ON N. MATSUYAMA'S CLOSURE OPERATORS ON GENERAL NEIGHBOURHOOD SPACES

SITIRO HANAI

(Received April 6, 1950)

1. N. Matsuyama¹⁾ has recently introduced the interesting notion of φ -closure, by which a neighbourhood space turns to the space with φ -topology.

Now we will recall the definitions due to him.

Let S be a neighbourhood space and denote its points by x, y, \cdots . Suppose that for each x in S there corresponds at least one neighbourhood U_x of x such that

(N. 1) for each $x \in S$, U_x contains x,

(N. 2) if U_x and V_x are neighbourhoods of x, then $W_x = U_x \cap V_x$ is also a neighbourhood of x,

(N. 3) for any neighbourhood U_x of x, any set containing U_x is also a neighbourhood of x.

Let \mathcal{P} be a set-function on $2^{S}(=$ family of all subsets in S) such that

 $(\mathcal{P}. 1)$ for any subset A in S, $A \subset \mathcal{P}(A)$,

(φ . 2) $A \subset B$ implies $\varphi(A) \subset \varphi(B)$.

Let Φ be the class of all such φ .

For any φ_1 and φ_2 in Φ , we write $\varphi_1 < \varphi_2$ if and only if $\varphi_1(A) \subset \varphi_2(A)$ for all subsets A of S. Then Φ is a partially ordered system. Let $\varphi \in \Phi$. If there exists at least one sequence² $\{x_{\alpha}\}$ of points in A, and for each neighbourhood³ V_x of x containing $\varphi(A)^{\circ}$ there exists an $\alpha_0 = \alpha_0(V_x)$ such that $\alpha > \alpha_0$ implies $x \in V_x$, then x is said to be a limiting point of A with respect to φ -topology and denote it by $x \in A^{\varphi}$. And A^{φ} is said to be φ -closure of A.

N. Matsuyama has proved that the φ -closure has several properties analogous to the closure operator of C. Kuratowski⁴).

In this paper we will investigate the relations between the class Φ and the class A^{φ} from the viewpoint of order-topology, which he has not yet tried.

2. Let A and B are elements of 2^s . When we define A > B if and only if $A \supset B$, then 2^s is a lattice.

¹⁾ N. MATSUYAMA, A note on general topological spaces, Tôhoku Math. Journ. Second series, Vol. 1, (1949), pp. 22-25.

²⁾ By a sequence we mean a finite or infinite directed system.

³⁾ If such neighbourhood does not exist, we define that x is a limiting point of A with respect to φ -topology.

⁴⁾ C. KURATOWSKI, Topologie I, pp. 15-16.

According to N. Matsuyama, if we define 0 and I by $0(A) \equiv A$ and $I(A) \equiv S$ for all elements A of 2^s respectively, then 0 and I are contained in Φ and $0 < \varphi < I$ for any $\varphi \in \Phi$. Further Φ is a lattice when we define $\varphi_1 \lor \varphi_2$, $\varphi_1 \land \varphi_2$ as follows: $(\varphi_1 \lor \varphi_2)(A) \equiv \varphi_1(A) \lor \varphi_2(A)$, $(\varphi_1 \land \varphi_2)(A) \equiv \varphi_1(A) \land \varphi_2(A)$. It is easy to verify that for any sequence $\{\varphi_n\}$ in Φ . lim sup $\{\varphi_n\} = \bigwedge_{\substack{k \geq n \\ k \geq n}} \{\bigvee \varphi_k\}$, lim inf $\{\varphi_n\} = \bigvee_{\substack{n \\ k \geq n}} \{\land \varphi_n\} = \varphi$. Similarly we define as usual the order-topology in 2^s .

Now we will prove the following

LEMMA 1. $\bigwedge_{n} A^{\varphi_n} = A^{\check{n}^{\varphi_n}}, \quad \bigvee_{n} A^{\varphi_n} = A^{\check{n}^{\varphi_n}}$ for any element A of 2^s and any sequence $\{\varphi_n\}$ in Φ .

PROOF. Since the latter is proved in a way similar to the proof of the former, we will only prove the former, that is, $\bigwedge A^{\varphi_n} = A_n^{\vee \varphi_n}$. As $\bigvee \varphi_n > \varphi_k$ $(k = 1, 2, \dots)$, we have⁵) $A^{\varphi_k} > A_n^{\vee \varphi_n}$. Hence $\bigwedge_n A^{\varphi_n} > A_n^{\vee \varphi_n}$. therefore it is sufficient to show that $\bigwedge A^{\varphi_n} < A_n^{\vee \varphi_n}$.

Let x be any point of $\bigwedge A^{\varphi_n}$, then $x \in A^{\varphi_k}$ $(k = 1, 2, \dots)$. Therefore there exists $\{x_{\alpha}\}$ in A such that for each neighbourhood U_x of x containing $\varphi_k(A)^c$, there exists an $\alpha_0 = \alpha_0(U_x)$ for which $\alpha > \alpha_0$ implies $x_{\alpha} \in U_x$. Suppose, if possible, $x \in A^{n \vee \varphi_n}$. Then there exist a neighbourhood V_x of x containing the set $(\bigvee \varphi_n(A))^c = \bigwedge \varphi_n(A)^c$ and a cofinal sequence $\{x_{\beta}\}$ in $\{x_{\alpha}\}$ such that $x_p \in V_x$ for any $\beta > \beta_0(V_x)$, where β_0 is determined by V_x . Let $U'_x = V_x \cup \varphi_k(A)^c$, then U'_x is a neighbourhood of x by (N.3). As $x \in A^{\varphi_k}$, there exists an $\alpha'_0(U'_x)$ such that $\alpha > \alpha'_0$ implies $x_{\alpha} \in U'_x$. Therefore $\beta > \alpha'_0$ implies $x_{\beta} \in \varphi_k(A)^c$.

On the other hand, since $\mathcal{P}_k(A)^c < A^c$ follows from $\mathcal{P}_k(A) > A$, we have $x_\beta \in A^c$ for any $\beta > \alpha'_0$. This result is in contradiction with the fact that $\{x_\alpha\}$ is in A.

By means of Lemma 1 we can prove the following

THEOREM 1. $\varphi_n \rightarrow \varphi(0)$ implies $A^{\varphi_n} \rightarrow A^{\varphi}(0)$ for any $A \in 2^s$.

PROOF. On account of Lemma 1, we see that $\mathcal{P}_n \uparrow \mathcal{P}(0)$ implies $A^{\varphi_n} \downarrow A^{\varphi}(0)$ and $\mathcal{P}_n \downarrow \mathcal{P}(0)$ implies $A^{\varphi_n} \uparrow A^{\varphi}(0)$.

In fact, from $\mathscr{P} = \bigvee_{n} \varphi_{n}$, we have $A^{\varphi} = A^{n} \varphi_{n}$. By Lemma 1, $A^{\varphi} = A^{n} \varphi_{n}$ = $\wedge A^{\varphi_{n}}$. From the hypothesis that $\mathscr{P}_{n} \uparrow \mathscr{P}(0)$, we have $A^{\varphi_{n}} \downarrow A^{\varphi}(0)$. By a similar argument, we see that $\mathscr{P}_{n} \downarrow \mathscr{P}(0)$ implies $A^{\varphi_{n}} \uparrow A^{\varphi}(0)$, therefore we get the theorem.

⁵⁾ N. MATSUYAMA, loc. cit. p. 24.

3. In this section we will investigate whether the converse of Theorem 1 is valid or not. As easily may be seen by example, there exist φ and φ' such that $\varphi \neq \varphi'$ and $A^{\varphi} = A^{\varphi'}$ for all A in 2^{ς} . For this reason, it is convenient to divide the class Φ into equivalence classes as follows.

DEFINITION. \mathscr{P} is said to be equivalent to \mathscr{P}' if and only if $A^{\mathscr{P}} = A^{\mathscr{P}'}$ for all A in 2^s , and denote it by $\mathscr{P} \sim \mathscr{P}'$. If we denote the equivalence class containing \mathscr{P} by $[\mathscr{P}]^{\mathfrak{H}}$, then $\mathscr{P}' \in [\mathscr{P}]$ if and only if $\mathscr{P}' \sim \mathscr{P}$. We define an ordering relation on the system of equivalence classes by letting $[\mathscr{P}] > [\psi]$ if and only if $A^{\mathscr{P}} < A^{\psi}$ for all A in 2^s .

Then it is evident that the system of equivalence classes $[\mathcal{P}]$ is a partially ordered system.

THEOREM 2. $[\mathcal{P}] > [\mathcal{P}']$ if and only if $\mathcal{P} \lor \mathcal{P}' \sim \mathcal{P}$ (or $\mathcal{P} \land \mathcal{P}' \sim \mathcal{P}'$).

PROOF. If $[\mathcal{P}] > [\mathcal{P}']$, then $A^{\varphi} < A^{\varphi'}$ for all A in 2^{s} . Hence, by Lemma 1, $A^{\varphi \lor \varphi'} = A^{\varphi} \land A^{\varphi'} = A^{\varphi}$ for all A in 2^{s} . Therefore we have $\mathcal{P} \lor \mathcal{P}' \thicksim \mathcal{P}$. Conversely let $\mathcal{P} \lor \mathcal{P}' \thicksim \mathcal{P}$, then $A^{\varphi} \land A^{\varphi'} = A^{\varphi \lor \varphi'} = A^{\varphi}$ for all A in 2^{s} . Consequently we have $[\mathcal{P}] > [\mathcal{P}']$.

In a similar way, we can prove that $[\mathcal{P}] > [\mathcal{P}']$ is equivalent to $\varphi \land \varphi' \sim \varphi'$.

LEMMA 2. $[\varphi] \lor [\varphi'] = [\varphi \lor \varphi'], [\varphi] \land [\varphi'] = [\varphi \land \varphi'].$

PROOF. By Lemma 1, we have $A^{\varphi \lor \varphi'} = A^{\varphi} \land A^{\varphi'}$ for all A in 2^{s} . Let φ'' be an element of Φ such that $[\varphi] < [\varphi'']$, $[\varphi'] < [\varphi'']$, then $A^{\varphi''} < A^{\varphi}$, $A^{\varphi''} < A^{\varphi'}$. Hence $A^{\varphi''} < A^{\varphi} \land A^{\varphi'}$. On the other hand, $[\varphi] \lor [\varphi']$ is the infimum of such $[\varphi'']$, that is, the equivalence class to the exponent φ of the supremum of $A^{\varphi''}$ such that $A^{\varphi''} < A^{\varphi} \land A^{\varphi'}$. Consequently $[\varphi] \lor [\varphi'] = [\varphi \lor \varphi']$.

As $[\mathcal{P}] \land [\mathcal{P}'] = [\mathcal{P} \land \mathcal{P}']$ will be proved in a same manner, we omit the proof.

LEMMA 3. If $A^{\mathfrak{P}_n} \downarrow A^{\varphi}(0)$ (or $A^{\mathfrak{P}_n} \uparrow A^{\varphi}(0)$) for all A in 2^s . then $[\mathscr{P}_n] \uparrow [\mathscr{P}](0)$ (or $[\mathscr{P}_n] \downarrow [\mathscr{P}](0)$).

PROOF. Since $A^{\varphi_n} \downarrow A^{\varphi}(0)$ for all A in 2^s , by use of Lemma 1 we get $A^{\varphi} = \bigwedge_n A^{\varphi} = A_n^{\vee \varphi_n}$ for all A. In a way similar to the proof of Lemma 2, we can verify that $\bigvee_n [\varphi_n] = [\bigvee_n \varphi_n]$. Consequently $[\varphi] = [\bigvee_n \varphi_n] = \bigvee_n [\varphi_n]$, hence $[\varphi_n] \uparrow [\varphi] (0)$.

As an obvious consequence of Lemma 2 and Lemma 3, we get the following

THEOREM 3. The system $[\mathcal{P}]$ forms a lattice and moreover if $A^{\varphi_n} \rightarrow A^{\varphi}(0)$ for all A in 2^s , then $[\mathcal{P}_n] \rightarrow [\mathcal{P}](0)$.

SHIZUOKA UNIVERSISY, SHIZUOKA.

6) This notation is due to J. W. TUKEY, Convergence and uniformity in topology, p. 4.