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1. Let D be a domain on the z-plane, which contains z=0and z = o
belongs to its boundary 1", which ccnsists of at most a countable numker
of analytic curves. Let @, be the part of | z| = 7 which is contained in D
and 74(r) be its length,

We put 6(») = 6(r), if |z] = » meets 1" and §(r) = oo, if |z| = 7 does
not meet 1' and is contained entirely in D.

Let w(z) be one-valued and regular in D and on 1", such that |w(z)|>1
in D and |w(2)] =1 on I' and

M(r) = Meax |ew(2)].

Then modifying Carleman’s method“ K. Arima®» proved that
rar

log log Mi(7r) > ﬂj _(9(5 — const. (0<a<]),
0

where « is any postive number less than 1.

This is an extension of Ahlfors’ theorem®, who assumed that D is
simply connected and is bounded by a single curve.

In this paper, by modifying Arima’s methcd, we will prove a theorem
on the majoration of harmonic measure and by which we will prove an
extension of Arima’s theorem.

2. Let D = Dr be a domain cn the z-plane, which lies in [z]| <R, such
that a part @z of |z| = R belongs to its boundary. We denote the boundary
of D, which lies in |z| < R by I' = 1", so that I'x + @r is the whole boun-
dary of D.

z = 0 may or may not belong to D and let p, be the shortest distance
from z = 0 to D, such that p, = 1nf |z].

Now [z] = 7(py<7<R) separates D into at most a countable number

1> T. Cariemax, Sur une inégalité différentielle dans la thécrie des fonctions
analytiques. C.R., 196 (1936).
2) K. Arima, On maximum mcdulus of an integral function. To aprear in the
Jour. Math. Soc. Japan.
3) L. Amrrors, Uker die asymwptotischen Werte Jder mercmorphen Funktionen
endlicher Ordnung. Acta.Acad. Aboensis. Mat.et Phys.eS(1932).
H.MiLroux, Sur les domaines de déterminations infinite des fonctions entiéres.
Acta. Math. 61 (1933).
A. Dixeuas, Bemerkungen zur Diffeientialungleichung von Carleman. Math,
Zeit. 41 (1936).
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of connected domains. We consider only such connected ones {D{’}, which
contains z=0, if z=0 belongs to D or have boundary points on |z|
= py, if z = 0 does not belong to D and put

(1) D, =3 DP.

Let 4. be the part of |z]| = 7, which belongs to the boundary of D, and
T', be the part of 1", which belongs to the boundary of D,, so that I', + 4,
is the whole boundary of D,. We denote the length of @, by »8(7).

If I" consists of a finite number of analytic curves, then we see easily
that there exists a finite number of values py <7, <7, < -- <rp < R, such
that @ (#) is continuous in #; < » < 74, and is discontinuous at 7;, such that
(2) O(r:—0)=6(r) <67+ 0), Dry,< Dysg

Let u (2) = ur (2) be the generalized sequence solution of the Dirichlet
problem for D, with the boundary value #(2) =1 on 6z and # (z) =0 on
I’ Then u (2) is harmonic in D, such that 0 <#(z) <1 in D and takes
the given boundary value except a set of logarithmic capacity zero. u (z)
is the harmonic measure of gz with respect to D. We put

(3) ") = g f CuCredo, (py<r=<R),
_ 1 ou \* Qu N . _ .
(4) S(r) = ”ff«ﬁ) +<—ay—>)dxdy, (2= 1+ ip).
Dr

Then 0<m (r)<1. We will prove
THEOREM 1. m (») is an increasing function of r, such that

m(r)——m(p)gf ‘S‘;er, (=p<7r=R).

P
If I consists of a finite number of analytic curves, them m (r) is a convex
Sfunction of log v in (i, 7i.1), such that
m'(r) =S ()], (r=7;).
PROOF. First we suppose that I' consists of a finite number of analytic
curves. Then for r=*7;,

am(r) _
(5) Dlogr __f ologrde’ (po <7 < R),
ay Om(r) 1 'a’u
(6) ologr?: — [( ologr +uologr~)d€
1 ou "’_ o'u ou_ \* /ou
- nf<<alogr> °6* >d6 f<<810g7>+<8€>)d0>0
)

r r

so that m () is a convex function of log 7 in (7:, 7:i.1).
Let 'y + 6, be the whole boundary of D, and » be its outer normal and
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ds be its line element, then since #(2) =0 on I'y, if we apply Green’s
formula for D, we have
om (r) 1 ou do 1

ey -1 _ 1 [ ou
rm(r) = ologr ~ x| ”ar rav = %%, ds
Tp+6,
_ 1 au
= ff y)}dxdy S(r),
or
(7) m (r) = S(r)]r, (r % 71),
so that
(8) mr) — mip) = f S gy, <.

>
In the general case, we approximate D by a sequence of domains

(9) DD DO <. < D™ > D,

where D™ is boundad by a finita numb 1 of analytic curves and we define
un(2), 9, Ou(r), ma(r) for D™  such that

10) mn(7) = ~h/ Cun (re®)d?0, m(r) = ——f[u (re'®)12dg.
o

Then since .

(11) w(2) < uy(2) < - < un(2) >u(z)

uniformly in the wider sense in D and

az P P - SO >0,

we have by Lebesgue’s theorem,
my (r) >m(r), (n->x),
By (8),

(13) mn(f’)—WIn(P) zf *S-”S,L)df, (p<1’,

where

Sa(r)= 1 f A () (%‘;")2) dxdy.

Since D < D™ for p < n,

(14) Su(r) > —ff (Ze) a““) )y, p<m
Oun _ ou aun
and by (11), = > - 5% oy —)— uniformly in D@, so that from (14)
lim Su(r)= —ff Ou \Z Ou) >dxdy,
n>eo

hence for p > o,
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(15 lim Sa(r) Z - ” a’»‘ a“))drd =S (7.

rom (13), (15)and Fatou’s lemma, we have

(16) m (r) — mip) zf SDar, <.

Hence Theorem 1 is proved.
REMARK. From (16),

AR

an 12 m (R —mp = | S gy,

Po

or E
f i;’ldr§1.

Po
Hence S (7) < oo for py=7 < R.

3. Ler D= Dz be a domain in | z| < R and we define u (2) = ur (2),
and ¢, as in §2.

We define 6 (7) (pp< 7 < R) as follows. If a cirle |z| =7r meets T,
then @, consists of at most a countable number of arcs {#{°} of lengths
y09(r) on |z| = r, then we put g (») = S?pe(“(r) and if |z] = 7 does not

meet I'" and is contaired entirely in D, then we put B(r)= . Then we
will prove

THEOREM. 2. (Main theorem). For any 0 < a <1, k>1,

a R \
ur(z) < C. exp < - nf -76(,17%1), (pp=Fk|z| <aR),

klz]
where

k+1
C=Ca, )= 4=y 1oy

If z= 0 belongs to D,

N aR

/
uR(0)<‘/-ﬁ——eXp< nf r(‘i%), (0<a<l).
0

" PRCOF. First we suppose that 1' consists of a finite number of analy-
tic curves. Then from (5),

am(r) 1 ou Zm( 7) ou
(alogr = ud&f ologr 9_ f ologr
hence
1 o 1 /om(r)\*
(18 B2 (’o‘logr) d6 = an(r)\ologr)

0,
Suppose that |z| = 7 meets 1", then ¢, consists of a finite numker of arcs.
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Or = 26'5“ of length 76™®(7). Since u(2) =0 at the both ends of ¢, b
i

the well known inequality,

f( 55) 0= gty f” 402 G f”’d‘g’

FO)
~

1

hences summing up for ¢,

- vy 27
f( ) doz )zfude aerye M

o, 0,

or

(19 L f > 2
o(r)?

From (6), (18), (19), we have

o*m(r) 1 om(r) \2 27*
(20> 2 log 72 = 2m(r) (alogr> + a(r)*? m ().
If |z] = » does not meet I, then similarly

o*m(r) 1 om(r) \*
@D olog 7* = 2m(r) <alogr> ’

so that in any case, we have
220 2 2
22) Om(r) o 1 (M) + é<___2”_> m (7).

ologr* = 2m(r)\ ologr 9(r)
If we put B
23) t=1logr, u(®)=m(), Q) =27/0(r),
then (22) becomes
e WD Z s W + 5 QUMD
or

N+ 20 () = Q()*, (W2 = logu(t)),

so that

V@ + AN W/NEE =N @+ 208 = QD™
Since by Theorem 1,
N@) + N @IN@ = w’ @)/ > 0 in (¢, fiv1), (& = logr),
we have
,U'"(t)//"’(t) = Q) in (ti, tiv1)-
Since p'(& — 0) < W (& + 0) from 2/ (r) = S(r)/r (r = 7:),
we have

t o, t
log 4 (1) — log /(v = f D gz f Qtdt, (=<1,
Or T T

t
W) = () exp / Q(tydt), (<D,

If we put
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(25) T =1ogR, t=1logr, = logp,
we have for any 0 <a <1, (p=aR),

T T t
1 zum—umzf u’(t)dzz/»’@f at exp(f Qi)

(% ar L "odr
= “(ij 7exp<27rf rf)(r) > w(r )f ~-exp(2 f rﬁ(;—)—)
? P 3
' 1 “F o dr
= () log—&—exp<27zf YT Co) )

aR
Z W (r)(1—a) exp (27ff ;g(’;) >

. . p
Hence if we write ¢ instead of =, we have

1 wl? d?’
-9 .
1__aexp< .47Z'f 70(7)>, O<a<l

(26) (D=

»

From (24),
HOESNJOMO

and since (g(7))? < 2zg (), we have for v < ¢,

0T W@ Z W) — W) = f Wit = 5 f QB u(tdt

u(T) s as
= f Q(t)dt = 2x* m(p)f 0( ), = (P)f 70(7)

Hence from (26),

1 / B ar
—9q _ar
I—a exp( "”f re(r)> (p)f re(r)

7

1 o [ ar ar Nomp, dr
I—Hexp(\z”f 70(x) 2”[ 16@)) 2 ° f ro(ry’

3 o >

If 27 f > 1, thea we choose » (p < 7 < aR), so that 271] rg(:')
P
=1, then
l—a 76(r) /= 2
P
or
2e “Fodr
(28) mip) < o exp< — 27,_[ =)
P

< 1, then (28) holds, since m(p) =<1, 2/(1 —a) > 1.
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Hence (28) holds in general. If z = 0 belongs tc D, then

29 u(0) = ~/m(0) < \/ 2 exp( - nfw~.£l’— O<a<).
“Vil-a AECON

To obtain the majorant of »(z). we add the inside of |2z] = p to D and D,

be the thus enlarged domain, then |z| < p belong to D,., We define u,(2),

6, (r) for Dy, then u (2) Suy(2) and g(7) = o, (0=r < p), G(r) =g

(p <7 < R), so that by (29)

1R
2e — “afr
ZORVES exp( i f 76(r) )

P

Since u#y(z) >0 in [z] < p, we have for [z] =ap, (0 < A< 1),

1+ 1+ 2 “ dr
(@) < 300 = \/ 7R - f ??U—))’

so that

1+X /[ 20 _ " dr
#@D=m@ =1 SVT eXp( ”f 76(r) )

Hence if we put £ = 1/n > 1, we have p = k|z|, so that

oR
(30) u()=C exp(—nf ——5—”—), O<a<1l,k>1),
76(7r)
klz|
where
k
c=c@b=4Er/ %,

Hence the theorem is proved, when I' consists of a finite number of analy-
tic curves. In the general case, we approximate D by a sequence of do-
mains DM < D™ <-- < D™ > D, where D' is bounded by a finite unmber
of analytic curves. Let u.(2), g, (), be defined for D™, then
(2) < ux(2) < -0 < un(2) > u(z)
uniformly in the wider sense in D and it is easily seen that
G =0)= - = 0u(7) > g (7).

a R
un(z) < C. exp (—7:[ %),

Since by (30),

kjz|
we have by Lebesgue’s theorem,

aR dr
u(z) <C. exp< - nf rem')’ O<a<l, k>1.

kizi
Hence the theorem is proved in the general case.

4. As an application of Theorem 2, we will prove the following exten-
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sion of Arima’s theorem mentioned in §1.

THEOREM 3. Let D be an infinite domain on the z-plane and w (2)
be one-valued and regular in D and on its boundary I", such that
lw)| =Axon T, and M(r) = Max | w(z)]|.

If there exists a point z,(|z| = 7y) in D, Such that |{w(zp)] >\, then

log log———* M(r) = ﬂ’f rg?;)

—const.,, (0< a<1).
PROOF. Let D, be defined as before and #, (z) be defined for D,, then
by Theorem 2,

7
ur (2) < Ceexp nf ) @<a<l k>,

klz|
Since log*(|w(z)|/A) is subharmonic and vanishes on I', we have
log*(|w ()| /\) < log (M (7)/A\) ux(2) in D,.

Hence
LAw(zo)| M(r) My ([ _ar
0 < log . < log 3 u(zy) =< C. log——r exp\ zf prron )
krg
so that

wr "
log logM)(»Q- > ﬂ‘f rBer) —const.,, (0<a<1), ge.d.

From Theorem 3, we have thé following extension of the classical theorem
of Lindel6f-Phragmén :

THEOREM 4. Let D be an infinite domain on ithe z-plane and w (z) be
one-valued and regular in D and on its boundary 1", such that
lw@| =xon 1 and M (r) = Ngax |w (2)].
I ’

ar
FE dr M(7)
{;g(nf soyy ~log log = ) o, (0<a<l),

then |w(z)| < in D.

5. Let D be a domain, which lies in |2] < R and z =0 belongs to its
boundary I'. As well known, z =0 is a regular point for the Dirichlet pro-
blem, if and only if there exists a barrier w,(z) for any neighbourhood

U, of 2 =0, where a barrier is, by definition, a positive superharmonic
function in D, such that hm we(z) = 0 uniformly in D and we(2z) =a, >0

for |z| = p, where a, depends on U,. Let #,(z) be defined for D, as Theorem
2 and let

m(r) = 23{ f[up (re®)1%dg, (r < p).

»
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Then by Theorem 1, m,(7) is an increasing function of », so that
lim me(r) = A, =0
r—v

exists. We will prove

LEMMA. The necessary and sufficient condition, that z= 0 is a regular
point is that

Ap=0

Jor any p > 0.

PROOF. Suppose that z =0 is a regular point, t?j}n lim #u,(2) =0, so
that A, =0 for any p > 0.

Next suppose that A, =0 for any p > 0. Then

me(r) < & for r <7 (&) < p.

Let U,(2) be a harmonic function in [z]| < 7, such that Up(2) = us(2) on &
and U,(z) = 0 on the complementary arc of g, on |z] =7». Then
(3D up(2) < Up(2) in Dy,
Since U,(z) >0 in |z| < r, we have for [z] <kr (0< k< 1),

U< Ry < 1HE( f Uscredydg)
_1+kR 1+ %
- ']f_jN/mp(r) = 1—k E,
so that from (31),

@< 1 %e (lo st

Hence lim #,(z) = 0.

2->0

We define w,(z) as follows.
wo(2) = up(2) in D,, w,(2) =1 in D — D,.
Then w,(2) =0 is superharmonic in D and w,(z) =1 on g, and lim0 wy(2)
ks

=0, so that wy(z) is a barrier, hence z =0 is a regular point.
We will prove

THEOREM 5. If f = oo, then z =0 is a regular point.

7’9( 7)
Let E be the set of 7, such that |z| =7 meets the boundary I’ of D,
then Beurling® proved that if fd log r = oo, then 2z = 0 is a regular point.

This is a special case of our theorem,

PROOF. Let #,(z) be defined for D, as Theorem 2, then

’ ® dr
up(z) < C. exp( — ”f oor
Kz

), O<a<l kE>1).

4) A. Brurring, These. Upsala (1933).
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R
Since ;%) = oo, we have lim #,(z) =0, so that 4, =0 for any p >0,
0
hence by the lemma, z = 0 is a regular point, q.e.d,
We will prove a more general theorem:

R
. dr
THOREM. 6. I = = -
ff r(}(r)‘ co, or sz iy < and
0

750

lim log —- f 9( ¥ >0, then z =0 is a regular point.

PROOF. (i) First we suppose that

R
dr  _
(52 f o

U
We approximate D by a sequence of domains DV D® < ---.< D™ > D,
where D™ is bounded by a finite number of analytic curves and let ux (2),
mn(7) = ua(t) (2 =1log7r), Ou(7r), Qu(t) be defined for D™, Then by (27),

t t
(33) MOEE f Q@ (EpuCtrd = +25T. f Qu (Mt (r <),

so that

T T t
12 (T — pn(r) = f w (Ddt = ”ﬂ(;) f dt f Q. (t)*di, (T = log R).

Since @Qu(t) > Q( t) (n > ) by decreasing, we have by Lebesgue’s theorem,,

>u(~r)f f Vi = 2 f dr/'
1 dt| Q) *m (p) NM)

“dr _dr
= 2n? — =2 log 2 =1 =1
>2n m(p)f 7| o0y 7*m(p) log f (9( ) og7,T = log p).
Rj2 P
Hence by (32), we have lim m (») = 0. S1m11dr1y we have lil’fjl n, (r) = A,
73U 7>

=0 for any p >0, so that by the lemma, z =0 is a regular point.

(ii) Next suppose that
R

dr
f oy =

0
then making = > — oo in (33),

OEES f QDL

so that 1 t
7 r :
1 g ,an(T) - Pm('T) Z f M,l(t)dt z ';“f d[f Qn (.t)2}47z(t) dt,
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hence for v > — oo,

dr mn(r)
> o n n
(35) 1 fdth(t)p, (Hdt = Zyrf / on(r Y

Now m, (r)> m(r) (n—)OO) and ma(7) is umformly bounded (0 < ma(v) < 1)
and 1/(rg,(r)?) decreases with n, so that we can easily prove that we may
make 7 > oo under the integral sign of the right hand side of (35), so

that
dr m(r)
1=2n
f f 7'0(7)-
Similarly we have for any p < R,

’ dr m (r)
36 1=2» =
S f ./ r&(r)-

Suppose that z=0 is an 1rregular pomt, then by the lemma, for some
p >0, lim my,(r) = A, >0. Since m, () is an increasing function of »
r->0

my(r) = A, >0 for 0<7r=<p.

dr
7 o A f f r(y(f)-

Hence from (36),

so that
1 1 [ ar YT dt (1 ar ,
= — < &
2 lOg 7 f 7’6(7’)2 :J t f te(t) < ) (727’0(6))>
or
1 (" ar
lim 1 =0,
,lfol OF - /f re(r)-’
Hence if

ilr}l log -—f 7’8(7’)" >0,

then z = 0 is a regular point.
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