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This paper consists of three parts. In § 1, we investigate the relation
between the logarithmic order of a certain Cesaro mean of function and
that of Cesaro sum of its Fourier series (Theorem 1. 2). Our theorem is
best possible in a sense (Theorem 1. 3) and incidentally it is proved that
there is an integrable function which ris (C, α; continuous and whose
Fourier series is not (C,ct) summable. In § 2 we prove a theorem generali-
zing F.T.Wang's [5] (Theorem 2.1). We give further a relation between
Riesz continuity of function and Cesaro summability of its Fourier series
(Theorem 2.3). In § 3 we prove a theorem concerning absolute Riesz summ-
ability with its converse (Theorem 3.1).

1. We suppose that ψ(t) is an even integrable function, with period
2τr. We denote the a - th integral of φ (7) by

(1.1) Φ*u) - -- ί (t - u)*~l<P(u) du (a >0),ί

and the a - th mean of <P(t) by
(1.2) <PΛ(fϊ - Γ«* -h 1) t-*ΦΛφ.

Let us write the Fourier series of Ψ (t) as

@ C^ϋ - 2 a» c o s n t

Λ = U

and denote its (C, αϋ-mean by C»«o).
By the result of Bosanquet [2, pp. 26-27], we have

*(ω) = ω|.3) C*(ω) = ω φΛ(f)J%(ωt)dt + θ(lϊ, as ω -> oo

where /* CM) satisfies the relation

(1.4) |/S(«)I ^ κ

for M ^ 0. and
(1.5) /£(«) = ^' s i n ^ — πa))/u -h O (1/κ2)
for large M.

We have then the following theorem :

THEOREM 1. 1. //

(1.6) Γ \φΛ(tϊ\dt= o(t(logl/tY), C«>0, - 1< r < oo),
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cts t -> 0? £/z£/2 we have

a.7) cΛ(ω) = ore log ω.n -h o

as ω -> ex).

PROOF. We start from (1. 3λ

Γ ? v

C r t(ω) = ω / φΛ(t)J* (ωt) dt + ό> (1)

/•"•'- r
= ω| + ω | + 0(1) = /,(ω )+/,(&»+ o(l), say.

Then from (1.4) and (1.6), we have

\<PΛ(t)\dt =

On the other hand, from (1.5),

- . d t

- f / ) «5ί5!ί— *«>. Λ + O c / ( ω ) ) ;

where

o ('(logω)r), for r > 0

where Φ(/) = I

o

Summing up above estimations we get the theorem.

THEOREM 1.2. if

(1.6; I \φΛ(t)\dt ~ o(t(logl/t)r), (# >0, - K r < o o ) ,(1.6) I \φΛ(ί)\dt ~ o(t(logl/t)r),

ϋ

25 ί ->• 0, ί/ẑ /ί we have

(1.7)

7S ω -> oo.
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PROOF. In order to prove the theorem, it is sufficient to show that
the last integral in (1.7) is o (dog ω) i + ? ). Now

f *

O(l) + o ( I (logl/W/t dt]
*)

= (XClogω)') -hθ(l) -h 0((logω) l4ί') = 0((logω)1+r).

Thus the theorem is proved.

THEOREM 1.3. There is an even periodic, integrable function <P(t)
such that
(1.8) Ψ&(t} ~ o(( log 1/ί )'''), ( # > 0 , — K r < o o )

(1.9)

/br ŵy 0 < r' < 1 + r.

PROOF. Let us put 1 + r = s > 0 and r — sa, and then 0 < a < 1. Take
a number d > 0 such as α + d < 1 and then take a pαsitive integer b such as
(1. 10) l/b + l< l/(a + d).

For £=1,2, ---- , let us put '

Λ= 3 ίδ; r 0 = 1,
n = (L joe -f- l)n_ι a/ = πa/ri.

Then from (1. 10), we have (see the following Addendum 1)

(1.11) rt/rf.-Ί >e(logrtϊ'l+«,
for large £. We define an even periodic function σ(t) such that
(1. 12) σ-(O = c^α(log l/7r sin (r<ί - TT^)

in the interval L^^^-iH 3-n(i °" CO = 0 elsewhere in (0, TT). Then we have

σ(a;) = cr(α? _,) = 0. If Cc;) converges as z'->oo; then σ-CCΛ;ι+J) (O is ([αQ
+ l)-time integrable in [0, π~λ (see the Addendum 2). By the convolution

theoreηa, we have

ψζt) -- Γ(l - α ) ' 1 Γ (ί -

and φ(t) € L(0,2ττ), where {a} denotes the fractional part of a. From a
theorem of fractional integral we have

Ί<-
n
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= ί (t - u)t*W»

If we take (c/) such as ct->0, then

(1.13) Φ«(ϋ/*
Λ
 - 0((log l/O

r
), as ί -> 0.

If we take O/) with sufficiently large gaps, then

(1. 14) φ,W ^"V^-TΓ^; rf/ = 0 ( 1 )

J

*»i-,

and

(1. 15)

J cθ s ί n O V - a r α ) ^ = ^ f |"\ίsί

If we take
Cnt= (logrni)-as1*,

then, by the relation

CΛ(ω) - o( log o>7 + ί <7̂ CO S m ( ω ^ " " 7 Γ α ) rfί + o(l),

we have (from (1.11), (1.14), (1.15))

v , >(logr^)-d s^(logr%y"'+ ( ?'

Thus we get the theorem.

ADDENDUM i. Proof of (l. 11). Since

n = (1,1 a + 1)C/,/^ + !)•-•- (It/ a -f 1),

where k = 3ίb, we have
logr/ = O("Γ+1),

(log rO r r '+ ί ί^ O(τ'(ίl+"χ6+1>>
On the other hand

log Cri/ri-0 = logCA/α + 1) - O(ί'0.

Since, from (1. 10), 1 + l/b < 1/ύ + d), we have

which is the required.

ADDENDUM 2. Proof of the integrability of σ(Crt)+1)CO. We give the
proof for 0 < oi < 1. The proof of the general case is quitely analogous.
We have

σ-CO = ftί*Clog 1/f ) r sin (nί - π(X)
and 6rr(ί) --= ci{t*-\log l/ty - ^"^ lo

-f- rίCrfΛ(log l/ί)rcos (r;t
say.
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Then since we can take £ such as oi > £ > 0 and

|fW| S \Ci\t"-*-\
P(t) is integrable in (0, π}. On the other hand

I Q(t) I < c/n^Clog 1/ty <; drtt*~ε:
where a' = α - £ > 0. We have consequently

*ί-l

v=l

for large f. Hence, if \a\ <Ξ M, then

Γ
J

REMARK. If we put r = 0 in The3rem 1. 3; we have the following
corollary. There is an integrable function such that φΛ(t) = o(l), but
CΛ(ω)Φ o('(logω)r/), for any 0 ^ r' < 1. The case rr = 0 is given by Professor
S. Izumi [4j. Our example is somewhat easier.

2. We begin by stating a lemma due to A. Zygmund [6Ί.

LEMMA 2. 1. // v aΛ = o (R, n, β) for some β and C£r°(ω) = o
where i/r (&>) | oo ^5 r/> -> cxj ^^^ C^Λ)(ω) denotes the (R, n, a) -mean of the
series Σ <7?i,

= exp (

THEOREM 2. 1. //

0

Fourier series & Γ^Ί /5 (/?, iμ , oL)-summable at t — 0. tvhere

PROOF. By the assumption of the theorem @ [φj is (C, ̂  4- £>summa-
ble and then the conditions of lemma 2.1 are satisfied from Theorem 1. 2.
Hence the theorem follows immediately from Lemma 2.1.

This Theorem is finer than Wang's [5].

THEOREM 2.2. if

ί
Fourier series &[_φ~λ is (R.log,a)-summable.
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This is an immediate corollary of Theorem 1.2 and Lemma 2.1.
REMARK. It seems to be probable that if Σan is (R,log, oO-summable

and C£5e(ω) = o(l), then C£°(ω) = o ((log ω)«)(a >0). This is easy for
integral a, but the author did not succeed for fractional α. If this is
valid, the result of Theorem 2. 2 is best posible in view of Theorem 1. 3.

The function φ (t) is said to be (R} log, α>summable to s as t -> 0, if
Λτr Λ-J

1 Γ / w \ Φ(u)
l$ Tcαxϊ^W J l log 7-) — du = s

t

We have then the following theorem.

THEOREM 2. 3. If <&[_<p~] is (C, a)-summable (a > 0) at t = 0,
^ CO 2*s C^ log, ^ 4- 1)-summable as ί->0.

This is easy from the following two lemmas.

LEMMA 2.2. (Hyslop[3]). ff Ca(ω) = o(a > ό) as ω->oo, ί^/?. φa+Ύ(t)
= o(log

LEMMA 2. 3. //" ^(^) fs Cesάro summable for some order and <P#(t) =
o ((logl/ί)α), α >0, then ψ(t) is (R, log, a^-summable.
Proof of the latter is analogous to Zygmund's theorem [7], where ω->oo.

3. We shall finally treat the absolute summability. For the sake of
simplicity of estimation, we consider only the summability of the integral
order. In the case of fractional α, the problem is open.

THEOREM 3.1. If the function φ(t) is \C,a\-summable (that is, <Pa(t)
is bounded variation in CO, π)) for an integral Qί>2, then its Fourier
series & \jp~] is \ R, log, a \ -summable. Conversely if the Fourier sesies
(S[^j is \C, a\ -summable for an integral a > 1, then the function φ(t)
is \R, log, oί + 1[ -summable.

The former half of the theorem follows from the following two
lemmas.

LEMMA 3.1. (B Banquet [1].) If t lie function φ(t) is \C, a\ -summable,
then

/ OClogΛO,

where Sf^x} denotes the x-th Cesaro sum of a order of the Fourier series
© OT.

N

LEMMA 3. 2. // Σ «» w | C, /31 -summable for some β and / ί/ ί - „

= O (log*TV) /or som^ integral oί>2, the i the series Σan is \ R, log ;α|-
summable, lυhere S*(x) denotes the (R,n,oί)-sum of the series Han.
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PROOF. Put λ = log w, and

α-'Sj^OO = Γ (# - O ^ S ^ t t ) * = Γ (ΛΓ -

and

(3. 1) α-JSχΛ>(log*) - [ ilog

_ 1 Γ'Oog^-logί)-1 d"
- - "

where ψ (ί) = ClogΛ - logf)"-1/^ B(t)^S^(t), and /3 is an integer.

Integrating by parts, we have

(3. 2) Γ

j

( - Dβ Γ -

where
5 ( 1 ) - £'(1) = •• . = 0,

and
ψ^OO = 0, for ^ = 0, 1, 2, - , α - 2.

Put KXf) ΞC -

for /? = a — 1, , j(3 — 1, where A* are constants. Since

where #/,,.< are constants, we have

(3.3) F,α) - A.vS

+ = t C ί ) + 7 f c ( ί ) , say.
- 1 - $ > u Λ — i — s = i J

Then

Since
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(3.4)

and

fog r > a, we have

/
ί d

- OClog N)

- OClogΛO,

( 3 < 5 ) J d ( logi") I S J ~log** + J x log«+1:

say.
Form (3. 4), we have

r /

(3.6) Λ - [ Γ

-= O [

2V N y,
,

Γ { Γ

since a > 1.

Lastly

0(log*)
Λ = Γ

(log
I

Λ)«J

where

Since from the hypothesis,

f \dΓ(t)\ = 0(1),

and Γ (N) = 0(1) as N-> oo.
The last term equals to

say.

Since

'(Λ; = (log *rrc*) log */«- ^ f ι\ί;/ί dt
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we have

Γ |A'Oΰ|rf*^ f

log* Γ Γ(ί)/ί Λ],

•A t)/tdt

- [|Γ(X>logΛ- J l\t)/tdt\ Clog*)-1

Γ
ax|Γ(Λθ| + / \Γ(x)\dx

r.<N J

Max|

= 0(1).
Summing up the above estimations we get the lemma.

The latter half of Theorem 3. 1 is proved analogously.
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