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Part I- On the strong law of large numbers.
/-1

1. Let f(x) be an integrable function with period 1 such that / / (χ}dx
o

Γ

l

= 0 and I f\χ}dx~ 1. Recently P. Erdos Γ1H proved the following theorem:

ϋ

THEOREM A. If, for some 6 > 0,
/ r1 \1/2 / // ι \ 1 + ε\

(1.1) (J Γ/U + t) - fωjdx) = O (l/(loglogy-J J
as 1->Q, then for any sequence of positive integers (%), nja/n1ύ-1 ><?>!,

1 ΛΓ̂

(1.2) lim -VF.^/(WA;*) = 0,

almost everyivhere.

Roughly speaking, the strong law of large numbers holds for {f(nkχ}}.
We shall here prove that, if 1 + 8 is replaced by 2 + £ in the condition
(1.1), then the series

converges almost everywhere. This is stronger than Theorem 1 in both
hypothesis and conclusion. The method of proof is quitely different from
that of P. Erdos, and is that used by Marcinkiewicz and the author C2H
By this method we give an alternative proof of the following theorem due
to M. Kac, R. Salem and A. Zygmund [3] :

THEOREM B. //, for 0 < cί < 1,

(1. 4) ( I [/(* + t) - fWJdx) = O (l/(log -

0

then the series

(1.5) ^Σ~^f(n^
fc.l K

converges almost everywhere for β > 1 — OLJ2.
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They proved the theorem for the case a > 1. By our method we get a
little better theorem than theirs in our case. In the case a = 1, the series

(1.6) Σ / K l o g β ) ^ ^
fc = 1

converges almost everywhere for β > 1, and in the case a > 1, the series
(1.6) converges almost eyerywhere for β > 1/2. We can see also that we
can not take β= 1/2 in (1.6), but we can replace the factor (logk)β in
(1.6) by vΊόgT (log log k)* (β > 1/2), and so on.

We prove a theorem concerning Riemann sum, due to R. Salem [61
and S. Yano [7] in a little modified form, by the above method. We fur-
ther remark that our method enables us to prove theorems, replaced f(nkx)
by /fc(Wfcλ'). In the following, (wfc) denote a sequence of integers with the
Hadamard gap0.

2. THEOREM 1. If for some £ > 0

(2.1) ΐf(x+tϊ-fWJdx= θl/(loglog-J

then the series

(2.2)
fc = l K

converges almost everywhere.
For the proof of Theorem 1 we need two lemmas.

LEMMA 1. //"/(#) satisfies the condition (2.1) for some £ > 0, then

(2.3) f f(njx)fίnkxϊdx = O ( l/(log |/- &| )2+ε)

o
/0r y Φ &.

Proof is similar as Lemma 1 in [2].

LEMMA 2. If f(.x) satisfies the condition (2.1) /or som^ 6 > 0, then the

series (2.2) converges to a function φ(x) in the U-mean.

PROOF. Let l<;m<n. Then we have, by Lemma 1,
1 M r, l 1

(2. 4) / ( ^ 4 " ĈWfcΛΓ)) dx - 2 4~ / f(njX)f(nkx) dx
J Vfc = m Λ 7 j,fc = m ^ J

1) Theorems in this paper were first proved for integral ?u. -Mr. G. Sunouchi
remarked me that these hold for real ?u with trivial modification of proof-
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as m, n -> oo. Thus the lemma is proved.

PROOF OF THEOREM 1. We can suppose that
CO

/*(*) ~ 2 α^2*'"**.
r = l

Let us put
w

5,i(#) Ξ= 2 ave-*lvx.
v = l

Then we have easily

/"(Hit*) — 2 w-*im**
v = l

and

α V/2 / f
[/(»**) - 5Mfc(»3fc#):i3<fo] = (̂  /

If we p u t μfc = 2k and ψ fc = f(x) — 5 μ Λ ( ^ , then

= (i vTisr*

Thus the series

2 ~b~
»=ι Λ

converges almost everywhere, and converges in the L- -means. By Lemma
2, the series CO

2 4-

converges in the L2-mean. Using the Kolmogoroff -Kac theorem [4G, we
see that the sequence

.,JV"

2 ~fc"
fc.l Λ

and then the sequence
9^"

(2.5) 2'r
J f c - 1 K

converges almost everywhere, from which it follows the almost every-
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where convergence of (2.2), provided that
oo Ioo I V .,

(2. 6) Σ M m a x I Σ -£-/"('«»«) 1 )"<& < oo.
ί Ξ ί j V2»<.S3»+1 , „ fe K

0 i = J

For the proof of (2.6) we use the device of Menchoff [5]. Let

/

Then we have, by Lemma 1, putting a, = 2 4- £,

/•<" + τ ^ — +" + τ
Ό ^ ^£| 1,3 ^ ^

say. Now

and

/c ̂  = " ^V 1 V
•' ^ - ~7~ ^ ί

" ^ ^ 1 7 - (2

As easily may be seen, the ^-th term of (2.6) is less than

sA^2Σ T ^

1 »

Thus we get (2.6) as a — 1 > 1, and then the theorem is proved.
Similarly we can prove that, if

0

then the series

klogk
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converges almost everywhere.
3. THEOREM 2. If for I > a > 0,

(3. 1) ( Γ [/(* + ί) - /(*)] W) ~ = O

CO

(3.2) 2 Ί

converges almost everywhere for β > 1 — a/2.

We will begin by two lemmas analogous to Lemma 1 and 2.

LEMMA 3. If fix) satisfies the condition (3.1) for 1 > a > 0, then

(3.3) Γ / (njX) f (n^dx - O(l/1/ - k\ *)

0

/or y Φ k.
Proof is similar as Lemma 1.

LEMMA 4. If f(x) satisfies the condition (3.1) for 1 > a > 0,
series (3.2) converges in the U-mean for β > 1 — α/2.

PROOF. Let 1 <; m g n and we can suppose that /3 < 1. By Lemma 3
we have

f1/w i λ2 n i r 1

/ (2"pr^C«»^))^= 2 "ΛF / ffn
J \ = m R ' J,1c = m J J
0

w n ^

= 2 ^ F + O ( Σ >ftβ|y_ f t |

:

2+ Σ

as m, n-> oo. Thus the lemma is proved.

PROOF OF THEOREM 2. We follow the line of the proof of Theorem

1 and use its notations. We have

( J



94 S. IZUMI

f ( Σ 4 - ψ* Of**) I )*</* = f ( Σ ~ Λ τ -J^ΊΓ iψί OMO i ) ~
J fc = l l 7 J Xfc = l τ~2~ + 4 ϊ ,2~~~ ϊ

which is bounded if μ. = 2\ Thus it is sufficient to prove that, corres-
ponding to (2.6),

00 L I V

/Q £Λ ^ /Ύ ^? 1 y

^ / V w

m a * + ι ^ ~^f(n*

o = J fc=r°
Now, by (3.4), we have

Λ 1 2 W + C / + l ) 2 λ _ 2

/ Γ "v i Ί
J ^ o fcJ^ >λ ^ ^ - ^ (^n ~^

Thus the w-th term of (3. 5) is less than
n 2 » - λ w 2*-*

2

.r< oo.

λ = l j = 0 λ = l j-U

Thus the theorem is proved.

4. THEOREM 3. //

(/
o

then the series

(4.2)

converges almost everyivhere for β > 1.

Proof is similar as Theorem 2. This is the case a, = 1 in Theorem 2.

THEOREM 4. // for any B > 0,
/ Λ1 \ 1 / 2 / / 1 \ 1 + 6

(' ""' ' ~"
4.3) (frfix+.n-ftx^dx)1 =θfl/(log-|

\ / \ \ r

*he series

(4.4)

converges almost everywhere for β > 1/2.

Proof is also similar as Theorem 2.
5. We will now prove theorems concerning Riemann sums.

THEOREM 5. if a > 0,
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/ r1 \1/2 / // 1 \*
(5.1) ( / \Ύ(x + f) - A'*)]3 dx) - O (l/(log -y-J

0

and 2 dogWfc)2* < °o, £/z£/2 £/2£ Riemann sum

-Λ n*' / \

]_ ^—i / μ, \

μ = l

converges to I f(x) dx almost everywhere.

o

LEMMA 5. Under the hypothesis of Theorem 5,

(5. 3) Γ Fn.(x)Fnk(x) dx= O

0

PROOF. We have, supposing /

0

Γ1 /-V T
 % / \ Ί Γ ι W Λ /

I I I '̂C—1 / / / / \ I "^C—1 / 7>

• ' Fn (x)Fn (x)dx = / ---- ̂  Λ ̂  + ) I -— 2/"( ^ -I —
»/ j A J \- nj ^~ V /jj / j |_ nk -~ \ HK
0 0

/ Y WJ /%Cμ+l)/^

L2/[<*
If we put

then
^ Γ1 Λ C α + υ / ? ^ « α + n / ^

^ = Σ ι J Λj [/(, + -^ ) _ /(. + njrfί J [/(,
0 μ/W^ λ/W^

JV Λ.Cμ+1)/^ - C λ + 1 ) / ^ -1

= ΣJ Λ] «̂J [/(*+^)-Λ*+

The inner integral is less than in absoute value
x l / 2

which is O (l/(logw.;)aα5). Thus we have

I F(njX)F(n,^dx= O(V'f^) == O (l/(log »./)*(log«.fc;'
Λ ).
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PROOF OF THEOREM 5. It is sufficient to follow the lines of proof of

Theorem 1. By (5. 3Xy=£) and the convergence of 2 I/ (log ny)-Λ, the series

00 r l

2 / Fnj
j=ι J

converges almost everywhere and then the series 2 (Fnj(^j converges al-

most everywhere. Hence Fn/#) tends to zero almost everywhere as /->oo.
Similarly we can prove that if, a > 1;

/ rl v/2 / // 1 ϊ
( / [/(# + t) — /u)]LW#) = O I/ log log /

vj / v / v ft - t
0

and (»fc) has the Hadamard gap, then

converges almost everywhere. Especially

1 N Γ1

l i m -ft 2 ^WC^} = \
k—\ J

0

almost everywhere.

6. We remark that we can replace f(nkx) by /&(%.#) in the theorems
above proved. For example, Theorem 2 and 5 can be generalized in the
following form:

THEOREM 6. // / fk{XΪdx = 0, Γ f&xϊdx = 1 tfftd /or 5om^ 6 > 0,

+ 2) — /jb(-

0

α constant independent of k, then the series
00

^ 1

converges almost everywhere, and then

lim —j- 2 /

almost everywhere.

THEOREM 7. //" α: > 1,

(f [/ :Vκ-;Λ*
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A being a constant independent of k, and ^ ^ tf converges, then, the

Riemann sum

converges to

limjΓ
fc->co /

almost everywhere, provided that the last limit exists.

Part II. Gap Theorems.

1. Let f(f) be a function considered in the beginning of Part I. M. Kac,
R. Salem and A. Zygmund [3] proved that

4

THEOREM A. If the sequence (%.) has the Hadamard gap and

(i. i ) ( Γ [/•(* + *) -/(*)] Wl = o (ι/(iog -

/or # > 1, £/££n / ^ convergence of the series

(1.2) 2c»Clogw)2.
tt = l

implies the almost everywhere convergence of the series
CO

(1.3) 2

They proved the theorem for real sequence (%.). We restrict ourselves
that (>ίfc) is a sequence of integers.

In this case we have proved [2] that

THEOREM B. If the sequence (Λfc) o/ integers has the Hadamard gap
and iff(t) satisfies the condition (1.1) for a > 1, then the convergence of the
series

CO

(1.4) 24
W=l

implies the almost everywhere convergence of

(1.5)

where (m^> is a sequence with the Hadamard gap.
We shall now show that the condition of (#&) may be much improved

by the method used in our paper [2] and that, if the condition (1. 1) is
replaced by the ordinary integrated Lipschitz condition :
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( Γ [f(x

ϋ

for 0 < a < 1, then the convergence of the series

implies the almost everywhere convergence of the series (1.3).
Finally we prove, generalizing the Kac theorem [8H, that if the

sequence f%0 has larger gap than the Hadamar'd's such that

(1-8) 2 CWWfcfi)3* < °°,
fc = l

and/(£) satisfies the condition (1.6) for 0 < a < 1, then the convergence
of cl. 4) implies the almost everywhere convergence of (1.3).

2. THEOREM 1. // the sequence (#fc) of imtegers has the Hadamad gap
such that
(2.1) Wfc+3/flfc > λ > 1 ( & = 1,2, ••••;

•2.2) ( f [/U + O - /(* >]
0

α: > 1, ί/^ /Ag convergznce of the series

implies the almost everywhere convergince of
Ώli

ί2.4)

lυhere (mi) is a sequence such that

( 2. 5 ) m h + l — m k > m]l'2a>( l o g ̂ A.".
 1/α> (

The condition (2.5) is satisfied when
mk+l - m;c > ^/^ (k = 1, 2, ),

more specially when m?c = 7?2.
For the proof of theorem, we need some lemmas.

LEMMA 1. If fix) satisfies the condition (2.2), then

(2.6) I f(HiX)f( \AI\i-j\*

Proof is similar as Lemma 1 in [21.

LEMMA 2. If the conditions of the theorem is satisfied, then the series
CO

(2.7) 2

converges in the U-mean.
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PROOF. We have

fY4 * Λ** - 4 fV , ^
J l x . c,,j\HΪ.X) } ax — x . CiC; J j(nιX)j(^njX)ax

J Vfc-.V 7 ίJβΛ J

o o

- ^ Γ /

say. Evidently

By (2.6)

Thus the lemma is proved.

PROOF OF THEOREM 1. Let the Fourier series of /(*) be
CO

(2.8) Λ * ) ~ 2 α ^ a * ί i β

V=-t»

We can suppose that av = 0 for z/ g 0. Let the 72-th partial sum of (2. 8 > be
M

s»u) - 2 «^2ιrfια

v = l

Since we have

we have, by the condition (2.2),

( Γ [/CΛfĉ .̂  ~ s^CW^J^) - ( Γ [/"Cτ) -

0 0

= A/Clog^)05.

If we put
ΨfcW = / U ) —

then

/ A/ ( log μ,.)2*.

Let us take

Ate
then (log /zfc)

2flf = fe(logft)3, and then
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Hence the series
oo

(2.9) 2^Kc?ω;)
fc-l

converges almost everywhere and converges in the ZΛmean. The series
(2.7) is the sum of (2.9) and the series

(2.10) ΣckS
The mk -th term in (2. 10) is the trigonometrical polynomial with the first
term cmjpλ exp (2πinmkx) and with the last term cmjca^nk exp (2πiμ>n7nm7cx).

Let us now devide the series (2.10) into two parts

(2.11) 2^*(>fez), 2 cfcWv^*X
where c'k = ck for m2v-ι < k <; 77^ (*/ = 1, 2, ---- ) and e£ = 0 otherwise, and
c*' = Ob — ffc (& = 1,2, •• ••). By Lemma 2, the series (2.7) defines a function
in ZΛclass, and the series (2.9) does also. Hence the series (2.10) becomes
the Fourier series of a function of the ZΛclass. The same holds for the
both of the series (2.11).

If, f or a p > 1,
(2. 12 ) nmk+1 > pnmkμmk. ( i = 1, 2, ---- ),
then nijc -th partial sum of the series (2.11) converges almost everywhere,
by Kolmogoroff theorem. The same holds for the series (2.10) and then
for the series (2.7).

Now, the condition (2. 12) is satisfied when

χ™*+ι-™* > ^ Λ = p exp

and then when
Wfc+i —mκ> ml1'2*

for we can take λ ^ 3. This is the condition (2.5). Thus the theorem is
proved.

3. THEOREM 2. If the sequence (nkϊ of integers has Hadamard gap
and

(3. 1 < ( Γ [/(* -f t ) - /<*)]2rf#) - O( i« )

for 0 < # :S 1, 2to2 ^ convergence of the series
00

(3.2) 2^Uloglogw;a

n = \

implies the almost everywhere convergence of the series
00

(3.3) 2c*Λ?wX
fc=l

LEMMA 3. If the conditions of Theorem 2 are satisfied, then

f V J ι i \2 w

(3.4) I (max ^ckf(nkx) \}dχ < A (log nϊ2 2 cfc
J V l ^ ^ ' fc = l ' 7 fc = l
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This is an analogue of the Menchoff s lemma (ΊΓ]. Proof runs on the
similar lines. The difference lies in the point that orthogonality relation
is replaced by

ΰ

which is proved in Q2], and that the BesselΓs inequality is replaced by

0

which is contained in the proof of Lemma 2.

PROOF OF THEOREM 2. Using the notations in the proof of Theorem
1, we obtain

)2Λ<Ξ A/v£.
j
o

Tf we take

for β > 1, then the series (2. 9) converges almost everywhere and converges
in the Z,2-mean.

The condition (2. 12) is satisfied when
(3. 5) xTO*+i-m* > £wj/2*(log A0β/2α>

f or a £ > 1. Let

(3.6.) wfc = fe(logWy (fe= 1,2, . . - . ) ,
then

m f c + ι - m f c > A(logft) y (^ = 1,2, ••••)
Thus, if 7 > 1 in (3.6), then the condition (3.5) is satisfied. Hence, for
the sequence (m*) in (3.6), the sequence

converges almost everywhere.
Let n be any integer and k be an integer such that mk < w

Then we have

rV
(3. 7) I ( max 2 */OM) ) ̂  ^ A ( l o § C^1*-^

J Nm*<»^»»fc+ 1 ^ = mA. J

0

by Lemma 3. Since
»!*+! ~mk^ Aζlogky (k = 1,2, ••• ),

the right-hand side of (3.7) is majorated by

g A (log log ^) : ί 2 c]

A 2 c los log y)2.
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Hence

2 / C,™!̂
Thus

converges almost everywhere as ?z->oo, which is the required.

4. THEOREMS. //

(4. i) ( Γ [/(* + o -/oo] d*) - oα o
o

/or 0 < # 5Ξ 1 and (m) is a sequence of integer $ such that
00

v4.2) 2 ("WA/WΛ+O-* < oo.
fc = l

T/ί̂ w ^ ^ convergence of the series
CO

(4.3) 24.
Λ = l

implies the almost everywhere convergence of the series

(4.4)
This theorem is proved by M. Kac [8] for the case n = 2m*, (wO being

an increasing sequence of integers.
PROOF. Using the above notation, we take

then 2 V/4α < °° Since s^k(nkt) is a trigonometrical polynomial ending
by Cjeaμjf***"***? and s^+1C^+1f) is that beginning by Cfc+αβ!̂ **"**1'. Thus.
following the same idea as the proof of Theorem 1 we can show that

2 CfcSMJfc(«.rf)
fc = l

converges almost everywhere.
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