partial}{\partial y} \mathrm{R}_{b}^{a}= & \frac{\partial}{\partial y} \mathrm{R}_{b^{\lambda} a_{\lambda}}=\frac{\partial}{\partial y}\left(g^{a \mu} \mathrm{R}_{b^{\lambda} \mu \lambda}\right) \\
= & 2 \psi h^{a \mu} \mathrm{R}_{b ; \lambda} \\
& +g^{a \mu} \frac{\partial}{\partial y}\left\{\frac{\partial \Gamma_{b \mu}^{\lambda}}{\partial x^{\lambda}}-\frac{\partial \Gamma_{b \lambda}^{\lambda}}{\partial x^{\mu}}+\Gamma_{b \mu}^{\rho} \Gamma_{\rho \lambda}^{\lambda}-\Gamma_{b \lambda}^{\rho} \Gamma_{\rho \mu}^{\lambda}\right\} \\
= & 2 \psi h_{\lambda}^{a} R_{b}^{\lambda}+g^{a \mu}\left(\frac{\partial}{\partial y} \Gamma_{b \mu}^{\lambda}\right)_{,_{\lambda}}-g^{a \mu}\left(\frac{\partial}{\partial y} \Gamma_{b \lambda}^{\lambda}\right)_{\mu \mu} .
\end{aligned}
$$

Putting (24) into the last relation, we obtain

$$
\begin{align*}
\frac{\partial}{\partial y} R_{b}^{a}= & \Sigma \psi h_{\lambda}^{a} R_{b}^{\lambda}+g^{\lambda \mu}\left(\psi h_{b}^{a}\right),{ }_{\lambda \mu}-g^{a \mu}\left(\psi h_{b}^{\lambda}\right)_{, \mu \lambda} \tag{39}\\
& -\left(\psi h^{a \lambda}\right), b \lambda+g^{a \lambda}(\psi h)_{, b \lambda} .
\end{align*}
$$

From (39) we get also (30) by contraction.
Now, in order to determine $\underset{(1, j, b}{K}$, , we put (26), (27), (28) into the right hand side of (39), and get

$$
\begin{aligned}
& -\frac{\partial}{\partial y} R_{b}^{a}=\delta \psi h_{\lambda}^{a} R_{b}^{\lambda}+g^{\lambda, \mu} \psi, \lambda_{\mu \mu} h_{b}^{a}+2 g^{\lambda \mu} \psi, \lambda^{\lambda} h^{a}{ }_{b}, \mu+\psi g^{\lambda \mu} h_{b, \lambda \mu}^{d} \\
& -g^{a \mu} \boldsymbol{\psi},{ }_{\mu \lambda} h_{b}^{\lambda}-g^{a \mu} \boldsymbol{\psi}, \mu_{\mu \lambda} h_{b, \lambda}^{\lambda}-g^{a \mu} \psi_{, \lambda} h_{b, \mu}^{\lambda}-\psi^{g^{a \mu}} h_{b, \mu \lambda}^{\lambda} \\
& -\psi, b_{\lambda} h^{a \lambda}-\psi, h^{a \lambda}, \lambda-\psi, \lambda h^{a \lambda}, b-\psi h_{b \lambda}^{a \lambda}, b \lambda \\
& +g^{a \lambda} \psi, b \lambda h+g^{a \lambda} \psi,{ }_{b} h, \lambda+g^{a \lambda} \psi, \lambda h,_{b}+\psi^{g a \lambda} h, b \lambda \\
& \sim-2 \psi^{2} z \mathrm{R}_{b}^{a}+2 y \psi \underset{(1)^{\lambda}}{H_{b}^{a}} \mathrm{R}_{b}^{\lambda} \\
& +y \psi^{4} g^{\lambda_{\mu}} z, \lambda_{\mu} z \delta_{b}^{a}+2 \gamma^{4} \psi^{4} g^{\lambda_{\mu}} z, \lambda z, \mu{ }_{b}^{a} \\
& +\psi g^{\lambda \mu}\left[\left\{-\psi z_{, \lambda \mu}+y \psi^{3}\left(z z,{ }_{, \mu}+2 z_{, \lambda} z, \mu\right)\right\} \delta_{b}^{a}+y H_{\left(1, b, \lambda_{\mu}\right.}^{a}\right] \\
& -y \psi^{4} g^{a_{\mu}} \tau_{, \mu t} z-2 y \psi^{4} g^{a \mu} z_{, \mu} z_{, b} \\
& -\psi g^{a \mu}\left[\left\{-\psi z z_{\mu b}+y \psi^{3}\left(z z_{, \mu b}+2 z_{, \mu} z, b\right)\right\}+\underset{(1, b, \mu \lambda}{H}\right] \\
& -y \psi^{4} g^{a \lambda} z_{, b \lambda} z-2 y \psi^{4} g^{a \lambda} z_{, \lambda} z_{, b} \\
& -\psi\left[g^{a \lambda}\left\{-\psi z_{, b \lambda}+y \psi^{3}\left(z z, b \lambda+2 \chi_{, b} z, \lambda\right)\right\}+y_{(1)}^{H^{a \lambda}, b \lambda}\right] \\
& +n y \psi^{4} g^{a \lambda} z_{b \lambda} z+2 n y \psi^{4} g^{a \lambda} z_{, b} z, \lambda, \\
& +\psi g^{a \lambda}\left[n\left\{-\psi z_{, b \lambda}+y \psi^{3}\left(z z, b \lambda+2 z_{, b} z_{, \lambda}\right)\right\}+y \underset{(1)}{H, b \lambda}\right],
\end{aligned}
$$

where \sim denotes an equality within terms of the second orders with respect to y. From the last relation we get
(39') $\frac{\partial}{\partial y} \mathrm{R}_{b}^{a} \sim \psi^{3}\left[-2 Z \mathrm{R}_{b}^{a}-\delta_{b}^{a} \Delta_{2}(Z)-(n-2) g^{a b} Z, \lambda_{b}\right]$

$$
\begin{aligned}
& +y\left[2 \psi \underset{(1)^{\lambda}}{\underset{a}{H}} \mathrm{R}_{b}^{\lambda}+2 \psi^{4} z\left\{\Delta_{2}(z) \delta_{b}^{a}+(n-2) g^{a \lambda} z_{, \lambda b}\right\}\right. \\
& +4 \psi^{4}\left\{\Delta_{1}(z) \delta_{b}^{a}+(n-2) g^{a \lambda} z, \lambda, z, b\right\}
\end{aligned}
$$

where Δ_{t} and Δ_{3} denote the Bertrami's differential parameters of the firșt
order and the second order:

$$
\begin{aligned}
& \Delta_{1}(z)=g^{\lambda \mu} \chi, \lambda z_{\mu} \\
& \Delta_{2}(z)=g^{\lambda \mu} Z, \lambda \mu .
\end{aligned}
$$

and semicolons denote the covariant differentiation for quantities depending explicitly on ψ regarding it as a constant. From (39^{\prime}) we get

$$
\begin{align*}
\frac{\partial}{\partial y} \mathrm{R} \sim & -\psi^{2}\left\{2 z \mathrm{R}+2(n-1) \Delta_{2}(z)\right\} \\
& +y\left[2 \psi \underset{(1)^{\lambda}}{H_{\mu}^{\mu}} \mathrm{R}_{\mu}^{\lambda}+4(n-1) \psi^{4} z^{\Delta_{2}(z)}\right. \\
& \left.+8(n-1) \psi^{4} \Delta_{1}(z)+2 \psi\left\{g^{\lambda \mu} \underset{(1)}{H_{; \lambda \mu}}-\underset{(1)}{H^{\lambda \mu} ; \lambda \mu}\right\}_{]}\right] .
\end{align*}
$$

After these preparations, we get by (36)

$$
\begin{aligned}
& \frac{\partial}{\partial y} \underset{(1)^{b}}{H^{a}}=\frac{\psi}{n-2}\left(\frac{\partial}{\partial y} \mathrm{R}_{b}^{a}-\frac{1}{2(n-1)} \delta_{b}^{a} \frac{\partial}{\partial y} \mathrm{R}\right)-\psi^{3} z \frac{\partial z}{\partial y} \delta_{a} \\
& -\psi^{3}\left\{\frac{1}{n-2}\left(\mathrm{R}_{b}^{a}-\frac{\mathrm{R}}{2(n-1)} \delta_{b}^{a}\right)-\frac{3}{2} \psi^{2} z^{2} \delta_{b}^{a}\right\}\left(z+y \frac{\partial \chi}{\partial \gamma}\right) \\
& \sim \frac{\psi^{3}}{n-2}\left[-2 \chi\left(\mathrm{R}_{b}^{a}-\frac{\mathrm{R}}{2(n-1)} \delta_{b}^{a}\right)-(n-2) g^{a \lambda} 2, \lambda b\right] \\
& +\frac{y \psi}{n-2}\left[2 \psi\left(\underset{(1)^{\lambda}}{H_{a}^{a}} \mathrm{R}_{b}^{\lambda}-\frac{1}{2(n-1)} \underset{(1)^{\lambda}}{H_{\mu}^{\mu}} \mathrm{R}_{\mu}^{\lambda} \delta_{b}^{a}\right)\right. \\
& +2(n-2) \psi^{4} g^{a \lambda}\left(z z_{, \lambda b}+2 z, \lambda z_{, b}\right) \\
& +\boldsymbol{\psi}\left(g^{\lambda \mu} \underset{(1)^{b ; \lambda \mu}}{H^{a}}-g^{a \mu} \underset{(1)^{b ; \mu \lambda}}{\lambda}-\underset{(1 ;}{H^{a \lambda}} ; b \lambda+g^{a \lambda} \underset{(1)}{H} ; b \lambda\right) \\
& \left.-\frac{\psi}{n-1} \delta_{b}^{a}\left(g^{\lambda \mu} \underset{(1)}{H} ; \lambda \mu-\underset{(1)}{H^{\lambda} \mu_{i \lambda \mu}}\right)\right] \\
& -\psi^{3} z \frac{\partial z}{\partial y} \delta_{b}^{a} \\
& -\psi^{3} z\left\{\frac{1}{n-2}\left(\mathrm{R}_{b}^{a}-\frac{\mathrm{R}}{2(n-1)} \delta_{b}^{a}\right)-\frac{3}{2} \psi^{2} z^{2} \delta^{a}\right\} \\
& -\nu \psi^{3} \frac{\partial \tau}{\partial y}\left\{\frac{1}{n-2}\left(\mathrm{R}_{b}^{a}-\frac{\mathrm{R}}{2(n-1)} \delta_{b}^{a}\right)-\frac{3}{2} \psi^{2} \chi^{2} \delta_{b}^{a}\right\} .
\end{aligned}
$$

Hence, let us put
(40)

$$
\begin{aligned}
\underset{(1,0)^{b}=}{K}= & -\frac{3}{n-2} \psi^{3} z\left(R_{b}^{a}-\frac{\mathrm{R}}{2(n-1)} \delta_{b}^{a}\right) \\
& -\psi^{3}\left(g^{a \lambda} \chi_{, \lambda b}+z^{\partial} z^{\partial} \delta_{b}^{a}-\frac{3}{2} \psi^{2} z^{3} \delta_{b}^{a}\right) \\
= & -3 \psi^{2} z_{(1)}^{H a}-\psi^{3}\left(g^{a \lambda} z_{, \lambda b}+z \frac{\partial z}{\partial y} \delta_{b}^{a}\right),
\end{aligned}
$$

(41)

$$
\begin{aligned}
& \underset{(1,)^{b}}{K^{b}}=\frac{2 \psi^{2}}{n-2}\left(\underset{(1)^{\lambda}}{H^{a}} R_{b}^{\lambda}-\frac{1}{2(n-1)} \delta_{b}^{a}{\underset{(1)}{ }}_{H^{\mu}}^{(2)} R_{\mu}^{\lambda}\right) \\
& +2 \psi^{5} g^{a \lambda}\left(z z_{, \lambda b}+2 z, \lambda z_{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{1}{n-1} \delta_{b}^{a}\left(g^{\lambda \mu} \underset{(1)}{H ; \lambda \mu}-\underset{(1)}{H^{\lambda \mu} ; \lambda \mu}\right)\right\} \\
& -\psi^{3} \frac{\partial z}{\partial y}\left\{\frac{1}{n-2}\left(R_{b}^{a}-\frac{R}{2(n-1)} \delta_{b}^{a}\right)-\frac{3}{2} \psi^{2} \tau^{2} \delta_{b}^{a}\right\} .
\end{aligned}
$$

Then, by means of (40) we have $\underset{(2)^{b}}{\mathrm{H}^{a}}$ as follows:

$$
\begin{aligned}
(n-3) \underset{(2, b}{\underset{a}{a}=} & -3 \psi^{2} \chi_{(1, b}^{H}-\psi^{3}\left(g^{a \lambda} z_{, \lambda b}+₹ \frac{\partial \chi}{\partial y} \delta_{b}^{a}\right) \\
& +\psi^{3}\left(z \frac{\partial \chi}{\partial y} \delta_{b}^{a}+g^{a \lambda} z_{, b \lambda}\right)+n \psi^{2} \chi_{(1)^{b}}^{H^{a}} \\
= & (n-3) \psi^{2} z_{(1) b^{b}}^{H a} .
\end{aligned}
$$

Accordingly, if $n>3$, we define $\underset{(2)^{b}}{H^{a}}$ by

$$
\begin{equation*}
\underset{(2)^{b}}{H_{i}}=\psi^{2} z_{(1)^{b}}^{H a} . \tag{42}
\end{equation*}
$$

Now, from the last relation we get

$$
-\frac{\partial}{\partial y} \underset{(2)^{b}}{H^{a}}=\psi^{2} z \frac{\partial}{\partial y} \underset{(1)^{b}}{H^{a}}+\psi^{2} \underset{(1)^{b}}{H^{a}} \frac{\partial z}{\partial y}+2 \psi z_{(1)^{b}} H^{a} \frac{\partial \psi}{\partial y} .
$$

By means of (29), [ət us put

$$
\begin{align*}
\underset{(2,0)^{b}}{K a} & =\psi^{2}\left(\frac{\partial z}{\partial y}-2 \psi^{2} z^{2}\right) \underset{(1)^{b}}{H^{a}}+\psi^{2} z_{(1,0)^{b}}^{K a} \tag{43}\\
& =\psi^{2}\left(\frac{\partial z}{\partial y}-5 \psi^{2} z^{2}\right) \underset{(1)^{b}}{H_{b}^{a}}-\psi^{5} z\left(g^{a \lambda} q_{, \lambda b}+z \frac{\partial z}{\partial y} \delta_{b}^{a}\right) .
\end{align*}
$$

Lastly, comparing the coefficients of y^{2} on both sides of (34) with each other, we have the relation

$$
\begin{aligned}
3 \underset{(3)^{b}}{H^{a}} & +\underset{(2,0)^{b}}{K}+\underset{(1,1)^{b}}{a}=(n-1) \underset{(3, b}{H_{b}^{a}}+3 \psi^{5} g^{a \lambda} z_{, \lambda} z_{, b} \\
& +\psi \sum_{i+j=2}\left\{\underset{(i)(j)^{b}}{H} H^{a}+\frac{1}{2(n-1)} \delta_{b}^{a} \underset{(i)^{\lambda}(j)^{\mu}}{\left(H^{\mu}\right.} H_{(i)}^{\lambda}-\underset{(j)}{H}\right\}
\end{aligned}
$$

Accordingly, if $n>4$, by means of (36), (41), (42), (43), we define $\underset{(3)^{b}}{H^{a}}$ by the relation

$$
\begin{align*}
& -\psi \sum_{i, j=2}\left\{\underset{(i)(j)^{b}}{H} H^{a}+\frac{1}{2(n-1)} \delta_{b}^{a}\left(\underset{(i)^{\lambda}}{\left(H_{(j)}^{\mu}\right.} H_{(i)}^{\lambda}-\underset{(i)}{H} H\right)\right\} . \tag{44}
\end{align*}
$$

3. Tensor L_{b}^{a}. According to the results of the last section, suppose inductively that we have been able to define $\underset{(i j b}{H^{a}}, \underset{(s, j-s)}{K} \underset{b}{a}$ for $p \leq n-3$ so that

$$
\begin{align*}
\underset{(i)^{b}}{H_{(i)}^{a}}=\underset{(i)^{a}}{H^{a}}\left(g^{\lambda_{\mu}} ;\right. & R_{\mu}^{\lambda} ; \ldots ; R_{\mu, \rho_{1} \cdots \rho_{i-1}}^{\lambda} ; \psi ; z ; \tag{45}\\
& \ldots ;\left(\frac{\partial^{k} Z}{\partial y^{k}}\right), \rho_{1} \cdots \rho_{h} \\
& (i=1,2, \ldots, p ; k+h \leq i-1)
\end{align*}
$$

and

$$
\begin{align*}
& \underset{(s, j-s)^{b}}{K}=\underset{(s, j-s)^{b}}{K} \underset{\sim}{a}\left(g^{\lambda \mu} ; R_{\mu}^{\lambda} ; \ldots ; R_{\mu}^{\lambda} \rho_{p_{1} \cdots \rho_{i-1}} ; \psi ; \tau ;\right. \tag{46}\\
& \left.\cdots \cdot\left(\frac{\partial^{k} z}{\partial y^{k}}\right)_{\rho_{1} \cdots \rho_{h}} ; \cdots\right) \\
& (i=1,2, \ldots, p-1 ; s=1,2, \ldots, j ; k+h \leq j)
\end{align*}
$$

which are polynomials of the quantities enclosed in round brackets as shown above, and the coefficients of $y^{i}(i=1,2, \ldots, p-1)$ on both sides of (34) are equal to each other. We may suppose here $p \geq 3$. Then, comparing the coefficients of $f^{\dot{p}}$ on both sides of (24) with each other, we define $\underset{(P+1)^{b}}{H}$ by the equation

$$
\begin{aligned}
& (p+1) \underset{(P+1)^{b}}{H a}+\sum_{s=1}^{p} \underset{(s, p-s)^{b}}{K}=(n-1) \underset{(p+1)^{b}}{H} \\
& +\psi \sum_{i=0}^{p}\left\{\underset{(i)(p-i)^{b}}{H}+\frac{1}{2(n-1)} \delta_{b}^{a} \underset{(i)^{\lambda}(p-i)^{\mu}}{H^{\mu}} H_{(i)(p-i)}^{\lambda}-\underset{i}{H} \underset{i}{H}\right),
\end{aligned}
$$

that is

$$
\begin{align*}
& (n-p-2) \underset{(p+1)^{b}}{H}=\sum_{s=1}^{p} \underset{(s, p-s)^{b}}{K} a^{a} \tag{47}\\
& \left.\quad-\psi \sum_{i=0}^{p}\left[\underset{(i)(p-i)^{b}}{H}+\frac{1}{2(n-1)} \delta_{b}^{a} \underset{(i)^{\lambda}(p-i)^{\mu}}{H^{\mu}} \underset{(i)}{H^{\lambda}}-\underset{(p-i)}{H} \underset{\sim}{H}\right)\right]
\end{align*}
$$

since $n-p-2>0$. In the last equation, the quantities enclosed in square
brackets have been alreaddy defined by the hypothesis of induction. We assume that $\underset{(s, p-s)^{b}}{K} \underset{a}{a}$ have been defined too.

On the other hand, since $\underset{(s)^{b}}{H^{a}}(s=1,2, \ldots, p)$ are known quantities, we have -

$$
\begin{align*}
\frac{\partial}{\partial y} \underset{(s)^{b}}{H^{a}} & =\sum_{\lambda \leqq \mu} 2 \psi r h^{\lambda \mu}\left(\partial \underset{(s, b}{H_{b}^{a}} \quad \partial g^{\lambda \mu}\right) \\
& +\sum_{0 \leqq k}\left(\partial \underset{(s)^{b}}{H^{a}} / \partial R_{\mu, \rho_{1} \cdots \rho_{k}}^{\lambda}\right) \frac{\partial}{\partial y} R_{\mu, \rho_{1} \cdots \rho_{k}}^{\lambda} \tag{48}\\
& +\sum_{j+t \leqq s-1}\left(\partial \underset{(s)^{b}}{H^{a}} \quad \partial\left\{\left(\frac{\partial^{j}}{\partial j^{j}}\right)_{\rho_{1} \cdots \rho_{t}}\right\}\right) \frac{\partial}{\partial y}\left\{\left(\frac{\partial Z}{\partial y^{j}}\right)_{\rho_{1} \cdots \rho_{t}}\right\} \\
& -\psi^{3}\left(z+y \frac{\partial Z}{\partial y}\right) \partial \underset{(s)^{b}}{H^{a}} / \partial \psi .
\end{align*}
$$

However, by (24), (39) and the relation

$$
\begin{aligned}
& \frac{\partial}{\partial y} R_{\mu, \rho_{1} \cdots \rho_{k}}^{\lambda}=\left(\frac{\partial}{\partial y} R_{\mu, \rho_{1} \cdots \rho_{k-1}}^{\lambda}\right)_{\rho_{k}}+\left(\frac{\partial}{\partial y} \Gamma_{\nu \rho_{k}}^{\lambda}\right) R_{\lambda, \rho_{1} \cdots \rho_{k-1}}^{\nu} \\
& \quad-\left(\frac{\partial}{\partial y} \Gamma_{\mu \rho_{k}}^{\nu}\right) R_{\nu, \rho_{1} \cdots \rho_{k-1}}^{\lambda}-\sum_{h=1}^{k-1}\left(\frac{\partial}{\partial y} \Gamma_{\rho h}^{\nu}\right) R_{\mu, \rho_{1} \cdots \rho_{k-1} \nu \rho_{h}+1 \cdots \rho_{h-1}}^{\lambda}
\end{aligned}
$$

we can easily see by induction that $\frac{\partial}{\partial y} \mathrm{R}_{\mu, \rho_{1} \ldots \rho_{i}}^{\lambda}$ is a linear form of $h_{\nu}^{\tau} ; h_{\nu, \alpha_{1}}^{\tau}$; $\ldots . ; h_{\nu, \alpha_{1} \ldots \alpha_{k+2}}^{\tau}$ whose coefficients are polyncmials of $g^{\tau \nu} ; \mathrm{R}_{\nu}^{\tau} ; \ldots ; \mathrm{R}_{\nu, \alpha_{1} \ldots \alpha_{k}}^{\tau}$; $\psi ; \psi, \alpha_{1} ; \ldots ; \psi_{, a_{1} \ldots \alpha_{k+2}}$ While, by means of analogous relations as (26), (27), (28) derived from (4), the coefficients stated above are polynomials of $g^{\tau \nu} ; \mathrm{R}_{\nu}^{\tau} ; \ldots . \mathrm{R}_{\nu, \alpha_{1} \cdots \alpha_{h}}^{\tau} ; z ; z_{\alpha_{1}} ; \ldots ; \chi_{, \alpha_{1} \cdots \alpha_{k+2}} ; y$.

Then, for $j+t \leq s-1$, we have

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial y}\{ & \left(\frac{\partial^{j} z}{\partial y^{j}}\right), \rho_{1} \cdots \rho_{t}
\end{array}\right\}=\left[\frac{\partial}{\partial y}\left\{\left(\frac{\partial^{j} \eta}{\partial y^{j}}\right),,_{\rho_{1} \cdots \rho_{t-1}}\right\}\right], \rho_{t} .
$$

and from this we can easily see that

$$
\begin{aligned}
& -\frac{\partial}{\partial y}\left\{\left(\frac{\partial^{j} z}{\partial y^{z}}\right)_{, \rho_{1} \cdots \rho_{t}}\right\}=\left(\frac{\partial^{j+1} \tau}{\partial y_{j+1}}\right)_{\rho_{1} \cdots \rho_{t}}+ \\
& \quad \text { a linear form of }\left(\frac{\partial^{j} z^{2}}{\partial y^{j}}\right)_{\alpha_{1}} ; \ldots ;\left(\frac{\partial^{j} z}{\partial y^{j}}\right)_{\alpha_{1} \cdots \alpha_{t-1}} \text { whose coefficients }
\end{aligned}
$$

$$
\begin{aligned}
& \text { are linear forms ot } h_{\mu}^{\lambda}, \ldots, h_{\mu, \alpha_{1} \cdots \alpha_{t-1}}^{\lambda} \text { with polynomials } \\
& \text { of } \psi ; z ; z_{\alpha_{1}} ; \ldots ; z_{\alpha_{1} \cdots \alpha_{t-1}} ; y \text { as their coefficients. }
\end{aligned}
$$

After these preparations, let us consider the question whether we can determine ${ }_{\left(s p_{p-s} s^{b}\right.}^{a}$ or not, so that it has the properties shown in (46), provided that p is replaced by $p+$

Now, in the terms included in the first Σ on the right hand side of (48), $\underset{(h-s)^{\mu}}{H^{\lambda}}{ }^{\lambda}$ are noteworthy and other quantities are supposed to be known by the $(h-s)^{\mu}$
hypothesis of induction. In the terms included in the second Σ the quantities to be noticed are $\underset{(p-s) ; \alpha^{\nu} \alpha_{1} \cdots \alpha_{s}+1}{\tau}$ and the orders of differentiations of $\mathrm{R}_{\lambda}^{\mu}$, z included in these quantities are clearly $\leq(p-s-1)+(s+1)=p$ by (45).
 be noticed, but the orders of differentiations of R_{v}^{τ}, z included in these quantities are $(p-s-1)+(t-1)=p+t-s-2<p$ since $0 \leq t \leq s-1$. Therefore, we see that $\underset{(s, p-s)^{b}}{K}$ can be defined by means of the quantities already known by induction according to (48) and tormula (35). Hence, we see also that $\underset{(p+1)^{b}}{ }{ }^{a}$ can be defined by (47) so that it has the properties shown in (45), putting $i \leq p+1$. Thus, we have proved inductively that (45) and (46) hold good for $p=n-2$, In other words, we can difine successively $\underset{\left.(1)^{b}\right)}{H_{(2)}^{a}}, \underset{(2, b}{H a}, \ldots$, $\underset{(n-2}{H}{ }^{b}$ a so that the apparent cofficients of $y, y^{2}, \ldots, y^{n-3}$ in (34) cancel out with each other respectively and they have the properties shown in (45), putting $i=1,2, \ldots, n-2$.

Lastly, if $n>2$, the coefficient of y^{n-2} reduced on the left hand side of (34) is

$$
(n-1) \underset{(n-1)^{b}}{H}+\sum_{s=1}^{n-2} \underset{(s, n-2-s)^{b}}{ }{ }^{a}+\epsilon_{n 3} \psi^{3} z \frac{\delta z}{\delta y} \delta_{b}^{a}
$$

and the one reduced on the right hand side is

$$
\begin{aligned}
(n-1) \underset{(n-1}{H}{ }_{b}^{a} & +\psi \sum_{i=0}^{n-2}\left\{\underset{(i)(n-2-i)^{b}}{H}+\frac{1}{2(n-1)} \delta_{b}^{a} \underset{(i)^{\lambda}}{\left(H_{(n-2-i)^{\mu}}^{\mu}\right.} \underset{(i)}{H}-\underset{(i)(n-2-i)}{H}\right) \\
& -\epsilon_{n 3} \psi^{3} g^{a \lambda} z_{, b \lambda}+3 \epsilon_{n 4} \psi^{5} g^{a \lambda} z_{, b} z_{, \lambda},
\end{aligned}
$$

where $\epsilon_{i j}=1(i=j), \epsilon_{i j}=0(i \neq j)$. Hence, subtracting these quantities, let us define an important tensor by means of the quantities already known as follows:

$$
\begin{equation*}
L_{b}^{a}=-\epsilon_{n 3} \psi^{3}\left(z \frac{\partial z}{\partial y} \delta_{b}^{a}+g^{a \lambda} z_{, b \lambda}\right)+3 \epsilon_{n^{4}} \psi^{5} g^{a \lambda} z_{, \lambda} z_{, b}-\sum_{s=1(s, n-2-s)^{b}}^{n-2} \underset{{ }^{a}}{K} \tag{49}
\end{equation*}
$$

$$
+\psi \sum_{i=0}^{n-2}\left\{\underset{(i)(n-4-i)^{b}}{H}+\frac{1}{2(n-1)} \delta_{b}^{a}\left(\underset{(i)^{\lambda}(n-2-i)^{\mu}}{H^{\mu}} \underset{(i)(n-2-i)}{H} \lambda\right) .\right.
$$

By virtue of $(4,5),(4,6) L_{b s}^{a}$ are polynomials of $g^{\lambda \mu} ; R_{\mu}^{\lambda} ; \ldots ; R_{\mu, \rho_{1} \ldots \rho_{n-2}}^{\lambda} ; \psi ; \tau ; \ldots ;$ $\left(\frac{\partial^{k} z}{\partial \gamma^{k}}\right)_{\rho_{1} \ldots \rho_{h}} ;(\mathrm{k}+h \leq n-2)$. We shall show in future that this tensor plays an important rôle to solve the problem stated in introduction.
4. The regularization of the system (II), (1). Making use of the results of the last sections, (34) becomes

$$
\begin{align*}
& \frac{\partial}{\partial y} \underset{(n-1)^{b}}{a}=\frac{1}{y} L_{b}^{a}+\psi \sum_{s=0}^{n-1} y^{s}\left[-\sum_{i+j=s+n-1}^{1 \equiv i} \sum_{(i, j)^{b}}^{a}\right. \tag{50}\\
& \left.\left.+\sum_{i+j=s+n-1}^{0 \leq i \leq n-1}\left\{\underset{(i)}{H} \underset{(j)^{b}}{H^{a}}+\frac{1}{2(n-1)} \delta_{b}^{a} \underset{(i)^{\lambda}}{\left(H_{(j)}^{\mu}\right.}{\underset{\sim}{\mu}}_{\lambda}^{\mu}-\underset{(i)}{H H} H\right)\right\}\right],
\end{align*}
$$

where $\underset{(i, j)^{b}}{K_{i}}$ on the right hand side are linear torms of $\underset{\left(n-1, \mu^{\mu}\right.}{H_{\lambda}^{\lambda}}$ and its covariant derivatives determined by the methods in the last section, as is easily shown.

Now, we have by (32)

$$
\begin{aligned}
\xi_{a} & \equiv\left(h,_{a}-h_{a, \lambda}^{\lambda}\right)+(n-1) \psi z_{a} \\
& =\sum_{i=0}^{n=1} y^{i}\left(\underset{(i)}{(H, a}-\underset{(i, a, \lambda}{H_{a}^{\lambda}}\right)+(n-1) \psi z_{, a} .
\end{aligned}
$$

Since we get by (27)

$$
\underset{(i)^{b, c}}{H_{i}^{a}}=\underset{(i)^{b ; c}}{H^{a}}-y \psi^{3} z_{, c} \frac{\partial}{\partial \psi^{r}} \underset{(i ; b}{H_{j}^{a}} \quad(i=0,1,2, \ldots, n-2),
$$

let us put

$$
\begin{equation*}
\xi_{a} \equiv \sum_{i=0}^{n-1} y^{i} \xi_{(i)}, \tag{51}
\end{equation*}
$$

where

$$
\begin{align*}
& \underset{(i)}{\xi_{a}} \equiv \underset{(i)}{H_{; a}}-\underset{(i)^{\prime}}{H_{i, \lambda}^{\lambda}}-\psi^{3}\left(z,_{a} \frac{\partial}{\partial \psi_{r}} \underset{(i-1)}{H}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(i-1)^{-}}{H}{ }^{\lambda}\right) \tag{52}\\
& (i=0,1,2, \ldots, n-1)
\end{align*}
$$

and

$$
\underset{(n-1)^{a}, c}{H_{i}^{b}} \equiv \underset{\left(n-1, r^{2} ; c .\right.}{H}
$$

We can easily see by virtue of (33) that

$$
\begin{equation*}
\underset{(0)}{\xi_{a} \equiv \underset{(0)}{\boldsymbol{\xi}_{j}} ;-\underset{(0)^{; \lambda}}{H_{i}}+(n-1) \psi \tau,_{a}=0 .} \tag{53}
\end{equation*}
$$

Now, since we have $\underset{(0)}{H}=-n 4 \%$, we can put by (32)

$$
\begin{align*}
\zeta & \equiv \frac{1}{y}(h+n \psi z)+\frac{\psi}{2(n-1)}\left(h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-\mathrm{R}\right) \tag{54}\\
& =\sum_{i=0}^{n-1} y^{i} \zeta_{(i)}
\end{align*}
$$

where

$$
\begin{align*}
& \zeta_{(i)} \equiv \underset{(i+1)}{H}+\frac{\psi}{2(n-1)} \sum_{s=0}^{i}\left(\underset{(s)(i-s)}{H} \underset{(s)^{\prime}}{H}-\underset{(i-s)^{\mu}}{H^{\mu}} H^{\lambda}\right)-\frac{\psi R \epsilon_{i 0}}{2(n-1)} \tag{55}\\
& (i=0,1,2, \ldots, n-2) .
\end{align*}
$$

We can easily see by (33) and (36) that

$$
\begin{align*}
&{\underset{(0)}{(0)}}_{\equiv_{(1)}^{H}}^{H}+\frac{\psi}{2(n-1)} \tag{56}\\
&\left.=\underset{(0)(0)}{H}+\underset{(1)}{H}+\underset{(0)^{\lambda}}{H(0)^{\mu}}\right) \\
& 2(n-1)\left(n(n-1) \psi^{\mu} z^{2}-\mathrm{R}\right)=0 .
\end{align*}
$$

Then, we get by (36) and (52)

$$
\begin{aligned}
& \underset{(1)}{\xi_{a}}=\underset{(1)}{H} ; a-\underset{(1 ;)^{a, \lambda}}{H^{\lambda}}-\psi^{3}\left(z, a \frac{\partial}{\partial \psi} \underset{(0)}{H}-\chi, \lambda \underset{\psi^{2}}{\partial \psi^{-}} \underset{(0)^{a}}{H^{\lambda}}\right) \\
& =\frac{\psi}{2(n-1)} \mathrm{R},{ }_{a}-n \psi^{3} z z_{a} \\
& -\frac{\psi}{n-2}\left(\mathrm{R}_{a, \lambda}^{\lambda}-\frac{1}{2(n-1)} \mathrm{R}_{, a}\right)+\psi^{3} Z Z_{, a}+(n-1) \psi^{3} ₹ Z_{, a} \\
& =\frac{\psi}{2(n-2)}\left(R,_{a}-2 \mathrm{R}_{a, \lambda}^{\lambda}\right)=0 .
\end{aligned}
$$

By means of the relation above and (42) we get likewise

$$
\begin{aligned}
& \underset{(2)}{\xi_{a}}=\underset{(2)^{2}}{H_{; a}}-\underset{(2)^{a ; \lambda}}{H^{\lambda}}-\psi^{3}\left(z,_{a}-\underset{\partial \psi^{-}}{-} \underset{(1)}{H}-z, \lambda \frac{\partial}{\partial \psi^{2}} \underset{(1)^{a}}{H^{\lambda}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-\psi^{2}\left\{z_{a} \underset{(1)}{(H}-n \psi^{3} z^{2}\right)-z, \lambda \underset{(1)^{a}}{\left(H^{\lambda}\right.}-\psi^{3} z^{2} \delta_{a}^{\lambda}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\psi^{2} \chi_{(1)} \xi_{a}=0 .
\end{aligned}
$$

Furthermore, by (33), (36), (42) and (55), we get

$$
\begin{aligned}
\underset{(1)}{\zeta} & \left.=\underset{(2)}{H}+\underset{n-1}{\psi} \underset{(0)}{\underset{(0)}{H} \underset{(1)}{H}}-\underset{\left.(0)^{\lambda}(1)^{\mu}\right)}{H^{\mu}}\right) \\
& =\psi^{2} z_{(1)}^{H}+\frac{\psi}{n-1}\left(-n \psi z_{(1)}^{H}+\psi z \delta_{\lambda}^{\mu} \underset{\left.(1)^{\mu}\right)}{H}\right)=0 .
\end{aligned}
$$

Thus we get the relations

$$
\begin{equation*}
\underset{(0)}{\xi_{a}}=\underset{(1)}{\xi_{a}}=\underset{(2)}{\xi_{a}}=0, \quad \zeta_{(0)}=\zeta_{(1)}=0 . \tag{57}
\end{equation*}
$$

5. The regularization of the system (II), (2). According to the results of the last section, let us prove by induction the following relations :

$$
\begin{aligned}
& \xi_{a}=\underset{(1)}{\boldsymbol{\xi}_{a}}=\underset{(2)}{\boldsymbol{\xi}_{a}}=\ldots=\underset{(n-2)}{\xi_{a}}=0, \\
& \zeta_{(0)}=\zeta_{(1)}=\zeta_{(2)}=\ldots=\underset{(n-3)}{\zeta}=0 .
\end{aligned}
$$

First, we suppose that the relations

$$
\left\{\begin{array}{ll}
\xi_{a}=\xi_{a}=\ldots=\underset{(p)}{\xi_{a}}=0, \tag{58}\\
\zeta_{(1)} \\
\zeta_{(0)}=\zeta_{(1)}=\ldots=\underset{(p-1)}{\zeta_{2}}=0
\end{array} \quad(2 \leq p<n-2)\right.
$$

hold good, and we shall prove that $\underset{(p+1)}{\xi_{a}}=0, \zeta_{(p)}=0$. From (44) and (47) we get

$$
\begin{align*}
& (n-p-2) \underset{(p+1)^{b}}{H}{ }^{a}=\sum_{s=1}^{p} \underset{(s, p-s)^{b}}{K}-3 \epsilon_{2 p} \psi^{5} g^{a \lambda} Z, \lambda z, b \tag{47'}
\end{align*}
$$

and hence

$$
\begin{aligned}
(n-p-2) \underset{(p+1)}{H}= & \sum_{s=1}^{p} \underset{(s, p-s)}{K}-3 \epsilon_{2 p} \psi^{5} \Delta_{1}(z) \\
& -\frac{\psi}{2(n-1)} \sum_{s=0}^{p}\left\{n \underset{(s)^{\lambda}(p-s)^{\mu}}{H}+(n-2) \underset{(s)}{H} \underset{(p-s)}{H}\right\} .
\end{aligned}
$$

Accordingly, we get from these relations

$$
\begin{aligned}
& \left.(n-p-2) \underset{(p+1)}{H_{; a}}=\sum_{s=1}^{p} \underset{(s, p-s)}{K_{;}, a} 3 \epsilon_{2 p} \psi^{5}\left(\Delta_{1}(z)\right)\right)_{a} \\
& -\frac{\psi}{n-1} \sum_{s=0}^{p}\left\{n \underset{(s)^{\lambda}(p-s)^{\mu ; a}}{H^{\mu}} H^{\lambda}+(n-2) \underset{(s)(p-s)}{H} H_{; a}\right\}, \\
& (n-p-2)_{\left.(p+1)^{a}\right)^{\lambda}}^{H^{\lambda}}=\sum_{s=1}^{p} \underset{(s, p-s)^{a ; \lambda}}{\lambda} \\
& -3 \epsilon_{2 p} \psi^{5}\left(z, a \Delta_{\mathbf{2}}(\chi)+g^{\lambda \mu} \chi, \lambda z, a \mu\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{1}{n-1} \underset{(s)^{\lambda}(p-s)^{\prime} ; a}{H}-\underset{\left(s_{1}(p-s)^{\prime}\right.}{H} \underset{\sim}{H} \underset{\sim}{H}\right)\right\}
\end{aligned}
$$

and subtracting the latter from the former, we get

$$
\begin{aligned}
& (n-p-2)\left(\underset{(p+1)}{H ; a}-\underset{(p+1)^{a ; \lambda}}{H^{\lambda}}\right)=\sum_{s=1}^{p}\left(\underset{(s, p-s),}{K ; a}-\underset{(s, p-s)^{2} ; \lambda}{K} \lambda,\right.
\end{aligned}
$$

$$
\begin{aligned}
& +3 \epsilon_{2 p} \psi^{5}\left(z_{a} \Delta_{2}(z)-g^{\lambda \mu} \tau_{, \lambda} \tau_{, \mu a}\right),
\end{aligned}
$$

The last equation is reduced by (52), (53) and the assumption (58) to
(59)

$$
\begin{aligned}
& +(n-1) \psi^{2} z_{, a} H+3 \epsilon_{2 p} \psi^{5}\left(z_{, a} \Delta_{2}(z)-g^{\lambda \mu} z_{, \lambda} z_{, \mu a}\right) .
\end{aligned}
$$

Now, we get by (27) and (35)

$$
\begin{aligned}
& \left(\frac{\partial}{\partial v} \underset{(s)^{a}}{H^{b}}\right)_{c}=\left(\sum_{j=0}^{2 n-2-s} \nu_{(s, j)^{j}}^{b}\right)_{c} \\
& =\sum_{i \geqslant 0} \nu^{j}\left(\underset{(s, j)^{a ; c}}{K_{i}^{b}}-\nu \psi^{3} \tau, \underset{c}{\partial \psi} \underset{(s, j)^{a}}{K^{b}}\right) .
\end{aligned}
$$

Hence, we have
(60)

$$
\begin{aligned}
& \left.-y \psi^{3}\left(z, a \underset{(s, j)}{\partial}-z, \lambda \frac{\partial}{\partial \psi} \underset{(s, j)^{a}}{K}\right)\right\} .
\end{aligned}
$$

On the other hand, -we get by (24)

$$
\begin{aligned}
\left(\frac{\partial}{\partial y} \underset{(s)^{\prime}}{H}\right)_{a} & -\left(\frac{\partial}{\partial y} \underset{(s)^{a}}{H^{\lambda}}\right)_{, \lambda}=\frac{\partial}{\partial y}\left(\underset{(s)^{\prime}}{H}, a \underset{(s)^{a, \lambda}}{H^{\lambda}}\right) \\
& +\underset{(s)^{a}}{H^{\lambda}} \underset{\partial y}{\partial} \Gamma_{\lambda \mu}^{\mu}-\underset{(s)^{\lambda}}{H^{\mu}} \underset{\partial y}{\partial y} \Gamma_{a \mu}^{\lambda} \\
& \left.=\frac{\partial}{\partial y} \underset{(s)^{\prime}}{H},_{a}-\underset{(s)^{a}, \lambda}{H^{\lambda}}\right)-\underset{(s)^{a}}{H^{\lambda}}(\psi h), \lambda+\underset{(s)^{\lambda}}{H^{\mu}}\left(\psi h_{\mu}^{\lambda}\right), a,
\end{aligned}
$$

that is
(61)

$$
\begin{aligned}
& +\psi\left(H_{(s, \lambda}^{\mu} h_{\mu, a}^{\lambda}-\underset{(s)^{2}}{H^{\lambda}} h_{, \lambda}\right) \\
& -y \psi^{3}\left(\chi_{, a} \underset{(s)^{\lambda}}{H_{\mu}} h_{\mu}^{\lambda}-Z_{, \lambda}{\underset{(s, a}{A}}_{\lambda}^{\lambda} h\right) .
\end{aligned}
$$

Then, by (52) and the assumption (58), we have the relation

$$
\begin{aligned}
\underset{(s)^{\prime}}{H}-\underset{(s)^{a, \lambda}}{H^{\lambda}} & =\underset{(s)^{3}}{H ; a}-\underset{(s, a ; \lambda}{H_{j}^{\lambda}}-\jmath \psi^{3}\left(z_{, a} \frac{\partial}{\partial \psi} \underset{(s)}{H}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(s)^{a}}{H^{\lambda}}\right) \\
& =\psi^{3}\left(z_{, a} \frac{\partial}{\partial \psi} \underset{(s-1)}{H}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(s-1)^{a}}{H}\right) \\
& -y \psi^{3}\left(z_{a} \frac{\partial}{\partial \psi} \underset{(s)}{H}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(s)^{a}}{H^{\lambda}}\right) \quad(s=1,2, \cdots, p) .
\end{aligned}
$$

If we introduce as (35) quantities $\underset{(s, j, j}{M}{ }_{b}^{a}$ analogous to $\underset{(s, j)^{b}}{K^{a}}$ by the relation

$$
\begin{equation*}
\frac{\partial}{\partial y}\left(\frac{\partial}{\partial \psi} \underset{\left.(s)^{b}\right)}{H^{a}}\right)=\sum_{j>0} y^{j} \underset{(s, j, j}{M^{b}}, \tag{62}
\end{equation*}
$$

we can see that $M_{i s, j, j}^{a}$ can be determined successively so that they have the same properties as (46). Hence, making use of these quantities, we have

$$
\frac{\partial}{\partial y}\left(H_{(s)},-\underset{(s)^{a, \lambda}}{H^{\lambda}}\right)
$$

$$
\begin{align*}
& =\psi^{3}\left[\left(\frac{\partial z}{\partial y^{-}}\right)_{a}\left(\frac{\partial}{\partial \psi} \underset{(s-1)}{H}-y \underset{\partial \psi}{\partial} \underset{(s)}{H}\right)-\left(\frac{\partial z}{\partial y}\right)_{, \lambda}\left(\frac{\partial}{\partial \psi} \underset{(s-1)^{a}}{H}-y \frac{\partial}{\partial \psi^{\lambda}} \underset{(s)^{a}}{H^{\lambda}}\right)\right] \\
& -\psi^{3} z_{, a}\left[\psi^{2}\left(z+y \frac{\partial z}{\partial y}\right)\left(\frac{\partial}{\partial \psi} \underset{(s-1)}{H}-y \frac{\partial}{\partial \psi} \underset{(s)}{H}\right)+\frac{=}{\psi} \underset{(s)}{H}\right. \\
& \left.-\sum_{j \geqq 0} y_{(s-1, j)}^{j} M_{\cdot j \geq 0}+\sum_{j \geqq} y^{j+1} M(s, j)\right] \tag{63}\\
& +\psi^{3} z, \lambda\left[3 \psi^{2}\left(z+y \frac{\partial z}{\partial y}\right)\left(\frac{\partial}{\partial \psi} \underset{(s-1)^{a}}{H^{\lambda}}-y \frac{\partial}{\partial \psi} \underset{(s)^{a}}{H^{\lambda}}\right)+\frac{\partial}{\partial \psi} \underset{(s)^{a}}{H^{\lambda}}\right. \\
& \left.-\sum_{j \geqq 0} y_{(s-1, j)^{i}}^{i} M_{j \geqq 0}^{\lambda}+\sum_{j \geqq y^{j+1}} M_{(s, j)^{a}}^{\lambda}\right] .
\end{align*}
$$

Accordingly, comparing the coefficients of ν^{p-s} of the terms on the terms on the right hand sides of (60), (61) with each other and making use of (63), we get the following relations :

$$
\begin{aligned}
& \sum_{s=1}^{p}\left(\underset{(s, p-s)}{K ; a}-\underset{(s, p-s)^{a ; \lambda}}{K}\right) \\
& =\psi^{3} \sum_{s=1}^{p-1}\left(z_{, a} \frac{\partial}{\partial \psi} \underset{(s, p-s-1)}{K}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(s, p-s-1)^{a}}{K}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\psi^{3}\left[z, a \sum_{s=1}^{p-1} H_{(s)^{\lambda}}^{\mu} \underset{(p-s-1)^{\mu}}{H}-z, \lambda \sum_{s=1}^{p-1}{\left.\underset{(s)^{a}}{\lambda}{ }_{(p-s-1)}^{\lambda}\right]}_{H}^{H}\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\psi^{4} \sum_{s=1}^{p-1}\left(z_{, a}{\underset{(s)}{ } H^{\mu}}_{\mu}^{\partial} \frac{\partial}{\partial} \underset{(p-s-1)^{\mu}}{H}-z_{, \lambda}^{\lambda} \underset{(s)^{a}}{H^{\lambda}} \frac{\partial}{\partial \psi} \underset{(p-s-1)}{H}\right) \\
& +\psi^{3}\left\{\left(\frac{\partial z}{\partial y^{-}}\right)_{, a} \frac{\partial \cdot}{\partial \psi} \underset{(p-1)}{H}-\left(\frac{\partial z}{\partial y}\right)_{, \lambda}-\frac{\partial}{\partial \psi} \underset{(p-1)^{a}}{H}{ }^{\lambda}\right\} \\
& -3 \psi^{5} z\left(z, a \frac{\partial}{\partial \psi} \underset{(p-1)}{H}-z, \lambda \frac{\partial}{\partial \psi} \underset{(p-1)^{a}}{H}\right) \\
& -\psi^{5}\left(z, a \frac{\partial}{\partial \psi} \underset{(p)}{H}-z, \lambda \frac{\partial}{\partial \psi} \underset{(p, a}{H}\right) \\
& -\psi^{3}\left\{\left(\frac{\partial z}{\partial y}\right)_{, a} \frac{\partial}{\partial \psi} \underset{(p-1)}{H}-\left(\frac{\partial z}{\partial y}\right)_{, \lambda} \frac{\partial}{\partial \psi} \underset{(p-1)^{a}}{H}{ }^{\lambda}\right\} \\
& +3 \psi^{5}\left\{z, a\left(z \frac{\partial}{\partial \psi} \underset{(p-1)}{H}-\frac{\partial z}{\partial y} \frac{\partial}{\partial \psi} \underset{(p-2)}{H}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-z_{, \lambda}\left(z \frac{\partial}{\partial \psi} \underset{(p-1)^{a}}{H \lambda}-\frac{\partial z}{\partial y} \frac{\partial}{\partial \psi} \underset{(p-2)^{\lambda}}{H} \underset{a}{a}\right)\right\} \\
& +3 \psi^{5} \frac{\partial z}{\partial y}\left\{z_{,} \frac{\partial}{\partial \psi} \underset{(p-2)}{H}-z, \lambda \frac{\partial}{\partial \psi} \underset{(p-2)^{a}}{H}\right\}\left(1-\epsilon_{2 p}\right),
\end{aligned}
$$

where $M_{(p-1)^{b}}^{a}=0$ and we need a factor ($1-\epsilon_{2 p}$) for the last term since $p \geq 2$, $s=1, \stackrel{(p,-1)^{b}}{2, \ldots, p}$. It is clear that $\underset{(0, p-1)^{b}}{M}=0$ from (33). The relation above is readily reduced to

$$
\begin{aligned}
& =\psi^{3} \sum_{b=1}^{p}\left(z_{, a} \frac{\partial}{\partial \psi^{\psi}} \underset{(s, p-s-1)}{K}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(s, p-s-1, a}{K}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\psi^{4} \sum_{s=1}^{p-1}\left(\chi_{, a} \underset{(s)^{\lambda}}{H^{\mu}} \frac{\partial}{\partial \psi} \underset{(p-s-1)^{\mu}}{H}-\chi_{, \lambda} \underset{(s)^{a}}{H^{\lambda}} \frac{\partial}{\partial \psi} \underset{(p-s-1)}{H}\right) \\
& -\psi^{3}\left(z_{a}, \frac{\partial}{\partial \psi} \underset{(p)}{H}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(p, a}{H}\right) \\
& -3 \epsilon_{2 p} \psi^{5} \frac{\partial z}{\partial y}\left(\imath, a \frac{\partial}{\partial \psi} \underset{(p-2)}{H}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(p-2)^{a}}{H}\right) .
\end{aligned}
$$

Now, substituting (64) in (59) and making use of (47'), (52) and (58), we see that the following relation holds good:

$$
\begin{aligned}
& (n-p-2) \underset{(p+1)}{\xi_{a}}=(n-p-2)\left\{\begin{array}{c}
\underset{(p+1)}{H ; a}-\underset{(p+1)^{a ; \lambda}}{H}
\end{array}\right. \\
& \left.-\psi^{3}\left(z, a \frac{\partial}{\partial \psi} \underset{(p)}{H}-z, \lambda \frac{\partial}{\partial \psi} \underset{(p)^{a}}{H^{\lambda}}\right)\right\} \\
& =\psi^{3} \sum_{s=1}^{p-1}\left(z_{, a} \frac{\partial}{\partial \psi} \underset{(s, p-1)}{K}-z_{, \lambda} \frac{\partial}{\partial \psi^{r}} \underset{(s, p-s-1, a}{\lambda}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\psi^{4} \sum_{s=1}^{p-1}\left(z_{, a}{\underset{(s)^{\lambda}}{\mu}}_{H^{\mu}}^{\partial \psi} \underset{(p-s-1)^{\mu}}{H}-\chi_{, \lambda} \underset{(s)^{a}}{H^{\lambda}} \frac{\partial}{\partial \psi} \underset{(p-s-1)}{H}\right) \\
& -\psi^{3}\left(z, a \underset{\partial}{\partial} \underset{(p)}{H}-z, \lambda \underset{(p)}{H} H^{\lambda}\right) \\
& -3 \epsilon_{2 p} \psi^{5} \frac{\partial z}{\partial y}\left(\chi_{a} \frac{\partial}{\partial \psi} \underset{(p-2)}{H}-z, \lambda \frac{\partial}{\partial \psi} \underset{(p-2)^{a}}{H}\right) \\
& -\psi^{4} \sum_{s=0}^{p-1} \underset{(s)}{H}\left(z_{, a} \frac{\partial}{\partial \psi_{(p-s-1)}} \underset{, z_{, \lambda}}{ } \frac{\partial}{\partial \psi} \underset{(p-s-1)^{a}}{H}\right)+(n-1) \psi^{2} z_{a_{(p)}}{ }_{(p)}^{\lambda} \\
& +3 \epsilon_{2 p}\left(z, a \Delta_{2}(z)-g^{\lambda \mu} \tau, \lambda \tau, \mu a\right) \\
& -(n-p-2) \psi^{3}\left(z, a \frac{\partial}{\partial \psi} \underset{(p)}{H}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(p) a}{H_{a}^{\lambda}}\right) \\
& ==\psi^{3} \chi_{, a}\left[\frac{1}{2(n-1)} \sum_{s=0}^{p-1}\left\{n \underset{(s)^{\lambda}}{H^{\mu}} \underset{(p-s-1)^{\mu}}{H}+(n-2) \underset{(s)(p-s-1)}{H}\right\}\right. \\
& +\frac{1}{n-1} \sum_{s=0}^{p-1}\left\{n \underset{(s)^{\lambda}}{H^{\mu}} \frac{\partial}{\partial \psi} \underset{(p-s-1)^{\mu}}{H}+(n-2) \underset{(s)}{H} \frac{\partial}{\partial \psi} \underset{(p-s-1)}{H}\right\} \\
& \left.-3 \epsilon_{2 p} \psi^{2}\left(n \chi \frac{\partial z}{\partial y}+\Delta_{2}(z)\right)+15 \epsilon_{3_{p}} \psi^{4} \Delta_{1}(z)\right] \\
& -\psi^{3} z, \lambda\left[\sum_{s=0}^{p-1}\left\{\underset{(s)}{H} \underset{(p-s-1)^{a}}{H}+\frac{1}{2(n-1)} \delta_{a}^{\lambda}\left(\underset{(s)^{\mu}}{\left.H_{(p-s-1}^{\rho}\right)^{\rho}} \underset{(s)}{H} \underset{(p-s-1)}{\mu}-\underset{\sim}{H}\right)\right\}\right. \\
& +\psi \sum_{s=0}^{p-1}\left\{\underset{(s)}{H} \frac{\partial}{\partial \psi} \underset{(p-s-1)^{a}}{H}+\underset{(p-s-1)^{a}}{H}{ }^{\lambda} \frac{\partial}{\partial \psi} \underset{(s)}{H}\right. \\
& \left.+\frac{1}{(n-1)} \delta_{a}^{\lambda}\left(\underset{(s)^{\mu}}{H^{\rho}} \frac{\partial}{\partial \psi} \underset{(p-s-1)^{\rho}}{H}-\underset{(s)}{H} \frac{\partial}{\partial \psi} \underset{(p-s-1)}{H}\right)\right\} \\
& \left.-3 \epsilon_{2 \rho} \psi^{2}\left(z \frac{\partial z}{\partial y} \delta_{a}^{\lambda}+g^{\lambda \mu} z, a \mu\right)+15 \epsilon_{8 p} \psi^{4} g^{\lambda \mu} z_{, \mu} z_{a}\right] \\
& -\psi^{3}\left[Z_{s a} \sum_{s=1}^{p-1} H_{(s)^{\lambda}(p-s-1)^{\mu}}^{\mu}-Z_{, \lambda} \sum_{s=1}^{p-1} H_{(s)^{a}(p-s-1)}^{\lambda} H_{i}\right] \\
& -\psi^{4} \sum_{s=1}^{p-1}\left(z_{, a} \underset{(s)^{\lambda}}{H^{\mu}} \frac{\partial}{\partial \psi^{r}} \underset{(p-s-1)^{\mu}}{H}-z_{, \lambda}^{\lambda} \underset{(s)^{a}}{H^{\lambda}} \partial^{\partial} \psi^{-} \underset{(p-s-1)}{H}\right) \\
& -3 \epsilon_{2 p} \psi^{5} \frac{\partial z}{\partial y}\left(z_{, a} \frac{\partial}{\partial \psi} \underset{(p-2)}{H}-z, \lambda \frac{\partial}{\partial \psi} \underset{(p-2)^{a}}{H}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\psi^{4} \sum_{s=0}^{p-1} \underset{(s)}{H}\left(z_{a} \frac{\partial}{\partial \psi_{r}} \underset{(p-s-1)}{H}-z_{, \lambda} \frac{\partial}{\partial \psi_{r}} \underset{(p-s-1)^{a}}{H}{ }^{\lambda}\right) \\
& +3 \epsilon_{2 p} \psi^{5}\left(z_{a} \Delta_{2}(z)-g^{\lambda \mu} \chi_{, \lambda} \chi_{, \mu a}\right)+(n-1) \psi^{2} \chi_{, a} \underset{(p)}{H} \\
& =-\frac{\psi^{3}}{2} z_{, a} \sum_{s=0}^{p-1}\left(\underset{(s)^{\lambda}}{H_{(p-s-1)^{\mu}}^{\mu}} \underset{(s)(p-s-1)}{H}\right)+\psi^{3} \tau_{, a}{\underset{(0)}{ } H^{\mu}}_{\left.H_{(p-1}^{\mu}\right)^{\mu}}^{H} \\
& +\psi^{4} \tau_{, a} \underset{(0)^{\lambda}}{H^{\mu}} \frac{\partial}{\partial \psi} \underset{(p-1)^{\mu}}{H}-\psi^{3} \tau_{, \lambda} \underset{(0)^{a}}{H_{(p-1)}^{\lambda}} \underset{(p)}{H} \\
& -\psi^{4} z_{, \lambda} \underset{(0 ; a}{H_{j}^{\lambda}} \frac{\partial}{\partial \psi} \underset{(p--1)}{H}+(n-1) \psi^{2} z_{, a} \underset{(p)}{H} \\
& -3 \epsilon_{2 p}(n-1) \psi^{5} z \frac{\partial z}{\partial y} z_{a} \\
& -3 \epsilon_{2 p} \psi^{5} \frac{\partial z}{\partial v}\left(z_{a} \frac{\partial}{\partial \psi} \underset{(p-2)}{H}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(p-2,}{H}{ }_{a}^{\lambda}\right) \\
& =-\frac{\dot{\psi}^{3}}{2} z_{, a} \sum_{s=0}^{p-1}\left(\underset{(s)^{\lambda}}{H_{(p-s-1}^{\mu} ;^{\mu}} \underset{(s)(p-s-1)}{H}-\underset{(p)}{H}\right)+(n-1) \psi^{3} z_{, a} \underset{(p)}{H} \\
& -3 \epsilon_{2 \phi}(n-1) \psi^{5} z \frac{\partial z}{\partial y} z, a \\
& -3 \epsilon_{2 p} \psi^{5} \frac{\partial \chi}{\partial y}\left(z_{, a} \frac{\partial}{\partial \psi} \underset{(p-2)}{H}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(p-2)^{a}}{H}{ }^{\lambda}\right) \\
& =(n-1) \psi^{2} z_{a}\left[\underset{(p)}{H}+\frac{\psi}{2(n-1)} \sum_{s=0}^{p-1}\left(\underset{(s)(p-s-1)}{H}-\underset{\left.(s)^{\lambda}\right)_{(p-s-1)^{\mu}}^{\mu}}{H} \underset{\sim}{H}\right]\right. \\
& -3 \epsilon_{2_{p}} \psi^{5} \frac{\partial z}{\partial y}\left[(n-1) z_{,,_{a}}+z_{, a} \frac{\partial}{\partial \psi} \underset{(p-2)}{H}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(p-2)^{a}}{H}{ }^{\lambda}\right] \text {. }
\end{aligned}
$$

Since we have from (33)

$$
(n-1) z_{, a}+z_{a} \frac{\partial}{\partial \psi} \underset{(0)}{H}-z_{, \lambda} \frac{\partial}{\partial \psi} \underset{(0)^{a}}{H^{\lambda}}=0
$$

we obtain trom the relations above by means of the defintion of $\boldsymbol{\zeta}_{(p-1)}(55)$

$$
\begin{equation*}
(n-p-2) \underset{(p+1)}{\xi_{a}}=(n-1) \psi^{2} \chi, a \underset{(p-1)}{\zeta} \tag{65}
\end{equation*}
$$

trom which, by means of the assumption (58), we get lastly the relation

$$
\underset{(p+1)}{\xi_{a}}=0
$$

6. The regularization of the system (II), (3). In this section we shall prove that $\zeta_{(\mathcal{D})}=0$. We get by (47), (55) the relation

$$
\begin{aligned}
& (n-p-2) \underset{(p)}{\boldsymbol{\zeta}}=\sum_{s=1}^{p} \underset{(s, p-s)}{K} \\
& -\frac{\psi}{2(n-1)} \sum_{s=0}^{p}\left\{n \underset{(s)^{\lambda}}{H^{\mu}} \underset{(p-s)^{\mu}}{H}+(n-2) \underset{(s)(p-s)}{H} \underset{\sim}{H}\right\} \\
& -3 \epsilon_{2 p} \psi^{5} \Delta_{1}(z) \text {, } \\
& +\frac{(n-p-2)}{2}(n-1) \quad \psi \sum_{s=0}^{p}\left(\underset{(s)(p-s)}{H}-\underset{\left(s s^{\lambda}\right.}{H_{(p-s}^{\mu}} \underset{(\underset{i}{\mu}}{H} \lambda\right)
\end{aligned}
$$

that is

$$
\begin{align*}
(n-p-2) \underset{(p)}{\zeta} & =\sum_{s=1}^{p} \underset{(s, p-s)}{K}-3 \epsilon_{2 p} \psi^{5} \Delta_{1}(z) \\
& -\frac{\psi}{2(n-1)} \sum_{s=0}^{p}\left\{(2 n-p-2) \underset{(s)^{\lambda}(p-s)^{\mu}}{H^{\mu}} \underset{(2}{H}+p \underset{(s,\langle p-s)}{H} \underset{\sim}{H}\right\} \tag{66}
\end{align*}
$$

On the other hand, by (55) and the assumption (58), we have tor $\mathrm{s}=2,3, \ldots, p$

$$
\begin{aligned}
\frac{\partial}{\partial y} \underset{(s)}{H} & =\frac{\psi}{n-1} \sum_{t=0}^{s-1}\left\{\left(\frac{\partial}{\partial y} \underset{(t)^{\lambda}}{H^{\mu}}\right) \underset{(s-t-1)^{\mu}}{H}-\left(\frac{\partial}{\partial v} \underset{(t)}{H}\right) \underset{(s-t-1)}{H}\right\} \\
& -\frac{\psi^{3}}{2(n-1)}\left(z+y \frac{\partial z}{\partial y}\right) \sum_{t=0}^{s-1}\left(\underset{\left(t_{i}\right.}{H}{\underset{(s-t-1}{\mu} j^{\mu}}_{H^{\mu}}^{H}-\underset{(t)(s-t-1)}{H} \underset{\sim}{H}\right)
\end{aligned}
$$

hence we get the relation

$$
\begin{align*}
& \sum_{s=2}^{p} \underset{s}{K}=\frac{\psi}{n-1} \sum_{s=2}^{p} \sum_{t=0}^{s-1}\left(\underset{t, p-s^{\lambda}, \lambda}{K} \underset{(s-t-1)^{\mu}}{H}-\underset{(t, p-s)}{K} \underset{(s-t-1)}{H}\right) \\
& -\frac{\psi^{3} \tau}{2(n-1)} \sum_{t=0}^{p-1}\left(\underset{(t)^{\lambda}}{\left.H_{(p-t-1}^{\mu}\right)^{\mu}} \underset{(t)}{H}-\underset{(p-t-1)}{H}\right) \tag{67}\\
& -\frac{\psi^{3}}{2(n-1)} \frac{\partial z}{\partial \gamma} \sum_{t=0}^{p-2}\left(\underset{\left(t_{i}^{\lambda}, \lambda\right.}{H_{(p-t-2}^{\mu}} \underset{(t,(p-t-2)}{H}-\underset{\sim}{H}\right) .
\end{align*}
$$

In the next place, let us consider $\underset{(1, p-1)}{K}$. Making use of $\left(\mathrm{II}_{1}\right)$ and the assumption (58), we get

$$
\begin{aligned}
& g^{\lambda \mu}\left\{(\psi h)_{, \lambda \mu}-\left(\psi \mu h_{\lambda}^{\rho}\right)_{, \rho \mu}\right\} \\
& =g^{\lambda \mu}\left[\psi\left(h, \lambda-h_{\lambda, \rho}^{\rho}\right)-y \psi^{3}\left(z_{, \lambda} h-z_{, \rho} h_{\lambda}^{\rho}\right)\right]_{, \mu} \\
& =g^{\lambda \mu}\left[\psi\left\{\xi_{\lambda}-(n-1) \psi \tau, \lambda\right\}-y \psi^{3}\left(z, \lambda-z, h_{\lambda}\right)\right]_{, \mu} \\
& =g^{\lambda \mu}\left[\psi \sum_{j>0} y^{j} \xi_{(j)}^{\xi_{\lambda}}-(n-1) \psi^{2} z_{, \lambda}-y \psi^{3}\left(\chi_{, \lambda} h-z_{, \rho} h_{\lambda}^{\rho}\right)\right]_{, \mu} \\
& =g^{\lambda \mu}\left(\psi \sum_{j>p} f^{j} \begin{array}{c}
j \\
\xi_{\lambda} \\
(j)
\end{array}\right), \mu-(n-1) \psi^{2} \Delta_{2}(z)+2(n-1) y \psi^{4} \Delta_{1}(z) \\
& +3 y^{2} \psi^{5}\left(\Delta_{1}(z) h-z, \lambda z, \mu^{\lambda \mu}\right) \\
& -y \psi^{3}\left(\Delta_{2}(z) h-z, \lambda_{\mu} h^{\lambda \mu}\right) \\
& -v \psi^{3}\left(g^{\lambda \mu} z_{, \lambda} h_{, \mu}-z_{, \mu} h^{\mu \lambda}, \lambda\right) \text {. }
\end{aligned}
$$

Now, from (36'), (47') we get

$$
\begin{aligned}
\frac{\partial}{\partial y} \underset{(1)}{H}= & -\psi^{3}\left(z+y \frac{\partial z}{\partial y}\right)\left(\frac{R}{2(n-1)}-\frac{3 n}{2} \psi^{2} z^{2}\right) \\
& +\frac{\psi}{n-1}\left[\psi \psi_{\lambda}^{\mu} R_{\mu}^{\lambda}+g^{\lambda \mu}\left\{(\psi, \imath), \lambda_{\mu}-\left(\psi \cdot h_{\lambda}^{\rho}\right), \rho \mu\right\}\right] \\
& -n \psi^{3} z \frac{\partial z}{\partial y} .
\end{aligned}
$$

If we put the relation above irto the last equation, we get the relation

$$
\begin{aligned}
& \underset{(1, p-1)}{K}=\frac{\psi^{2}}{n-1} R_{\lambda}^{\mu} \underset{\left(p-1,{ }_{\mu}\right.}{H}{ }^{\lambda} \\
& +\frac{3}{n-1}\left(1-\epsilon_{2 p}\right) \psi^{6}\left(\Delta_{1}(₹) \underset{(p-3)}{H}-z, \lambda z_{, \mu} \underset{p-3}{\boldsymbol{H}^{\lambda \mu}}\right. \\
& -\frac{\psi^{4}}{n-1}\left(\Delta_{2}(z) \underset{(p-2)}{H}-z_{, \lambda \mu_{(p-2)}}^{H^{\lambda \mu}}\right) \\
& -\frac{\boldsymbol{\psi}^{4}}{n-1} g^{\lambda \mu} z_{, \lambda}\left(\underset{(p-2)}{H} ; \mu-\underset{\left(p-2, \mu^{\rho} ; \rho\right.}{H}\right) \\
& +\frac{1}{n-1}\left(1-\epsilon_{2 p}\right) \psi^{7}\left(\Delta_{1}(z) \frac{\partial}{\partial \psi} \underset{(p-3)}{H}-z, \lambda, z, \mu \frac{\partial}{\partial \psi} \underset{, p-3)}{H^{\lambda \mu}}\right) \\
& +\epsilon_{2 p}\left[-\psi^{2} \frac{\partial z}{\partial y}\left(\underset{(1)}{H}-n \psi^{3} z^{2}\right)+2 \psi^{5} \Delta_{1}(z)\right] .
\end{aligned}
$$

Cn the other hand, we get by (36), (36')

$$
\begin{aligned}
& \underset{n-1}{\psi^{2}} \mathrm{R}_{\lambda}^{\mu} \underset{(p-1}{H}{ }_{\mu}^{\lambda}=\frac{n-2}{n-1} \psi\left(\underset{(1)^{\lambda}}{H_{\mu}^{\mu}}\right.+\frac{\psi R}{2(n-1)(n-2)} \delta_{\lambda}^{\mu} \\
&\left.+\frac{1}{2} \psi^{3} z^{2} \delta_{\lambda}^{\mu}\right) \underset{(p-1)^{\mu}}{H} \\
&=\frac{n-2}{n-1} \psi_{(1)^{\lambda}}^{H_{(p-1}^{\mu}} \underset{\mu}{H}+\frac{\psi}{n-1}\left(\underset{(1)}{H}+\frac{n}{2} \psi^{3} z^{2}\right) \underset{(p-1)}{H} \\
&+\frac{n-2}{2(n-1)} \psi^{4} \tau_{(p-1)}^{2}
\end{aligned}
$$

Putting the relation into the left hand side of the above one for $\underset{(1, p-1)}{K}$ we have

$$
\begin{aligned}
& \underset{(1, p-1)}{K}=\frac{\psi^{\prime}}{n-1}\left\{(n-2) \underset{(1)^{\lambda}}{H_{(p-1)^{\mu}}^{\mu}} \underset{(9)}{\underset{(}{\lambda}} \underset{(p-1)}{H}\right\}+\psi^{4} z^{2} \underset{(p-1)}{H} \\
& +\frac{3}{n-1}\left(1-\epsilon_{2 p}\right) \psi^{6}\left(\Delta_{1}(z) \underset{(p-3)}{H}-\chi_{, \lambda} z_{, \mu} \underset{(p-3)}{H^{\lambda \mu}}\right) \\
& -\frac{\psi^{4}}{n-1}\left(\Delta_{2}(z) \underset{(p-2)}{H}-\chi, \lambda \mu \underset{(p-2)}{H^{\lambda \mu}}\right) \\
& -\frac{1}{n-1}\left(1-\epsilon_{25}\right) \psi^{7} g^{\lambda \mu} z_{, \lambda}\left(z_{, \mu} \frac{\partial}{\partial \psi} \underset{(p-3)}{H}-z_{, \nu} \frac{\partial}{\partial \psi^{\gamma}} \underset{(p-3)^{\mu}}{H}\right) \\
& +\epsilon_{2 \phi} \psi^{5} \Delta_{1}(Z) \\
& +\frac{1}{n-1}\left(1-\epsilon_{2 p}\right) \psi^{7}\left(\Delta_{1}(z) \frac{\partial}{\partial \psi^{n}} \underset{(p-3)}{H}-z_{, \lambda}^{n} z_{\mu} \frac{\partial}{\partial \psi^{n}} \underset{(p-3)}{H^{\lambda \mu}}\right) \\
& +\epsilon_{a p}\left\{-\psi^{2} \frac{\partial z}{\partial y}\left(\underset{(1)}{H}-n \psi^{3} z^{2}\right)+2 \psi^{5} \Delta_{1}(z)\right\},
\end{aligned}
$$

that is

$$
\begin{align*}
\underset{(1, p-1)}{K} & =\frac{\psi}{n-1}\left\{(n-2) \underset{(1)^{\lambda}}{\left.H_{(p-1}^{\mu}\right)^{\mu}} \underset{(1)(p-1)}{H}+\underset{(p-1)}{\boldsymbol{\mu}^{\mu}} \underset{(p)}{H}\right\}+\psi^{2} z^{2} \underset{(p-2)}{H} \\
& +\frac{3}{n-1} \psi^{6}\left(\Delta_{1}(z) \underset{(p-3)}{H}-z_{, \lambda} z_{, \mu} \underset{(p-3)}{H^{\lambda \mu}}\right) \\
& -\frac{\psi^{4}}{n-1}\left(\Delta_{2}(z) \underset{(p-2)}{H}-z_{, \lambda \mu}^{H^{\lambda \mu}}\right) \tag{68}
\end{align*}
$$

$$
+\epsilon_{2} \psi_{p}^{2}\left\{-\frac{\partial z}{\partial y}\left(\underset{(1)}{H}-n \psi^{3} z^{2}\right)+3 \psi \psi^{3} \Delta_{1}(z)\right\}
$$

In the computation above, we have assi med that $\underset{p-3 ; i}{H}=0$ for $p=$
Now, we start with the verification of $\zeta_{(2)}=0 .{ }^{p-3 ;}$ By means of (66), (68) and (43), we get the following relation :

$$
\begin{aligned}
& (n-4) \underset{(2)}{\zeta}=\underset{(1,1)}{K}+\underset{(2,0)}{K}-3 \psi^{5} \Delta_{1}(z) \\
& -\frac{1}{n-1} \sum_{s=0}^{2}\left\{(n-2) \underset{(s)^{\lambda}}{H_{(2-s)^{\mu}}^{\mu}} \underset{(s)(2-s)}{H}{ }^{\lambda} \underset{\sim}{H}\right\} \\
& =\frac{\psi}{n-1}\left\{(n-2) \underset{(1)^{\lambda}}{H_{(1)}^{\mu}} \underset{(1)}{H_{(1)}^{\lambda}}+\underset{(1)}{\underset{(}{H}}+\psi^{2} \tau^{2} \underset{(1)}{H}\right. \\
& -\frac{\boldsymbol{\psi}^{4}}{n-1}\left(\Delta_{2}(\underset{(0)}{H})-\chi_{, \lambda \mu} H_{(0)}^{H^{\lambda \mu}}\right) \\
& -\psi^{2} \frac{\partial z}{\partial y}\left(\underset{(1)}{H}-n \psi^{3} z^{2}\right)+3 \psi^{5} \Delta_{1}(z) \\
& +\psi^{2}\left(\begin{array}{l}
\partial z \\
\partial y
\end{array}-5 \psi^{2} z^{2}\right) \underset{(1)}{H}-\psi^{5} z^{\Delta} \Delta_{2}(z)-n \psi^{5} z^{2} \frac{\partial q}{\partial \gamma} \\
& -3 \psi^{5} \Delta_{1}(z) \\
& -\underset{n-1}{\psi} \sum_{s=0}^{2}\left\{(n-2) \underset{(s)^{\lambda}}{H_{(2-s)^{\mu}}^{\mu}} \underset{(1)}{\boldsymbol{H}}{ }_{(2-s)}^{\boldsymbol{H}} \underset{(2)}{H}\right\} \\
& =-4 \psi^{4} z^{2} \underset{(1)}{H}-\frac{2 \psi^{n}}{n-1}\left\{(n-2) \underset{(0)^{\lambda}}{H_{(2)^{\mu}}^{\mu}} \underset{(0)(2)}{H^{\lambda}}+\underset{(2)}{H}\right\} \\
& =-4 \psi^{4} z^{2} \underset{(1)}{H}+4 \psi^{2} \tau_{\text {(2) }}^{H} \\
& \left.=4 \psi^{2} ₹ \underset{(2)}{H}-\psi^{2} \approx \underset{(1)}{H}\right) .
\end{aligned}
$$

Hence, if $n-4 \neq 0$, we get by (42) the relation

$$
\underset{(2)}{\zeta}=0 .
$$

In the next place, if $p>2$, making use of (37), (40), (41) and (47'), we obtain the following relation

$$
\sum_{s=2}^{p} \sum_{t=0}^{s-1}\left(\underset{(t}{\left(p^{-1}\right)^{\lambda}} \underset{(s-t-1)^{\mu}}{\mu} \cdot \underset{(t, p-s)(s-t-1)}{H}\right)
$$

$$
\begin{aligned}
& =\sum_{m=0}^{p-2} \sum_{t=1}^{p-m-1}\left(\underset{(t, p-m-1-t)^{\lambda}(m)^{\mu}}{K}-\underset{(t, p-m-1-t)(m)}{K} H^{\lambda}\right) \\
& +\sum_{s=2}^{p}\left(\underset{(0, p-s)^{\lambda}}{K} \underset{(s-1)^{\mu}}{\mu}-\underset{(0, p-s)(s-1)}{K}\right) \\
& =\sum_{m=0}^{p-3} \underset{(m)^{\lambda}}{\boldsymbol{H}^{\mu}}\left[(n-p+m-1) \underset{(p-m)^{\mu}}{H^{\lambda}}+\psi \sum_{i=0}^{p-m-1}\left\{\underset{(i)(p-m-1-i)^{\mu}}{H}{ }^{\lambda}\right.\right. \\
& \left.\left.+\frac{1}{2(n-1)} \delta_{\mu}^{\lambda}\left(\underset{(i)^{\prime}}{H_{(p-m-1-i)^{\rho}}^{\rho}} \underset{(i)}{H} \underset{(p-m-1-i)}{H}\right)\right\}\right] \\
& -\sum_{m=0}^{p-3} \underset{(m)}{H}[(n-p+m-1) \underset{(p-m)}{H} \\
& \left.+\frac{\psi}{2(n-1)} \sum_{i=0}^{p-m-1}\left(n \underset{(i)^{\lambda}}{H_{(p-m-1-i)^{\mu}}^{\mu}} \underset{(n)}{H}+(n-2) \underset{(i)}{H} \underset{(p-m-1-i)}{H}\right)\right] \\
& +3 \psi^{5}\left(z_{, \lambda} z_{, \mu_{(p-3)}}^{H^{\lambda \mu}}-\Delta_{1}(z) \underset{(p-3)}{H}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{3 \psi^{2} z_{(1)}^{H}+\psi^{3}\left(\Delta_{2}(z)+n z \frac{\partial z}{\partial y}\right)\right\} \underset{(p-2)}{H} \\
& -(n-1) \psi^{3} z \frac{\partial z}{\partial y} \underset{(p-2)}{H}+(n-1)\left(\psi \frac{\partial z}{\partial y}-\psi^{3} z^{2}\right) \underset{(p-1)}{H} .
\end{aligned}
$$

By means of (67), (68) and the relation above, we get the following relation

$$
\begin{aligned}
& \sum_{s=1}^{p} \underset{(s, p-s)}{K}=\frac{\psi}{n-1}\left[\sum_{m=0}^{p-3}(n-p+m-1)\left(\underset{(m)^{\lambda}}{H_{(p-m)^{\mu}}^{\mu} \underset{(m)}{H}-\underset{(p-m)}{H}}\right)\right. \\
& +\psi \sum_{m=0}^{p-3} \sum_{i=0}^{p-m-1}\left\{\underset{(i)}{H} \underset{(m)^{\lambda}}{H_{(p-m-1-i)^{\mu}}^{\mu}} \underset{(\underset{\mu}{\lambda}}{ }\right. \\
& -\frac{1}{2} \underset{(m,}{H}\left({\underset{(i)^{\lambda}}{ }{ }^{\mu} \underset{(p-m-1-i)^{\mu}}{\boldsymbol{\mu}^{\lambda}}+\underset{(i)}{H} \underset{(p-m-1-i)}{H}}_{H}^{H}\right\} \\
& \left.+3 \psi^{5} \chi_{2, \lambda} z_{, \mu} \underset{(p-3)^{\mu}}{H^{\lambda}}-\Delta_{1}(z) \underset{(p-3)}{H}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+(n-1)\left(\psi \frac{\partial z}{\partial y}-\psi^{3} z^{2}\right) \underset{(p-1)}{H}\right] \\
& +\frac{\psi^{\prime}}{n-1}\left\{(n-2) \underset{(1)^{\lambda}}{H_{(p-2)^{\mu}}^{\mu}} \operatorname{H}^{\lambda}-\underset{(1)}{H} \underset{(p-2)}{H}\right\}+\psi^{4} z^{2} \underset{(p-1)}{H} \\
& +\frac{3}{n-1} \psi^{6}\left(\Delta_{1}(z) \underset{(p-3)}{H}-z_{, \lambda} z_{, \mu} \underset{(p-3)}{H^{\lambda \mu}}\right) \\
& -\frac{\psi^{4}}{n-1}\left(\Delta_{2}(z) \underset{(p-2)}{H}-z_{, \lambda \mu}^{(p-2)} \underset{\left(H^{\lambda \mu}\right)}{H^{\prime}}\right) \\
& -\frac{1}{2(n-1)} \psi^{3} z \sum_{t=0}^{p-1}\left(\underset{(t)^{\lambda}}{H^{\mu}} \underset{(p-t-1)^{\mu}}{H}-\underset{(t)}{\lambda} \underset{(p-t-1)}{H}\right) \\
& -\frac{1}{2(n-1)} \psi^{3} \frac{\partial z}{\partial y} \sum_{t=0}^{p-2}\left(\underset{(t)^{\lambda}}{H^{\mu}} \underset{(p-t-2)^{\mu}}{H}-\underset{(t)(p-t-2)}{H}\right) \\
& =\frac{\psi}{n-1}\left[\sum_{m=0}^{p-2}(n-p+m-1)\left(\underset{(m)^{\lambda}}{\boldsymbol{H}_{(p-m)^{\mu}}^{\mu}} \underset{(m)(p-m)}{H} \lambda \underset{\sim}{H}\right)\right. \\
& +\psi \sum_{m=0}^{p-3} \sum_{i=0}^{p-m-1}\left\{\underset{(i)}{H} \underset{(m)^{\lambda}}{H^{\mu}} \underset{(p-m-1-i)^{\mu}}{\boldsymbol{H}}\right. \\
& \left.-\frac{1}{2} \underset{(m)}{H}\left(\underset{(i)^{\lambda}}{H_{(p-m-1-i)^{\mu}}^{\mu}} \underset{(i)}{H} \underset{(p-m-1-i)}{H}\right)\right\} \\
& \left.-n\left(\underset{(2)^{\lambda}}{H_{(p-2)^{\mu}}^{\mu}} \underset{(2)}{H_{(p-2)}}{ }^{\lambda}-\underset{(1)}{H}\right)\right] \\
& +\frac{\psi^{\mu}-1}{n}\left\{(n-2) \underset{(1)^{\lambda}}{H_{(p-1)^{\mu}}^{\mu}}{ }^{\mu}{ }^{\lambda}+\underset{(1)}{H} \underset{(p-1)}{H}\right\} \\
& -\frac{1}{2(n-1)} \boldsymbol{y}^{3} ₹ \sum_{t=0}^{p-1}\left(\underset{(t)^{\lambda}}{\boldsymbol{H}^{\mu}} \underset{(p-t-1)^{\mu}}{H}{ }^{\lambda}-\underset{(t)}{H} \underset{(p-t-1)}{H}\right) \\
& +\psi^{2} \frac{\partial \chi}{\partial y}\left[\underset{(p-1)}{H}+\frac{\psi}{2(n-1)} \sum_{t-0}^{p-2}\left(\underset{(t)}{H} \underset{(p-t-2)}{H}-\underset{(t)^{\lambda}}{H_{(p-t-2)^{u}}^{\mu}} \underset{\sim}{\lambda}\right)\right] \text {. }
\end{aligned}
$$

On the other hand, we can see that

$$
\begin{aligned}
\sum_{m=0}^{p-3} & \sum_{i=0}^{p-m-1}\left(\underset{(i)}{H} \underset{(m)^{\lambda}}{H^{\mu}} \underset{(p-m-1-i)^{\mu}}{\lambda}-\frac{1}{2} \underset{(m))_{(i)^{\lambda}}^{H}}{H_{(p-m-1-i)}^{\mu}} \underset{(m)}{H_{\mu}^{\lambda}}\right) \\
& =\frac{1}{2} \sum_{m=0}^{p-1} \underset{(m)}{H} \sum_{i=0}^{p-m-1} \underset{(i)^{\lambda}{ }_{(p-m-i)^{\mu}}^{\mu}}{H}
\end{aligned}
$$

$$
\begin{aligned}
& -\underset{(0)}{H}\left(\underset{(p-2)^{\lambda}}{H_{(1)^{\mu}}^{\mu}} H_{(p-1)^{\lambda}}^{H_{(0)^{\mu}}^{\mu}}\right)-\underset{(1)(p-2)^{\lambda}}{H_{(0)}^{\mu}}{ }^{\mu} \\
& +\frac{1}{2}\left(\underset{(p-2)}{H} H_{(0)^{\lambda}}^{H_{(1)}^{\mu}} H^{\lambda}+\underset{(p-1)}{H} \underset{(0)^{\lambda}}{H^{\mu}} H_{(0)^{\mu}}^{H^{\mu}}+\underset{\left(p-2 ;(1)^{\lambda}\right.}{H} \underset{(0)^{\mu}}{H^{\mu}} H^{\lambda}\right) \\
& =\frac{1}{2} \sum_{m=0}^{p-1} \underset{(m)}{H} \sum_{i=0}^{p-m-1} \underset{(i)^{\lambda}}{H_{(p-m-1-i)^{\mu}}^{\mu}} \underset{(1)^{\lambda}}{H}+n \approx \underset{(p-2)^{\mu}}{H^{\mu}} \underset{(1)}{H} \\
& -\frac{n}{2} \operatorname{vr}^{2} z^{2} \underset{(p-1)}{H}
\end{aligned}
$$

Hence, making use of the relation $\underset{(\rho-2)}{\zeta}=0$, the relation above becomes

$$
\begin{aligned}
& \sum_{s=1}^{p} \underset{(s, p-s)}{K}=\frac{\psi}{n-1}\left[\sum_{m=0}^{p-2}(n-p+m-1)\left(\underset{(m)^{\lambda}}{H_{(p-m)^{\mu}}^{\mu}} \underset{(m)(p-m)}{H}\right)\right. \\
& +\frac{\psi}{2} \sum_{m=0}^{p-1} \underset{(m)}{H} \sum_{i=0}^{p-m-1}\left(\underset{(i)^{\lambda}}{H^{\mu}} \underset{(p-m-i-1)^{\lambda}}{H}-\underset{(i)}{H} \underset{(p-m-i-1)}{H}\right) \\
& +n \psi^{2} z_{(1)^{\lambda}}^{H_{(p-2)^{\mu}}^{\mu}} \underset{ }{H^{\lambda}}-\frac{n}{2} \psi^{3} z_{(p-1)}^{2} \\
& \left.-\frac{\psi}{2}\left(2 n \psi z_{(1)}^{H} \underset{(p-2)}{H}-n^{2} \psi^{2} \chi_{(p-1)}^{(}\right)-n\left(\underset{(2)^{\lambda}}{\underset{(p-2)^{\mu}}{\mu}} \underset{(2)}{H^{\lambda}}-\underset{(p-2)}{H} \underset{\sim}{H}\right)\right] \\
& +\frac{\psi}{n-1}\left\{(n-2) \underset{(1)^{\lambda}}{H_{(p-1)^{\mu}}^{\mu}} \underset{(1)}{H_{(p-1)}^{\lambda}} \underset{\sim}{H}\right\} \\
& -\frac{1}{2(n-1)} \psi^{3} z_{t=0}^{p-1}\left(\underset{(t)^{\lambda}}{H^{\mu}} \underset{(p-t-1)^{\mu}}{H}-\underset{(t)}{\lambda} \underset{(p-t-1)}{H}\right) \text {. }
\end{aligned}
$$

Furthermore, by means of (55) and the assumption (58), the relation becomes

$$
\begin{aligned}
& \sum_{s=1}^{p}{ }_{(s, p-s)}^{K}=\frac{\psi}{n-1}\left[\sum _ { m = 0 } ^ { p - 2 } (n - p + m - 1) \left(\underset{(m)^{\lambda}}{H_{(p-m)^{\mu}}^{\mu}} \underset{(m)(p-m)}{H^{\lambda}}-\underset{(n-1)}{H} \sum_{m=0}^{p-2} \underset{(m)(p-m)}{H}+\frac{\psi}{2} \underset{(p-1)}{H}\left(H_{(0)^{\lambda}}^{H} H_{(0)^{\mu}}^{\lambda}-\underset{(0)}{H} \underset{(0)}{H}\right)\right.\right. \\
& \quad+\left(n-\frac{1}{2}\left(n^{2}-n\right) \psi^{3} \chi_{(p-1)}^{2} \underset{(n-1)}{H}\right. \\
& \left.\quad+(n-2) \underset{(1)^{\lambda}}{H_{(p-1)^{\mu}}^{\mu}}{ }^{H}+\underset{(1)}{H} \underset{(1)}{H}\right]-\psi^{2} \chi_{(p)}^{H}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\psi}{n-1}\left[\left\{\sum_{m=0}^{p}(n-p+m-1)\left(\underset{(m)^{\lambda}}{H_{(p-m)^{\mu}}^{\mu}} \underset{(m)}{H_{(p-m)}^{x}}-\underset{(\underset{\sim}{x}}{H}\right)\right.\right. \\
& \left.-(n-2)\left(\underset{(p-1)^{\lambda}}{\underset{(1)^{\mu}}{H}} \underset{(p-1)}{\boldsymbol{H}^{\lambda}}-\underset{(1)}{H}\right)-(n-1)^{\varepsilon} \psi \approx \underset{(p)}{H}\right\} \\
& +(n-1)\left\{\sum_{m=0}^{p} \underset{(m)(p-m)}{H}-\underset{(p-1)}{H} \underset{(1)}{H}+n \psi \approx \underset{(p)}{H}\right\} \\
& \left.+(n-2) \underset{(1)^{\lambda}(p-1)^{\mu}}{H^{\mu}}+\underset{(1)}{H} \underset{(p-1)}{H}\right]-\psi^{2} Z_{(p)}^{H} \underset{(}{H}
\end{aligned}
$$

that is
(69) $\sum_{s=1}^{p} \underset{(s, p-s)}{K}=\frac{q}{n-1} \sum_{m=}^{p}\left\{(n-p+m-1) \underset{(m)^{\lambda}}{H_{(p-m)^{\mu}}^{\mu}} \underset{(p-m)}{H_{(m)}^{\lambda}} \underset{(p-m)}{H}\right\}$.

If we put $p-m=m^{\prime}$, the last relation is also represented as

$$
\sum_{s=1}^{p} \underset{(s, p-s)}{K}=\frac{\psi}{n-1} \sum_{m=0}^{p}\left\{(n-m-1) \underset{\left(^{m)^{\lambda}}\right.}{\boldsymbol{H}^{\mu}} \underset{(p-m)^{\mu}}{\underset{H}{\lambda}}+m \underset{(m)(p-m)}{H} \underset{H}{H}\right\},
$$

hence we obtain from the two relations the following one

Now, if we substitute (69') into (66), we obtain

$$
(n-p-2)_{(p)}=0
$$

accordingly, we get

$$
\underset{(p)}{\zeta}=0,
$$

since $n-p-2>0$ by. the assumption (58).
Thus we have proved that we obtain

$$
\underset{(p+1)}{\xi_{a}}=0, \zeta_{(p)}^{\zeta}=0
$$

from (58). Accordingly, we see that the following relations hold good:
(70)
7. The imbedding theorem. Owing to the result obtained in the previous sections, if we put

$$
\begin{equation*}
\boldsymbol{\xi}_{a}=y^{n \neq 1} \eta_{a}, \quad \zeta=y^{n-2} \boldsymbol{\tau}, \underset{(n-1, b}{H}{ }^{a}=H_{b}^{a}, \tag{71}
\end{equation*}
$$

we get by (51), (52), (54), (55) and (56)

$$
\begin{align*}
& \eta_{a} \equiv H_{, a} H_{a, \lambda}^{\lambda}-\psi^{3}\left(z_{, a} \frac{\partial}{\partial \psi_{(n-2)}} \underset{(n, \lambda}{H}-\partial_{\partial}^{\partial \psi_{r}} \underset{(n-2)^{a}}{H^{\lambda}}\right), \tag{72}\\
& \boldsymbol{\tau} \equiv H+\frac{\psi}{2(n-1)}\left[\sum_{s=0}^{n-2} \underset{(s)}{H} \underset{(n-2-s)}{H}-\underset{(s)^{\lambda}}{H_{(n-2-s)^{\mu}}^{\mu}} \underset{(\underset{\mu}{\lambda})}{H}\right. \\
& +\sum_{i=n-1}^{2 n-3} y^{i-n+2}\left\{2\left(\underset{(i-n+1)}{H} H-\underset{(i-n+1)^{\lambda}}{H} H_{j}^{\lambda}\right)\right. \\
& \left.+\sum_{s=i-n+2}^{n-2}\left(\underset{(s)}{H} \underset{(i-s)}{H}-\underset{(s)^{\lambda}}{H_{(i-s)^{\mu}}^{\mu}}\right)\right\} \\
& \left.+2 y^{n}\left(H H-H_{\lambda}^{\mu} H_{\mu}^{\lambda}\right)\right] \text {. }
\end{align*}
$$

Now, if we put (71) into (29) and (31), we obtain respectively the following relations :

$$
\begin{equation*}
-\frac{\partial}{\partial y} \eta_{a}=\psi h \eta_{a}-(n-1) \psi^{2} z_{, a} \tau \tag{29'}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial y} \tau=\left\{\psi h-\psi^{2}\left(z+y \frac{\partial z}{\partial y}\right)\right\} \tau \tag{31'}\\
& \quad+\frac{2}{n-1} y^{2} \psi^{4} g^{\lambda \mu} z_{, \lambda} \eta_{\mu}-\frac{1}{n-1} \nu \psi^{2} g^{\lambda \mu} \eta_{\lambda, \mu} .
\end{align*}
$$

We notice that these equations are linear with respect to η_{a}, τ and the coefficients of the terms on the right hand sides are regular with respect to y near $y=0$.

Thus, we see that the condition stated in sectlon 1 , § 3 in order that our problem can be solved is replaced by the following one. We can solve the system of differential equations for the unknown quantities $g_{a b}, H_{a b}$

$$
\begin{equation*}
\frac{\partial}{\partial y} g_{a b}=-2 \psi\left(\sum_{i=0}^{n-2} y^{i} H_{(i)}{ }_{a b}+y^{n-1} H_{a b}\right), \tag{1}
\end{equation*}
$$

($\left.\mathrm{I}_{2}{ }^{*}\right)$

$$
\begin{aligned}
& \frac{\partial}{\partial y} H_{a}^{b}=\frac{1}{y} L_{b}^{a}+\psi \sum_{s=0}^{n-1} y^{s}\left[-\sum_{\substack{i+j=s+n-1 \\
1 \leq i \leqq n-2}} K_{(i, j)^{b}}^{a}\right. \\
& \left.\quad+\sum_{\substack{i+j=++n-1 \\
0 \leqq i \leqq n-1}}\left\{\begin{array}{l}
(i) \\
(i) j^{b}
\end{array} H^{a}+\frac{1}{2(n-1)} \delta_{b}^{a}\left(\underset{\substack{(i)^{\lambda}(j)^{\mu}}}{H_{(i)}^{\mu}} H_{(j)}^{\lambda}-\underset{(i)}{H} \underset{(j)}{H}\right)\right\}\right]
\end{aligned}
$$

under the conditions

$\left(\mathrm{II}_{1}{ }^{*}\right)$	η_{a}	$=0$,
$\left(\mathrm{II}_{2}{ }^{*}\right)$	τ	$=0$,

and the initial conditions

$$
\left[g_{a b}(x, y)\right]_{y=0}=g_{a b}(x)
$$

where $\underset{(n-1)^{\mu}}{H^{\lambda}}=H_{\mu}^{\lambda}$.
Accordingly, by virtue of $\left(29^{\prime}\right)$ and $\left(31^{\prime}\right)$, we see that the condition above is reduced to the following condition: We can determine a tensor $H_{a b}(x)$ and a scalar $z(x, y)$ so that

$$
\left[H_{a b}(x, y)\right]_{y=0}=H_{a b}(x)
$$

and

$$
\eta_{a}=0, \quad \tau=0, \quad L_{b}^{a}=0, \text { for } y=0
$$

are satisfied.
On the other hand, L_{b}^{a} is function of $g^{\lambda \mu} ; \mathrm{R}_{\mu}^{\lambda} ; \mathrm{R}_{\mu, \rho_{1}:}^{\lambda} \ldots ; \mathrm{R}_{\mu, \rho_{1} \rho_{2} \ldots \rho_{n-2}}^{\lambda}$; $\psi ; ₹ ; \ldots ;\left(\frac{\partial^{k} \eta}{\partial y^{k}}\right)_{,_{1} \ldots f_{h}} ; \cdots(k+h \leqq n-2)$ as shown in (49). Hence, the conditions $\left[L_{b}^{a}(n, y)\right]_{y=0}=0$ may be regarded as equations of the given space V_{n} with unknown quantitities $\left[\left(\frac{\partial^{k}}{\partial y^{k}}\right)_{\rho_{1} \ldots \rho_{k}}\right]_{y=0}(k+h \supseteq n-2)$. We notice that ψ becomes 1 for $y=0$ by (4). If $\left[L_{b}^{a}(x, y)\right]_{y=0}$ can be solved with respect to $\left[\left(\frac{\partial^{k} \tau}{\partial y^{k}}\right)_{, p_{1} \cdots \rho_{h}}\right]_{y=0}$, we can easily see that the equations

$$
\begin{aligned}
& {\left[\eta_{a}\right]_{y=0}=H, a-H_{a, \lambda}^{\lambda}-\left[z_{, a} \frac{\partial}{\partial \psi^{r}} \underset{(n-2)}{H}-z_{, \lambda} \frac{\partial}{\partial y^{\prime} /} \underset{(n-2)^{a}}{\left.H_{y=0}^{\lambda}\right]}=0,\right.} \\
& {[\tau]_{y=0}=H+\frac{1}{2(n-1)}\left[\sum_{s=0}^{n-2}\left(\underset{(s)}{H} \underset{(n-2-s)}{H}-\underset{(s)^{\lambda}}{H} \underset{(n-2-s)^{\lambda}}{H}\right)\right]_{y=0}^{\mu}=0}
\end{aligned}
$$

are solvable with respect to H_{b}^{a}.
Consequently we obtain the following theorem :

Theorem 2. A necessary and sufficient condition that a given Riemannian space $V_{n}(n>2)$ with line element $d s^{2}=g_{\lambda \mu}(x) d x^{\lambda} d x^{\mu}$ can be imbedded in a space V_{n+1} as a bypersurfac: which is the image of a bypersphere invariant under the group of holonomy of the space with a normal conformal connexion corresponding to V_{n+1} is that the system of equations

$$
\begin{aligned}
& L_{a}^{b}\left(g^{\lambda \mu} ; R_{\mu}^{\lambda} ; \ldots, R_{\mu, \rho_{1} \ldots \rho_{n-2}}^{\lambda} ; \psi ; z ; \ldots ;\left(\frac{\partial^{k} \eta}{\partial y^{k}}\right)_{, \rho_{1} \ldots \rho} ; \ldots\right)=0 \\
&(k+h \leq i n-2, \psi=1)
\end{aligned}
$$

is solvable with respect to $z, \frac{\partial z}{\partial y}, \ldots, \frac{\partial^{n-2} z}{\partial y^{n-2}}$ regarding them as unknown $q u$ antities.

Remark. If a Riemannian space V_{n} can be imbedded in a V_{n+1} as stated above, we see from (32) that the relation

$$
h_{a b}=-\downarrow z g_{a b} .
$$

holds good on the hyperesurface \mathfrak{F}^{n}.
Hence, we see that if $Z(x, 0) \neq n, \mathfrak{F}_{i}$ is a totally umbilical bypersurface of V_{n+1} and if $z(x, 0)=0, \mathfrak{F}_{n}$ is a tatally geodesic bypersurface of V_{n+1}.
§4. The invariant hypersphere and an imbedding problem (Continued).

1. The imbedding problem for V_{2}. In the last paragraph we have excluded the case of two-dimensional Riemannsan space as an exception. We shall investigate this case, starting with the fundamental system of equations (I) and (II).

Let K be the Gaussian total curvature of a Riemannian space V_{2}, then we have

$$
\mathrm{R}_{b}^{a}=K \delta_{b}^{a}, \quad \mathrm{R}=2 K
$$

as is well-known. As in $\S 3$, if we put

$$
h_{b}^{a}=-\psi \chi \delta_{b}^{a}+y H_{b}^{a}
$$

and substitute it into $\left(\mathrm{I}_{2}\right)$, we get by means of

$$
\mathrm{R}_{b}^{a}-\frac{1}{2} \mathrm{R} \delta_{b}^{a}=0
$$

the following equation :

$$
\begin{aligned}
y \psi^{3} z & \frac{\partial z}{\partial y} \delta_{b}^{a}+y \frac{\partial}{\partial y} H_{b}^{a} \\
= & -y \psi^{3} g^{a \lambda} z_{, b \lambda}+3 y^{2} \psi^{5} g^{a \lambda} z_{b} z_{, \lambda} \\
& +y \psi\left\{{\left.\underset{(0)}{ } H_{b}^{a}+H \underset{(0)^{b}}{a}+\delta_{b}^{a}\left(\underset{(0)^{\lambda}}{H_{\mu}^{\mu}} H_{\mu}^{\lambda}-\underset{(0)}{H} H\right)\right\}}+y^{2} \psi\left\{H H_{b}^{a}+\frac{1}{2} \delta_{b}^{a}\left(H_{\lambda}^{\mu} H_{\lambda}^{\mu}-H H\right)\right\}\right. \\
= & -y \psi^{3} g^{a \lambda} z_{, b \lambda}+3 y^{2} \psi^{5} g^{a \lambda} z_{, b} z_{, \lambda} \\
& -2 y \psi^{2} z H_{b}^{a}+y^{2} \psi\left(H H_{b}^{a}-\delta_{b}^{a} \mid H_{\mu}^{\lambda}\right),
\end{aligned}
$$

that is
($\mathrm{I}_{2}{ }^{\prime \prime}$)

$$
\begin{aligned}
\frac{\partial}{\partial y} H_{b}^{a}= & -\psi^{3}\left(z \frac{\partial z}{\partial y} \delta_{b}^{a}+g^{a \lambda} z_{, b^{\lambda}}\right)-2 \psi^{2} z H_{b}^{a} \\
& +y \psi r\left(3 \psi^{4} g^{a \lambda} z_{b} z_{, \lambda}+H H_{b}^{a}-\delta_{b}^{a}\left|H_{\mu}^{\lambda}\right|\right)
\end{aligned}
$$

(I_{1}) becomes
($I_{1}{ }^{\prime \prime}$)

$$
\frac{\partial}{\partial y} g_{a b}=2 \psi\left(\psi \succsim g_{a b}-H_{a b}\right)
$$

Then, if we put $\xi_{a}=y \eta_{a},\left(\mathrm{II}_{1}\right)$ is replaced by
($\mathrm{II}_{1}{ }^{\prime \prime}$)

$$
\eta_{a} \equiv H_{, a}-H_{a, \lambda}^{\lambda}+\psi^{3} ₹ \tau_{, a}=0
$$

Regarding (II_{2}), we get the relation

$$
\begin{aligned}
& \zeta \equiv H+\frac{\psi}{2}\left\{(-2 \psi z+y H)^{2}\right. \\
&\left.\quad-\left(-\psi z \delta_{\lambda}^{\mu}+y H_{\lambda}^{\mu}\right)\left(-\psi \varangle \delta_{\mu}^{\lambda}+y H_{\mu}^{\lambda}\right)-\mathrm{R}\right\} \\
&= H+\frac{\psi}{2}\left\{2 \psi^{2} z^{2}-y \psi z H+y^{2}\left(H H-H_{\lambda}^{\mu} H_{\dot{\mu}}^{\lambda}\right)-\mathrm{R}\right\},
\end{aligned}
$$

hence we have
($\mathrm{II}_{2}{ }^{\prime \prime}$)

$$
\zeta \equiv H+\psi\left(\psi^{2} \tau^{2}-y^{\prime}\left|\tau z H+y^{2}\right| H_{\mu}^{\lambda} \mid-K\right)=0
$$

In the next place, (29) is replaced by

$$
\begin{equation*}
\frac{\partial}{\partial y} \eta_{a}=\psi(-2 \psi z+y H) \eta_{a}-\psi^{2} z, a \zeta \tag{29"}
\end{equation*}
$$

and (31) becomes by means of (26)

$$
\begin{aligned}
\frac{\partial}{\partial y} \zeta= & \left(-2 \psi^{2} z+y \psi H+\frac{\partial}{\partial y} \log \psi\right) \zeta \\
& -\psi g^{\lambda \mu}\left(-2 y^{2} \psi^{3} z, \lambda \eta+y \psi \eta_{\lambda, \mu}\right) \\
= & \left(-3 \psi^{2} z+y \psi H-y \psi^{2} \frac{\partial z}{\partial y}\right) \zeta+2 \psi^{2} \psi^{4} g^{\lambda \mu} z_{, \lambda} \eta_{\mu}-y \psi^{2} g^{\lambda \mu} \eta_{\lambda, \mu^{\prime}}
\end{aligned}
$$

that is

$$
\begin{align*}
\frac{\partial}{\partial y} \zeta & =\left(-3 \psi^{2} z+y \psi H-y \psi^{2} \frac{\partial \chi}{\partial y}\right) \zeta+2 y^{2} \psi^{4} g^{\lambda \mu} z_{, \lambda} \eta_{\mu} \\
& -y \psi^{2} g^{\lambda \mu} \eta_{\lambda, \mu} .
\end{align*}
$$

Hence, we see that if the quantities η_{a}, ζ calculated from a solution of ($\mathrm{I}_{1}{ }^{\prime \prime}$), ($\mathrm{I}_{2}{ }^{\prime \prime}$) satisfy the relations

$$
\eta_{a}=0, \quad \zeta=0
$$

at $y=0$, on account of $\left(29^{\prime \prime}\right)$ and $\left(31^{\prime \prime}\right)$, these relations also hold good for any y near zero. Now, ($\mathrm{II}^{\prime \prime}$) becomes at $y=0$

$$
\left\{\begin{array}{l}
H_{, a}-H_{a, \lambda}^{\lambda}+z z_{a}=0, \tag{75}\\
H+z^{2}-K=0 .
\end{array}\right.
$$

The last equations are clearly solvable with respect to H_{μ}^{λ}. Hereby $z(x, y)$ may be considered as an arbitrary given quantits. Thus, we get the following theorem;

Theorem 3. Any Riemannian space V_{2} can be imbedded in a Riemannian space V_{3} as a surface which is the image of a sphere invariant under the group of bolonomy of the space with a normal conformal connexion corresponding to the V_{3}. Then the surface is totally umbilical or totally geodesic and the principal curvature may be taken arbitraily.
2. Case $₹(x, y) \equiv 0 .{ }^{6} \quad$ In this section, we shall investigate especially the case such that $z(x, y) \equiv 0$ and point out an essential difference between even dimensional Riemannian spaces and odd dimensional ones through properties

[^2]of L_{b}^{a}.
Let us put $n>2, \chi(x, y) \equiv 0$ in the theory of $\S 3$. Then, we have $\psi \equiv 1$ by (4) and we get easily from (33), (36), (37), (40), (41), (42) and (43) the following relations:
\[

$$
\begin{aligned}
& \underset{(0)^{b}}{H^{a}}=0, \underset{(1)^{b}}{H^{a}}=\frac{1}{n-2}\left(\mathrm{R}_{b}^{a}-\frac{\mathrm{R}}{2(n-1)} \delta_{b}^{a}\right), \underset{(2)^{b}}{H^{a}}=0, \\
& \underset{(0, i)^{b}}{K^{a}}=0 \quad(i \geqq 0), \underset{(1,0)^{b}}{K}=0, \\
& \underset{(1,1)^{b}}{K}=\frac{1}{(n-2)^{2}}\left\{2 \mathrm{R}_{\lambda}^{a} \mathrm{R}_{b}^{\lambda}-\frac{1}{n-1} \mathrm{R} \mathrm{R}_{b}^{a}+\frac{1}{2(n-1)} g^{a \lambda} \mathrm{R}, \lambda b\right. \\
& \left.+g^{\lambda \mu} R^{a}{ }_{b, \lambda \mu}+\frac{1}{2} g^{a \lambda} R, b \lambda-g^{a \lambda} R_{b, \lambda \mu}^{\mu}-R^{a \lambda}{ }_{, b \lambda}\right\} \\
& -\frac{1}{(n-1)(n-2)^{2}} \delta_{b}^{a}\left\{\mathrm{R}_{\lambda}^{\mu} \mathrm{R}_{\mu}^{\lambda}-\frac{\mathrm{R}^{2}}{2(n-1)}-\mathrm{R}^{\lambda_{\mu}{ }_{\cdot \lambda \mu}}+\Delta_{2}(\mathrm{R})\right\}, \\
& \underset{(2, i)}{K}=0 \quad(i \geq 0) .
\end{aligned}
$$
\]

Then, making use of the relations above, we get from (44)

$$
\begin{aligned}
& \underset{(3)^{b}}{H^{a}}=\frac{1}{n-4}\left\{\underset{(1,1)^{b}}{K^{a}}+\underset{(1)(1)^{b}}{H} \underset{(n-1)}{H^{a}}-\frac{1}{2(n-1)} \delta_{b}^{a}\left(\underset{(1)^{\lambda}(1)^{\mu}}{H^{\mu}}{\underset{(1)}{\lambda}}_{\lambda}^{\underset{(1)}{(1)}} \underset{(1)}{H}\right)\right\} \\
& =\frac{1}{(n-2)^{2}(n-4)}\left\{2 \mathrm{R}_{b}^{\lambda} \mathrm{R}_{\lambda}^{a}-\frac{n}{2(n-1)} \mathrm{R} \mathrm{R}_{b}^{a}+g^{\lambda \mu} \mathrm{R}_{b, \lambda \mu}^{a}\right. \\
& \left.+\frac{n}{2(n-1)} g^{a \lambda} \mathrm{R}, \lambda b-g^{a \lambda} \mathrm{R}_{b, \lambda \mu}^{\mu}-\mathrm{R}^{a \lambda}, b \lambda\right\} \\
& -\frac{1}{2(n-1)(n-2)^{2}(n-4)} \delta_{b}^{a}\left\{3 \mathrm{R}_{\lambda}^{\mu} R_{\mu}^{\lambda}-\frac{3 n}{4(n-1)} \overline{R^{2}}+\Delta_{2}(\mathrm{R})\right\} .
\end{aligned}
$$

Now, we see from (45), (46) that $\underset{(i)^{b^{\prime}}}{H_{(s, j-s)^{b}}^{b}} \underset{\underset{a}{a}}{ }$ are determined successively as follows:

$$
\begin{aligned}
& \underset{(i)^{b}}{H^{a}}=\underset{(i)^{b}}{H^{a}}\left(g^{\lambda \mu}, \mathrm{R}_{\mu}^{\lambda} ; \ldots ; \mathrm{R}_{\mu, \rho_{1} \cdots \rho_{i-1}}^{\lambda}\right), \\
& \left.\underset{(s, j-s)^{b}}{K} \underset{(s, j-s)^{b}}{\boldsymbol{a}} \underset{\left(g^{\lambda \mu}, R_{\mu}^{\lambda} ; \cdots ; R_{\mu, \rho_{1} \cdots \rho_{j}}^{\lambda}\right)}{ }\right) \\
& (i=1,2, \ldots, n-2 ; j=1,2, \ldots, n-3 ; s=0,1,2, \ldots, j) \text {. }
\end{aligned}
$$

Furthermore, since (48) becomes

$$
\begin{aligned}
\frac{\partial}{\partial y} \underset{(s)^{b}}{H^{a}} & =\sum_{\lambda \leqq \mu} 2 h^{\lambda \mu}\left(\partial \underset{(s)^{b}}{H^{a}} / \partial g^{\lambda \mu}\right) \\
& +\sum_{0 \leqq \mu \mu \mu=1}\left(\partial \underset{(s)^{b}}{H_{b}^{a}} / \partial \mathrm{R}_{\mu, \rho_{1} \cdots \rho_{k}}^{\lambda}\right) \frac{\partial}{\partial y} \mathrm{R}_{\mu, \rho_{1} \cdots \rho_{k}}^{\lambda},
\end{aligned}
$$

where $\frac{\partial}{\partial y} R_{\mu, \rho_{1} \cdots \rho_{k}}^{\lambda}$ is a linear form of $h_{\nu}^{\tau} ; h_{\nu, \alpha_{1}}^{\tau} ; \cdots ; h_{\nu, \alpha_{1} \cdots \alpha_{h+2}}^{\tau}$ with coefficients which are polynomials of $g^{\tau \nu}, R_{\nu}^{\tau} ; \ldots ; R_{\nu, a_{1} \cdots \alpha_{k}}^{\tau}$, we see by induction that

$$
\underset{(2 i)^{b}}{H a}=0, \underset{(2 i, j)^{b}}{K_{i}}=0, \underset{(j, 2 i)^{b}}{K_{i}}=0 .
$$

Hence, if $n=a n$ is an odd number, we get by (49) the identity

$$
L_{b}^{a}\left(g^{\lambda \mu}, R_{\mu}^{\lambda} ; \ldots ; R_{\mu, \rho_{1} \cdots \rho_{n-2}}^{\lambda}\right)=0 .
$$

On the other hand, according to $\S 1$, we see that the point at infinity with respect to the natural frame at any point in the space with a normal conformal connexion corresponding to V_{n+1} whose group of holonomy fixes a real hypersphere is on the hypersphere if $z \equiv 0$.

Accordingly, we obtain from Theorem 2 the following theorem:
Theorem 4. For $n=2 m+1(m \geq 1)$ any Riemannian space V_{n} can be imbedded in a Riemannian space V_{n+1} as a bypersurface which is the image of a bypersphere \mathbb{S}_{n} invariant under the group of bolonomy of the space with a normal conformal connexion C_{n+1} corresponding to V_{n+1} so that the point at infinity with r spect to the natural frame at any point of C_{n+1} is always on \mathbb{S}_{n}.

Analogously, we get the following theorem:
Theorem 4'. For $n=2 m(m>1)$ Theorem 4 holds good if and only if

$$
L_{b}^{a}\left(g^{\lambda \mu}, \mathrm{R}_{\mu}^{\lambda} ; \ldots ; \mathrm{R}_{\mu, \rho_{1} \cdots \rho_{n-2}}^{\lambda}\right)=0
$$

3. \mathbf{L}_{b}^{a}. We have seen in the previous arguments that the tensor L_{b}^{a} plays an important rôle for our problem. However, it is generally difficult to represent explicitly the components of the tensor by means of $g^{\lambda \mu}, R_{\mu}^{\lambda}, \psi, z$. In this section, we shall calculate the components of L_{b}^{a} for $n=3,4$ and should like to imagine the general case from these examples.
i) Case $n=3$. We get from (49)

$$
\begin{aligned}
L_{b}^{a}= & -\underset{(1,0)^{b}}{K}-₹ \frac{\partial \chi}{\partial y} \delta_{b}^{a}-g^{a \lambda} \chi_{, b^{\lambda}} \\
& +\psi\left\{\underset{(0)(1)^{b}}{H} H_{(1)}^{a}+\underset{(0)^{b}}{H} H^{a}+\frac{1}{2} \delta^{a}\left(\underset{(0)^{\lambda}}{H_{(1)^{\mu}}^{\mu}} H_{(0)}^{\lambda}-\underset{(1)}{H} \underset{(1)}{H}\right)\right.
\end{aligned}
$$

which is reduced by (33), (36) and (40) to

$$
\begin{aligned}
L_{b}^{a}= & 3 \psi^{2} \tau_{(1)}^{H} H^{a}+\psi^{3}\left(g^{a \lambda} z_{, \lambda b}+z^{\partial z} \frac{\partial y}{\partial y} \delta_{b}^{a}\right) \\
& -z \frac{\partial z}{\partial y} \delta_{b}^{a}-g^{a \lambda} \tau_{, b \lambda}-3 \psi^{2} \chi_{(1)} H_{b}^{a}=0 .
\end{aligned}
$$

Accordingly, we get the following theorem.
Theorem 5. For any Riemannian space V_{3} the tensor L_{b}^{a} vanishes for any $\underset{\text { F }}{ }$.
ii) Case $n=4$. We get from (36)

$$
\begin{aligned}
& \underset{(1)^{b}}{H^{a}}=\frac{\psi}{2}\left\{\mathrm{R}_{b}^{a}-\left(\frac{\mathrm{R}}{6}+\psi^{2} \tau^{2}\right) \delta_{a}^{b}\right\}, \\
& \underset{(1)}{H}=\frac{1}{6} \psi \mathrm{R}-2 \psi^{3} \tau^{2} .
\end{aligned}
$$

Then, we get by means of (41), (42), (43) and (49) the relation

$$
\begin{aligned}
& L_{b}^{a}=-\underset{(1,1)^{b}}{K}-\underset{(2,0)^{b}}{K^{a}}+3 \boldsymbol{\psi}^{5} g^{a \lambda} Z_{, \lambda} \chi_{, h} \\
& +\Psi\left\{\underset{(0)}{\underset{(0)}{H} \underset{(2)^{b}}{H^{a}}+\underset{(2)(0)^{b}}{H} H_{(1)}^{a}+\underset{(1)^{b}}{H} H^{a}+\frac{1}{3} \delta_{b}^{a}\left(\underset{(0)^{\lambda}}{H_{(2)^{\mu}}^{\mu}} \underset{(0)(2)}{H^{\lambda}}-\underset{(2)}{H}\right)}\right. \\
& \left.+\frac{1}{6} \delta_{b}^{a}\left(\underset{(1)^{\lambda}}{H_{(1)}^{\mu}} \underset{(1)}{H^{\lambda}}-\underset{(1)}{H} \underset{(1)}{H}\right)\right\} \\
& =-\psi^{2}\left(\underset{(1)^{\lambda}}{{\underset{H}{c}}_{a}^{a}} \mathrm{R}_{b}^{\lambda}-\frac{1}{6} \delta_{b}^{a} \underset{(1)^{\lambda}}{\underset{\mu}{\mu}} R_{\mu}^{\lambda}\right) \\
& -2 \psi^{5} g^{a \lambda}\left(z \chi, \lambda b+2 \chi, \lambda z_{, b}\right) \\
& +\frac{y^{2}}{2}\left\{g^{a \mu} \underset{(1)^{b ; \mu \lambda}}{H} I_{(1)}^{\lambda}+\underset{\sim}{a \lambda}-\underset{(1)^{b ; \lambda \mu}}{H^{\lambda}}\right. \\
& \left.-g^{a \lambda} H ; b \lambda+\frac{1}{3} \delta_{b}^{a}\left(g^{\lambda \mu} \underset{(1) ; \lambda \mu}{H}-\underset{(1)}{H^{\lambda \mu} ; \lambda \mu}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\psi^{3}}{2} \frac{\partial_{Z}}{\partial y}\left(\mathrm{R}_{b}^{a}-\frac{\mathrm{R}}{6} \delta_{b}^{a}-3 \psi^{2} z^{2} \delta_{b}^{a}\right) \\
& -\psi^{2}\left(\frac{\partial z}{\partial y}-5 \psi^{2} z^{2}\right) \underset{(1)^{b}}{H^{a}}+\psi^{5} \tau\left(g^{a \lambda} z_{, \lambda b}+z \frac{\partial z}{\partial y} \delta_{b}^{a}\right) \\
& +2 \boldsymbol{\psi}^{5} g^{a \lambda} z, \lambda z_{, b} \\
& -4 \psi^{4} z^{2} \underset{(1)^{b}}{H^{a}}-\psi^{4} z^{2} \underset{(1)}{H} \delta_{b}^{a}+\psi \underset{(1)}{H} H_{(1)}^{a}+\psi^{4} z_{(1)}^{2} \underset{(1)}{H} \delta_{b}^{a} \\
& +\frac{\psi}{6} \delta_{b}^{a}\left(\underset{(1)^{\lambda}}{H_{(1)}^{\mu}}{ }^{\mu} H^{\lambda}-\underset{(1,(1)}{H} \underset{i}{i}\right) \\
& =-\frac{\psi^{3}}{2}\left\{\mathrm{R}_{\lambda}^{a} \mathrm{R}_{b}^{\lambda}-\left(\frac{\mathrm{R}}{6}+\psi^{2} z^{2}\right) \mathrm{R}_{b}^{a}\right\} \\
& +\frac{\psi^{3}}{12} \delta_{b}^{a}\left\{R_{\lambda}^{\mu} R_{\mu}^{\lambda}-\left(\frac{R}{6}+\psi^{2} z^{\lambda}\right) R\right\}-\psi^{5} g^{a \lambda}\left(z z_{, \lambda b}+z, \lambda \cdot z_{, b}\right) \\
& +\frac{\psi^{3}}{2}\left[\frac{1}{2} g^{a \mu}\left(R_{b, \mu \lambda}^{\lambda}-\frac{1}{6} R, \mu b\right)-\psi^{2} g^{a \mu}\left(z z_{, \mu b}+z_{, \mu} z_{, b}\right)\right. \\
& +\frac{1}{2} g^{a \mu}\left(R_{\mu, b \lambda}^{\lambda}-\frac{1}{6} R, b, \mu\right)-\psi^{2} g^{a \mu}\left(z z_{, b} \mu+z_{, b} z_{, \mu}\right) \\
& \left.-\frac{1}{2} g^{\lambda \mu} \mathrm{R}_{b, \lambda \mu}^{a}-\frac{1}{6} \delta_{b}^{a} \mathrm{R}, \lambda \mu\right)+\psi^{2} \delta_{b}^{a}\left(₹ \Delta_{2}(z)+\Delta_{1}(z)\right) \\
& -\frac{1}{6} g^{a \lambda} R_{, b \lambda}+4 \psi^{2} g^{a \mu}\left(z z_{, b \mu}+z_{, \mu} z_{, b}\right) \\
& +\frac{1}{3} \delta_{b}^{a}\left\{\frac{1}{6} \Delta_{2}(R)--4 \psi^{2}\left(z \Delta_{2}(z)+\Delta_{1}(z)-\frac{1}{2} R^{\lambda \mu}{ }_{, \lambda \mu}\right.\right. \\
& \left.\left.+\frac{1}{12} \Delta_{2}(\mathrm{R})+\psi^{2} z\left(\Delta_{2}(z)+\Delta_{1}(z)\right)\right\}\right] \\
& +\frac{1}{2} \psi^{5} z^{2}\left\{\mathrm{R}_{b}^{a}-\left(\frac{\mathrm{R}}{6}+\psi^{2} \chi^{2}\right) \delta_{b}^{a}\right\} \\
& +\frac{\psi^{3}}{2}\left\{\left(\mathrm{R}_{b}^{a}-\frac{\mathrm{R}}{6} \delta_{b}^{a}\right) \frac{\mathrm{R}}{6}-\psi^{2} z^{2}\left(-\frac{\mathrm{R}}{b} \delta_{b}^{a}+2 \mathrm{R}_{b}^{a}\right)+2 \psi^{4} z^{4} \delta_{b}^{a}\right\} \\
& +\frac{\psi^{3}}{6} \delta_{b}^{a}\left\{\frac{1}{4}\left(\mathrm{R}_{\lambda}^{\mu}-\frac{\mathrm{R}}{6} \delta_{\lambda}^{\mu}\right)\left(\mathrm{R}_{\mu}^{\lambda}-\frac{\mathrm{R}}{6} \delta_{\mu}^{\lambda}\right)-\frac{1}{6} \psi^{2} z^{2} \mathrm{R}\right. \\
& \left.+\psi^{4} z^{4}-\frac{R^{2}}{36}+\frac{2}{3} \psi^{2} z^{2} R-4 \psi^{4} z^{4}\right\},
\end{aligned}
$$

that is

$$
\begin{align*}
L_{b}^{a}= & -\psi^{3}\left[\frac{1}{2} R_{b}^{\lambda} R_{\lambda}^{a}-\frac{1}{6} \mathrm{R}_{b}^{a}+\frac{1}{4} g^{\lambda \mu} R_{b, \lambda \mu}^{a}\right. \\
& +\frac{1}{6} g^{a \lambda} \mathrm{R}, \lambda b-\frac{1}{4} g^{a \lambda} \mathrm{R}_{b, \lambda \mu}^{\mu}-\frac{1}{4} \mathrm{R}^{a \lambda, b \lambda} \tag{76}\\
& \left.-\frac{1}{24} \delta_{b}^{a}\left(3 \mathrm{R}_{\lambda}^{\mu} \mathrm{R}_{\mu}^{\lambda}-\mathrm{R}^{2}+\Delta_{2}(\mathrm{R})\right)\right]
\end{align*}
$$

From the relation above we get the following theorem:
Theorem 6. Whetber we can imbed a given Riemannian space V_{4} in a $\mathrm{R} i$ emann space V_{5} as a bypersurface in the sense stated in Theorem 2 without regard to z, or it is entirely impossible.
§ 5. An application. 1. The invariant hypersphere and the Campbell's theorem.

The space V_{n+1} in Theorem 2 is conformal with an Einstein space with a negative scalar curvature. ${ }^{7 \text {) }}$ We shall investigate in the last paragraph the proble n to imbed a given Riemannian space V_{n} in an Einstein space A_{n+1} as a hypersurface in the sense stated in Theorem 2.

Making use of (16), (17) and (18), we can prove that any Riemannicn space V_{n} with line element

$$
d s^{2}=g_{\lambda \mu}(x) d x^{\lambda} d x^{\mu}
$$

can be imbedded in an Einstein space A_{n+1} with a given scalar curvature $(n+1) k$ as a bypersurface and if the line element of A_{n+1} is $d s^{2}=g_{\lambda \mu}(x, y) d x^{\lambda} d x^{\mu}+$ $(\psi(x y) d y)^{2}\left(g_{\lambda_{\mu}}(x, 0)=g_{\lambda_{\mu}}(x)\right)$, the following equations hold good

$$
\begin{equation*}
\frac{\partial}{\partial y} g_{a b}=-2 \psi h_{a b} \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial y} h_{a b}=k \psi g_{a b}+\psi\left(Q_{a b}-h_{a}^{\lambda} h_{b \lambda}\right)+\psi_{a b}, \tag{III}
\end{equation*}
$$

$$
\begin{equation*}
V_{a} \equiv h_{a}-h_{a, \lambda}^{a}=0 \tag{IV}
\end{equation*}
$$

$$
\begin{equation*}
(n-1) k+h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}-\mathrm{R}=(n-1) k+Q=0 \tag{V}
\end{equation*}
$$

7) See [I], no. 1.
where $Q_{a b}=h h_{a b}-h_{a}^{\lambda} h_{b \lambda}-R_{a b}$ and the meanings of notations are similar to those in §3. This is a generalization of the Camphell's theørem. ${ }^{8)}$

Now, (I_{2}) can be written as

$$
\begin{aligned}
-\frac{\partial}{\partial y} h_{a b} & =\frac{n-1}{y}\left(h_{a b}+\psi Z g_{a b}\right)+\psi\left(Q_{a b}-h_{a}^{\lambda} h_{b^{\lambda}}\right) \\
& -\frac{\psi Q}{2(n-1)} g_{a b}+\psi, a b-\psi \frac{\partial z}{\partial y} g_{a b} .
\end{aligned}
$$

Comparing the right hand side of the relation above with the one (III), we get the relation

$$
\frac{n-1}{y}\left(h_{a b}+\psi ₹ g_{a b}\right)=\psi g_{a b}\left(\frac{\partial z}{\partial y}+k+\frac{Q}{2(n-1)}\right)
$$

that is

$$
\begin{equation*}
h_{a b}=\psi g_{a b}\left\{-z+\frac{y}{n-1}\left(\frac{\partial z}{\partial y}+k+\frac{Q}{2(n-1)}\right)\right\} \tag{77}
\end{equation*}
$$

Then, from (II_{1}) and (IV) we get

$$
z_{, a}=0 .
$$

Hence, we see that $₹$ must be a function dependent only on y. By virtue of (4), ψ is also so. Putting (V) into $\left(\mathrm{II}_{2}\right)$, we get

$$
\begin{equation*}
\frac{1}{y}(h+n \psi z)-\frac{k}{2} \psi=0 \tag{78}
\end{equation*}
$$

Putting (V) into (77), we get

$$
h_{a b}=\psi g_{a b}\left\{-z+\frac{y}{n-1}\left(\frac{\partial z}{\partial y}+\frac{k}{2}\right)\right\}
$$

hence we get

$$
h=n \psi\left\{-z+\frac{y}{n-1}\left(\frac{\partial z}{\partial y}+\frac{k}{2}\right)\right\}
$$

From the relation and (78), we obtain
8) [I], no. 12 or J.E. Campbell, A course of differential geometry, (1926).

$$
\frac{n}{n-1}\left(\frac{\partial \tau}{\partial v}+\frac{k}{2}\right)-\frac{k}{2}=0
$$

that is

$$
\frac{\partial z}{\partial y}=-\frac{k}{? n}
$$

Hence, by integration, we get

$$
\begin{equation*}
z=\alpha-\frac{k}{? n} y \quad(\alpha=\text { constant }) \tag{79}
\end{equation*}
$$

Then, since we have

$$
-z+\frac{y}{n-1}\left(\frac{\partial z}{\partial y}+\frac{k}{2}\right)=-\alpha+\frac{k}{2} y
$$

(77) can be replaced by

$$
\begin{equation*}
h_{a b}=\psi\left(-\alpha+\frac{k}{n} y\right) g_{a b} . \tag{80}
\end{equation*}
$$

Now by (4) and (79), ψ becomes

$$
\begin{equation*}
\psi^{2}=\frac{1}{1+? y z}=\frac{1}{1+2 \alpha y-\frac{k}{n} y^{2}} . \tag{81}
\end{equation*}
$$

Since we have

$$
(n-1) k+h^{2}-h_{\lambda}^{\mu} h_{\mu}^{\lambda}=(n-1)\left(k+n \alpha^{2}\right) \not h^{2}
$$

(V) can be written as

$$
\begin{equation*}
(n-1)\left(k+n \alpha^{3}\right) \psi^{2}--\mathrm{R}=0 \tag{82}
\end{equation*}
$$

Conversely, if we have (79), (80) and (82), then $\left(\mathrm{II}_{1}\right)\left(\mathrm{II}_{2}\right)(\mathrm{IV})$ and (V) are clearly satisfied.

Lastly, if we put (80) into (III), since we get from both sides the relations

$$
\begin{aligned}
\frac{\partial}{\partial y} h_{a b} & =-2 \psi^{2}\left(-\alpha+\frac{k}{n} y\right) h_{a b}+\left\{\frac{\partial \psi}{\partial y}\left(-\alpha+\frac{k}{n} y\right)+\psi \frac{k}{n}\right\} g_{a b} \\
& =\psi\left\{-2 \psi^{2}\left(-\alpha+\frac{k}{n} y\right)^{2}+\left(-\alpha+\frac{k}{n} y\right) \frac{\partial}{\partial y} \log \psi+\frac{k}{n}\right\} g_{a b} .
\end{aligned}
$$

$$
\begin{aligned}
k \psi g_{a b}+ & \psi\left(h h_{a b}-2 h_{a}^{\lambda} h_{b \lambda}-R_{a b}\right)+\psi, a b \\
& \left.=\psi k g_{a b}+\psi^{3}-\alpha+\frac{k}{n} y\right)^{2}(n-2) g_{a b}-\psi R_{a b},
\end{aligned}
$$

we have

$$
\begin{gathered}
\left\{-\left(-\alpha+\frac{k}{n} y\right)-\frac{\partial}{\partial y} \log \psi+\frac{n-1}{n} k+n \psi^{2}\left(-\alpha+\frac{k}{n} v\right)^{2}\right\} g_{a b} \\
-R_{a \dot{b}}=0,
\end{gathered}
$$

that is

$$
\begin{equation*}
\xi_{a b} \equiv \frac{n-1}{n}\left(\kappa+n \alpha^{2}\right) \psi^{2} g_{a b}-\mathrm{R}_{a b}=0 . \tag{83}
\end{equation*}
$$

Thus, we see that a necessary and sufficient condition that a given Riemannian space V_{n} with lin? element $d s^{2}=g_{\lambda \mu}(x) d x^{\lambda} d x^{*}$ can be imberded in an Einstein ipace with the scalar curvature $(n+1) k$ as a bypersurface in the sense stated in the beginning is as follons : the differential equations

$$
\begin{equation*}
\frac{\partial}{\partial y} g_{a b}=-\frac{2\left(-\alpha+\frac{k}{n} y\right)}{1+2 \alpha y-\frac{k}{n} y^{2}} g_{a b} \tag{VI}
\end{equation*}
$$

are solvable under the conditions
(VII)

$$
\xi_{a b} \equiv \frac{(n-1)\left(k+n \alpha^{2}\right)}{n+2 n \alpha y-k y^{2}} g_{a b}-\mathrm{R}_{a b}=0
$$

and the initial conditions

$$
\left\lceil g_{a b}(x, y)\right\rceil_{y=0}=g_{a b}(x) .
$$

2. Solutions of (VI), (VII).

For any solutions of (VI), let us calculate the quantities $\xi_{a b}$. Then, we get easily from (39) the relation

$$
\frac{\partial}{\partial y} R_{a}^{b}=2 v h_{\lambda}^{a} R_{b}^{\lambda}=2 \psi^{2}\left(-\alpha+\frac{k}{n} v\right) R_{b}^{a}
$$

and

$$
\frac{\partial}{\partial y} \frac{1}{n+2 n \alpha y-k y^{2}}=2 y^{2}\left(-\alpha+\frac{k}{n}\right) \frac{1}{n+2 n \alpha y-k y y^{2}} .
$$

Accordingly, we have

$$
\begin{equation*}
\frac{\partial}{\partial y} \xi_{b}^{a}=2 \psi^{2}\left(--\alpha+\frac{\mathfrak{k}}{n}\right) \xi_{b .}^{a} \tag{84}
\end{equation*}
$$

Hence, we see that if $\xi_{b}^{a}=0$ at $\gamma=0, \xi_{b}^{a}$ vanishes near $y=0$. Accordingly, at $\gamma=0$ it must be

$$
\mathrm{R}_{a b}=\frac{n-1}{n}\left(k_{1}+n \alpha^{2}\right) g_{a b} .
$$

The last relation showes that V_{n} must be an Enstein space $A_{n}(n>2)$ or a surface with a constant curvature.

Thus, we obtain the following theorem:
Theosem 7. A necessary and sufficient condition that a giren Riemannicn space V_{i} can be imbedded in an Einstein space A_{n+i} as a bypersurface which is the image of a bypersphere invariant under the group of bolonomy of the space with a normal conformal connexion corresponding to A_{n+i} is that V_{n} is an Einstein space $(n>2)$ or a surface with a constant curvature.

Orayama University.

[^0]: *) Received October 10, 1950.

 1) Tominosuke Otsuki, On the spaces with normal conformal connexions and some imbedding problem of Riemannian spaces, I, Tihoku Math. Jour., 2nd. S., Vol. 1, No. 2, 1950, ep. 194-224. We shall refer this paepa by [I] in the presen ${ }_{\dot{q}}$ paper.
[^1]: 5) Schouten-Struik, Einf hrung in die neuren ... Methoden der Differentialgeometrie, II,
[^2]: 6) See $[\mathrm{I}]$.
