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1. Let {\n} be a positive and increasing sequence, and let

(1-1) #(ω) - ω-1 2 O

be the (#, λw, l)-mean of the series Σan. If Λ(ω) is of bounded variation
in the interval Cλi, oo),that is

f [J7?(ω)i - Γ ω-»
J J
λl λi

then Σ&n is said to be absolutely C#, λw, l)-summable, or simply \R, \n, 1[-
summable.

Let /CO be an Z-integrable function in the interval CO, 2τr), and its
Fourier series be

CO

1 ^ 7

For the absolute summability of the Fourier series, following theore-
ms are known:

THEOREM A. [1] If for any β > 0
£>( 0( log t-ί)β = O(l) (ί -> 0),

^ Fourier serier 0//CO ^ summable \R, logn, 1] at t = x, where

THEOREM B.[2J // ^ ( 0 is of bounded variation in CO, π), then the
Fourier series of At) is summable \R, n, S\at t = x, where £ > 0.

THEOREM C. [3] If <P(t) log 1/ί is of bounded variation in (0, π) then
the Fourier series of /CO is summable \R, exp CwΛ), 1| αί ί = x, where 0 < a,

In this paper we consider the summability \R, exp CClogw)ΛJ), 1|, where
α > 0, and prove the following theorems :

THEOREM 1. jy^COClogl/Oβ = 0(1), then the Fourier series off(t)
is summable \ R, ~\,n, 1 \ at t = x, where

\n = exp CClogTO*), 0 < α < β and a < 1.

THEOREM 2. #" 9? Cί.) Clog log I/O3 = 0 (1), then the Fourier series of
/CO is summable \ R, log n, 1 1 , where β > 1.
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THEOREM 3. Ifφ(t) (log I/O*"1 is of bounleί variation in (0,τr), then
the Fourier series of'/(£) is summable \R, \n, l\ at t — x, where λ» = exp
((log n)*),a > 1.

We can suppose 0 < β < 1, in Theorem 1 and 1 < a < 2 in Theorem 3.
Furthermore we can suppose that

and jc = 0 consequently it leads to consider the series 2 an
n«=ι

2. PROOF OF THEOREM i. Let

λ« = exp((logw}*) (w = 2,3.
and let ω > 0. There is an m such that

λinSϊ® < λnH-3.

Now,

where

Hence

-

" 1 1 2 fl0«Δaλn + Cm — l)σ OT-ιΔλw-ι
' ra = l

.z

jr ---- + On, and σw = w'^Si + S2 Sn).

/ _ " ^ m + i

~ 4Ti J

0 0 > m + 1 m

= 2 f -'2 2
m = l J w = l

2 (λmλwM.

Thus, it is sufficient to prove the convergence of the last series for which
we have

2 λ,;1 2 Λtr«ΔaλΛ — λ'i.! 2
m=l w = l

ι» l (m —

say. Then from Lemma 1 of [1]
m-2

/] S 2 ΔCλ-1) 2
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+

Σ n \n

n=l (logrc)8 n*

^ ?i™"W Ή ^ w)*-1

say. Then

(2.1)

and

λ ϊ >

(2.2) <00'
From (2.1) and (2.2), we obtain 7T = O(l). We shall next consider /2.

A-Σ
(m —

l)crm_Ί

say.
Then, by the Holder inequality,

V 21 = ^ I ml m ( l O g ^ ) l - Λ =
771 = 2

where
ί"1 -f ^ - 1 — 1 and a < p~l < β.

Since (1 — a)q = (1 — a)p/(p — 1) > 1, the second factor of the right-
hand side of (2. 3) converges. After Hardy and Littewood, [4]

^κ( f
J

Hence

(2.4)
We have
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From (2.4) and (2.5),/a = O(l). Thus the theorem is proved.

The proof of Theorem 2 runs similarly as that of Theorem 1.

3. PROOF OF THEOREM 3.

an = -J- Γ Rt)cosntdt = -§-/C^)Clog^-1)β Γ (logl/t
o i

- Ί Γ Γ d(/*α)(log l/0β) Γ (log l/w)~β cos nu du,

dt

where 0 < β < 1.
Let

then
(log

an = 2 f
π J

w c o s nt>

cosnt(logl/t)-βdt,

and Σ«M converges absolutely. Hence

\dRM\ - / ω-« y1 \UΊ\\WJ\ — 1 CO x j
J J ^ ω

λi λi n

,
/\w n CO

Λ~ ^ f

^ I o>-2j(^)(logl/7r)8 2 λnα» d
J λπ<ω
λl

2 Γ°° _2 -
TΓj

λl

(3. 1) = O (1) + - |τ Γ |</(/

0

If we put

ft)

2 λ w / d(flfX\.Q%\ltf}\ ζlogl/u)~βcosnudu
Λ n <ω »/ v

0

COdogl/O^ii/"-^

λi

0

/(lθgl/£θ~£ ^ \nCθ

ί?ω

then we have

C3.;

.,,./(
0

β,0s Γ(l

0

-A
o

S/Clo*
o

λn<ω

c o s

f. + \mDm(u)du.
'

d u

: ί/M.
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Now
TO-l Λ W

^ / (logΛ;)"-1 exp ((log *)*)</#
«/
1

log m log m

= / t«-let+t"dt ^m I tΛ'lei<Λ dt = O (»i7u).

o o

From (3. 2) and the above estimations,

S A/(log l/O"β« exp (Clog ω)1/*).

Now
/ Γ / \ /*exp(logl/t) Λ

ω-*dω \ (logl/w)"β( 2 λwcos nu)du = I -f / ΞΞJ
0 " ^ λ expClo^/t-

say. Then

/i = / ω-2 |/(ω,^)| Jω = I ί(log 1/0 ~βω~[ exp (log ω) 1 ^ Jω

= ί(log l/t)-β ί eχl'*dx g Oα(log l/t)'^-1

On the other hand

/ 2 = I ω-2[ /(ft>, ί ) I ί/α>

<; I ω~2 |/(ω, τr)| dω + I ω~2 dω I (log l/u)'β ^Σ \ n cos

eT l o - l t « ' x o-l *>* r λ ^ 7 ω

If we put

f7" / %π λ

/(ω t) ^ / (logl/^)~p 2_. \ncosnu I du,
J V λ ^ T ω ^

C

then by the similar estimation as I(ω}t), we have

| / O , £ ) | £̂ ̂ O o g l / O " ^ exp ( — (

We have also

I ω-'2 |/O, τr^\dω < oo.

expClogl/ί)Λ
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Hence

Γ , t)\dω

= t- J(log l/0" β Γ expC - (log

exp(logl/t)*

/ C O

e-11* dx = OCί-^log 1/tr^t (log

Lastly we have

/
A , o

Hence if β = a — 1," then by the hypothesis

Γ

λι
Thus the theorem is proved.

\dRCω)\ =0(1) .
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