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PROBLEM OF RIEMANNIAN SPACES, II*>

BY
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In the previous paper1) we have studied the sμaces with normal conformal
connexions whose groups of holonomy ήx a point or a hypersphere. The
main results that we have obtained are as follows :

(1) If the group of holonomy of an (n + I)-dimensional space Cn±i with
a normal conformal connexion fixes a hypersphere ®,t, the d-ι-i is a space
with a normal conformal connexion corresponding to the class of Riemannian
spaces conformal to each other including an Einstein space with a negative,
vanishing or positive scalar curvature according as the (Bn is real, point or
imaginary. The converse is also true.

(2) For n = 2m + 1 {m ̂  1) and 2 any Riemannian space Vn, and for
n = ?m(f?2 ^ 2 ) any Riemannian space J/n satisfying the condition hv

λ = 0 can
be imbedded in a Riemannian space Vn+i conformal with some Einstein space
as a hypersurface which is the image of a hypersphere ©n invariant under the
group of holonomy of the space C»-f-i with the normal conformal connexion
associated with this Vn\\.

But the meaning of the immersion of a given Riemannian space Vn in a
J/VH as a hypersurface of it as stated above is that at each point P of 1/n+i, the
invariant hypersphere (Bn in the tangent Mobius space Afnfi(P) at P under
the group of holonomy of Cn+i contain the point at infinity in Άίnfi(P)
(with respect to the natural frame of Cw+i), and the image of <E>,. in Vn\-\ is
the set of points P such that P as a point in Άίn\-ι{P) is contained in ©„„

In the present paper, we shall investigate the same problem to imbed a
given Riemannian space V Λ in an Vn+ι as stated above without the restriction
such that &n contains the point at infinity in the tan gent Mb'bius space Mn-yi (P)
at each point P of Vn±i, in other words, without any restriction with respect
to the scalary° (in the previous paper, no. 1, 2)-

*) Received October 10, 1950.
1) Tominosuke Otsuki, On the spaces with normal conforma! connexions and some im-

bedding problem of Riemannian spaces, I, TChoku Math. Jour., 2nd. S., Vol. 1, No. 2,
1950, pp. 194-224. We shall refer this paepj by [Ij in the present paper.
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We shall use the same notations as those in Part I for the geometrical
objects with some exceptions.

§,1. The space with a normal conformal connexion whose group of
holonomy fixes a real hypersphere*

Let there be given an ^-dimensional space with a normal conformal con-
nexion C». If we take normal frames R* : (At, A*, AZ)2) composed of the
hyperspheres such that

AlA*~A\Al « 0, A*0Al = - 1, A* A* = &i

(/,/ = l , 2 , . . . , nf\

where δ# is the Kronecker's δ, the connexion of the space is given by the

following equations:

dA* = ωη A*o + ω * A\ + ω M l ,

dAl = ω*° A* - ω*°Q Al,

ω J. -\- co . = u,

where α>*°, ω**, ω**, rô 0 are Pfaffian forms. Suppose that the group of ho-

lo omy of Cn &x^s a real hypersphere ©M-i. If we express it by X = xVί*

+ x*y4* + ΛΓ00yll with respect to the normal frame R* (A*Q, A°, Al) in the

tangent Mόbius space Mn{P) {P = A*Q) at each point P of C», then dX = zrX,

where TΓ is a Pfaffian form. Since wτe have

dX = (iλ° + x" o/g + Λr* ω*°) A*o

the system of Pfaffian equations

dx° + ΛΓ° ω*J + xk ω*l dx{ + x° ωH

X

must be integrable- The converse is also true. Since XP = X/1J = — x00,

the hypersurface f?w -1 of the image of ΘM-i in C;ί, that is, the locus of points

2) E. Cartan, Les espaces a, connexion conforme, Ann. Soc. Pol. Math., 2 (1923), pp.
171-221.

3) In §§ 1-2, we assume that indices take the following values.
i, j , k, h, . . . = 1, 2, . ., n,
a, b, c, . . . , λ, μf . . . s= 1, 2, . . ., n-\.
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P which are on € w is given by χm = 0. As ΘM+i is real, XX = χ*χ* - 2χ°χa>

> 0. Accordingly, on fyM-i we have χi χ{ > 0. Hence, in a coordinate neighbor-
hood of each point on $M-i, we may assume that χn =t= 0. Now, if we put

xn

we can choose frames such that

by virtue of the equations of structure of CH

4). Then, f andjΛ become
scalars and satisfy the following relations

( 1 ) W 4- ω*» - Γ ( y ω*« + j r o ω*°) - 0,

§ 2. The image of the invariant hypersphere.

1. g?n-i and natural frames (Veblen's frames). From (1) we get

f / ω*" - (1 - / y ) ω J = ^,o,

hence we get

~" ~ 1 - 2ff
= - dy" +j" //log(I - 2ff)*,

"ίl -f

- - ^y0 +/d\og{l -

If we put

we get by virtue of the above equations and the last one of (1)

(2) ω*"

and

4) [I], §1, no. 1, (3).
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( 3 ) ω*Λ - ψ (%ω*a +y ω*°) == 0.

Between the scalars ψ> j , ^ there exist the following relation

( 4 ) - ^ r

and | Φ θ b y virtue of the assumption that ©M_i is real.
Now, let us denote the int grals of the system of Pfaffian equations

*«-i

by x1, χ2, . . . , xn~1» There will happen no confusion of these notations with

those of the components of @Λ-i with respect to R* (A*Q, A*, Λt>) Then, by

(2) we may consider x1, χ2, . . . , xn~ι, xn(=j) as a coordinate system.

On the other hand, let us suppose that the space Cn corresponds to a

Riemannian space Vn whose line element is

ds2 = gij(x) dxl dχi

Then, the connexion of Cn with respect to the natural frame R(A°, Au Am)
is given, as is well known, by the following equations:

dA = ω°. A + ω\ Ak

dAm - ωiAi

and

} K
where

( 6 ) Γk. = i PM f .

( 7 ) Π = - - i (*-- K

(8)

(9)
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Now, we can put

From Ao ^= A* = A and

c\A\ = ω^A* = / ; dxλ A*λ + ψ dy Άn

= r/y4o = dxλ A\ + dy An>

we get

Then, from the above equations we get

ω°. An + ω' A + ."»"
λ Λ

Putting ί̂TO = Al, we get

Hence, by φese relations and (2) we obtain the following relations:

ψ o)*°, ωϊ = ψ2 dy,

Now, since the line element of the Riemannian spice Vn is given by

= /«/£ dxλ dx* + ψ2dy dy

= dAQdAo = AiAjdx{dχi,
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we have

{gnn = An An = Ψ2.

If we substitute these equations in the second equation of (2), we obtain

' - {hX«dχi +
2{n-I)(n-2) *>* M

that is

Ffom (3) we obtain

where the matrix (p^) is the inverse of (/«). Since we have

we obtain by virtue of the above relation and (5)

that is

Hence we obtain the following theorem:

THEOREM 1. If the group of holonomy of the space wϊhh a normal conformal

connexion corresponding to a Riemannlan space Vn fixes' a real hyperstfhere ©»-i,

there exist a scalar j with the following properties* The image of @Λ-i in VΛ
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is hhe hypersurface determined hy the equation y = 0. If we put the line element

of Vn

ds2 = gκμ (ΛΓ, y) dxλ dx* + (ψ (ΛΓ, y) dy)2

hy means of the family of hypersurfaces ι$n-i(y) such that y is a constant on

every i$*-i(y) and their orthogonal trajectories and define <ζ by

Jy %> Ψ satisfy the equations (13), (14), (15). The converse is also true*

2* The family of hypersurfaces '8rn-i (y). In a Riem-annian space with
line element such that

ds2= g λ μ f ΛΓ*, y) dxλ dx»'+ (ψ (x«, y) dy)2

in a coordinate neighborhood ΛΓ1, . . . , Λrn"*1, y, let Vn~i (y) be the Riemannian

space induced from the ambient space on the hypersurface S»-i (y)ι y~ a

constant. Let us denote the ChristoffeΓs symbols of Vn~ι{y) determined by

its fundamental tensor g\μ by {̂ } and the covariant differentiation of Vn-i(j)

by a comma.

Now, the unit normal vector m on the hypersurface §M_i (y) has their

components such that (0, . . . , 6, ψ ). Hence the second fundamental tensor

of 8rΛ_i (jy) is given by

where t,he symbol " " denotes the covariant differentiation of V n. On the
other hand, by (6),(12), we have

Hence, we have

(16) 3Zab=-2Λlr hat or -*"••
oy dy

where hab = gaλ gbϊ h\μ.

Oh the other hand, by (6), (12), (16). we can easily prove the following
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relations:

(17)
bn

If we denote the components oί Riemann tensor, the components of Ricci

tensor, and the scalar curvature of Vn-i ( y) by

3Γ
ϋ α —

3Γ
— be __

i pλ pα _ pλ pΛ

!

δ c λ α b d λ c '

R λ μ

respectively, we have, by means of the formulas of Gauss-Codazzi, the fol-

lowing relations :5 )

Kacbd = Racbd — hab ked + had keby

= hab,c — hac,b

Furthermore, by (10), (17), we get easily

Hence, obtain the following relations:

oy
Rab -

(18)

& -1 -ξj - ** -
where Λ =

\μ.
3. Relations between τίn-ι(y) and the invariant hypersphere. Now,

if we substitute (18) in (13), we get

5) Schouten-Struik, Einf hruήg in die neuren Methoden der Diίferentialgeometrie, II,
p. 122,
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and

(20) - " τΛγτrr ( # " &λμ ̂  ~ ?Ύ~Λ R

2(β-l)(β-2)

Substituting (17), (18) in (14), we get

i -9y - **-

that is

(21)

Substituting (17), (18) in (15), we get

However, by means of (4), (19), we get

Hence, the system of equations (19), (20), (21) is equivalent to the system of
eqations (13), (14), (15).

Now, by virtue ot (16), (21) we have

L
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that is

> ^ { + (n - l)ψZ\ + | ψ ( * » - *f*x - R) - 0.

Laδtly, substituting (20) in (21), we get

(A Aαδ -

that is

(23) %** VLZJ±(hab

Thus, we obtain the system of equations (19), (22), (23) which is equ-i

valent to the system of equations (13), (14), (15) and is represented by means

of the quantities of %n-i (y). Accordingly, Theorem 1 is reduced to the

following

THEOREM 1', In a Kiemanman space Vn> take a coordinate system such that

the line element of Vn is given by

ds2 *= gλμ (x», y) dxλ dx* + (ψ (xa, y) dyf,

then a necessary and sufficient condition that the hypersurface y = 0 is the image

of a hypersphere invariant under the group of holonomy of the space with a normal

conformal connexion corresponding to Vn is that the fundamental tensors gab (x> y)>

hab (x, y) of the hypersurfaces y = a constant and the scalar determined by (4)

satisfy the equations (19), (22), (23).

§3, The invariant hypersphere and an imbedding problem.
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1. A fundamental system of equations and quantities ξa9 ζ. In the

following paragraphs we shall assume that the indices take the following

values:

a) b> c, λ> μ> v> •. . = 1, 2 , • •. n*

Let us now investingate the problem to imbed a given Kiemannian space V)n

in a suitable Riemannian space Vn\-ι such that the group of holonomj of the space

with a normal conformal connexion corresponding to Vn±ι fixes a jreal hypersphere

©Λ and Vn is the image of <&n in Vnhi

According to Theorem 1', a necessary and sufficient condition that a given

Riemannian space V&tvith line element

ds2 = gλμ(xα) dxλ dx*

is the image of the invariant hjpersphsre &n in the above-mentioned sense is that

we can solve the following system of equations:

(I,) -JUj = ψ(h? + ψZSi)^(hht - R)

ΐ - W ~ R)+&«+*>

provided that the conditions

( Π x ) fa = (h,a - AJΛ) + (n - l)ψZ,a = 0,

,<II4V ζ ,= I (h + n f

and the initial conditions

are satisfied. Then, the line element of T7M+i is

ds2 = gkμ.('x, j)dxλdx* + {ψ{x, y)dy),z

and the hypersurface y = 0 is the image of <§>n.

Let us put
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_ 9 _ hab - ~ {hab + Ψ .^αδ) + 'ψ (A AΛft - 2A* Aftλ - Raft)

~ ψ gab

and

which is derived from (I2).
Now, suppose that ^α6 (x, j;), AΛ& (x, y) are solutions of the differential

equations (I), and consider the quantities ξa, ζ determined by these gab (x>y)>
hab (AT, y). By means of (6), (Iχ), we get easily

(24) -ψFL-g*

and

Accordingly, putting

(25)

we get by (I), (24), (25),

V dy

d
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τ a Ύ a τ> " λ μ x μ λ)a

y
i ψ,β (A* - A? /^ - R) - [n - 1) (ψ,β - | _ +

On the other hand, from the Bianchi's identity,' we get

I

as is well known. Hence, the above equations become

9 τ> _ # —

+ \ Ψ,. (A2 - *f AJ; - R) + ψ A F α - (β - 1)

Then, we obtain easily from (4) the following relations:

(26) § -

(27) Ψ»a=

(28) ψ , a i =

Using these equations, we get
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If we substitute fα, f in the right hand side of the last equation, we obtain

+ * h ) e. - ( -1) * ( ^ + + * ) !&.

that is

(29) -|-f. = (5=1 + • *)L - (« - DjrΨ ^,.t

In the next place, let us consider ζ. By (24), (I), we get

^ R: = -%L (g^ Rλμ) = 2

that is

(30) -JL R = 2 ίψ hλv< R λ μ + ̂ λ^ (ψ A),λμ - (ψ Aλ

By (I), (3), we ^et also

a «* 1 / r,
θ^
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=τf{^ - n w - m +

^ ϊ K \ K

L + !LKt.

Making use of fα, ζ, the last equation becomes

log ψ + ψh + »=2) {r - y (*"+
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y

that is

^ ζ ( + ψ A + |

2. The re^ularizacion of the system (I). Let us now proceed to the

problem to solve system (I) under (II) and the initial conditions* From now

on, we shall replace the derivatives and the covariant derivatives of ψ with

respectsy andΓ£δ of Vn{j) by those of ^ by means of (26), (27), (28). Notice

that the (covariant), derivatives of ψ are polynomials of those of sζ, ^ and

ψ. There exist terms with 1 jy as a factor on the right hand sides of (I2)

and the left hand side of (II2)- We shall endeavor to take off this irregularity

of the system of differential equations.

In the first place, according to the course stated above, let us write (I2)

in the following form:

-ψ K = ~ (K +. W + Ψ (* K - RJ)

-y Ψ* gaK z,bκ + s y ψ 5 gaK z,t, z,κ
Putting

02) *i = - * ^ + j§r$

let us determine H"b (i = l, 2, . . . , n - 2), from the last relation, so that these
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quantities are polynomials of gλfλ, $ζ> ψ and derivatives of %> gKμ>, and the differential

equations with respect to the unknown quantities H a

h replaced for (I2) become

regular forms as much as possible*

For convenience, let us put

(33) H* = - * j 8 ; .

Substituting (32) in (I"2) and using (26), (27), (28), we get

n-2

+ Σ y {(* +1) H «+ -I- H I +r- 1 ̂ - H

(34) ==(«-!) Σ j

^-ΓΓδ; (H^H^ - HH)\

f
2n-2

where H = HS Furtheremore, let us put
CO ^ ) λ

(35) -^Ht-ψy K. (,•=,<>, 1, 2, . . . , « - 2 )

and determine K a

b (/> / = 0, 1, 2, •••, ̂  - 3; / +j ^ « - 3) ^ polynomials of gKμj,

%? ψ and derivatives of gκμy % according to the same principle of determining Ha

b

and do this simultaneously with those of Ha

h*

Now, the constant terms with respect t o j on both sides of (34) cancel

out with each other when we define Hi by the relation
Ci)δ

that is

— ^

From the last equation we get at once
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Form (33), (26), we obtain easily the following relations:

Now, comparing the coefficients of y on the left hand side of (3) with
those of the right hand side, let us define Hi by the relation

(.2/

(38) J

 f .
f HHa + δΛ (HμHλ - HH)\

whose right hand side becomes by virtue of (33)

Accordingly, we have

(» - 3) H = K;
v ( 2 / i o /

In the last equation we have assumed that K ? has already been determined

for n > 3.

On the other hand, if we make use of the geodesic coordinates of the

Rίemannian space Vn (y) with line element

we get easily by (10),

4- p a * f~^— Γχ) — vav- ί-^~ Γλ

+ ί V ay w λ ^ \ aj fc
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Putting (24) into the last relation, we obtain

(oϋ) J

From (39) we get also (30) by contraction.

Now, in order to dete

hand side of (39), and get

Now, in order to determine Ka

b, we put (26), (27), (28) into the right

α λ , λ — ΛJr,\ haλ

)b •

jr,b hyk + gaK i/r,λ h,ΰ +

c l ) λ b

ψ gaλ [n { -

where ~ denotes an equality within terms of the second orders with respect

to j . From the last relation we get

(39') - | _ R . ~ ψ ' [ - fcζR; - 8tA2{z) - I n -

+y [Zψ Jgj R^ + 2ψ< z {Δ2 (Z) δt + {n - 2) ̂ "

+•4 ψ 4 {Δ, (Z) 8? + (» - 2) r }

denote the Eertrainί's differential parameters of the first
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order and the second order:

and semicolons denote the covariant differentiation for quantities depending ex-

plicitly on ψ regarding it as a constant- From (39') we get

^-R^->2i2^R + 2(^-l)A2

(30') + y \2ψ Hf R λ + 4 (n — 1) Ψ* ? Δ 2

+ 8 (« — 1) ψ 4 Δi (ίζ) + 2τ

After these preparations, we get by (36)

9y rυ& » — 2 \ dy b 2(n~-1) *• 9y

α _ R

Hence, let us put

(40) - Wirλ?,Λ» + ̂  9* sj - f

2 (« - 2) ψ 4 ζ) ζ)
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K' = ^ζ(
* «2

• -

Then, by means of (40) we have Hi as follows:
(2f

in - 3)H- = - ψ ζ

ί

Accordingly, if # > 3, we define Hi by
Γ2)6

(42) Hf--=ψ2% H j

Now, from the last relation we get

By means of (29), p t us put

(43)

Lastly, comparing the coefficients of f on both sides of (34) with each

other, we have the relation

Tζ a _L T? a z= (fj "

Σ

Accordingly, if ^ > 4, by means of (36), (41), (42), (43), we define Ha

b by the

relation
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(44) Hi = —λ Γ K i + K\» - H'g** λZ

- ψ V JHH; + -07^-^ δ? (Hĵ Hλ - HH)
i^2 c o < 1-)

3. Tensor L^ According to the results of the last section, suppose

inductively that we have been able to define Hf > K a, for p < n — 3 so that
CO isJ—sT

\3y* Λ PI-PA

/ = 1, 2, v p;

and

V 9y*/>Pi-PA y

(/ = 1, 2, , / > - 1; j = l , 2, ,y; k + h<j)

which are polynomials of the quantities enclosed in round brackets as shown

above, and the coefficients of y (i = 1, 2, . •,•/> — 3) on both sides ot (34)

are equal to each other. We may suppose here p^3. Then, comparing the

coefficients ot %P on both sides of (84) with each other, we define H f by the

equation

(/> + 1) H + Σ K - (n - 1) H %

Σ JH H + - i δj(HfHλ-HH)l

that is

(47) (n-p-2) H- = Σ ίC -

since ^ - ^ > ~ 2 > 0 . In the last equation, the quantities enclosed in square
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brackets have been alreaddy defined by the hypothesis of induction. We

assume that K * have been defined too.

On the other hand, since H£ (J = 1, 2, . . . . , / > ) are known quantities, we

have *

•dy ?.)»

(48)

+ .+ Σ Jdβ 3{(|j))pr. J)-f-{(0-))p1...pJ

However, by (24), (39) and the relation

° px _ f ° JDλ ) 4- (—— Γ λ i R v

3^/ μ, Pi-PΛ V 3y μ ,Pi-PA-i'jpjt V 3)/ v P£y \ P I - P A - I
Λ-l

- ί ^ Γ v l R λ — ^ ( ^ P y i R λ

\ C/V ^pk/ }Pl'"Pk~ 1 A — 1 \ 9 V Ph 9&/ μ} P l ' P ^ — 1 ^ Pfc-*-l""'PA— 1

we can easily see by induction that —^L ^ λ | s a linear form of hr; hζ a

. . . . ; h*icύ a whose coefficients are polynomials of gτv; Rj; . . . . 'Rj Λ \

ψ ; ^,05,; . . . . ; Φ * While, by means of analogous relations as (26),

(27), (28) derived frcϊn (4), the coefficients stated above are polynomials of

Then, for j -f / < j - 1, wτe have

3 j / 3 ^ \ 1 „ Γ 3 // d]'z \ 1]

ί - l

and from this we can easily see that

(V ay* /'Pi-

a linear form off—%) : . . . . ; f—? ) ̂  ^ whose coefficients
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are linear forms of hλ

y . . ., hλ with polynomials

of ψ; JJ; * . . . ; ? y as their coefficients.

After these preparations, let us consider the question whether we can
determine K a or not, so that it has the properties shown in (46), provided

(s p-sΊ

that p is replaced by p -f
Now, in the terms included in the first 2 on the right hand side of (48),

H λ are noteworthy and other quantities are supposed to be known by the
(h -s)^

hypothesis or induction. In the terms included in the second Σ the qu-

antities to be noticed are H τ and the orders ot differentiations or JR",

^ included in these quantities are clearly < (p — s - 1) + (s -f 1) = p by (45).

Regarding the terms included in the third Σ, the quantities H λ are to

be noticed, but the orders of differentiations of Rj, ^ included in these qua-

ntities are (p-s-l) + (t-l)=p + t-s-2<p since 0 < / < s - 1. The-

refore, we see that K a can be defined by means ot the quantities already
ίs,p-s)b

known by induction according to (48) and formula (35). Hence, we see also

that H a can be defined by (47) so that it has the properties shown in (45),

putting i < p + 1. Thus, we have proved inductively that (45) and (46) hold

good for ρ=^ n - 2, In other words, we can difine successively Hΐ, H", . . . ,
r (IT C2)

H a so that the apparent cofficients of j ; , j 2 , . . . , j M - 5 in (34) cancel out with

each other respectively and they have the properties shown in (45), putting

/ = 1, 2, . .,, n — 2*

Lastly, if n > 2, the coefficient ofj/M~2 reduced on the left hand side of
(34) is

(n - 1) H % + Σ K + en3φ* z-^^
ίn-l'T s=i is, n-2—sy V

and the one reduced on the right hand side is
n-2

ί H ; + 7 w — T c S ? ( H £ H λ - H H

where 6rty= 1 (/=y), β ί/ = 0(/φy). Hence, subtracting these quantities, let
us define an important tensor by means of the quantities already known as
follows:

(49) LJ = - e«
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i f 2 { n \ ) * X λ /

By virtue of (4,5), (4,6) Lfs are polynomials of ̂  R£; β . Rλ ^ ^ .̂ ̂ ,. ^. m m >;

/__Jv. j • (k + / ^ < ^ — 2). We shall show in future that this tensor plays

an important role to solve the problem stated in introduction.

4. The regularization of the system (II), (1). Making use of the re-

sults of the last sections, (34) becomes

where K« on the right hand side are linear forms of H λ and its covariant

derivatives determined by the methods in the last section, as is easily shown.

Now, we have by (32)

Since we get by (27)

H a

h c = H a

b c - y ^ Z c S r H a

h U = °» ̂  2> •••' < * - 2 ) >

let us put

(51) ξa - Σ y ε.>

where

3 ττ ' 3 TJ
(52) ξa-H;a-H\λ-ψ
v ; ( i f ( i ) ' a r ϊ j a > κ Ύ \ « 3 ψ c i -

( / = 0 , 1, 2, . . . . ,

and
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H b

ac = Hb

a.c.

We can easily see by virtue of (33) that

(53) ξa = Hia - ψa;λ + (n ~ 1) Ψz,u = °

Now, since we have H = — ̂ -ψ ίζj w e can put by (32)

(54) ^~(h +

W - l

where

(55) Σ (H H - H^ H *) - J«

We can easily see by (33) and (36) that

(56)
ro)

KT-^hr (HH- H»W- R)
2 ( » - l ) Vχ-0) co)λc"Jμ

Then, we get by (36) and (52)

k = § « ' ®* ~

By means of the relation above and (42) we get likewise

(2) (2)

Ψ2(z,aH - %yλH$
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" α cυ

Furthermore, by (33), (36), (42) and (55), we get

c'l.") (2) « — l r o ) ( i ) ro) Λ r i ) μ

H + ψ
 T ( - »ψ!ζ H + Ψz δx Wλ) - 0.

Thus we get the relations

(57)
(0; α,) (2; (0; (1)

5. The regularization of the system (II), (2). According to the re-
sults of the last section, let us prove by induction the following relations :

£ — £ — ε _ _ £ _ π
b α b a <=>a ~~ b a u >

CO) ci) C2) C Λ - 2 )

CO.) O ; (2) C»~3)

First, we suppose that the relations

(ζa = ζa - . . . - ζa - 0,

(58) f0) ( 1 ; ^ (2<p<n-2)

'c°) c1) c^-1)

hold good, and we shall prove that ξa = 0, ζ = 0. From (44) and (47) we

get

and hence

(n-p-2)

Σ t o fί λ + (n-2)H H
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Accordingly, we get from these relations

,a Δ 2

-K (Hf Hf. - fί H . )}

and subtracting the latter from the former, we get

(n-p-2) (H;a- H*λ) = Σ ( ίΓ;.- K *

Σ f H *. + H H * - H H * λ - H;λ H
fcp-sf " (s)(p-s) («.)(#-»/>* (s) 0>-s>

Δ 2 (!ζ) - g^Z>κZ>μa),

The last equation is reduced by (52), (53) and the assumption (58) to

( » - / > - 2) ( H a - H i.J - Σ ( K a ~ K *J

+ f Σ ( H A H^-H» H\)
(59) s=° co c#-oα (*τ(p-*fa

+ (β - 1) ^ ^ H + 3^2, ψ ft>α Δ2 ( ζ) - ^ - ^ ^ J .

Now, we get by (27) and (35)
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Hence, we have

(bυ)

On the other hand,-we get by (24)

4- J-/λ 9

that is

(61)

Then, by (52) and the assumption (58), we have the relation

V̂  .α σψ (s—i) % ' λ dψ (s—i-f

a C ψ ( s j v > " CTψ ( S f

If we introduce as (35) quantities Ma

b analogous to Ka by the relation

< 6 2 >

we can see that Ma

b can be determined successively so that they have the same

properties as (46). Hence, making use of these quantities, we have

dy
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J__ H _
By ),a V dψ cs-i) J 9ψ (Yy V ay yU I aψ. C s_ x/

r ( H Γ 7 - ^ H )
Φ (S)

(63) - Σ y Λ ί + Σ y + 1 M l

+ Ψ ϊ j λ [3+' (Ϊ +j -f-) ( ^ ( H ; -, -^ H;) + ^ H;

Accordingly, comparing the coefficients of γP~s of the terms on the terms

on the right hand sides of (60), (61) with each other and making use of (63),

we get the following relations:

P

K;a - Ks

K

a.λ)

1)

s=i

p-\

s = l V"'a dψ Cs,p-s-l

P ,

( H λ - H λ

p—l

( ? H λ - i ζ λ H λ ^ 9

Γ Jί

%{%>* aψ. cp_1:> z,\
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aψ c^ij ay aψ c/

where M j = 0 and we need a factor (1 - e2p) for the last term since p ^ 2,

j = 1, '2, . . . , Λ. It is clear that M = 0 from (33). The relation above
Γ

 eo p—iy

is readily reduced to

P .

(64) +^Σ(H^ Hλ. -Hλ

Now, substituting (64) in (59) and making use of (47'), (52) and (58), we
see that the following relation holds good:

(n-p-2) ξa = (n-p- 2) { H;α -^ H λ

a.λ

λ

^l \*>a u^r (S^,_i) ^ Λ U ψ (-sp_s_ι)<

«. S $ r 1L£ " ̂ λ S ¥« ^iJ
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^Hλ -HλH.λ

oλr*y* ;β (ofcpy

f dψ cp-s-υ

3<f a ί (jζ,α Δ 2 (jζ)

{n-p- 2)ψ

p-i

Γ-o-πτ Σ f* H? H λ + (» - 2) H H }
«L2(»-1) ί ΐ I c o λ (p-s-if x (s)(p~s-i-)i

Σ -^- H
» — 1 s=o ( CO 9 ψ f#—s—1/

-^- + Δ2

H

p—1

p-\

5=0 l(s)

H λ +

H λ + H λ

lf (P-s-lf

μ _ TJ

SVHr 9

s = l

" ̂  ϊ
H λ -

H
ta(P)

H μ - H H
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' - 1 - a
. if <p*L, *

ψ ( ^ Δ 2 (z) - g* z>λ Z>μa) + (* -
p-i

*!.- Σ fe H *- H H ) + Ψ\ H» H

Ψ 4 ? H M - ^ - H λ - Ψδ ? H λ H

v (of

•§•

/>—1

Since we have from (33)

\tl — 1) ?* ί? -f j 1 — — J Ί — ?* Jrl == U,
' "v» "v ία wα a ψ 1 (0) ί λ θ ψ 1 (0~)a

we obtain from the relations above by means of the dentition ot ζ (55)

(65) ( » - / > - :

trom which, by means ot the assumption (58), we get lastly the relation

e. - o .
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6. The reguiarization of the system (II), (3). In this section we shall
prove that ζ = 0. We get by (47'), (55) the relation

ίp)

(»-/>- 2K - Σ K)
C.p')

n Σ {» Hf H * + (* - 2) H H

' 2(«-l)

that is

(66)

; Λ J.
On the other hand, by (55) and the assumption (58), we have tor

s - 2, 3, ...,/>

π _ Ψ
5—1

S-t-l)

hence we get the relation

p p s-ι

s=2 sp-s; tt — L s=2t=Q \t, p-S; (s-t-iy1 (ttp-s)(s—t—l)

3 ^ ~ -1

/£T7\ ^ *ζ ^V1 / ILJ/u. HJ λ U U
(Όί 1 — TΓ7~ TV ̂ i Γ l \ i l ~~ ±1 Γl

L\n — 1) ί=0 \(0 λ (p-t-l j μ (ί) ( ί - M )

~FΠ TV *-\.. ^Lmλ \ Π > Π ,, XJ. Π

In the next place, let us consider JC . Making use of (IIX) and the

assurnption (58), we get
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A -

A -

Σ > y ξ*) - (» - 1) Ψ8 Δ3 (jζ) + 2 (» - l)^ψ Δ,

Now, from (36'), (47') we get

R
dy Λ 2{n-Λ

If we put the relation above irto the last equation, we get the relation

^ _ δ } ^ λ ^ ^ ^ - δ .

^ τ ( l - f 2 ί ' ) Ψ 7 ( ' Δ ι ( ^ ) ^ - H -ίζλ:ζ -£Γ HA")

Cn the other hand, we get by (36), (36')
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£ > - *=

H

H

Putting the relation into the left hand side of the above one for K > we

have

H

+ — ^ τ - ί l v ) f ^ ^
» — 1 ~ V ^ dψ (p-l

{ g ( ) 2ψ» Δ,(

that is

Ci)λCί-i/
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- | ( H - «

In the computation above, we have assvmed that H μ = 0 for Λ =
£-3 λ r

Now, we start with the verification of ζ = 0. By means of (66), (68) and

(43), we get the following relation :

( » » 4 ) f - K + X - S ^ Δ ^ )
(2-) ( l ^ l j ( 2 ; 0 ) ^

GO ( 2 -

(H - n Ψ" fζή +

2-O μ COC2-O

^ CO « - l I (0/(2/ H
(0)(2)

Hence, if n — 4 Φ 0, we get by (42) the relation

In the next place, if p > 2, making use of (37), (40), (41) and (47'), we
obtain the following relation
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P-2

Σ o

+

p-i

p-m-l

Σ( *
s = 2 ( 0 p

' μ J-J λ _ £
" o λ r? V (o ^ s"

£ H)

p — m—l

H

Σ H ( Λ - p + m-Λ) H

$c>£*+ {n -

j ay (p-2)

By means of (67), (68) and the relation above, we get the following

relation

Σ x̂  vr Γx^ / J. i i\ f τju. TJ X

. κ = TΓ^Ϊ- 2 J (» - p+m -1) Hf H .* -
^ Σ
— 1 L w = o

p-S p-m-l

Σ Σ IHH^ H
w =0 i-o 1(0 (mf Qp-m-1-i

^ μ H ^ - Δi(ίζ) H

i t H > - H H ) - Ψ
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τ * r {<• -2) fff cΆt - g £ J + r

8-1 \ *

p-\

2(0-1) Ψ v £

" Γf H λ - H H

— l l , m = 0 r \ λ (γ

H

HΪ H λ + H H
O (ί-«-1-0 | i CO ip-m-l-i

n-

p— 1

^ HJ + H H \

H * H H )

λ

On the other hand, we can see that

wj CO ( £ - w - l -

H
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(0) V(/,-2)
λ ( 1 / (£-i

p— 2

Σ

m

»=o CO C/>-w-i-O μ Ci) λ C/»-2

Hence, making use of the relation ζ = 0, the relation above becomes

./> + ί w - l ) ( H ϊ H λ-H H)

H - H H
cp-fn-i-iT CO Cp-m-i

H -n2ψ2z2 H-n(H* Hλ-H H

2)Hμ H λ + H H

μ H λ - H H

Furthermore, by means of (55) and the assumption (58), the relation becomes

Σ K «-*τ-[Σ («-/> + ̂ -l)(H μ H i - H
l C # 0 » - l l o r V ( ) λ C μ

Σ H H + * H (HμH

:
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Γ£ H l~H H

-{n- 2)( Hi f ψμ - _H H) - (n -

+ (» - 1) { Σ H H - H H + nψz H]

+ (» - 2 ) ^ H ^ -f H ^ ] - Ψ\H,

that is

P P

(69) Σ ? K_s = - i y Σ \{n - p + w - 1) H; H J + (/> - /»)H H }̂

If we put p - p2 = #/, the last relation is also represented as

p P^

, Q . I

hence we obtain from the two relations the following one

P P

ί69') 2 Σ K = - ψ - τ Σ ί ( 2 β - ή - 2 ) H ; H λ + ήH H }

Now, if we substitute (69') into (66), we obtain

accordingly, we get

ζ =0,

since # - p - 2 > 0 by,the assumption (58)..

Thus we have proved that we obtain

from (58). Accordingly, we see that the following relations hold good:

CO)" "(if Cn-h

r - r - -r r - o.
CO) (1) O»-5>
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7. The imbedding theorem. Owing to the result obtained in the pre-
vious sections, if we put

r>

we get by (51), (52), (54), (55) and (56)

(72) Va^H,aH\-ψ*U -#r H -Zκ~i-r H

T s H + - r ^ τ f Σ (H H - H$ H. i)
2 ( » —1) !-s=0 (5) Cn-2-O CO C»-2-s)μ'/

2 W - 3

(73) + ._Σ i /-^ 2 {2( v _H r H - ; H^ίH^)

n-2

+ Σ HH-Hf H λ

s=i-nf2\CsKi-O CO (ί-Oμ

Now, if we put (71) into (29) and (31), we obtain respectively the following
relations:

_^__ Va ~ ψ h rja - (n -

(31') -Z-T--

We notice that these equations are linear with respect to ηa, T and the co-
efficients of the terms on the right hand sides are regular wilέi respect to y
near y = 0.

Thus, we see that the condition stated in section 1, §3 in order that our
problem can be solved is replaced by the following one. We can solve the
system of differential equations for the unknown quantities gah,
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n - 1

+ SΛ
+ φf*^® - gg)}]

under the conditions

(Π,*) Va - 0,

(Π,*) T - 0.'

and the initial conditions

where H λ = Hλ-

Accordingly, by virtue of (29') and (31'), we see that the condition above
is reduced to the following condition: We can determine a tensor Hab (*)
and a scalar tζ(x, γ) so that

and

Va = 0, T = 0, Lg - 0, for y = 0

are satisfied.
On the other hand, Lj is function of ^ R^; R ^ ^ . ..; R^ P l P 2 .

. . . (k -f h <; n - 2) as shown in (49). Hence, the con-

ditions L* (#, y)\ = 0 may be regarded as equations of the given space V'n

with unknown quantitities Γi ̂ -K.) ] (k-\ h^n — 2). We notice that

ψ becomes 1 forj; = 0 by (4)- If ΪLζ(xty) can be solved with respect

to Γf̂ _?_) Ί , we can easily see that the equations
L\ 3yft /ίPi Pjfc Jy=°

°
-2-O CO C»»-2-0
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are solvable with respect to Ha

b

Consequently we obtain the following theorem:

THEOREM 2. A necessary and sufficient condition that a given Riemannian

space Vn (n > 2) with line element ds2 = g\μ. (x) dxλ dxμ can be imbedded in a

space Vn+i as a hyper surface which is the image of a hypersphere invariant uHder

the group of holonomy of the space with a normal conformal connexion correspond-

ing to Vn+ι is that the system of equations

; Rλ; . . ., B* o Ψ; # •••;(!*?-)
μ M-»P1-PW_2 r ^ \ dyk /,p λ..

is solvable with respect to %, -Λ-, . . . , ^~%- regarding them as unknown qu-

antities*

REMARK, If a Riemannian space Vn

 c*n be imbedded in a ]/n+i as stated

above, we see from (32) that the relation

Kb = -ψZ&*b'

holds good on the hyperesurface §M.

Hence, we see that if % (x, 0) Φ <\ 3frt is a totally umbilical hyper surface of

Vn+i and if %(x, 0) = 0, 8r« is a fatally geodesic hypersurface of Vn+i-

§ 4. The invariant hypersphere and an imbedding problem (Continued).
1. The imbedding problem for Va. In the last paragraph we have ex-

cluded the case of two-dimensional Riemannsan space as an exception. We
shall investigate this case, starting with the fundamental system ot equations
(I) and (Π).

Let K be the Gaussian total curvature of a Riemannian space V2, thtn we
have

R*6 = Kδ£, R - 2 X

as is well-known. As in § 3, if we put

and substitute it into (I2), we get by means of
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the following equation:

+ y ψ- \HHa

h + HHa

h + δf ( f ί j H λ - H H

r^λ Λ, i β/y2 ^ 5 goΛ ty «y

zH°b+yψ(HHa

b-διι^μΊ)

that is

a
Π n\ Bv * ' 6 " V% ^ Γ ? + < § α "^fcλj *" "v Ktt-b

- - δ;

(It) becomes

Then, if we put ξa =yηa, (IIt) is replaced by

("i") α̂ Ξ H,a - H ^ λ + V̂ 5 Z Z>» - °

Regarding (Π2), we get the relation

f {2^^ - j-ψjζH + y ^ H H - Hf fij) -.R}f

hence we have

(Π2") ζ = H + ψ (Ψ2
 R:2 - 7 ^ H + / I Hi I - K) = 0.
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In the next place, (29) is replaced by

(29") —— ηa = φ ( — 2^S£ -\-y H) Va ~~ Ψ ^ α ζ>

and (31) becomes by means of (26)

ζ = ( — 2 ψi2?' -\-yψΉ + l°β ψ*) ζ
όy \ όy

t h a t is

/o"i"v όy V 3y / *

Hence, we see that if the quantities -ηa, ζ calculated from a solution of

(I/'), (I2") satisfy the relations

at y = 0, on account of (29") and (31"), thesέ relations also hold good for

anyj; near zero* Now, (II") becomes at y =- 0

(H+z2~K = 0.

The last equations are clearly solvable with respect to H λ • Hereby ^ (x, j)

may be considered as an arbitrary given quant its. Thus, we get the following

theorem

THEOREM 3* Any Kiemannian space V2 can be imbedded in a Kiemann ian

space V3 as a surface which is the image of a sphere invariant under the group of

holonomy of the space with a normal conformal connexion corresponding to the Vs*

Then the surface is totally umbilical or totally geodesic and the principal curvature

may be taken arbitraily*

2- CASE ^ (x, y) == Q-6) In this section, we shall investigate especially the

case such that ^ (x, y) == 0 and point out an essential difference between even

dimensional Riemannian spaces and odd dimensional ones through properties

6) See [ij.
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o f I *
Let us put n > 2, !ζ (x, 7) Ξ= 0 in the theory of § 3. Then, we have ψ = l

by (4) and we get easily from (33), (36), (37), (40), (41), (42) and (43) the follow-
ing relations:

H -o, H-
CO) O)

(o,Oδ

2 («-

C2,0

Then, making use of the relations above, we get from (44)

(if »-4 1(̂ 1)* cOCi)6 2(»-l) ί'Hi)λ(i)' i OK1)

ak Rιλb~

Now, we see from (45), (46) that Hf, iC ί are determined successively as

follows:

σλμ ϋλ. Rλ

(/ - 1, 2, . * , n— 2; / = 1, 2, . . •, # - 3; j •- 0 , 1, 2,•..., / ) .

Furthermore, since (48) becomes
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Rλ

1 Pv"Pk// <ty μ

where -J— Rλ is a linear form of hτ; hτ . . .; hτ with coef-
3y μ, PI-PA V v, αsf v, ar-t»KA.2

ficients which are polynomials of gτv, Rj; . ..; R^ a a , we see by induction

that

Hence, if n = an is an odd number, we get by (49) the identity

On the other hand, according to § 1, we see that the point at infinity with

respect to the natural frame at any point in the space with a normal conformal

connexion corresponding to Fn+i whose group of holonomy fixes a real

hypersphere is on the hypersphere if ^ = 0

Accordingly, we obtain from Theorem 2 the following theorem:

THEOREM 4. For n=z2m + \ (m^l) any Kiemannian space Vn can be

imbedded in a Kiemannian space Vn+i as a hypersurface which is the image of a

hypersphere ©» invariant under the group of holonomy of the space with a normal

conformal connexion Cn+\ corresponding to Vn+\ so that the point at infinity with

respect to the natural frame at any point of Cn+\ is always on ©»•

Analogously, we get the following theorem:

THEOREM 4'. For n = 2m \m > 1) Theorem 4 holds good if and only if

3. hy We have seen in the previous arguments that the tensor L£ plays an

important role for our problem. However, it is generally difficult to represent

explicitly the components of the tensor by means of gλ*, R\ ψ, ζ. In this

section, we shall calculate the components of L* for n = 3, 4 and should like

to imagine the general case from these examples.

i) Case n = 3. We get from (49)



268 T. OTSUKI

Γ« = — Y a _ ~ ί_ £α _ pαλ *>
b (i o)δ ^ 3 ; * * ^&λ

O K 0 / 2 VCo)λG)μ C O W ' *

which is reduced by (33), (36) and (40) to

H-

Accordingly, we get the following theorem.

THEOREM 5. For any Kiemannian space V3 the tensor L,a

b vanishes for any

ii) Case n = 4. We get from (36)

H - 1
(i) 6

Then, we get by means of (41), (42), (43) and (49) the relation

- Ka

h- Ka.+

3 6\co/coμ cow/
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4

-f

#

H> + ψ\(&aλ

z,bzj

1 δ { 1 Δ2 (R) - 4ψ2 ( ζΔ, (ίζ) + Δ, (iζ) - \

! R

- ^ r + -|- Ψ2 72 R - ^Ψ4:
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that is

\ RJ R - I R R + 1 ^ R.

(76)

From the relation above we get the following theorem:

THEOREM 6. Whether we can imbed a given Riemcnnian space VA in a Ri~

emcnn space V5 as a hypersurface in the seme stated in Theorem 2 without regard

to ίζ, or it is entirely impossible*

§ 5. An application. 1. The invariant hypersphere and the Campbell's

theorem.

The space Vn+\ in Theorem 2 is conformal with an Einstein space with

a negative scalar curvature.7* We shall investigate in the last paragraph the

problen to imbed a given Riemannian space Vn in an Einstein space Λn+ι as

a hypersurface in the sense stated in Theorem 2.

Making use of (16), (17) and (18), we can prove that any Riemannicn space

Vn with line element

ds2 = g\μ{x)dxκ dxμ

can be imbedded in an Einstein space An+ι with a given scalar curvature (n + 1) k

as a hypersurface and if the line element of An+i is ds2 = g\μ (x, j) dxx dxμ +

(ψ(x γ) dyf (gχμ.(x, 0) = gλμ.(x)), the following equations hold good

(III) ^t~hab"

(IV) Vn = hia —ha = 0,

(V) ( » - l)/fe + ¥- h»hl~ R = ( » - 1 ) ^ + ̂  = 0,

7) See ΓI], no. 1.
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where Oah = hhab — hλ h\ — Rah and the meanings of notations are similar to
those in § 3* This is a generalization of the Campbell's theorem-8*

Now, (I'2) can be written as

*»* =

Comparing the right hand side of the relation above with the one of (III), we

get the relation

that is

Then, from (ίlx) and (IV) we get

Hence, we see that ^ must be a function dependent only on y. By virtue of

(4), ψ is also so. Putting (V) into (Π2), we get

(78) l (
y

Putting (V) into (77), we get

hence we get

From the relation and (78), we obtain

[I], no. 12 or J.E. Campbell, A course of differential geometry, (1926).
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n-\ \ 3v 2 7 2 " '

that is

dy

Hence, by integration, we get

ζ == α -- -

Then, since we have

(79) ζ == α -- -—-;; (α = constant).

(77) can be replaced by

(80)
' v n-

Now by (4) and (79), ψ becomes

(81) ψ* = -=—!=— -

Since we have

(Λ - l)k + ^ - AjAJ; - (Λ - 1)(Λ 4- ^ α 2 ) ^ 2 ,

(V) can be written as

(82) ( » - l ) (A + » a 3 ) ^ - - R = » 0 .

Conversely, if we have (79), (80) and (82), then (I^) (II2) (IV) and (V) are

clearly satisfied.

Lastly, if we put (80) into (III), since we get from both Sides the relations
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Rab) + ψ,ab

we have

(n - 2)gah - ψRab,

h \ Pi -, ti—Λ ί le \ 2 )
• α + - )' --V- log ψ H- /;—-1- k 4 » »/r2 ( - α 4 ---y r g Λ 6n ' dy n V n >' .' ώ

- Rat = 0,

that is

(83) ξab = n — (^ + «α 2) q K & 6 " Rαδ ^ 0.

Thus, we see that a necessary and sufficient condition that a given Riemannian

φace Vn with lin? element ds2 = g\μ(x) dxκdx:λ can be imbedded in an Einstein

space with the scalar curvature (n + 1) k as a hyper surf ace in the sense stated in

the beginning is as follows * the differential equations

(\τ\\ _-5i_ σ v _ft l_

1 4 2ocy — — i'2

are solvable under the conditions

(VII) P fc ΞΞ (» " x ) (^ + ^ α 2 L σ , - R , = 0
V ; ^ - ^ + 2 Λ α;;--Ay Γ ^ α δ a&

i2«̂ / /^^ initial conditions

2 Solutions of (VI), (VII).

For any solutions of (VI), let us calculate the quantities ξab. Then, we

get easily from (39) the relation

4 Rb - 2ψ hi Rλ

h = 2ψ2 (- α 4- k y) Ra

h

dy a λ i> \ n I h
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By n 4- 2»αy - kf~ " ι \ n I n + 2n*y - ky2

Accordingly, we have

(84) A R -
v ' dy

Hence, we see that if f« = 0 at );- 0, ξa vanishes neary = Q. Accordingly, at

γ = 0 it must be

The last relation showes that J/w must be an Enstein space An {n > 2) or a

surface with a constant curvature.

Thus, we obtain the following theorem:

THEOREM 7.. A necessary and sufficient condition that a given Kiemannicn

space V i can be imbedded in an Hint te in space Λn+ι as a hyper surf ace which is

the image of a hyper sphere invariant wΦ r the group of holonomy of the space with

a normal conformal connexion corresponding to An+ι is that Vn is en Einstein

space (n > 2) or a surface ivith a constant curve, ture-

OKAYAMΛ UNIVERSITY.




