NOTES ON FOURIER ANALYSIS (XL):

ON THE ABSOLUTE SUMMABILITY OF THE FOURIER SERIES

Noboru Matsuyama

(Received July 3, 1950)

1. Let $\left\{\lambda_{n}\right\}$ be a positive and increasing sequence, and let

$$
\begin{equation*}
R(\omega)=\omega^{-1} \sum_{\lambda_{n}<\omega}\left(\omega-\lambda_{n}\right) a_{n} \tag{1.1}
\end{equation*}
$$

be the ($R, \lambda_{n}, 1$)-mean of the series Σa_{n}. lf $R(\omega)$ is of bounded variation in the interval $\left(\lambda_{1}, \infty\right)$, that is

$$
\int_{\lambda_{1}}^{\infty}|d R(\omega)|=\int_{\lambda_{1}}^{\infty} \omega^{-2}\left|\sum_{\lambda_{n}<\omega} \lambda_{n} a_{n}\right| d \omega<\infty,
$$

then $\sum a_{n}$ is said to be absolutely ($R, \lambda_{n}, 1$)-summable, or simply $\left|R, \lambda_{n}, 1\right|$ summable.

Let $f(t)$ be an L-integrable function in the interval ($0,2 \pi$), and its Fourier series be

$$
f(t) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)
$$

For the absolute summability of the Fourier series, following theorems are known:

THEOREM A.[1] If for any $\beta>0$
$\varphi(t)\left(\log t^{-1}\right)^{\beta}=O(1) \quad(t \rightarrow 0)$,
then the Fourier serier of $f(t)$ is summable $|R, \log n, 1|$ at $t=x$, where

$$
\varphi(t)=\frac{1}{2}\{f(x+t)+f(x-t)-2 f(x)\} .
$$

THEOREM B.[2] If $\varphi(t)$ is of bounded variation in $(0, \pi)$, then the Fourier series of $f(t)$ is summable $|R, n, \varepsilon|$ at $t=x$, where $\varepsilon>0$.

THEOREM C. [3] If $\varphi(t) \log 1 / t$ is of bounded variation in $(0, \pi)$ then the Fourier series of $f(t)$ is summable $\left|R, \exp \left(n^{\alpha}\right), 1\right|$ at $t=x$, where $0<\alpha$ <1.

In this paper we consider the summability $\mid R, \exp \left((\log n)^{\alpha}\right), 1$, where $\alpha>0$, and prove the following theorems:

THEOREM 1. If $\varphi(t)(\log 1 / t)^{\beta}=O(1)$, then the Fourier series of $f(t)$ is summable $\left|R, \lambda_{n}, 1\right|$ at $t=x$, where

$$
\lambda_{n}=\exp \left((\log n)^{\alpha}\right), \quad 0<\alpha<\beta \text { and } \alpha<1 .
$$

THEOREM 2. If $\varphi(t)(\log \log 1 / t)^{\beta}=O(1)$, then the Fourier series of $f(t)$ is summable $|R, \log n, 1|$, where $\beta>1$.

THEOREM 3. If $\varphi(t)(\log 1 / t)^{\alpha-1}$ is of boun le t variation in $(0, \pi)$, then the Fourier series of $f(t)$ is summable $\left|R, \lambda_{n}, 1\right|$ at $t=x$, where $\lambda_{n}=\exp$ $\left((\log n)^{\alpha}\right), \alpha>1$.

We can suppose $0<\beta<1$, in Theorem 1 and $1<\alpha<2$ in Theorem 3. Furthermore we can suppose that

$$
f(t)=f(-t), \quad \int_{0}^{\pi} f(t) d t=0
$$

and $x=0$; consequently it leads to consider the series $\sum_{n=1}^{\infty} a_{n}$.
2. Proof of Theorem 1. Let

$$
\lambda_{n}=\exp \left((\log n)^{\alpha}\right) \quad(n=2,3, \cdots)
$$

and let $\omega>0$. There is an m such that

$$
\lambda_{m} \leqq \omega<\lambda_{m+1}
$$

Now,

$$
\begin{aligned}
R(\omega) & =\omega^{-1} \sum_{n=1}^{m}\left(\omega-\lambda_{n}\right) a_{n}=-\omega^{-1} \sum_{n=1}^{m-1} S_{n} \Delta \lambda_{n}+S_{m}\left(\omega-\lambda_{m}\right) \\
& =-\omega^{-1}\left\{\sum_{n=1}^{m-2} n \sigma_{n} \Delta^{y} \lambda_{n}+(m-1) \sigma_{m-1} \Delta \lambda_{m-1}-S_{m}\left(\omega-\lambda_{m}\right)\right\},
\end{aligned}
$$

where

$$
S_{n}=a_{1}+a_{2}+\cdots+a_{n}, \text { and } \sigma_{n}=n^{-1}\left(S_{1}+S_{2}+\cdots+S_{n}\right) .
$$

Hence

$$
\begin{aligned}
\int_{\lambda_{1}}^{\infty}|d R(\omega)| & =\sum_{m=1}^{\infty} \int_{\lambda_{m}}^{\lambda_{m+1}}|d R(\omega)| \\
& =\sum_{m=1}^{\infty} \int_{\lambda_{m}}^{\lambda_{m+1}} \omega^{-2}\left|\sum_{n=1}^{m} \lambda_{n} a_{n}\right| \leqq A \sum_{m=1}^{\infty}\left(\lambda_{m} \lambda_{m+1}\right)^{-1} \Delta \lambda_{m}\left|\sum_{n=1}^{m} \lambda_{n} a_{n}\right| \\
& =A \sum_{m=1}^{\infty}\left|R\left(\lambda_{m}\right)-R\left(\lambda_{m+1}\right)\right|
\end{aligned}
$$

Thus, it is sufficient to prove the convergence of the last series for which we have

$$
\begin{aligned}
& \sum_{m=1}^{\infty}\left|R\left(\lambda_{m}\right)-R\left(\lambda_{m+1}\right)\right| \\
& \leqq \sum_{m=1}^{\infty}\left|\lambda_{m}^{-1} \sum_{n=1}^{m-2} n \sigma_{n} \Delta^{y} \lambda_{n}-\lambda_{m+1}^{-1} \sum_{n=1}^{m-1} n \sigma_{n} \Delta^{y} \lambda_{n}\right| \\
& +\sum_{m=1}^{\infty}\left|\lambda_{m}^{-1}(m-1) \sigma_{m-1} \Delta \lambda_{m-1}-\lambda_{m+1}^{-1} m \sigma_{n} \Delta \lambda_{m}\right| \equiv I_{1}+I_{2},
\end{aligned}
$$

say. Then from Lemma 1 of [1]

$$
I_{1} \leqq \sum_{m=1}^{\infty}\left|\Delta\left(\lambda_{m}^{-1}\right) \sum_{n=1}^{m-2} n \sigma_{n} \Delta^{2} \lambda_{n}\right|+\sum_{m=1}^{\infty}\left|\lambda_{m+1}^{-1}(m-1) \sigma_{m-1} \Delta^{2} \lambda_{m-1}\right|
$$

$$
\begin{aligned}
& =\sum_{m=1}^{\infty} \frac{(\log m)^{\alpha-1}}{m \lambda_{m}}\left|\sum_{n=1}^{m-2} \frac{n}{(\log n)^{\beta}} \frac{\lambda_{n}}{n^{2}}(\log n)^{\alpha-1}\right| \\
& +\sum_{m=1}^{\infty}\left|\frac{m}{\lambda_{m}} \frac{1}{(\log m)^{\beta}} \frac{\lambda_{m}}{m^{2}}(\log m)^{\alpha-1}\right| \equiv I_{11}+I_{12},
\end{aligned}
$$

say. Then

$$
\begin{equation*}
I_{12}=\sum_{m=1}^{\infty} 1 / m(\log m)^{1+(\beta-\alpha)}<\infty, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{align*}
I_{11} & =\sum_{m=1}^{\infty} \frac{(\log m)^{\alpha-1}}{m \lambda_{m}} \sum_{n=1}^{m-2} \lambda_{n} n(\log n)^{1+(\beta-\alpha)} \\
& \leqq \sum_{n=1}^{\infty} \frac{\lambda_{n}}{n}(\log n)^{1+(\beta-\alpha)^{-}} \sum_{m=n}^{\infty} \frac{1}{m \lambda_{m}(\log m)^{1-\alpha}} \\
& =\frac{1}{\alpha} \sum_{n=1}^{\infty} \frac{\lambda_{n}}{n(\log n)^{1+(\beta-\alpha)}} \frac{1}{\lambda_{n}}<\infty . \tag{2.2}
\end{align*}
$$

From (2.1) and (2.2), we obtain $I_{1}=O(1)$. We shall next consider I_{2}.

$$
\begin{aligned}
I_{2} & =\sum_{m=1}^{\infty}\left|\frac{(m-1) \sigma_{m-1} \Delta \lambda_{m-1}}{\lambda_{m}}-\frac{m \sigma_{m} \Delta \lambda_{m}}{\lambda_{m+1}}\right| \\
& =\sum_{m=1}^{\infty}\left|\frac{(m-1) \sigma_{m-1} \Delta \lambda_{m-1}}{\lambda_{m}}-\frac{\left\{(m-1) \sigma_{m-1}+S_{m}\right\} \Delta \lambda_{m}}{\lambda_{m+1}}\right| \\
& \leqq \sum_{m=1}^{\infty}\left|\frac{S_{m} \Delta \lambda_{m}}{\lambda_{m+1}}\right|+\sum_{m=1}^{\infty}\left|\Delta\left(\frac{\Delta \lambda_{m-1}}{\lambda_{m}}\right)(m-1) \sigma_{m-1}\right| \equiv I_{21}+I_{22},
\end{aligned}
$$

say.
Then, by the Hölder inequality,

$$
\begin{equation*}
I_{21} \leqq \sum_{m=2}^{\infty}\left|S_{m}\right| \frac{1}{m(\log m)^{1-\alpha}} \leqq\left(\sum_{m=2}^{\infty} m^{-1}\left|S_{m}\right|^{p}\right)^{1 / p}\left(\sum_{m=2}^{\infty} m^{-1}(\log m)^{-\eta(1-\alpha)}\right)^{1 / q} \tag{2.3}
\end{equation*}
$$ where

$$
p^{-1}+q^{-1}=1 \text { and } \alpha<p^{-1}<\beta .
$$

Since $(1-\alpha) q=(1-\alpha) p /(p-1)>1$, the second factor of the righthand side of (2.3) converges. After Hardy and Littewood, [4]

$$
\begin{aligned}
\left(\sum_{m=2}^{\infty}\left|S_{m}\right|^{p} / m\right)^{1 / p} & \leqq K\left(\int_{0}^{\pi}|f(t)|^{p} t^{-1} d t\right)^{1 / p} \\
& \leqq K\left(\int_{0}^{\pi} \frac{d t}{t\left(\log t^{-1}\right)^{\beta p}}\right)=O(1) .
\end{aligned}
$$

Hence
(2.4)

$$
I_{21}=O(1)
$$

We have

$$
\begin{equation*}
I_{22} \leqq \sum_{m=2}^{\infty} \frac{m}{(\log m)^{\beta}}\left\{\frac{\left|\Delta^{2} \lambda_{m-1}\right|}{\lambda_{m}}+\left|\Delta \lambda_{m}\right|\left|\Delta\left(\frac{1}{\lambda_{m}}\right)\right|\right\} \tag{2.5}
\end{equation*}
$$

$$
\leqq \sum_{m=2}^{\infty} \frac{m}{(\log m)^{\beta}}\left\{m^{-2}(\log m)^{-(1-\alpha)}+m^{-2}(\log m)^{-2(1-\alpha)}\right\}=O(1)
$$

From (2.4) and (2.5), $I_{2}=O(1)$. Thus the theorem is proved.
The proof of Theorem 2 runs similarly as that of Theorem 1.
3. PROOF OF THEOREM 3.

$$
\begin{aligned}
a_{n}= & \frac{2}{\pi} \int_{0}^{\pi} f(t) \cos n t d t=\frac{2}{\pi} f(\pi)\left(\log \pi^{-1}\right)^{\beta} \int_{1}^{\pi}(\log 1 / t)^{-\beta} \cos n t d t \\
& -\frac{2}{\pi} \int_{0}^{\pi} d\left(f(t)(\log 1 / t)^{\beta}\right) \int_{0}^{t}(\log 1 / u)^{-\beta} \cos n u d u
\end{aligned}
$$

where $0<\beta<1$.
Let

$$
(\log 1 / t)^{-\beta} \sim \sum \alpha_{n} \cos n t
$$

then

$$
\alpha_{n}=\frac{2}{\pi} \int_{0}^{\pi} \cos n t(\log 1 / t)^{-\beta} d t
$$

and $\Sigma \alpha_{n}$ converges absolutely. Hence

$$
\begin{aligned}
\int_{\lambda_{1}}^{\infty}|d R(\omega)| & =\int_{\lambda_{1}}^{\infty} \omega^{-2}\left|\sum_{\lambda_{n}<\omega} \lambda_{n} a_{n}\right| d \omega \\
& \leqq \int_{\lambda_{1}}^{\infty} \omega^{-2 j}(\pi)(\log 1 / \pi)^{\beta}\left|\sum_{\lambda_{n}<\omega} \lambda_{n} \alpha_{n}\right| d \omega \\
& +\frac{2}{\pi} \int_{\lambda_{1}}^{\infty} \omega^{-2} d \omega\left|\sum_{n_{n}<\omega} \lambda_{n} \int_{0}^{\pi} d\left(f(t)(\log 1 / t)^{\beta}\right) \int_{0}^{t}(\log 1 / u)^{-\beta} \cos n u d u\right| \\
(3.1)= & O(1)+\frac{2}{\pi} \int_{0}^{\pi}\left|\lambda\left(f(t)(\log 1 / t)^{\beta}\right)\right|\left|\int_{\lambda_{1}}^{\infty} \omega^{-2} d \omega\right| \int_{0}^{t}(\log 1 / u)^{-\xi}\left|\sum_{\lambda_{n}<\omega} \lambda_{n} \cos n u\right| d u
\end{aligned}
$$

If we put

$$
I(\omega, t) \equiv \int_{0}^{t}(\log 1 / u)^{-\beta} d u \sum_{\lambda_{n}<\omega} \lambda_{n} \cos n u,
$$

then we have

$$
\begin{aligned}
I(\omega, t) & \equiv \int_{0}^{t}(\log 1 / u)^{-\beta}\left(\sum_{n=1}^{m} \lambda_{n} \cos n u\right) d u \\
& =\int_{0}^{t}(\log 1 / u)^{-\beta} d u\left\{\sum_{n=1}^{m-1} D_{n}(u) \Delta \lambda_{n}+\lambda_{m} D_{n_{n}}(u)\right\} d u .
\end{aligned}
$$

$$
\begin{equation*}
|I(\omega, t)| \leqq \int_{0}^{t}(\log 1 / u)^{-\beta}\left\{\sum_{n=1}^{m-1} n \frac{\lambda_{n}}{n(\log n)^{1-\alpha}}+m \lambda_{m}\right\} d u \tag{3.2}
\end{equation*}
$$

$$
\leqq t(\log 1 / t)^{-\beta}\left\{m \lambda_{m}+\sum_{n=1}^{m-1} \lambda_{n}(\log n)^{\alpha-1}\right\}
$$

Now

$$
\begin{aligned}
\sum_{n=1}^{m-1} \lambda_{n}(\log n)^{\alpha-1} & \leqq \int_{1}^{m}(\log x)^{\alpha-1} \exp \left((\log x)^{\alpha}\right) d x \\
& =\int_{0}^{\log m} t^{\alpha-1} e^{t+t^{\alpha}} d t \leqq m \int_{0}^{\log m} t^{\alpha-1} e^{t^{\alpha}} d t=O\left(m \lambda_{n_{0}}\right)
\end{aligned}
$$

From (3.2) and the above estimations,

$$
\begin{aligned}
|I(\omega, t)| & \leqq A t\left(\log 1^{\prime} t\right)^{-\beta} m \lambda_{m} \\
& \leqq \mathrm{~A} t(\log 1 / t)^{-\beta} \omega \exp \left((\log \omega)^{1 / \alpha}\right)
\end{aligned}
$$

Now

$$
\int_{\lambda_{1}}^{\infty} \omega^{-2} d \omega\left|\int_{0}^{t}(\log 1 / u)^{-\beta}\left(\sum_{\lambda_{n}<\omega} \lambda_{n} \cos n u\right) d u\right|=\int_{\lambda_{1}}^{\exp (\log 1 / t)^{\alpha}}+\int_{\exp (\log 1 / t) \omega}^{\infty} \equiv I_{1}+I_{2}
$$

say. Then

$$
\begin{aligned}
I_{1} & =\int_{\lambda_{1}}^{\exp (\log 1 / t)^{\alpha}} \omega^{-2}|I(\omega, t)| d \omega=\int_{\lambda_{1}}^{\operatorname{expc}(\log 1 / t)^{\alpha}} t(\log 1 / t)^{-\beta} \omega^{-1} \exp (\log \omega)^{1 / \alpha} d \omega \\
& =t(\log 1 / t)^{-\beta} \int_{1}^{(\log 1 / t) \alpha} e^{x^{1 / \alpha}} d x \leqq O\left(t(\log 1 / t)^{-\beta} t^{-1}(\log 1 / t)^{\alpha-1}\right) \\
& =O\left((\log 1 / t)^{(\alpha-1)-\beta)}\right.
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
I_{2} & =\int_{\exp (\log 1 / t)^{\alpha}}^{\infty} \omega^{-2}|I(\omega, t)| d \omega \\
& \leqq \int_{\exp (\log 1 / t)^{\alpha}}^{\infty} \omega^{-2}|I(\omega, \pi)| d \omega+\int_{\exp (\log 1 / t)^{\alpha}}^{\infty} \omega^{-2} d \omega\left|\int_{t}^{\pi}(\log 1 / u)^{-\beta} \sum_{\lambda_{n}<\omega} \lambda_{n} \cos n u d u\right|
\end{aligned}
$$

If we put

$$
J(\omega, t) \equiv \int_{t}^{\pi}(\log 1 / u)^{-\beta}\left(\sum_{\lambda_{n}<\omega} \lambda_{n} \cos n u\right)^{\prime} d u
$$

then by the similar estimation as $I(\omega, t)$, we have

$$
|J(\omega, t)| \leqq t^{-1}(\log 1 / t)^{-\beta} \omega \exp \left(-(\log \omega)^{1 / \omega}\right)
$$

We have also

$$
\int_{\exp (\log 1 / t)^{\alpha}}^{\infty} \omega^{-2}|I(\omega, \pi)| d \omega<\infty
$$

Hence

$$
\begin{aligned}
& \quad \int_{\text {exp(log } 1 / t) \alpha}^{\infty} \omega^{-2}|J(\omega, t)| d \omega \\
& =t^{-1}(\log 1 / t)^{-\beta} \int_{\substack{\exp (\log 1 / t)^{\alpha}}}^{\infty} \exp \left(-(\log \omega)^{1 / \omega}\right) \omega^{-1} d \omega \\
& =t^{-1}(\log 1 / t)^{-\beta} \int_{\substack{(\log 1 / t)^{\alpha}}}^{\infty} e^{-x^{1 / / \omega}} d x=O\left(t^{-1}(\log 1 / t)^{-\beta} t(\log 1 / t)^{\alpha-1}\right) \\
& =O\left((\log 1 / t)^{(\alpha-1)-\beta}\right) .
\end{aligned}
$$

Lastly we have

$$
\int_{\lambda_{1}}^{\infty}|d R(\omega)| \leqq O\left(\int_{0}^{\infty} \mid d\left(f(t)(\log 1 / t)^{\beta} \mid(\log 1 / t)^{(\alpha-1)-\beta}\right) .\right.
$$

Hence if $\beta=\alpha-1$, then by the hypothesis

$$
\int_{\lambda_{1}}^{\infty}|d R(\omega)|=O(1)
$$

Thus the theorem is proved.

References

1. S. Izumi and T. Kafata, Tôhoku Math. Jour., 45 (1938).
2. L. S. Bosanquet, Proc. Lond. Math. Soc., 31 (1936).
3. R. Mohanty, Proc. Lond. Math. Soc., 51 (1949).
4. G. H. Hardy and J. E. Litrlewood, Duke Math Jour., 2 (1936).

Mathematical Institute, Tôhoku Unversity.

