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1. Let D be a domain on the 2-plane, which contains z = 0 and z = co
belongs to its boundary Γ, which consists of at most a countable number
of analytic curves. Let θr be the part of \z\-r which is contained in D
and r#O) be its length.

We put β(r) — 0O), if \z\ - r meets Γ and #(/-) = oo? if \z\ ~ r does
not meet Γ and is contained entirely in D.

Let w(z) be one-valued and regular in D and on Γ, such that ]^'O)| > 1
in D and \w(z^>\ = 1 on Γ and

Then modifying Carleman's method1^ K. Arima-) proved that
r#r ,

log log M(r) > π ~~- -- const. (0<α:<l),
J rθ(r)
o

where a is any postive number less than 1.
This is an extension of Ahlfors' theorem3), who assumed that D is

simply connected and is bounded by a single curve.
In this paper, by modifying Arima's method, we will prove a theorem

on the majoration of harmonic measure and by which we will prove an
extension of Arima's theorem.

2. Let D = DR be a domain on the 2-plane, which lies in \z\<R, such
that a part ΘR of \z\ - R belongs to its boundary. We denote the boundary
of D, which lies in \z\ < R by Γ = Γ#, so that TR + ΘR is the whole boun-
dary of D.

2 - 0 may or may not belong to D and let p0 be the shortest distance
from z = 0 to D, such that p0 = inf \z\.

zsΰ

Now \z\ = r(po<r<R) separates D into at most a countable number
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of connected domains. We consider only such connected ones {D£°}, which
contains z — 0, if z = 0 belongs to D or have boundary points on \z\
= p0, if 2 = 0 does not belong to Z) and put

CD Dr = *Σ D'-
i

Let #r be the part of \z\ - r, wfίich belongs to the boundary of Dr and
Γ r be the part of Γ, which belongs to the boundary of Dr, so that Γ,. + θr
is the whole boundary of D,. We denote the length of θr by rθ(r).

If Γ consists of a finite number of analytic curves, then we see easily
that there exists a finite number of values p0 < rl < r2 < <rn < R, such
that 0 O ) is continuous in rt < r < rί+1 and is discontinuous at n, such that
( 2 ) θ ( n - 0) - θ (r£) < θ Cn + 0), Zλ , c A.,*,, .

Let & (2) = 1̂2 (2) be the generalized sequence solution of the Dirichlet
problem for D, with the boundary value u (z) = 1 on ΘR and u (2) = 0 on
Γ. Then u (2) is harmonic in D, such that 0 < u (2) < 1 in D and takes
the given boundary value except a set of logarithmic capacity zero, u (2)
is the harmonic measure of ΘR with respect to D. We put

( 3 ) m (r) = wre!θ)Jdθ, (ft ^ r ^ R),

Then 0 <Ξ m (r) ^ 1. We will prove

THEOREM 1. m(r) is an increasing function of r, such that

m(r)~m (p) > Γ S ^ dr, (po^ρ<r^ R).

p

If Γ consists of a finite number of analytic curves, then m (r) is a convex
function of log r m(rί} r ί + 1 ) , such that

m'(r) = SO)/r, (rΦn).
PROOF. First we suppose that Γ consists of a finite number of analytic

curves. Then for

C b )

so that m ( r ) is a convex function of log
Let Γ r + θr be the whole boundary of Dr and v be its outer normal and
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ds be its .line element, then since u (2) = 0 on Γr, if we apply Green's
formula for Dr, we have

r, x 3m (r) 1 C ou ,,, 1 Γ 'du ,
r m (r) — •„ , — = — / &ί̂ — rd# = / &^r- ds

G» log r π J ^r π J ov

or
(7) m'(r)= S(r)/r, (r Φ n),
so that

> Γ (p < r).

p

In the general case, we approximate D by a sequence of domains
( 9 ) Z3(1) d Z)(-) d d D ( n ) -> D,
where D ( 7 ί ) is bjunded by a finite number of analytic curves and we define

, , ^ Λ , , ... , , f o r DW^ s u c h t h a t

1 Γ 1 Γ
(10) mn(r) — ~ri— / \__Un (re θ)Ί.a2θ, m (r) = -^— /1

ώTr / ~ Zπ I

v» i
Then since
(11) Uι(z) < U 2.(Z^ < ' ' ' < Un (^) -> ί/ (z)

uniformly in the wider sense in D and
(12) θ^ d # 2>C d ff^ -> 6>r?

we have by Lebesgue's theorem,
ί̂̂  (f) -> m(r), (^ -> ooX

By (8),
Γ?* S O)

(13) Wn(r) — Wn(f>) ^ I ^ rfr, (p <
P

where

S.W- >/]'

r

Since jDc/) d Z)c

r^ for p < n,

(14) ί

and by (11), - ^ , Γ-> uniformly in D « , so that from (14)

hence for ̂ > -> oo,



16 M. TSUJI

(15) inn Sn (D * - f / / ( ( f -)* + ( f T) * > * = S CD.

Dr

From (13), (15) and Fatou's lemma, we have

- m(p) > J(16) m (r) - m(p) > ~-dr, (p < r).

Hence Theorem 1 is proved.
REMARK. From (iβ),

(17) 1 ̂  m O?) - (p 0 ) ^ I

or

r =

Hence S ( r ) < oo for p0 < r < R.

3. Ler D ~ OR be a domain in I z \ < R and we define u (z) = UE (2),
and θr as in § 2.

We define $ ( r ) (p0 < r < 7?) as follows. If a cirle |2 | == r meets Γ7

then θr consists of at most a countable number of arcs {0£°} of lengths
r # ( ; ) (r) on |2 | = r, then we put θ (^) = Sup^ ( ί )(r) and if [z| =: r does not

meet Γ and is contained entirely in D, then we put θ (*0 = oo. Then we
will prove

THEOREM. 2. (Main theorem). For any 0 < α: < 1, & > 1,

«*(*) S C. exp ( - TrJ - ^ v ) , . (po S * U! <

where

= 0 belongs to D,

'!f-r), CO<«<1).
U

PROOF. First we suppose that Γ consists of a finite number of analy-
tic curves. Then from (5),

hence

Γί
J V log
θr

Suppose that \z\ = r meets Γ, then ft. consists of a finite number of arcs
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θr = 2 ^ ° o f length r0«>CO. Since u (z) = 0 at the both ends of #*>, by
ί

the well known inequality,

Λ c o07

hences summing up for ί,

or

(19) -

From (6), (18), (19), we have

a log r* = 2m(r) \

If |z| = r does not meet Γ, then similarly

(21)
3 log r2 = 2m(r) V a log r

so that in any case, we have

. .
C ; '

If we put

(23) ί=logr, MCO
then (22) becomes

(24) /'(O ^ - ^ ό " ^ « a + T

or
λ'(Oa + 2λr/(O ^ Q(O2, (λ(ί) =

so that

Since by Theorem 1,
λ W + λ//(ί)/λ/(O - μ>"ζt)/μ'V) > 0 in (Λ, ίί+ι), (ί«

we have

X'CO/^CO^OCO in (fc, /<+ι).
Since '̂(fe - 0)< //(Z* + 0) from ίw'(r) = S(r)/r (r * r<),
we have

log /CO - log/Cτ) > f A ^ di > Γ OCOΛ, (r < 0,

or

/CO ^ μ CT) exp( Γ G ( « Λ , (T < O.

If we put
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(25) T = logR, t = logr, r = logp,
we have for any 0 < a < 1, (p <; aR),

T

dt ex- μ ( τ ) ^ Γ μ

T T T

,. , ΓR *• /. Γr rfr W ,, , ΓB dr /0 Γr

= μ ' (τ ,J —6x5(2^] -=^)>μMj -T-exP(2.rJ

P

> ^ ( T ) l o g
p P

1
rftr)

P

> μ'(τ)(l - α) exp 2τr - ^ --r
PHence if we write t instead of T, we have

,,051? _ ,

( 2 6 ) ^ ) S T ^ r e x p ( - 2 7 r J . 7 ^ Γ ) , CO-

From (24),

/."CO ^ -\-

and since (,^(r))a <2τr(9(r), we have for r < t,

(27) //(*) > μ' CO - μ(τ) > > i Γ

Hence from (26),

S ^ J ζ?(ί)*Λ = 2^m(p) J ' ^ ^ S ^m(p) J - ^
rθ(r)

p

Γ'*R ήr Γr dr
If 2τr / - > 1, then we choose r (p < r < aR), so that 2τr I - - 7

j rθ{Y) ' J γ^j\if
P

= 1, then

r _ V e x p ( - 2 7 r | α B

7 ^ y ) > l-

P

or

(28) * (p) < - ^ exp( - 2

P

pΛ ,

if 2π / r. r ^ 1, then (28) holds, since m (p) ^ 1, 2/(l - a) > 1.
j γQ\τ)
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Hence (28) holds in general. If z - 0 belongs to D, then

(29) «(0) =• x/m(0) - ' e χ p - " ' ( 0

To obtain the majorant of u(z). we add the inside of |2 | = p to J9 and Dd

be th$ thus enlarged domain, then \z\ < p belong to D0. We define 2/0(2),
<90 (r) for A, then u (z) ^ ttoGO and #0(r) = oo, (0 ^ r < p), 00(r) = 0 (r)
<ρ g r <Ξ Λ), so that by (29)

P

Since u^z} > 0 in \z\ < p, we have for \z\ = λp, (0 < X < 1),

s j^y^X - ,f -

so that

u (z) <;
P

Hence if we put k = 1/λ > 1, we have p~k\z\, so that

(30) w(2) g C exp( - π I ~ r Y (0 < α < 1, & > 1),

where

Hence the theorem is proved, when Γ consists of a finite number of analy-
tic curves. In the general case, we approximate D by a sequence of do-
mains D ( 1 ) c: D ( 2 ) c: c: D(n> -> D, where D^ is bounded by a finite unmber
of analytic curves. Let ww(2), 0 n (r), be defined for DCn), then

uniformly in the wider sense in D and it is easily seen that

Since by (30),

u (z} ^ C

we have by Lebesgue's theorem,

u(z) <Ξ C. exp ( — π I — \ (0 < a < 1, & > 1).

Hence the theorem is proved in the general case.

4. As an application of Theorem 2, we will prove the following exten-
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sion of Arima's theorem mentioned in § 1.

THEOREM 3. Let D be an infinite domain on the z-plane and w (zj
be one-valued and regular in D and on its boundary Γ, such that

I w(z} I <Ξ λ on Γ, and M (r) = Max | w (z) \.

If there exists a point 20C|zol ~ ^o) in D, such that |w(z 0 ) | > ^, then

log l o g - ^ p ^ ^ 7t Γ^j~^ - const, CO < a < 1).

PROOF. Let Dr be defined as before and uτ (z) be defined for Dr, then
by Theorem 2,

/ Γ Λ Γ .r7 \

ur (2) ^ Cexpί - π \ " | : - N ), (0 < a < 1, k > 1).

Since log+(\w(z)\/~\,) is subharmonic and vanishes on Γ, we have
log+C|2-ί;(2)|/λ)SlogCM(r)/λ)ί/rC^) in Dr.

Hence

0 < lo^^L <, log-M «̂,(2ϋ) S C. l o g ^ W - * Γ'-j?- X
A Λ Λ \ j rθ(r) >

fc/ o

so that

^ 7τ Γ
J

log l o g - ^ 7τ ~ - - const, (0 < a < 1), 0. *. ^.

From Theorem 3, we have the following extension of the classical theorem
of Lindelόf-Phragmen :

THEOREM 4. Let D be an infinite domain on the z-plane and w Cε) be
one-valued and regular in D and on its boundary Γ, such that

I w Gε) I <; λ on Γ and M (r ) = Max I w

λ . V , ΓΊ__ in LJ.

5. Let D be a domain, which lies in | z \ < R and z = 0 belongs to its-
boundary Γ. As well known, z = 0 is a regular point for the Dirichlet pro-
blem, if and only if there exists a barrier wp(z) for any neighbourhood
Up of z = 0, where a barrier is, by definition, a positive superharmonic
function in D, such that lim wp(z) = 0 uniformly in Z) and P̂C-ε) ̂  <zp > 0
for \z\ ^ p, where ap depends on UP. Let up(z^ be defined for DP as Theorem
2 and let

1
W p ( r ) = 2τr
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Then by Theorem 1, mp(r) is an increasing function of r, so that
lim mp(r) = Λp ;> 0

> -?>u

exists. We will prove
LEMMA. The necessary and sufficient condition, that z = 0 ts a regular

point is that
A, - 0

/0r 0#y p > 0.
PROOF. Suppose that z - 0 is a regular point, then lim u^zy = 0, so

3^t)

that Ap = 0 for any p > 0.
Next suppose that AP = 0 for any p > 0. Then

tfίp(r) < £2 for r <; r (£) < p.
Let Up(z) be a harmonic function in | z | < r, such that £/P(2) = %(£) on &•
and ί/pCz) = 0 on the complementary arc of ^ r on \z\ = r. Then
(31) ^ ( 2 ) < C7p(2) in Dr.
Since f/p(^) > 0 in [2) < r, we have for \z\ <^kr(Q<k< 1),

-r _. 1 +
- i^T pr) S yrr

so that from (31),

Hence lim %(^) = 0.
«-?o

We define ^ p(2) as follows.
wp(2) = Wp(z) in Dp, Wp(z) - 1 in D — Dp.

Then wp(2) ^ 0 is superharmonic in D and tί;p(2) - 1 on 0P and lim ^ p (2)
3->0

= 0, so that Wp(z) is a barrier, hence 2 = 0 is a regular point.
We will prove

/R fir
— - = oo, then z = 0 is a regular point.
rtf(r)

0

Let E be the set of r, such that \z\-r meets the boundary Γ of Ώ,

then Beurling4) proved that if I d log r = oo? then z = 0 is a regular point.
E

This is a special case of our theorem.

PROOF. Let Hp(z) be defined for Dp as Theorem 2, then
/ * P

-
ru

4) A. BBUKLING, These. Upsala (1933).
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ΓR d
Since I ^ τ ~ τ = oo, we have lim wp(z) = 0, so that Ap = 0 for any p > Orj r0(r) z^>

hence by the lemma, z = 0 is a regular point, q. e. d.
We will prove a more general theorem:

/ R rir ΓR Λr
~ " ' = «D? or if \ "τ < oo and

rθ(ry J rtf(ry2

0 U

-j / • ' ' T

lim log — I - r > 0; then z = 0 is a regular point.
»•-*> r j rθ(rj

o
PROOF, (i) First we suppose that

We approximate D by a sequence of domains Z)(1) d D ( ; ί ) cz ---- c D ( w ) -> D7

where D ( w ) is bounded by a finite number of analytic curves and let un (2),.
w w (O - /z»CO (ί = logr), ^ ( r ) , QnCO be defined for D<n>. Then by (27),

(33) ^;(O ^ - | Γ QiCOMO* ^ ^f7^ ί 0» CO2Λ, CT < O,
T T

so that

l>μ»(T) -μ»(τ)> Γ ^ (

T T T

Since Q»(0 -> 0 GO Oί->oo) by decreasing, we have by Lebesgue's theorem,
/- Λ Λr r1 rTλ

LL\ T i l l > i I

1>-2~J ΛJ 0 t)dί-27rm(p)J

ΛR * " r J r

(ί — logr, T = logp).

tf/2 p P

Hence by (32), we have lim ra(r) = 0. Similarly we have lim w p ( r ) = Ap,

= 0 for any p > 0, so that by the lemma, z = 0 is a regular point,
(ii) Next suppose that

,R ,

dr

o
then making r -> — oo in (33),

so that

KCO δ Y f 0»(O>ι»(OΛ,

r71 i f'7' r '
1 > M ^ O - M T ) ^ I μ'tiWdt ^ ~2~ I dt I Qn (.O
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hence for T -> — oo?

(35) > | - ί dtfQnVy

Now mn (f)-> »ι(r) (n->oo) and mn(r) is uniformly bounded (0 <Ξ ww(/) g 1)
and l/(r0n(ry2) decreases with w, so that we can easily prove that we may
make n -> oo under the integral sign of the right hand side of (35), so
that

ϋ 0

Similarly we have for any p < /?,

(36) 1^2;
o o

Suppose that 2 = 0 is an irregular point, then by the lemma, for some
p > 0, lim Mp(ry — Ap > 0. Since mp (r) is an increasing function of r,

mp(r) > AP > 0 for 0 < r ^ p.
Hence from (36),

so that

> 1 > Γdr f dr
2π*Ap

 = J r J r^(r) 2 '
o

Γ ^ / £V d t

or
-i ΛΓ ,/rlim log 1 —i^ = 0.

r^u K J rβ^ry2-
o

Hence if

lϊΐnlog—Γ ~ >0,
> ̂  r J rθ(ry~

o
then z = 0 is a regular point.
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