SOME PROPERTIES OF A RIEMANNIAN SPACE ADMITTING

 A SIMPLY TRANSITIVE GROUP OF TRANSLATIONS*)

 A SIMPLY TRANSITIVE GROUP OF TRANSLATIONS*)}

BY
Yosio Mutô

In the present paper we first consider ($\S 1$ and $\S 2$) some properties of a simply transitive group of translations, or of transformations whose constants of structure are skew-symmetric in three indices or can be made so by a suitable choice of fundamental vectors ξ_{a}^{λ}. In later sections we then consider some properties of a Riemannim space admitting a simply transitive group of translations and state for example the following theorem: A Riemannian space V_{n} which admits a semi-simple simply transitive group of translations G_{n} admits also a group of notions $G_{n}{ }^{\prime}$ which is commutative with G_{n}. It should be mentioned that we are dealing with local properties only.

§1. The simply transitive group of translations

Let us consider an n-dimensional manifold V and a simply transitive group G_{n} on V whose fundamental vectors are denoted by ξ_{a}^{λ}. For convenience we shall use small Latin letters for the indices of vectors and tensors in the vector space associated with the group and Greek ones for the indices in V. Both letters take on the values $1,2, \cdots, n$.

The vectors ξ_{a}^{λ} satisfy equations ${ }^{1)}$

$$
\begin{equation*}
\xi_{a}^{\mu} \xi_{b, \mu}^{\lambda}-\xi_{b}^{\mu} \xi_{a, \mu}^{\lambda}=C_{a b} \ddot{b}_{x}^{\lambda} \tag{1}
\end{equation*}
$$

where $C_{a b}^{\bullet \cdot d}$ are the constants of structure.
A Riem.nnian metric will be introduced in the manifold V by putting

$$
\begin{equation*}
g_{\lambda \mu}=\xi_{\lambda}^{a} \xi_{\mu}^{b} C_{a b}, \tag{2}
\end{equation*}
$$

where ξ_{λ}^{a} are defined by

$$
\begin{equation*}
{\underset{a}{\lambda}}_{a} \xi_{\mu}^{a}=\delta_{\mu}^{\lambda} \tag{3}
\end{equation*}
$$

$$
\text { (hence } \xi_{a}^{\lambda} \xi_{\lambda}^{b}=\delta_{a}^{b} \text {) }
$$

*) Received in revised form, November 22, 1950

1) We adopt summation convention.
and $C_{a b}$ is a symmetric tensor of rank n in the vector space. The contravariant fundamental tensor $g^{\lambda \mu}$ is then given by

$$
\begin{equation*}
g^{\lambda \mu}=\xi_{a}^{\lambda} \xi_{b}^{\mu} C^{a b} \tag{4}
\end{equation*}
$$

with $C^{a b}$ satisfying $C_{a b} C^{b d}=\delta_{a}^{d}$.
As the numbers $C^{a b}$ are constants, we can get the following theorem by making the Lie derivative ${ }^{2}$) of (4) (see [3]) :

Thejrem I. The necessary and sufficient condition that a simply transitive grou力 becomes a group of translation: is that we can find out a symmetric matrix ${ }^{\|} C^{a b}{ }_{\|}$of rank, n which satisfies the equations

$$
\begin{equation*}
C_{\ddot{a} b}^{x} C^{a y}+C_{\ddot{a} \dot{b}}^{y} C^{a x}=0 . \tag{5}
\end{equation*}
$$

In this theorem we may replace (5) by an equivalent condition

$$
C_{a d}^{\bullet \cdot x} C_{x b}+C_{\ddot{b} d}^{\cdot x} C_{x a}=0
$$

Now we can replace the vectors $\xi_{a}^{\lambda} \cdot$ by any linear combinations of them with constant coefficients, and to do so is the same as to make a linear transformation in the vector space associated with the group. If the new constants of struc:ure satisfy $C_{a b}{ }^{d}+C_{a d}{ }^{b}=0$ after such transformation, we write them as $C_{a b d}$ and say that they are skew-symmetr c^{3}. Evidently, the constants of structure of aty simply transitive group of translations can be made skewsymmetric by a suitable transformation, for we need only to bring $C_{a b}$ to the canonical form $\delta_{a b}$.

With the skew-symmetric $C_{a b d}$ we get

$$
\begin{aligned}
C_{a d x} & C_{x y z} C_{b z y} \\
& =-C_{d y x} C_{x a z} C_{b z y}-C_{y a x} C_{x d z} C_{b z y} \\
& =2 C_{a x y} C_{b y z} C_{d z x}
\end{aligned}
$$

by using Jacobi's relation. We see that this expression is skew-symmetric with respect to a and b and hence get the relation

$$
\begin{equation*}
C_{a d x} G_{x b}+C_{b d x} G_{x a}=0 \tag{6}
\end{equation*}
$$

where $G_{a b}$ is defined by

[^0]\[

$$
\begin{equation*}
G_{a b}=-C_{a x y} C_{b y x} . \tag{7}
\end{equation*}
$$

\]

If the group is semi-simple, the rank of $G_{a b}$ is n and we can take $G_{a b}$ as $C_{a b}$ in (2), for (6) is then equivalent to (5). Then we get

$$
\begin{equation*}
\mathrm{R}_{\mu \nu}=\frac{1}{4} G_{a b} \xi_{\mu}^{a} \xi_{\nu}^{b} \tag{8}
\end{equation*}
$$

by calculating the curvature tensor. Thus we have the
Theorem II^{4}. If a space V admits a simply transitive group of transformations which is semi-simple and bence bas skew-symmetric constants of structure (or bas constants of structure which can be made skew-symmetric by a suitable transformation in the vector space associated with the group), then we can find a Riemannian metric such that the group becomes the group of translations and the space is an Einstein space.

§2. Decomposition of the group

Now let us consider an orthogonal transformation in the vector space

$$
\begin{equation*}
\eta_{a}^{\lambda}=P_{a}^{x} \xi_{x}^{\lambda}, \quad \eta_{\mu}^{b}=Q_{x}^{b} \xi_{\mu}^{x} \tag{9}
\end{equation*}
$$

where the coefficients satisfy $P_{a}^{x} Q_{x}^{b}=\delta_{a}^{b}, P_{a}^{x} Q_{y}^{a}=\delta_{y}^{x}$ and $P_{a}^{x}=Q_{x}^{a}$. Then the constants of structure are transformed into $K_{a b}^{\cdot \cdot d}=C_{x y}^{* z} P_{a}^{x} P_{b}^{y} Q_{z}^{d}$, which will be easily found to be skew-symmetric with respect to a, b and d.

Let
(10)

$$
g_{\lambda \mu}=C_{a b} \xi_{\lambda}^{a} \xi_{\mu}^{b}
$$

be a tensor such that G_{n} is the group of translations with respect to this metric. Then we get (5^{\prime}) which will become by the orthogonal transformation (9)

$$
\begin{equation*}
K_{a d x} K_{x b}+K_{b d x} K_{x a}=0 \tag{11}
\end{equation*}
$$

with $K_{a b}=P_{a}^{x} P_{b}^{y} C_{x y}$. The indices are lowered, for the constants of structure are assumed to be skew-symmetric and the transformation (9) is orthogonal.

We can find an orthogonal transformation that makes the matrix $\left\|K_{a b}\right\|$ diagonal, that is,
4) See [3]. See also the related theorem of Cartan and Schouten, [1], [2] p. 206, [4] p. 24 ,

$$
\begin{equation*}
K_{a b}=K_{a} \delta_{a b}, \tag{12}
\end{equation*}
$$

and in this case we get from (11)

$$
\begin{equation*}
K_{a b d}\left(K_{b}-K_{a}\right)=0 . \tag{13}
\end{equation*}
$$

If the eigenvalues K_{a} are not all the same, we may put

$$
K_{1}=K_{2}=\cdots=K_{p}, K_{p} \neq K_{p+1}, K_{p+2}, \cdots, K_{n} .
$$

Then we get from (13)

$$
\begin{equation*}
K_{A \cdot}{ }^{\circ} d=K_{A B P}=K_{F Q A}=0 \tag{14}
\end{equation*}
$$

where the indices run as follows: $A, B, \cdots=1,2, \cdots, p ; P, Q, \cdots=p+1$, $p+2, \cdots, n$. (14) means that the group G_{n} is not simple. Hence if the group is simple we get

$$
C_{a b}=C \delta_{a b}
$$

as long as C_{a}, satisfies (5^{\prime}). As G_{a}, satisfies (6) we get $G_{a}=G \delta_{a}$. Accordingly we have the following theorem:

Theorem III. If a simply transitive group G_{n} is simple, there is essentially only ons Riemannian metric with respect to which the grcut is a group of translations. The space is then an Einstein space.

When the constants of structure are skew-symmetric it is evident that $C_{a b}=\delta_{a b}$ satisfies (5). Hence the group is a group of translations with

$$
\begin{equation*}
g_{\lambda \mu}=C \Sigma_{x} \xi_{\lambda}^{x} \xi_{\mu}^{x} \tag{15}
\end{equation*}
$$

as the fundamental tensor. Let us consider that the group is a group of translations with respect to the metric

$$
\begin{equation*}
\bar{g}_{\lambda \mu}=\bar{C}_{a b} \xi_{\lambda}^{a} \xi_{\mu}^{b} \tag{16}
\end{equation*}
$$

too. Then after an orthogonal transformation that makes $\bar{C}_{a b}$ diagonal, we get the equations having the same form as (13). Hence if (16) is essentially different from (15), we must have (14). We can now use again the letters C and ξ instead of K and η and write (14) as

$$
\begin{equation*}
C_{A} p_{d}=C_{A B P}=C_{F Q A}=0 . \tag{17}
\end{equation*}
$$

It will be easily found that on account of (17) we can find out a coordinate
system satisfying the condition

$$
\begin{array}{ll}
\xi_{A}^{\alpha}=\xi_{A}^{\alpha}\left(x^{1}, \cdots, x^{p}\right), & \xi_{A}^{\pi}=0, \\
\xi_{P}^{\alpha}=0, & \xi_{p}^{\pi}=\xi_{p}^{\pi}\left(x^{\beta+1}, \cdots, x^{n}\right) \tag{18}
\end{array}
$$

where the indices α and π are used for the manifold V and take on the values $\alpha=1, \cdots, p ; \pi=p+1, \cdots, n$. (18) means that the group and the space are decomposed simultaneously. Hence we get the

Theorem IV. If a simply transitive group of transformations G_{n} with skewnsymmetric constants of structure admits two or more essentially different Riemannian metrics with respect to which G_{n} becomes a group of translations, the in the group and the space are simultaneously decomposed into $G_{p} \times G_{n-p}$ and $V_{p} \times V_{n-p}$.

If the group is not semi-simple, one of the eigenvalues of $G_{a^{\prime}}$ is equal to zero. If $G_{a b}=0$ we get $C_{a b d}=0$ from $\Sigma_{x, y} C_{a x y} C_{a x y}=0$. Hence a simply transitive group which is neither Abelian nor semi-simple and has skewsymmetric constants of structure has the matrix $\| G_{a j \|}$ with eigenvalues not all the same. On the other hand the equations

$$
C_{a d_{x}} X_{x b}+C_{b d_{x}} X_{x a}=0
$$

are satisfied with ' $X_{a b}=\dot{\delta}_{a b}$ and $X_{a b}=G_{a b}$, and this fact leads to the consequence that G_{n} is decomposable into $G_{p} \times G_{n-p}$.

Performing such decomposition as far as possible we get the
Theorem V. The Riemannian metric that makes a simply transitive group G_{n} with skew-symmetric constants of structure a group of translations makes the space V an Einstein space or a product of Einstein spaces. The group G_{n} is a simple group or a direct product of simple groups.

The latter part of the theorem follows from the fact that a semi-simple group is a simple group or a direct product of simple groups.

§ 3. A one-parameter group of motions in a Riemannian space admitting a simply transitive group of translations

In preceding sections we considered some properties of a Riemannian space admitting a simply transitive group of translations G_{n}. In deriving the first theorem we used the property of a group of translations that the quantities defined by

$$
g_{a b}=g_{\lambda \mu} \xi_{a}^{\lambda} \xi_{b}^{\mu}
$$

are constant, see [2] p. 212, [4] p. 32. As we consider that the group is simply transitive we can find the vectors ξ_{\wedge}^{a} and a tensor $g_{o}^{a b}$ in the vector space associated with the group such that $\xi_{a}^{\lambda} \xi_{\lambda}^{b}=\delta_{b}^{a}, g^{a b}=\xi_{\lambda}^{a} \xi_{\mu}^{b} g^{\lambda \mu}, g^{a b} g_{d d}=\delta_{d}^{a}$ and $\xi_{\lambda}^{a}=g^{a b} g_{\lambda \mu} \xi_{b}^{\mu}$.

We can add here some relations which can be obtained from (1) and the fact that a translation is a kind of motions, that is, ξ_{a}^{λ} satisfy Killing's equations ${ }^{5}$

$$
g_{\lambda \mu} \xi_{a ; \nu}^{\lambda}+g_{\lambda \nu} \xi_{a ; \mu}^{\lambda}=0,
$$

which give on account of preceding relations

$$
\xi_{a}^{\mu} \xi_{b ; \beta}^{\lambda}+\xi_{b}^{u} \xi_{a ; / 2}^{\lambda}=0 .
$$

Then we get the equations

$$
\begin{equation*}
\xi_{a}^{\mu} \xi_{b ;}^{\lambda}=\frac{1}{2} C_{a b}^{\bullet x} \xi_{x}^{\lambda} \tag{19}
\end{equation*}
$$

which are the bases for deriving the curvature property of the space, see [3].

Now, let us consider that the vector

$$
\begin{equation*}
\xi_{0}^{\lambda}=h^{x} \xi_{x}^{\lambda} \tag{20}
\end{equation*}
$$

defines a motion in the space. We get from Killing's equations the equations

$$
\begin{equation*}
\left(h^{x},{ }_{\mu} \xi_{\lambda}^{y}+h^{x}, \lambda \xi_{\mu}^{y}\right) g_{x y}=0 . \tag{21}
\end{equation*}
$$

If we further assume that the vector ξ_{0}^{λ} and the vectors ξ_{a}^{λ} coniointly are the fundamental vectors of an $(n+1)$-parametcr group G_{n+1}, we get from Jacobi's relations

$$
\begin{aligned}
& C_{a b}^{\cdot \cdot 0} C_{c 0}^{\cdot \cdot d}+C_{\dot{b}}^{\cdot .0} C_{a 0}^{\bullet \cdot d}+C_{c a}^{\cdot 0} C_{b 0}^{\cdot d}=0,
\end{aligned}
$$

$$
\begin{aligned}
& C_{a b}^{\cdot x} C_{0 x}^{\cdot \cdot 0}+C_{b o}^{\cdot x} C_{a x}^{\cdot 00}+C_{0}^{\cdot \cdot x} C_{b x}^{\cdot 00}=0 .
\end{aligned}
$$

We must put $C_{a b}^{\bullet .0}=0$ for G_{n} is a subgroup of G_{n+1}. Then a solution is obtained by putting

[^1]\[

$$
\begin{equation*}
C_{\ddot{a} b}^{\cdot 0}=C_{0 b}^{\cdot 0}=C_{0 a}^{\cdot \cdot b}=0 \tag{22}
\end{equation*}
$$

\]

which means that the group $G_{1}{ }^{\prime}$ generated by ξ_{0}^{λ} and the group G_{n} are commutative.

The Lie derivatives of ξ_{0}^{λ} with respect to the group G_{n+1} are given by

$$
X_{a} \xi_{0}^{\lambda}=C_{a_{0}}^{\cdot 00} \xi_{0}^{\lambda}+C_{a_{0}}^{\cdot \cdot x} \xi_{x}^{\lambda}
$$

which vanish on account of (22). On the other hand we get from (20)

$$
\begin{aligned}
X_{a} \xi_{0}^{\lambda} & =\left(X_{a} h^{x}\right) \xi_{x}^{\lambda}+h^{x} X_{a} \xi_{x}^{\lambda} \\
& =\left(X_{a} h^{b}+C_{a x}^{\bullet b} h_{x}^{x}\right) \xi_{b}^{\lambda} .
\end{aligned}
$$

Hence h^{a} must satisfy the differential equations

$$
\begin{equation*}
X_{a} h^{b}=-C_{a_{x}}^{\bullet b} h^{x} . \tag{23}
\end{equation*}
$$

It will be easily understood that (23) is just the necessary and sufficient condition that ξ_{0}^{λ} define a group of motions and that this group and G_{n} are commutative. For if we multiply the left hand side of (21) by $\xi_{a}^{\lambda} \xi_{b}^{\mu}$ and contract we get $X_{b} h^{x} g_{a x}+X_{a} h^{x} g_{x b}$ which vanishes on account of (23) and (5').
ξ_{0}^{λ} can not essentially generate a group of translations, for we get from $\left(g_{\lambda \mu} \xi_{0}^{\lambda} \xi_{a}^{\mu}\right) ; \nu \xi_{b}^{\nu}=0$ and (20)

$$
X_{b}\left(g_{\lambda \mu} \xi_{x}^{\lambda} \xi_{a}^{\mu} h^{x}\right)=X^{b}\left(g_{a x} h^{x}\right)=g_{a x} X_{b} h^{x}=0
$$

which imply that h^{a} be constant. Thus we have the
Theorem VI. A Riemannian space V_{n} admitting a non-Abelian simply transitive group of translations G_{n} admits also a one-parameter group of motions G_{1}^{\prime} such that G_{n} and G_{1}^{\prime} are subgroups of a group $G_{n+1}=G_{1}^{\prime} \times G_{n}$.

§4. The group of motions containing the group of translations

Now let us assume that the rank of the matrix $\| C_{a x}^{\bullet \cdot b_{\|}}$where x denotes the rows and a and b the columns is p. Then the set of equations

$$
\begin{equation*}
C_{a x}^{\cdot b} u^{x}=0 \tag{24}
\end{equation*}
$$

has $n-p$ independent solutions

$$
u^{x}=C_{f}^{x} \quad(P=p+1, \cdots, n)
$$

where C 's are constants, and we can find out p independent non-constant solutions of (23),

$$
h_{A}^{x} . \quad(A=1,2, \cdots, p)
$$

If we make new symbols

$$
\begin{equation*}
Y_{A}=h_{A}^{x} X_{x} \tag{27}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left[Y_{A}, X_{a}\right] \equiv Y_{A} X_{a}-X_{a} Y_{A}=0 \tag{28}
\end{equation*}
$$

on account of (23). Furthermore we can obtain

$$
\begin{align*}
{\left[Y_{A}, Y_{B}\right]=} & h_{A}^{a} \gamma_{B}^{b} C_{a b}^{\bullet a} X_{d} \tag{29}\\
& +\left(h_{A}^{a} X_{a} h_{\mathrm{P}}^{b}\right) X_{b} \\
= & -\left(h_{B}^{b} X_{b}^{a} h_{A}^{a}\right) X_{a}^{b} C_{a b}^{\circ a d} X_{a} .
\end{align*}
$$

where

$$
\begin{equation*}
h_{A}^{a} h_{B}^{b} C_{a b}^{\cdot a}=h_{A B}^{a} \tag{30}
\end{equation*}
$$

is again a solution of (23). Hence we can put

$$
\begin{equation*}
h_{A B}^{a}=-D_{A B}^{\cdot{ }_{A}^{x}} h_{x}^{a}=-D_{A B}^{\cdot D} h_{D}^{a}-D_{A B}^{\bullet \cdot} C_{o}^{a} \tag{31}
\end{equation*}
$$

with constant D 's, and get

$$
\begin{equation*}
\left[Y_{A}, Y_{B}\right]=D_{A B}^{\bullet D} Y_{D}+D_{A B}^{\bullet \cdot} C_{a}^{a} X_{r} \tag{32}
\end{equation*}
$$

For symbols X_{n} and Y_{A} together Jacobi identities are satisfied and they make a group. If the group $G_{i i}$ is semi-simple (24) has no non-zero solution as we get

$$
C_{a x}^{* d} u^{x} C_{\overrightarrow{d b}}^{* a}=-g_{b x} u^{x}=0 .
$$

Besides we get $\left[Y_{A}, Y_{B}\right]=D_{A B} \cdot Y_{D}$. Thus we have the
Theorem VII. A Riemannion space admitting a simply transitive group of translations G_{n} admits also a group of motions G_{n+p}, and G_{n} is an invariant subgroup of $G_{n} p$. p is suc's a number that $n-p$ is the number of independent solations of (24). Especially when G_{n} is semi-simple, $p=n$ and the group G_{n+n} is the direct product of G_{n} (translations) and $G_{n}{ }^{\prime}$ (motions).

Next, let us consider that G_{i} is not semi-simple. It was stated in $\S 1$ that we can choose the fundamental vectors so that the constants of structure are skew-symmetric in three indices. Then the set of equations

$$
C_{a d x} X_{x b}+C_{b, d x} X_{x a}=0
$$

has two essentially different solutions $X_{a b}=\delta_{a b}$ and $X_{a b}=G_{a b}$, and the group is decomposed. After performing the decomposition as far as possible, we find that G_{n} is the product of several semi-simple (simple) groups of parameters at least three and $n-p$ one parameter groups. The proluct of the former groups is also a semi-simple group and the product of the latter is an Abelian group. As the space V_{n} is also simultaneously decomposed we have the

Theorem VIII. A Riemannian space V_{n} admitting a simply transitive group of translations G_{n} admits also a group of motions G_{n}^{\prime} commutative with G_{n} if G_{n} is semi-imple, or if V is not a direct product of a one-dimensional Riemannian space and an n-1-dimensional Riemamian space. If V_{n} is a direst product of $n-p$ one-dimensional spaces and a V_{p} which cail not be decomposed into a one-dimensional space and a V_{p-1}, then it admits a group of motions G_{p}^{\prime} commutative with G_{n}.

References

[1] Cartan, E. and J. A. Schouten: Proc. Akad. van Wetens. Amsterdam, 29 (1926), 803-815.
[2] Eisenhart, L. P. : Continuous Groups of Transformations (1933).
[3] Tashiro, Y.: to be published shortly.
[4] Yano, K.: Groups of Transformations in Generalized Spaces (1949).

Yokohama National University

[^0]: 2) See reference [4].
 3) By $C_{a t c}$ we do not mean the quantity $C_{a b}^{\cdot 0 x} g_{x c}$ with $g_{a b}=-C_{a x}^{\bullet \cdot y} C_{b y}^{\cdot x}$. But on the othar hand we see that we can always take skew-symmetric constants of structure for a semi-simple group.
[^1]: 5) A semi-colon means covariant derivation with respect to the metric $g_{\lambda \mu}$.
