A THEOREM ON THE MAJORATION OF HARMONIC MEASURE AND ITS APPLICATIONS

MASATSUGU TSUJI
(Received January 30, 1950)

1. Let D be a domain on the z-plane, which contains $z=0$ and $z=\infty$ belongs to its boundary Γ, which consists of at most a countable number of analytic curves. Let θ_{r} be the part of $|z|=r$ which is contained in D and $r \theta(r)$ be its length.

We put $\bar{\theta}(r)=\theta(r)$, if $|z|=r$ meets Γ and $\bar{\theta}(r)=\infty$, if $|z|=r$ does not meet Γ and is contained entirely in D.

Let $w(z)$ be one-valued and regular in D and on I , such that $|u(z)|>1$ in D and $|w(z)|=1$ on Γ and

$$
M(r)=\operatorname{Max}_{\theta_{r}}|w(z)|
$$

Then modifying Carleman's method ${ }^{1)}$, K. Arima") proved that

$$
\log \log M(r)>\pi \int_{0}^{\alpha r} \frac{d r}{r \bar{\theta}(r)}-\text { const. } \quad(0<\alpha<1)
$$

where α is any postive number less than 1 .
This is an extension of Ahlfors' theorem ${ }^{3}$, who assumed that D is simply connected and is bounded by a single curve.

In this paper, by modifying Arima's method, we will prove a theorem on the majoration of harmonic measure and by which we will prove an extension of Arima's theorem.
2. Let $D=D_{R}$ be a domain on the z-plane, which lies in $|z|<R$, such that a part θ_{R} of $|z|=R$ belongs to its boundary. We denote the boundary of D, which lies in $|z|<R$ by $\Gamma=\Gamma_{R}$, so that $\Gamma_{R}+\theta_{R}$ is the whole boundary of D.
$z=0$ may or may not belong to D and let ρ_{0} be the shortest distance from $z=0$ to D, such that $\rho_{0}=\inf _{z \approx D}|z|$.

Now $|z|=r\left(\rho_{0}<r<R\right)$ separates D into at most a countable number

[^0]of connected domains. We consider only such connected ones $\left\{D_{r}^{(i)}\right\}$, which contains $z=0$, if $z=0$ belongs to D or have boundary points on $|z|$ $=\rho_{0}$, if $z=0$ does not belong to D and put
\[

$$
\begin{equation*}
D_{r}=\sum_{i} D_{r}^{(i)} . \tag{1}
\end{equation*}
$$

\]

Let θ_{r} be the part of $|z|=r$, which belongs to the boundary of D_{r} and Γ_{r} be the part of Γ, which belongs to the boundary of D_{r}, so that $\Gamma_{r}+\theta_{r}$ is the whole boundary of D_{r}. We denote the length of θ_{r} by $r \theta(r)$.

If Γ consists of a finite number of analytic curves, then we see easily that there exists a finite number of values $\rho_{0}<r_{1}<r_{2}<\cdots<r_{n}<R$, such that $\theta(r)$ is continuous in $r_{i}<r<r_{i+1}$ and is discontinuous at r_{i}, such that (2)

$$
\theta\left(\boldsymbol{r}_{i}-0\right)=\theta\left(\boldsymbol{r}_{i}\right)<\theta\left(\boldsymbol{r}_{i}+0\right), D_{r_{i}} \subset D_{r_{i}+0} .
$$

Let $u(z)=u_{n}(z)$ be the generalized sequence solution of the Dirichlet problem for D, with the boundary value $u(z)=1$ on θ_{R} and $u(z)=0$ on Γ. Then $u(z)$ is harmonic in D, such that $0<u(z)<1$ in D and takes the given boundary value except a set of logarithmic capacity zero. $u(z)$ is the harmonic measure of θ_{R} with respect to D. We put

$$
\begin{gather*}
m(r)=\frac{1}{2 \pi} \int_{\theta_{r}}\left[u\left(r e^{i \theta}\right)\right]^{2} d \theta, \quad\left(\rho_{u} \leqq r \leqq R\right), \tag{3}\\
S(r)=\frac{1}{\pi} \iint_{D_{r}}\left(\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right) d x d y, \quad(z=x+i y) . \tag{4}
\end{gather*}
$$

Then $0 \leqq m(r) \leqq 1$. We will prove
THEOREM 1. $m(r)$ is an increasing function of r, such that

$$
m(r)-m(\rho) \geqq \int_{\rho}^{r} \frac{S(r)}{r} d r, \quad\left(\rho_{0} \leqq \rho<r \leqq R\right) .
$$

If Γ consists of a finite number of analytic curves, then $m(r)$ is a convex function of $\log r$ in $\left(r_{i}, r_{i+1}\right)$, such that

$$
m^{\prime}(r)=S(r) / r, \quad\left(r \neq r_{i}\right) .
$$

PROOF. First we suppose that Γ consists of a finite number of analytic curves. Then for $r \neq r_{i}$,

$$
\begin{align*}
& \frac{\partial m(r)}{\partial \log r}=\frac{1}{\pi} \int_{\theta_{r}} u \frac{\partial u}{\partial \log r} d \theta, \quad\left(\rho_{0}<r<R\right), \tag{5}\\
& \text { (6) } \frac{\partial^{2} m(r)}{\partial \log r^{2}}=\frac{1}{\pi} \int_{\theta_{r}}\left(\left(\frac{\partial u}{\partial \log r}\right)^{2}+u \frac{\partial^{2} u}{\partial \log r^{2}}\right) d \theta \\
& =\frac{1}{\pi} \int_{\theta_{r}}\left(\left(\frac{\partial u}{\partial \log r}\right)^{2}-u \frac{\partial^{2} u}{\partial \theta^{2}}\right) d \theta=\frac{1}{\pi} \int_{\theta_{r}}\left(\left(\frac{\partial u}{\partial \log r}\right)^{2}+\left(\frac{\partial u}{\partial \theta}\right)^{2}\right) d \theta>0,
\end{align*}
$$

so that $m(\boldsymbol{r})$ is a convex function of $\log r \operatorname{in}\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{i+1}\right)$.
Let $\Gamma_{r}+\theta_{r}$ be the whole boundary of D_{r} and ν be its outer normal and
$d s$ be its line element, then since $u(z)=0$ on Γ_{r}, if we apply Green's formula for D_{r}, we have

$$
\begin{aligned}
r m^{\prime}(\boldsymbol{r}) & =\frac{\partial m(r)}{\partial \log r}=\frac{1}{\pi} \int_{\theta_{r}} u \frac{\partial u}{\partial r} r d \theta=\frac{1}{\pi} \int_{\Gamma_{r}+\theta_{r}} u \frac{\partial u}{\partial \nu} d \boldsymbol{s} \\
& =\frac{1}{\pi} \iint_{D_{r}}\left(\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right) d x d y=S(r)
\end{aligned}
$$

or
(7)

$$
m^{\prime}(r)=S(r) / r, \quad\left(r \neq r_{i}\right)
$$

so that

$$
\begin{equation*}
m(r)-m(\rho) \geqq \int_{\rho} \frac{S(r)}{r} d r, \quad(\rho<r) \tag{8}
\end{equation*}
$$

In the general case, we approximate D by a sequence of domains

$$
\begin{equation*}
D^{(1)} \subset D^{(2)} \subset \cdots \subset D^{(n)} \rightarrow D \tag{9}
\end{equation*}
$$

where $D^{(n)}$ is bounded by a finite number of analytic curves and we define $u_{n}(z), \theta_{r}^{(n)}, \theta_{n}(r), m_{n}(r)$ for $D^{(n)}$, such that

$$
\begin{equation*}
m_{n}(r)=\frac{1}{2 \pi} \int_{\theta_{r}^{(n)}}^{[}\left[u_{n}\left(r e^{i \theta}\right)\right] d^{2} \theta, \quad m(r)=\frac{1}{2 \pi} \int_{\theta_{r}}\left[u\left(r e^{i \theta}\right)\right]^{2} d \theta \tag{10}
\end{equation*}
$$

Then since

$$
\begin{equation*}
u_{1}(z)<u_{2}(z)<\cdots<u_{n}(z) \rightarrow u(z) \tag{11}
\end{equation*}
$$

uniformly in the wider sense in D and
(12) $\quad \theta_{i}^{(1)} \subset \theta_{i}^{(2)} \subset \cdots \subset \theta_{i}^{(n)} \rightarrow \theta_{r}$,
we have by Lebesgue's theorem,

$$
m_{1 b}(r) \rightarrow m(r), \quad(n \rightarrow \infty)
$$

By (8),

$$
\begin{equation*}
m_{n}(r)-m_{n}(\rho) \geqq \int_{\rho}^{r} \frac{S_{n}(r)}{r} d r, \quad(\rho<r ; \tag{13}
\end{equation*}
$$

where

$$
S_{n}(r)=\frac{1}{\pi} \iint_{D_{r}^{(n)}}\left(\left(\frac{\partial u_{n}}{\partial x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial y}\right)^{2}\right) d x d y
$$

Since $D_{r}^{(p)} \subset D_{r}^{(n)}$ for $p<n$,

$$
\begin{equation*}
S_{n}(r) \geqq \frac{1}{\pi} \iint_{D_{r}^{(p)}}\left(\left(\frac{\partial u_{n}}{\partial x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial y}\right)^{2}\right) d x d y, \quad(p<n) \tag{14}
\end{equation*}
$$

and by (11), $\frac{\partial u_{n}}{\partial x} \rightarrow \frac{\partial u}{\partial x}, \frac{\partial u_{n}}{\partial y} \rightarrow \frac{\partial u}{\partial y}$ uniformly in $D_{r}^{(p)}$, so that from (14)

$$
\lim _{n \rightarrow \infty} S_{n}(r) \geqq \frac{1}{\pi} \iint_{D_{r}^{(p)}}\left(\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right) d x d y
$$

hence for $p \rightarrow \infty$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{n}(r) \geqq \frac{1}{\pi} \iint_{D_{r}}\left(\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right) d r d y=S(r) \tag{15}
\end{equation*}
$$

From (13), (15) and Fatou's lemma, we have

$$
\begin{equation*}
m(r)-m(\rho) \geqq \int_{\rho}^{r} \frac{S(r)}{r} d r, \quad(\rho<r) \tag{16}
\end{equation*}
$$

Hence Theorem 1 is proved.
REMARK. From (16),

$$
\begin{equation*}
1 \geqq m(R)-m\left(\rho_{0}\right) \geqq \int_{\rho_{0}}^{R} \frac{S(r)}{r} d r, \tag{17}
\end{equation*}
$$

or

$$
\int_{p_{0}}^{R} \frac{S(r)}{r} d r \leqq 1
$$

Hence $S(r)<\infty$ for $\rho_{0} \leqq r<R$.
3. Ler $D=D_{R}$ be a domain in $|z|<R$ and we define $u(z)=u_{R}(z)$, and θ_{r} as in $\S 2$.

We define $\bar{\theta}(r)\left(\rho_{0}<r<R\right)$ as follows. If a cirle $|z|=r$ meets Γ, then θ r consists of at most a countable number of arcs $\left\{\theta_{r}^{(i)}\right\}$ of lengths $r \theta^{(i)}(r)$ on $|z|=\mathrm{r}$, then we put $\theta(r)=\operatorname{Sup}_{i} \theta^{(i)}(r)$ and if $|z|=r$ does not meet Γ and is contaired entirely in D, then we put $\bar{\theta}(r)=\infty$. Then we will prove

THEOREM. 2. (Main theorem). For any $0<\alpha<1, k>1$,

$$
u_{R}(z) \leqq C . \exp \left(-\pi \int_{k|z|}^{\alpha R} \frac{d r}{r \theta(r)}\right), \quad\left(\rho_{0} \leqq k|z|<\alpha R\right)
$$

where

$$
C=C(\alpha, k)=\frac{k+1}{k-1} \sqrt{\frac{2 e}{1-\alpha}} .
$$

If $z=0$ belongs to D,

$$
u_{R}(0) \leqq \sqrt{\frac{2 e}{1-\alpha}} \exp \left(-\pi \int_{0}^{\alpha R} \frac{d r}{r \theta(r)}\right), \quad(0<\alpha<1)
$$

Proof. First we suppose that Γ consists of a finite number of analytic curves. Then from (5),

$$
\left(\frac{\partial m(r)}{\partial \log r}\right)^{2} \leqq \frac{1}{\pi^{2}} \int_{\theta_{r}} u^{2} d \theta \int_{\theta_{r}}\left(\frac{\partial u}{\partial \log r}\right)^{2} d \theta=\frac{2 m(r)}{\pi} \int_{\theta_{r}}\left(\frac{\partial u}{\partial \log r}\right)^{2} d \theta
$$

henre

$$
\begin{equation*}
-\frac{1}{\pi} \int_{\theta_{r}}\left(\frac{\partial u}{\partial \log r}\right)^{2} d \theta \geqq \frac{1}{2 m(r)}\left(\frac{\partial m(r)}{\partial \log r}\right)^{2} . \tag{18}
\end{equation*}
$$

Suppose that $|z|=r$ meets Γ, then $e_{\text {r }}$ consists of a finite number of arcs
$\theta_{r}=\sum_{i} \theta_{r}^{(i)}$ of length $r \theta^{(i)}(r)$. Since $u(z)=0$ at the both ends of $\theta_{r}^{(i)}$, by the well known inequality,

$$
\int_{\theta_{r}^{(i)}}\left(\frac{\partial u}{\partial \theta}\right)^{2} d \theta \geqq \frac{\pi^{2}}{\theta^{(i)}(\boldsymbol{r})^{2}} \int_{\substack{\theta_{r}^{(i)}}} u^{2} d \theta \geqq \frac{\pi^{2}}{\bar{\theta}(r)^{2}} \int_{\substack{\theta_{r}^{(i)}}} u^{2} d \theta,
$$

hences summing up for i,

$$
\int_{\theta_{r}}\left(\frac{\partial u}{\partial \theta}\right)^{2} d \theta \geqq \frac{\pi^{2}}{\bar{\theta}(r)^{2}} \int_{\theta_{r}} u^{2} d \theta=\frac{2 \pi^{3}}{\bar{\theta}(r)^{2}} m(r),
$$

or

$$
\begin{equation*}
\frac{1}{\pi} \int_{\theta_{r}}\binom{\partial u}{\partial \theta}^{2} d \theta \geqq \frac{2 \pi^{2}}{\bar{\theta}(r)^{2}} m(r) . \tag{19}
\end{equation*}
$$

From (6), (18), (19), we have

$$
\begin{equation*}
\frac{\partial^{2} m(r)}{\partial \log r^{2}} \geqq \frac{1}{2 m(r)}\left(\frac{\partial m(r)}{\partial \log r}\right)^{2}+\frac{2 \pi^{2}}{\bar{\theta}(r)^{2}} m(r) . \tag{20}
\end{equation*}
$$

If $|z|=r$ does not meet Γ, then similarly

$$
\begin{equation*}
\frac{\partial^{2} m(r)}{\partial \log r^{2}} \geqq \frac{1}{2 m(r)}\left(\frac{\partial m(r)}{\partial \log r}\right)^{2} \tag{21}
\end{equation*}
$$

so that in any case, we have

$$
\begin{equation*}
\frac{\partial^{2} m(r)}{\partial \log r^{2}} \geqq \frac{1}{2 m(r)}\left(\frac{\partial m(\boldsymbol{r})}{\partial \log r}\right)^{2}+\frac{1}{2}\left(\frac{2 \pi}{\bar{\theta}(\boldsymbol{r})}\right)^{2} m(\boldsymbol{r}) . \tag{22}
\end{equation*}
$$

If we put
(23)

$$
t=\log r, \mu(t)=m(r), \quad Q(t)=2 \pi / \bar{\theta}(r),
$$

then (22) becomes

$$
\begin{equation*}
\mu^{\prime \prime}(t) \geqq \frac{1}{2 \mu(t)} \mu^{\prime}(t)^{2}+\frac{1}{2} Q(t)^{2} \mu(t), \tag{24}
\end{equation*}
$$

or
so that

$$
\lambda^{\prime}(t)^{2}+2 \lambda^{\prime \prime}(t) \geqq Q(t)^{2}, \quad(\lambda(t)=\log \mu(t)),
$$

Since by Theorem 1 ,

$$
\lambda^{\prime}(t)+\lambda^{\prime \prime}(t) / \lambda^{\prime}(t)=\mu^{\prime \prime}(t) / \mu^{\prime}(t)>0 \text { in }\left(t_{i}, t_{i+1}\right), \quad\left(t_{i}=\log r_{i}\right),
$$

we have

$$
\mu^{\prime \prime}(t) / \mu^{\prime}(t) \geqq Q(t) \text { in }\left(t_{i}, t_{i+1}\right)
$$

Since $\mu^{\prime}\left(t_{i}-0\right)<\mu^{\prime}\left(t_{i}+0\right)$ from $m^{\prime}(r)=S(r) / r\left(r \neq r_{i}\right)$, we have

$$
\log \mu^{\prime}(t)-\log \mu^{\prime}(\tau) \geqq \int_{\tau}^{t} \frac{\mu^{\prime \prime}(t)}{\mu^{\prime}(t)} d t \geqq \int_{\tau}^{t} Q(t) d t, \quad(\tau<t),
$$

or

$$
\mu^{\prime}(t) \geqq \mu^{\prime}(\tau) \exp \left(\int^{t} Q(t) d t\right), \quad(\tau<t)
$$

If we put
(25)

$$
T=\log R, t=\log r, \tau=\log \rho
$$

we have for any $0<\alpha<1,(\rho \leqq \alpha R)$,

$$
\begin{aligned}
1 & \geqq \mu(T)-\mu(\tau) \geqq \int_{\tau}^{T} \mu^{\prime}(t) d t \geqq \mu^{\prime}(\tau) \int_{\tau}^{T} d t \exp \left(\int_{\tau}^{t} Q(t) d t\right) \\
& =\mu^{\prime}(\tau) \int_{\rho}^{R} \frac{d r}{r} \exp \left(2 \pi \int_{\rho}^{r}-\frac{d r}{r \bar{\theta}(r)}\right) \geqq \mu^{\prime}(\tau) \int_{\alpha R}^{R} \frac{d r}{r} \exp \left(2 \pi \int_{\rho}^{r} \frac{d r}{r \bar{\theta}(r)}\right) \\
& \geqq \mu^{\prime}(\tau) \log \frac{1}{\alpha} \exp \left(2 \pi \int_{\rho}^{\alpha R} \frac{d r}{r \theta(r)}\right) \\
& \geqq \mu^{\prime}(\tau)(1-\alpha) \exp \left(2 \pi \int_{\rho}^{\alpha R} \frac{d r}{r \bar{\theta}(r)}\right) .
\end{aligned}
$$

Hence if we write t instead of τ, we have

$$
\begin{equation*}
\mu^{\prime}(t) \leqq \frac{1}{1-\alpha} \exp \left(-2 \pi \int_{r}^{\alpha R} \frac{d r}{r \bar{\theta}(r)}\right), \quad(0<\alpha<1) \tag{26}
\end{equation*}
$$

From (24),

$$
\mu^{\prime \prime}(t) \geqq-\frac{1}{2} Q(t)^{-2} \mu(t)
$$

and since $(\bar{\theta}(r))^{2} \leqq 2 \pi \bar{\theta}(r)$, we have for $\tau<t$,
(27) $\mu^{\prime}(t) \geqq \mu^{\prime}(t)-\mu^{\prime}(\tau) \geqq \int_{\tau}^{t} \mu^{\prime \prime}(t) d t \geqq \frac{1}{2} \int_{\tau}^{t} Q(t)^{2} \mu(t) d t$

$$
\geqq \frac{\mu(\tau)}{2} \int_{\tau}^{t} Q(t)^{2} d t=2 \pi^{2} m(\rho) \int_{\rho}^{r} \frac{d r}{r \bar{\theta}(r)^{2}} \geqq \pi m(\rho) \int_{\rho}^{r} \frac{d r}{r \bar{\theta}(r)}
$$

Hence from (26),

$$
\begin{aligned}
& \frac{1}{1-\alpha} \exp \left(-2 \pi \int_{r}^{\alpha R} \frac{d r}{r \bar{\theta}(r)}\right) \geqq \pi m(\rho) \int_{\rho}^{r} \frac{d r}{r \bar{\theta}(r)}, \\
& \frac{1}{1-\alpha} \exp \left(2 \pi \int_{\rho}^{r} \frac{d r}{r \bar{\theta}(x)}-2 \pi \int_{\rho}^{\alpha R} \frac{d r}{r \theta(r)}\right) \geqq \frac{m(\rho)}{2} 2 \pi \int_{\rho}^{r} \frac{d r}{r \bar{\theta}(r)} .
\end{aligned}
$$

If $2 \pi \int_{\rho}^{\tau_{R}} \frac{d r}{r \bar{\theta}(r)}>1$, then we choose $r(\rho<r<\alpha R)$, so that $2 \pi \int_{\rho}^{r} \frac{d r}{r \bar{\theta}(r)}$ $=1$, then

$$
\frac{e}{1-\alpha} \exp \left(-2 \pi \int_{\rho}^{\alpha R} \frac{d r}{r \theta(r)}\right) \geqq \frac{1}{2}^{-m(\rho),}
$$

or

$$
\begin{equation*}
m(\rho) \leqq \frac{2 e}{1-\alpha} \exp \left(-2 \pi \int_{\rho}^{\alpha R} \frac{d r}{r \bar{\theta}(r)}\right) \tag{28}
\end{equation*}
$$

If $2 \pi \int_{\rho}^{\alpha R} \frac{d r}{r \bar{\theta}(r)} \leqq 1$, then (2R) holds, since $m(\rho) \leqq 1,2 /(1-\alpha)>1$.

Hence (28) holds in general. If $z=0$ belongs to D, then

$$
\begin{equation*}
u(0)=\sqrt{m(0)} \leqq \sqrt{1-\alpha} \exp \left(-\pi \int_{0}^{\alpha R} \frac{d r}{r \bar{\theta}(r)}\right), \quad(0<\alpha<1) . \tag{29}
\end{equation*}
$$

To obtain the majorant of $u(z)$, we add the inside of $|z|=\rho$ to D and D_{0} be the thus enlarged domain, then $|z|<\rho$ belong to D_{0}. We define $u_{0}(z)$, $\bar{\theta}_{0}(r)$ for D_{0}, then $u(z) \leqq u_{0}(z)$ and $\theta_{0}(r)=\infty,(0 \leqq r<\rho), \quad \bar{\theta}_{0}(r)=\bar{\theta}(r)$ ($\rho \leqq r \leqq R$), so that by (29)

$$
u_{亏}(0) \leqq \sqrt{\frac{2 e}{1-\alpha}} \exp \left(-\pi \int_{\rho}^{\tau R} \frac{d r}{r \bar{\theta}(r)}\right) .
$$

Since $u_{0}(z)>0$ in $|z|<\rho$, we have for $|z|=\lambda \rho,(0<\lambda<1)$,

$$
\left.u_{0}(z) \leqq \frac{1+\lambda}{1-\lambda} u_{0}(0) \leqq \frac{1+\lambda}{1-\lambda} \sqrt{\frac{2 e}{1-\alpha} \exp \left(-\pi \int_{\rho}^{\alpha R} \frac{d r}{r} \frac{\partial}{\theta}(r)\right.}\right)
$$

so that

$$
u(z) \leqq u_{0}(z) \leqq \frac{1+\lambda}{1-\lambda} \sqrt{\frac{2 o}{1-\alpha}} \exp \left(-\pi \int_{\rho}^{\alpha R} \frac{d r}{r \bar{\theta}(r)}\right)
$$

Hence if we put $k=1 / \lambda>1$, we have $\rho=k|z|$, so that

$$
\begin{equation*}
u(z) \leqq C \exp \left(-\pi \int_{k_{|z|}}^{\alpha R} \frac{d r}{r \bar{\theta}(r)}\right), \quad(0<\alpha<1, k>1) \tag{30}
\end{equation*}
$$

where

$$
C=C(\alpha, k)=\frac{k+1}{k-1} \sqrt{1-\alpha} .
$$

Hence the theorem is proved, when Γ consists of a finite number of analytic curves. In the general case, we approximate D by a sequence of domains $D^{(1)} \subset D^{(2)} \subset \cdot \subset D^{(n)} \rightarrow D$, where $D^{(n)}$ is bounded by a finite unmber of analytic curves. Let $u_{n}(z), \bar{\theta}_{n}(r)$, be defined for $D^{(n)}$, then

$$
u_{1}(z)<u_{2}(z)<\cdots \cdot u_{u_{3}}(z) \rightarrow u(z)
$$

uniformly in the wider sense in D and it is easily seen that

$$
\bar{\theta}_{1}(r) \leqq \bar{\theta}_{2}(r) \leqq \cdots \leqq \bar{\theta}_{n}(r) \rightarrow \bar{\theta}(\boldsymbol{r}) .
$$

Since by (30),

$$
u_{n}(z) \leqq C . \exp \left(-\pi \int_{k|z|}^{\alpha R} \frac{d x}{r \bar{\theta}_{n}(r)}\right)
$$

we have by Lebesgue's theorem,

$$
u(z) \leqq C . \exp \left(-\pi \int_{k_{1 z 1}}^{\alpha R} \frac{d r}{r \theta(r)}\right), \quad(0<\alpha<1, k>1)
$$

Hence the theorem is proved in the general case.
4. As an application of Theorem 2, we will prove the following exten-
sion of Arima's theorem mentioned in § 1.
THEOREM 3. Let D be an infinite domain on the z-plane and $w(z)$ be one-valued and regular in D and on its boundary Γ, such that

$$
|w(z)| \leqq \lambda \text { on } \Gamma, \text { and } M(r)=\operatorname{Max}_{\theta_{r}}|w(z)| .
$$

If there exists a point $z_{0}\left(\left|z_{0}\right|=r_{0}\right)$ in D , such that $\left|w\left(z_{0}\right)\right|>\lambda$, then

$$
\log \log \frac{M(r)}{\lambda} \geqq \pi \int_{r_{0}}^{\alpha r} \frac{d r}{r \bar{\theta}(r)}-\text { const., }(0<\alpha<1) .
$$

PROOF. Let D_{r} be defined as before and $u_{r}(z)$ be defined for D_{r}, then by Theorem 2,

$$
u_{r}(z) \leqq C \exp \left(-\pi \int_{k|z|}^{\alpha r} \frac{d r}{r \bar{\theta}(r)}\right), \quad(0<\alpha<1, k>1)
$$

Since $\log ^{+}(|w(z)| / \lambda)$ is subharmonic and vanishes on Γ, we have

$$
\log ^{+}(|w(z)| / \lambda) \leqq \log (M(r) / \lambda) u_{r}(z) \text { in } D_{r} .
$$

Hence

$$
0<\log ^{+} \frac{\left|w\left(z_{0}\right)\right|}{\lambda} \leqq \log \frac{M(r)}{\lambda} u_{r}\left(z_{0}\right) \leqq C . \log \frac{M(r)}{\lambda} \exp \left(-\pi \int_{k r_{0}}^{\alpha r} \frac{d r}{r \bar{\theta}(r)}\right)
$$

so that

$$
\log \log \frac{M(r)}{\lambda} \geqq \pi \int_{r_{0}}^{\alpha r} \frac{d r}{r \bar{\theta}(r)}-\text { const., }(0<\alpha<1), \text { q.e.d. }
$$

From Theorem 3, we have the following extension of the classical theorem of Lindelöf-Phragmén :

THEOREM 4. Let D be an infinite domain on the z-plane and $w(z)$ be one-valued and regular in D and on its boundary Γ, such that

$$
|w(z)| \leqq \lambda \text { on } \mathrm{\Gamma} \text { and } M(r)=\operatorname{Max}_{\theta_{r}}|w(z)| .
$$

If

$$
\varlimsup_{r \rightarrow \infty}\left(\pi \int_{r_{0}}^{\alpha r} \frac{d r}{r \bar{\theta}(r)}-\log \log \frac{M(r)}{\lambda}\right)=\infty, \quad(0<\alpha<1)
$$

then $|w(z)| \leqq \lambda$ in D.
5. Let D be a domain, which lies in $|z|<R$ and $z=0$ belongs to its boundary Γ. As well known, $z=0$ is a regular point for the Dirichlet problem, if and only if there exists a barrier $w_{\rho}(z)$ for any neighbourhood U_{ρ} of $z=0$, where a barrier is, by definition, a positive superharmonic function in D, such that $\lim _{z \rightarrow 0} w_{\rho}(z)=0$ uniformly in D and $w_{\rho}(z) \geqq a_{\rho}>0$ for $|z| \geqq \rho$, where a_{ρ} depends on U_{ρ}. Let $u_{\rho}(z)$ be defined for D_{ρ} as Theorem 2 and let

$$
m_{\rho}(r)=\frac{1}{2 \pi} \int_{\theta_{r}}\left[u_{\rho}\left(r e^{i \theta}\right)\right]^{3} d \theta, \quad(r<\rho) .
$$

Then by Theorem 1, $m_{\rho}(r)$ is an increasing function of r, so that

$$
\lim _{r \rightarrow 0} m_{\rho}(r)=A_{\rho} \geqq 0
$$

exists. We will prove
LEMMA. The necessary and sufficient condition, that $z=0$ is a regular point is that

$$
A_{\boldsymbol{p}}=0
$$

for any $\rho>0$.
PROOF. Suppose that $z=0$ is a regular point, then $\lim u_{p}(z)=0$, so that $A_{\rho}=0$ for any $\rho>0$.

Next suppose that $A_{\rho}=0$ for any $\rho>0$. Then $m_{\rho}(r)<\varepsilon^{2}$ for $r \leqq r(\varepsilon)<\rho$.
Let $U_{\rho}(z)$ be a harmonic function in $|z|<r$, such that $U_{\rho}(z)=u_{\rho}(z)$ on θ_{r} and $U_{\rho}(z)=0$ on the complementary arc of θ_{r} on $|z|=r$. Then
(31) $\quad u_{\rho}(z) \leqq U_{\rho}(z)$ in D_{r}.

Since $U_{\rho}(z)>0$ in $|z|<r$, we have for $|z| \leqq k r(0<k<1)$,

$$
\begin{aligned}
U_{\rho}(z) & \leqq \frac{1+k}{1-k} U_{\rho}(0) \leqq \frac{1+k}{1-k}\left(\frac{1}{2 \pi} \int_{0}^{-2 \pi} U_{\rho}\left(r e^{i \theta}\right)^{2} d \theta\right)^{1 / 2} \\
& =\frac{1+k}{1-k} \sqrt{m_{\rho}(r)} \leqq \frac{1+k}{1-k} \varepsilon,
\end{aligned}
$$

so that from (31),

$$
u_{\mathrm{p}}(z) \leqq \frac{1+k}{1-k} \varepsilon, \quad(|z| \leqq k r)
$$

Hence $\lim _{z \rightarrow 0} u_{\rho}(z)=0$.
We define $w_{\rho}(z)$ as follows.

$$
w_{\rho}(z)=u_{\rho}(z) \text { in } D_{\rho}, \quad w_{\rho}(z)=1 \text { in } D-D_{\rho} .
$$

Then $w_{\rho}(z) \geqq 0$ is superharmonic in D and $w_{\rho}(z)=1$ on θ_{ρ} and $\lim _{z \rightarrow 0} w_{\rho}(z)$ $=0$, so that $w_{\mathrm{p}}(z)$ is a barrier, hence $z=0$ is a regular point.

We will prove
THEOREM 5. If $\int_{0}^{R} \frac{d r}{r \bar{\theta}(r)}=\infty$, then $z=0$ is a regular point.
Let E be the set of r, such that $|z|=r$ meets the boundary I of D , then Beurling ${ }^{4}$ proved that if $\int_{F} d \log r=\infty$, then $z=0$ is a regular point. This is a special case of our theorem.

PRODF. Let $u_{\rho}(z)$ be defined for D_{ρ} as Theorem 2, then

$$
u_{\rho}(z) \leqq C \cdot \exp \left(-\pi \int_{k / z \mid}^{\alpha_{\rho}} \frac{d r}{r \theta(r)}\right), \quad(0<\alpha<1, k>1) .
$$

4) A. Beurling, Thèse. Upsala (1933).

Since $\int_{0}^{R} \frac{d r}{r \bar{\theta}(r)}=\infty$, we have $\lim _{z \rightarrow 0} u_{\rho}(z)=0$, so that $A_{\rho}=0$ for any $\rho>0$, hence by the lemma, $z=0$ is a regular point, q.e.d.

We will prove a more general theorem:
THOREM. 6. If $\int_{0}^{R} \frac{d r}{r \bar{\theta}(r)^{2}}=\infty$, or if $\int_{0}^{R} \frac{d r}{r \bar{\theta}(r)^{2}}<\infty$ and
$\lim _{r \rightarrow 0} \log \frac{1}{r} \int_{0}^{r} \frac{d r}{r \bar{\theta}(r)^{2}}>0$, then $z=0$ is a regular point.
Proof. (i) First we suppose that

$$
\begin{equation*}
\int_{0}^{R} \frac{d r}{r \bar{\theta}(r)^{2}}=\infty \tag{32}
\end{equation*}
$$

We approximate D by a sequence of domains $D^{(1)} \subset D^{(2)} \subset \cdots \subset \subset D^{(n)} \rightarrow D$, where $\mathrm{D}^{(n)}$ is bounded by a finite number of analytic curves and let $u_{n}(z)$, $m_{n}(r)=\mu_{n}(t)(t=\log r), \theta_{n}(r), Q_{n}(t)$ be defined for $D^{(n)}$. Then by (27),

$$
\begin{equation*}
\mu_{n}^{\prime}(t) \geqq \frac{1}{2} \int_{\tau}^{t} Q_{n}^{2}(t) \mu_{n}(t) d t \geqq \frac{\mu_{n}(\tau)}{2} \int_{\tau}^{t} Q_{n}(t)^{2} d t, \quad(\tau<t) \tag{33}
\end{equation*}
$$

so that

$$
1 \geqq \mu_{n}(T)-\mu_{n}(\tau) \geqq \int_{\tau}^{T} \mu_{n}^{\prime}(t) d t \geqq \frac{\mu_{n}(\tau)}{2} \int_{\tau}^{T} d t \int_{\tau}^{t} Q_{n}(t)^{2} d t, \quad(T=\log R)
$$

Since $Q_{n}(t) \rightarrow Q(t)(n \rightarrow \infty)$ by decreasing, we have by Lebesgue's theorem,

$$
\begin{gathered}
1 \geqq \frac{\mu(\tau)}{2} \int_{\tau}^{T} d t \int_{\tau}^{t} Q(t)^{2} d t=2 \pi^{2} m(\rho) \int_{\rho}^{R} d r \int_{\rho}^{r} \frac{d r}{r \bar{\theta}(r)^{2}} \\
\geqq 2 \pi^{3} m(\rho) \int_{R / 2}^{R} \frac{d r}{r} \int_{\rho}^{r} \frac{d r}{r \bar{\theta}(r)^{2}} \geqq 2 \pi^{2} m(\rho) \log 2 \int_{\rho}^{R / 2} \frac{d r}{r \bar{\theta}(r)^{2}}(t=\log r, \tau=\log \rho) .
\end{gathered}
$$

Hence by (32), we have $\lim _{r \rightarrow 0} m(r)=0$. Similarly we have $\lim _{r \rightarrow 0} m_{\rho}(r)=A_{\rho}$ $=0$ for any $\rho>0$, so that by the lemma, $z=0$ is a regular point.
(ii) Next suppose that

$$
\int_{0}^{R} \frac{d r}{r \overline{\theta(r)^{2}}}<\infty
$$

then making $\tau \rightarrow-\infty$ in (33),

$$
\mu_{n}^{\prime}(t) \geqq \frac{1}{2} \int_{-\infty}^{t} Q_{n}(t)^{2} \mu_{n}(t) d t
$$

so that

$$
1 \geqq \mu_{n}(T)-\mu_{n}(\tau) \geqq \int_{\tau}^{T} \mu_{n}^{\prime}(t) d t \geqq \frac{1}{2} \int_{\tau}^{T} d t \int_{-\infty}^{t} Q_{n}(t)^{2} \mu_{n}(t) d t
$$

hence for $\tau \rightarrow-\infty$,

$$
\begin{equation*}
1 \geqq \frac{1}{2} \int_{-\infty}^{r} d t \int_{-\infty}^{t} Q_{n}(t)^{2} \mu_{n}(t) d t=2 \pi^{2} \int_{0}^{R} \frac{d r}{r} \int^{r} \frac{m_{n}(r)}{r \theta_{n}(r)^{2}} d r . \tag{35}
\end{equation*}
$$

Now $m_{n}(r) \rightarrow m(\boldsymbol{r}) \quad(n \rightarrow \infty)$ and $m_{n}(\boldsymbol{r})$ is uniformly bounded $\left(0 \leqq m_{n}(r) \leqq 1\right)$ and $1 /\left(r \bar{\theta}_{n}(r)^{2}\right)$ decreases with n, so that we can easily prove that we may make $n \rightarrow \infty$ under the integral sign of the right hand side of (35), so that

$$
1 \geqq 2 \pi^{2} \int_{0}^{R} \frac{d r}{r} \int_{0}^{r} \frac{m(r)}{r \bar{\theta}(r)^{2}} d r .
$$

Similarly we have for any $\rho<R$,

$$
\begin{equation*}
1 \geqq 2 \pi^{2} \int_{0}^{\rho} \frac{d r}{r} \int_{0}^{r} \frac{m_{\rho}(r)}{r \bar{\theta}(r)^{2}} d r . \tag{36}
\end{equation*}
$$

Suppose that $z=0$ is an irregular point, then by the lemma, for some $\rho>0, \lim _{r \rightarrow 0} m_{\rho}(r)=A_{\rho}>0$. Since $m_{\rho}(r)$ is an increasing function of r,

$$
m_{\rho}(r) \geqq A_{\rho}>0 \text { for } 0<r \leqq \rho
$$

Hence from (36),

$$
\infty>\frac{1}{2 \pi^{2} A_{\rho}} \geqq \int_{0}^{\rho} \frac{d r}{r} \int_{0}^{r} \frac{d r}{r \bar{\theta}(r)^{2}},
$$

so that

$$
\frac{1}{2} \log \frac{1}{r} \int_{0}^{r} \frac{d r}{r \bar{\theta}(r)^{2}} \leqq \int_{r}^{\sqrt{r}} \frac{d t}{t} \int_{1}^{t} \frac{d t}{t \theta(t)^{2}}<\varepsilon, \quad\left(r \leqq r_{0}(\varepsilon)\right),
$$

or

$$
\lim _{r \rightarrow 0} \log \frac{1}{r} \int_{0}^{r} \frac{d r}{r \bar{\theta}(r)^{2}}=0 .
$$

Hence if

$$
\varlimsup_{r \rightarrow 1} \log \frac{1}{r} \int_{0}^{r} \frac{d r}{r \bar{\theta}(r)^{2}}>0,
$$

then $z=0$ is a regular point.

[^0]: 1) T. Carleman, Sur une inégalité différentielle dans la thécrie des fonctions analytiques. C.R., 196 (1936).
 2) K. Arima, On maximum modulus of an integral function. To appear in the Jour. Math. Soc. Japan.
 3) L. Ahlfons, Üker die asymptotischen Weite der mercmorphen Funktionen endlicher Ordnung. Acta. Acad. Akoensis. Mat.et Phys.6:(1932).
 H. Milloux, Sur les domaines de déterminations infinite des fonctions entières. Acta. Math. 61 (1933).
 A. Dinghas, Bemerkungen zur Differentialungleichung von Carleman. Math. Zeit. 41 (1936).
