NOTES ON FOURIER ANALYSIS (XVD:
ON THE STRONG LAW OF LARGE NUMBERS AND GAP SERIES
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Part I. On the strong law of large numbers.

1
1. Let f(x) bs an integrable function with period 1 such that f f (0dx
0

L
= 0 and ff-’(x)dx: 1. Recently P. Erdos [[1] proved the following theorem :
J ‘

THEOREM A. If, for some & >0,

1 1/2 1 1+¢
(1.1 <f[f(x+t)—f<x>]‘-’dx> :O(l/(loglogfl;) )
0
as t— 0, then for any sequence of positive integers (), np/mu—y >q > 1,

N->oo

N
1.2) lim = S finw = 0,
N k=1
almost everywhere.

Roughly speaking, the strong law of large numbers holds for {f(m.x)}.
We shall here prove that, if 1+ € is replacad by 2 + € in the condition
11.1), then the series

(1.3) > L S (%)

k=1 k
converges almost everywhere. This is stronger than Theorem 1 in both
hypothesis and conclusion. Th= method of proof is quitely different from
that of P. Erdds, and is that used by Marcinkiewicz and the authox [27.
By this m=thod wa give an alternative proof of the following theorem due
to M. Kac, R. Salem and A. Zygmund [3]:

THEOREM B. If, for 0 < a <1,
1/2

(1.4, (/f [fx+1) —f&x)]“'dx> =0 <1/<10g 71>w>,

then the series

(1.5) > o
k=1
converges almost everywhere for 3 >1— a/2.
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They proved the theorem for the case « g 1. By our method we get a
little better theorem than theirs in our case. In the case « = 1, the series

= 1
(1.6) T Toabs SOux)
2 7 logh s

converges almost everywhere for 3 > 1, and in the case « >1, the series
(1.6) converges almost eyerywhere for 8 >1/2. We can see also that we
can not take 8 = 1/2 in (1.6), but we can replace the factor (logk)? in
(1.6) by A/lTogk (logloghk)® (8 >1/2), and so on.

We prove a theorem concerning Riemann sum, due to R. Salem [6]
and S. Yano [7] in a little modified form, by the above methed. We fur-
ther remark that our method enables us to prove theorems, replaced f(1;x)
by fi(ma). In the following, () denote a sequence of integers with the
Hadamard gap”.

2. THEOREM 1. If for some & >0

1 1/2 2
AN /1 17
@1 (f ix+ ) — feoFds) = 0(1/(loglog | ) ),
o
then the series
(2.2) ﬁ—; f(nex)
k=1

converges almost everywhere.
For the proof of Theorem 1 we need two lemmas.

LEMMA 1. If f(x) satisfies the condition (2.1) for some & >0, then
1
(2.3) fﬂn.,x)f(n,cmdx: O (1/(log|j— k] 1+
)

for j =% k.

Proof is similar as Lemma 1 in [27.

LEMMA 2. If f(x) salisfies the condition (2.1) for some & >0, then the
series (2.2) converges te a function ¢(x) in the L*-mean.

PROOF. Let 1<m <#xn. Then we have, by Lemma 1,

1 n

9 n 1
2.4 f (Z 71 f(mx)) dy= > ]}e fG0)f (mpx) dx
0 0

k=m J,k=m

— 1 < 1 . _ 1 B
-2 w T O<;Z Jr (log|j— k| )"'*E) - O((logmﬁ) = o(l),

K=m

1> Theorems in this paper were first proved for integral 2x. DMr. G. Sunouchi
remarked me that these hold for real mx with trivial modification of proof.
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as m, n —» c. Thus the lemma is proved.

PROOF OF THEOREM 1. We can suppose that
f(x) ~ i a, e e,
Let us put "
Su(x) = Z a6’

Then we have easily

f(nk,x’) ~ 2 a,e v
v=1

and
1 1/2 1 10
(f O (i) — S (1220 dx) = <f f (x) — s,‘k(x>]‘fdx>
0 (

= O (1/(loglogw,>?+¢).
If we put w, = 2" and ¥, = f(x) — 5, (%), then

1 =3 2 1 oo 0
. 1 logk :
f <2% I\,&,G(nkxﬂ)dx: f <2,\/7e lTogk :}gk l ‘/fk(%kx>l>d\’
k=2
1]

k=2
v

S (log k)2
gz (logk)-z g ftwmkx)jm

oS 1 _
- \2 (logk)z+'2?>—0(1)-

Thus the series

o 1

Z *k'” '\ll‘k(nkx)

k=1
converges almost everywhere, and converges in the L*means. By Lemma
2, the series

Z - Sp (M%)

converges in the L*-mean. Usmg the Kolmogoroff —-Kac theorem [4], we

see that the sequence
o

1 ‘
—7 - S (M)

and then the sequence
o

2.5) > —i— flmx)

k=1
converges almost everywhere, from which it follows .the almost every-
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where convergence of (2.2), provided that
o 1 v
; 1
2.6) > (_mma_;fm > S )
n=1 2" v ko
For the proof of (2.6) we use the device of Menchoff [5]. Let

1 2n+(f+1).‘)‘ 1 3
I,;Ef[ Z ~E~f(n,gx)] dx.

0 k=2t

)zdx < oo,

Then we have, by Lemma 1, putting a =2 + &,

2"’+(j+1)'7}‘ My et 1
2wt 2 Wi IR

Myt k ey ki(loglk — (])

=9+ I,

I;

IA

say. Now
IH < 1 1 < 2A.
J 2/4 + ]‘2/\ 2n + <j+ 1>2A = (2:;_‘_]2)\)2

and
21N -1 .
o= 1 R S
! 2 ) 2 k(log(l —k))®
t=2t k=2 2N

_"L+(j+]).‘)‘

> 1 I = (27 4 2N < 27
< 12"+ j20) (log(l — (2" + j28)))® = A%(2* + 2M)2 °

1=2"y i1
As easily may be seen, the xn-th term of (2.6) is less than

n ﬂ/—}\ )'l/ A
nz 2 I; <An2 Z I»
v A=1
Y

22N
§A”Z 2 Xm<2n+]2A)-

A=l J=0

IA

n/2) . n

1 27
A 5w g + A 2 S

A=1 A=(n/2)+1

IA

n A A
2)‘&/'.‘ +

Thus we get (2.6) as &« — 1 >1, and then the theorem is proved.
Similarly we can prove that, if

([ e =o' ofsoneton ),
then the seri(:es

=4 po-1 = pe-1°

oo

2 f(n.x)
- klogk
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converges almost everywhere,
3. THEOREM 2. If for 1 >a >0,

1 1)z , @
G.D < f U+t —f<x>]2dx> = 0(1 / (log*']if) )
0
then the series
(3.2) S L o)
k=1 k

converges almost everywhere for 3 >1— a/2.
We will begin by two lemmas analogous to Lemma 1 and 2.

LEMMA 3. If f(x) satisfies the condition (3.1) for 1 >a >0, then

1
3.3) ff(njx,)f(nkx)dx = 01/|j—k|®

for j+k.
Proof is similar as Lemma 1.

LEMMA 4. If f(x) satisfies the condition (3.1) for 1 >a >0, then the
series (3.2) converges in the L*mean for B3 >1— a/2.

PROOF. Let 1<m <#»n and we can suppose that 3< 1. By Lemma 3
we have

1 n n

f<k=2m EB f(”kx/>dx—— szm ]ﬁkpff/nmf(mx) dx
0
"hzw; 7B +0<2 ]ﬁkﬁ“_klc&)
(3.4) —O(WB 1) . O<“zn:+1 ;} = k),,,)

[gb3]

=O<m~1 >+0<2 A [2+ 2‘ W—l—lgff]}

J=m+1 k=m k=(j/2)+1

co(=1) v 0( X k)=o)

J=m+1 J
as m, n—> . Thus the lemma is proved.

PROOF OF THEOREM 2. We follow the line of the proof of Theorem
1 and use its notations. We have

llg 1/2
f E«Im(mxﬂ‘dx f E%(x)]zdx) = O(l/(logmw>,
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1 o

f<,c=1,~?1‘_ \bk<nkx>'>2dx:f<§: ﬁ_lé i ; |‘/’:(n;x)l)dx

y P RTTY g
1 B8 +'.’ ko1 B2 (logp,,{)z“

which is bounded if w, = 2%, Thus it is sufficient to prove that, corres-
ponding to (2.6),

co 1 14
\ \ .
(3.5) Z ( max 12~#f(m.x> )dx< oo,
n=1 Pzt
Now, by (3.4), we have
2 +(7+1)’)‘ 2
1 <f n N B f(”hx)1dx = (20 3 jonyEE
k=2"+j2
Thus the n-th term of (3.5) is less than
. n ,n A n n A
n?
n Ii=n P 5 = B on -
EJZJ J= ;g (2 +]2>\)/3 2(,31)
Thus the theorem is proved.
4. THEOREM 3. If
4.1) fu’(x—{—t)—f(x)]‘dx> (1/10g t)
then the series
it f(nxx)
(4.2) g“‘\/k Tog7)P

converges almost everyzbhere for 3 >1.
Proof is similar as Theorem 2. This is the case « = 1 in Theorem 2.

THEOREM 4. If for any & >0,

1 12 1+¢e
i ) _ 1
4.3) <f fix+1) — fix] dr) = O<l/<log 7 ) ),
then the series k
< fomx)
4.4 ZMk (logk)#

converges almost everywhere for 3 >1/2.

Proof is also similar as Theorem 2.
3. We will now prove theorems concerning Riemann sums.

THEOREM 5. If a >0,
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1 1,,
(5.1) <f[f(x+t>—f(x)]2dx = 1/ log

0

and Z (logn;,)*® < oo, then the Riemann sum

3,
) 1 / w )
‘52) ‘Ezk(x):nhmpzlka‘l' nk
converges to f f(x)dx almost everywhere.

LEMMA 5. Under the hypothzsis of Theorem 5,

1
(5.3) f Fnj(‘x)Fnk(x) dx= 0 (1/<'log n;)*(log n,Q'”)

PROOF. We have, supposing f f(HHdt = 0,,

ny

»J(‘IFnj(x)Fnk(x‘)dx:f[ 2( r+ - - [ 2f(x+ ~>] dx

w=1

ny ny. 1
f[n Zf + f/(t;dt 2/(x+ Zf)_ ff(t)dt] dx
nj Cu+1)ny oy w+1)/ny ’
f f[ X+ ;fj f<x+t>]dt [E:Ef[f<x+ f;,-c—)—f(‘x+t>]dt]dx.
ving

wing

if we put

Cu+1)/ny )
f[ f[f +~w f(x+t)]dti} dx,

0

winy
then
7y (u.+1) iy A+1)[ny 2
dx ~ f( L) —fC
-~ 1f f f\xJ. f(x+l)]dtf;[ x4+ n,) f(x + u)]du
Inj Almy

g (M+1),'n_, (A\+1)iny
Au—f f duf [f x+ —) fx+ t)][f<x+ ——) flx+ u: ]dx.

wing Ay
The inner integral is less than in absoute value

f et o) = f(’”+f\—‘dxf e )= rrs o] asf”

[}

which is O (1/(logn;)**). Thus we have

— \
fF(n,-x‘)Fn’ nxdx = O/ L1, = 0(1/(108' ny)*(logn,:* )
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PROOF OF THEOREM 5. It is sufficient to follow the lines of proof of

Theorem 1. By (5. 3)(j=k) and the convergence of Z 1/(log n;)**, the series

J=1

oo 1
> f Fy,(x0)%dx
j=1

converges almost everywhere and then the series 2 (F”f( x)) converges al-
J=1

most everywhere. Hence Fu,(x) tends to zero almost everywhere as j-> oo.
Similarly we can prove that if, a >1,

! 1j2
, 1
(x+t) — floldx :0/1/1 1 )
(Offf Jidx) \/<°g°gt )
and (#;) has the Hadamard gap, then

2 é Fo ()

converges almost everywhere Especially

lim - N Zﬁnk(x) f/ vdx,

N-yeo
almost everywhere.

6. We remark that we can replace f(#,x) by fi(#x) in the theorems
above proved. For example, Theorem 2 and 5 can be generalized in the
following form:

1
THEOREM 6. If fﬂgx)dx-— 0, ff,;f(x‘)dx: 1and for some & >0,
0

1 2 (12 , 1 \2*¢
(f [[f,c(x—l— ) — /k(x)]dx) < A/ <log log——t ) s
0
A being a constant independent of k, then the series

o

> ]1 £ ()

k=1
converges almost everywhere, and then

lim N Z,f(nm =0
almost everywhere.
THEOREM 7. If a >1,

1 2 0

<f [f,,. (x+t) — &(x)]dx)ll-g A/(log 1 )m.

0
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. . ‘ 1
A being a consiant independent of k, and ZW converges, then, the
Riemann sum
1<
’ = » a2
Fu) == Zjlfm(m £ )
converges to
1
lim | fi(t)dt
k—>co
0
almost everywhere, provided that the last limit exists.

Part I1I. Gap Theorems.

1. Let f(?) be a function considered in the beginning of Part I. M. Kac,
R.Salem and A.Zygmund [2] proved that
)

THEOREM A. If the sequence (n;) has the Hadamard gap and
d 1/2 ®
(1. (f Cfix+t) —f(x)]ﬁdx) =0 (1/(10;; %~) )

for a > 1, then the convergence of the series

(1.2) > ¢ (log m)~.
w=1
implies the almost everywhere convergence of the series
1.3 > e fimd).
k=1

They proved the theorem for real sequence (#;,). We restrict ourselves
that (n;,) is a sequence of integers.
In this case we have proved [2] that

THEOREM B. If the sequence () of integers has the Hadamard gap
and if f(t) satisfies the condition (1.1) for & >1, then the conver gence of the
series

1.4 P
n=1

implies the almost everywheré convergence of
myq

(1.5) ‘ 2 Cof (md),
k=1

where (my) is a sequence with the Hadamard gap.

We shall now show that the condition of (m;) may be much 1mproved
by the method used in our paper [2] and that, if the condition (1.1) is
replaced by the ordinary integrated Lipschitz condition :
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1 ) 12
(1.6 (f [f{x—l— i —f(x‘)] dx) =0 (%
0
for 0 < & < 1, then the convergence of the series

(1.7) > cilog log n)*

n=1
implies the almost everywhere convergence of the series (1.3).
Finally we prove, generalizing the Kac theorem [8], that if the
sequence (#;) has larger gap than the Hadamard's such that

(1.8) 2 (M M) < 00,

k=1
and f(¢) satisfies the condition (1.6) for 0 < a < 1, then the convergence
of (1.4) implies the almost everywhere convergence of (1.3).

2. THEOREM 1. If the sequence (m;) of imtegers has the Hadamad gap
such that
2. Mpar/ts >N >1 (B=1,2,-.-.)
and

1 ) .
22 ([lrso -~ = 01/} ))
Jor a >1, then ;he conver gznce of the series

(2.3) >e

n=1

implies the almost everywhere convergznce of
. my

(2.4) > afmx),
k=1
where (m;) is a sequence such thai
12.5) Myey — My, > m**(log m V% (B =1,2, -+ -+).
The condition (2.5) is satisfied when
Mhoar — My > /my, (R=1,2,---.),

more specially when m, = &%
For the proof of theorem, we need soma lemmas.

LEMMA 1. If f(x) satisfies thz condilion (2.2), then

1
(2.6) Jlff(mx) fnxdx

Proof is similar as Lemma 1 in 2.
LEMMA 2. If the conditions of the iheorem is satisfied, then the series

co

=A/li =41 .

2.7 > afimx)

k=1
converges in the L*-mean.
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PROOF. We have

1 h/g 5 n 1
f <E c.f n,cx>> de= > c;c,,-ff( mix)f(n;xidx
k=N ij=N

0

a
=>0c (f(n O dx + 2 acjfff;m finx de
i=N aj N
b

=71+],
say. Evidently

I=2>¢>0 (M, N->oo.
i=N
By (2.6)

M Bs
=S Jeal <A >0 (M,N-> o).
ij= le_]l e
t#]

Thus the lemma is proved.

PROOF OF THEOREM 1. Let the Fourier series of f(x) be

(2.8 flo~ D aer=

y=—o00

We can suppose that @, = 0 for » <0. Let the n-th partial sum of (2. 8 be

Su(X) = X a0
v=1

Since we have

f( e ) ~2 ayeZnivnka;’

v=1

we have, by the condition (2.2),

1 > 2, Al " 12
(\ f [f( mx» — s,L,u.pn,Q]-dx)U: ( f [f(m) - s,;k(x)]-dx>l
0

0

= A/logu;)®.
If we put
Yu(@) = f(X) — $,,(%),
then
1

f () idx < Af (log m)™.

b
Let us take

wx = exp (B**(log k)t®),
then (log uy)® = k(log k)%, and then

21/ dog w)™* =2 1/k(log k)* < oo.
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Hence the series

2.9 2 Cipri(75X)

k-1
converges almost everywhere and converges in the L:mean. The series
(2.7) is the sum of (2.9) and the series

2.10) > CiSy ().

The m; -th term in (2.10) is the trigonometrical polynomial with the first

term cn@a, exp (2wing,x) and with the last term cp,@um, €Xp (2778w, Mn,X%).
Let us now devide the series (2.10) into two parts

(2.11) Zc,’cs,x,c(mx), Z Cr Syl amX),

where ¢, = ¢ for mm-1 <k=m, (wv=1,2,---.) and ¢; = 0 otherwise, and
¢ =c—c, (k=12 ....). By Lemma 2, the series (2.7) defines a function
in L*class, and the series (2.9) does also. Hence the series (2.10) becomes

the Fourier series of a function of the L*class. The same holds for the
both of the series (2.11).

If, forap>1,
(2.12) Pngs1 > PP onglbomy, (k=1,2,....),
then 2, -th partial sum of the series (2.11) converges almost everywhere,
by Kolmogoroff theorem. The same holds for the series (2.10) and then
for the series (2.7).

Now, the condition (2.12)is satisfied when

A1 > Py, = P exp (m)* (log my)!®),
and then when
M1 — My > 02 (log ma)'e,

for we can take A = 3. This is the condition (2.5). Thus the theorem is
proved.

3. THEOREM 2. If the sequence (m:.) of integers has Hadamard gap
and

1 9

3.1 <f [f(x + 1) —f(x)]‘ldle_: o)
for 0< a <1, then ;he convergence of the series

3.2 ﬁ: ¢k (log logn)*

implies the almost everywhe:f?wnvergence of the series
3.3 g Cf ().

LEMMA 3. If lhe conditions of Theorem 2 are satisfied, then

1

(3.4) f (max
1Ly

6

]1 9 n
> i (mx) , ) dx < A (log n)* 2, ci.
k=1 k=1
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This is an analogue of the Menchoff’s lemma [9]. Proof runs on the

similar lines. The difference lies in the point that orthogonality relation
is replaced by

1 .
]ff(n_zt)f(njt)dt’ gA/Nﬂli—n’
0

which is proved in [2], and that the Bessell’s inequality is replaced by
f ( Z c,cf(mt) dt <A 20,6,

which is contained 1n the proof of Lemma 2.

PROOF OF THEOREM 2. Using the notations in the proof of Theorem
1, we obtain

f ()Y < Af .
0

If we take
= k' (log k)PP

for B >1, then the series (2.9) converges almost everywhere and converges
in the L*mean.

The condition (2.12) is satisfied when

(3.5) APke1"™ > pmi/@(log k)P
for a p > 1. Let

(3.6) my = k(log k)Y k=1,2,....),
then

M1 — My = A(log k)Y k=1,2,-..)
Thus, if ¥ >1 in (2.6), then the condition (3.5) is satisfied. Hence, for
the sequence (my) in (3.6), the sequence

my

bmy, = 2 cif(n;t)
j=1
converges almost everywhere.

Let # be any integer and 2 be an integer such that = < 7 < #uy,.
Then we have

1
3.7 f ( max
/ my <y

by Lemma 3. Since

M1 — myy < A (log k)Y (k=1,2,---.),
the right-hand side of (3.7) is majorated by
k+1
< A (loglogk)* 2 ¢

/=m,c_

n Mps1

> c,f(njt)l)dt<A<log (s — )yt ¢

J=myg J=mg

My

<A 2 cj‘(log log /).

J=my
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Hence
o 1 n s
Zf( max 2 cf(nt) Ddl < oo,
k=10 my <n,__<_m>k+1 J=my
Thus

n
te =ty + 2 cfnst)

J=my
converges almost everywhere as # > oo, which is the required.

4. THEOREM 3. If

1 )
@D ([ —fw]ar) = 0

for 0< a=<1and (ni) iS a sequence of integers such that
4.2) - ﬁ: (7 [ Mea1 )™ < o,

Then the conver gence of thzzgeries

4.3) Z c.

implies the almost everywhere ch;;f;vergence of the series
4.4) > afind).

k=1

This theorem is proved by M. Kac [8] for the case n = 2™, () being
an increasing sequence of integers.

PROOF. Using the above notation, we take

e = [P /2],

then Z 1/u® < . Since s, (mt) is a trigonometrical polynomial ending
by caue ™ and s, (7.1t) is that beginning by Cis, @, "1, Thus.
following the same idea as the proof of Theorem 1 we can show that

Z CiSpp (M)
k=1 ’

converges almost everywhere.
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