ON PSEUDO-PARALLELISM IN EINSTEIN SPACES*

BY

SvuN-1cH1 TACHIBANA

In this paper we shall define a new parallelism in Einstein spaces making
use of their Poincaré’s and Klein’s representations which were generalized by
S. Sasaki [1], [2] and K. Yano [2]V. Weshall obtain the differential equations
which give the parallelism and compute the parallel angle.

§1. Preliminaries. Consider an Einstein space E, with a positive de-
finite fundamental metric tensor g; (7, /» &« =1, 2, -+, n), then the curvature
tensor is given by the components

A g [ R
7kl oxct ok + {;:z’ {jk ‘l:k} {w"

where {1} are Christoffe]’s symbols constructed from g;. Making use of
the curvature tensor we put
Rjr = Rl R = g* Rir.

Now we construct the space with normal conformal connexion C, [1], [3]
corresponding to E,, then the connexion of C, is given by following equations:

dRO = dxz Rio
dRj ="cgindxt Ro+ (i} dx*Ri+ gjx dx* R, (1)
dR., = cdxt Ri,
where Ra’s (4=0, 1, -, #, ©) are Veblen’s reperes corresponding to E, and
__ R .
77 2 (1) (2)

which is constant by assumption. ~Consider a hypersphere or a point 4=
R. — ¢Ry, then the group of holonomy of C, fixes 4. In the following we

*) Received October 16, 1950.
1) The brackets [ ] mean the order of papers to be referred which are given at the end
of this paper.
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assume that ¢+ 0. Then the hypersphere A is the absolute in Sasaki’s
generalized Poincaré’s representation and conformal circles in €, which
intersect 4 with a right angle become geodesics in E,,.

On the other hand if we consiruct from E, the space wi h normal
projective connexion P,, then the group of holonomy of P, fixes a hyper-
quadric B [2]. For the sake of convenience we perform a trivial conformal
tr .nsforma.ion E, — E} defined by

g = K gis k= 2, (3)

where ¢ is +1 or — 1 according to ¢ > o or ¢ < o, then the connexion of P}
corresponding to Ej is given by

dAo = d.’x‘z Ai:
dAj = gi dx* Ao+ j 1 dxt A, (1)
where A\’s(A =0, , -, ) are semi-natural repéres corresponding to F*,. Then

the hyperquadric B* invariant under the group of holonomy of P* is given by
the following equation :

egh XiXi4+ (X =0,

where X's are current coordinates in tangential projective spaces.

Now we consider a geodesic ¢ in E, and let g(h) be the corresponding
conformal circle (pa h) in C,(P). We develop g(h) in a tangential Mgbius’
(projective) space at a point P, which lies on g (k) and let P’, P” be points at
which g (k) and 4 (B*) intersect. Let g (h), Py, P/, P be :he circle (path) and
points defined in the same way for an another geodesic ¢. Next we make
following

Derinition.  Two geodesics ¢, ¢ in F, are said to be 4 (B)-parallel, if
the image of P’ coincides with P’ when we develop the tangential Mobius’
(projective) space at P, on the one at P, along a suitable curve which joins P,
to P,, provided that P’ and P’ lie in directions of increasing or decreasing arc
1angth for both geodesics simultaneously.

§2. A-parallelism. At first we consider A-parallelism in C,. We develop
an arbitrary conformal circle in a tangential M&bius’ space at P, and choose a
projective parameter # suitably on the circle, then a variable point P on it is
expressible in the following form [1].

P=<1+l:gjk n nk>RD+(x’it+-’;n",)Ri+¢Rm, (5)
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S

1 . . . ..
dxt i = <—~4>P and & means the covariant differentiation
0

= V)
ds /ry
along the curve.

where x'i = <
ds?
Now considsr a geolesic ¢ in E,, then a variable point P on th: cor-
responding conformal circle g in C, is r presented as follows ;

P=Rn+tx’iR,-+-§Rw. (6)

. . . . 9 .
Since (6) meets with 4 as points corresponding to 7 = =4/ _2_[13, the point
¢
of intersection P’ is given by

—

P’ = Ro\ L #Ri + - R.. (7)

In the same way, we have for another geodesic ¢

P =Roe-2 %R+ -1 R, (8)

where the quanticies carrying bar are considered at P,.
Now suppose that Py(x*) lies indefinitely near to Py(x¢), then we can

put xi = x7 4+ e A, wher A7 is a unit vector at P, and € is an infinitesimal
constant.  Then from (1) we have

Eo =Ry + en Ry,
Ri=Rj+e€cgzMRo+e€(fFMRi+ € gt Ras (9)
R. =R, + € ¢ MR

If ¢ and ¢ are A-parallel, then, by deiinition, the relation P’ = pP’ holds
good, where p is some scalar funciion. Subs ituting (%) in (8) and putting
the relation thus obtained into P’ = pP’, we obtain

p=14+2¢ €gipN\X, (10)
£ px't =/ 20 M (X4 e () XTINF), (11)

where the double sign - must be used in he same corder by the definition
of A-parallelism. Ll minating p from (10) and (11) and neglecting terms of
the higher order with tespect to ¢, we get

(x5 £ v 20 gin(x"tx'® — gi#)IN =0, (12)

where semi-colom deno es the covarient derivative.
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Equation (11) defines A-parallelism in consideration in the Einstein space
E..

In the next place we shall compute the angle which may be called to be
parallel angle. In order to do this we displace %' at P, to P, in the sense
of Levi-Civita’s parallelism and subs itute the resulting vec or (neglecting terms
of the higher order with respect to €)

X'i=x"4¢€ {i} M X
in (11). Then we have
€V 2 M= = (px'i — %), (13)
Now suppose that A; xi = 0, then contracting A; with (13) we obtain
FNXi=€2; .
Let 4 be the angle which X’ makes with Ai, then we see that
cosl =€ Iz (14)

holds good, because X’ is a unit vector as x'. (11) is the equation which gives
the parallel angle of the _4-parallel geodesics ¢ and .

§3. B-parallelism. Next let us consider B-parallelism. We shall deal
only with the case ¢ > 0, since the case ¢ < 0 can be dealt with similarly.

Consider a geodesic ¢ in E,, it is a path 4 in P5. We develop % in the
tangential projective space at a point P, on %, then a variable point P on 4 is
expressible as follows [27:

P = cosh s*. A,, + sinh,*. 4'y,

where §* means arc length along the curve in E* and .4,, /4, are those at point
corresponding to P, % meets with B* at points

P'=Ay+ A (15)
In the same way, for P’ corresponding to an another geodesic ¢, We get
1—5' = Eo = Zo' (16)

Hereafter we agree that the quantities denoted by symbols with bar are those
at 1_5-0
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Now as in § 2, we assume that P, lies indefinitely near to P. Then the
relation x% = x% + e\’ holds good, where \i'k is a unit vector in FEj. From
(4) we have

20 = Ao + 6')\," A,‘,

- — - = ) (17)
Ao=x"Ai=x"(Ai+ € g N Ag+ € {J1* N Aj)-

If ¢ and ¢ are B-parallel, then substituting (17) into (16) and computing P’ =
pP’, we have

p=1xe€gh XN
T pxi=€eN (R4 eRTIFN).
Since these equations are written in terms of quantities of FE*, we must
translate them to those written in terms of quantities of E,. For this it is

ufficient to remark that vectors x'i, X't are unit vetors with respect to g;;o
Thus, we obtain (10) and (11) again.

§4. Pseuds-parallel vector fields. In §2, §3 we observed that for two
geodesics which lie indefinitely near to each other, 4- and B-parallelism co-
incide with each other. Therefore we shall call that unit vectors pi at (x?)
and 2 + 4y at (x¢ 4 dxi) are () (or (—))-pseudo-parallel if their components
satisfy the equations

[ 4 (ot =)V 2¢ gin (W 0h — g*)] dxi=0 (18)

(Cf. (12)). A unit vector field ¢ which satisfy (18) for arbitrary element
(%, dx?) will be called a (+) (or (—))-pseudo-parallel vector field. Then we
can state the following

THEOREM. If an Einstein space with non vanishing constants ¢ admits n
linearly independent pseudo-parallel vector fields, it is a space of constant carvature.

Proor. Let »* be a pseudo-parallel vector fields, then from (18) we have
visk =V 2¢ (vive — gir) = 0,
where =+ is taken either 4+ or —. Differentiating it covariantly, we get
vikii +2¢ [— 205050 + gjive + grjvil = 0.

Interchanging £ and ; and subtracting the equation thus obtained from the



ON PSEUDO-PARALLELISM 219

first equation, we have
Visksi — Visiik + 2¢(gij v& — giwvi) = 0.
Making use of Ricci’s identities, we see that the relation
AT (19)
holds good, where
Zkig = Rhij —2¢ (g3 8% — gix 8%)
is the so-called concircular curvature tensor. From (19), we can easily see that

our assertion is true.

§5. Up to the present we restricted ourselves only to Einstein spaces.
But these results can be generalized to an arbitrary Riemannian space [/, as
follows?. Let ¢ be an arbitrary constant, and we difine C, and Pz (or P,)
from 1/, by (1) and (4) respectively. Then making use of C. and P, we
obtain results analogous to those in sections 2, 3, 4. But generally C, (ot P,)
is not a space with normal conformal (or projective) connexion.
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2) This fact was remarked by Prof. S. Sasaki.





