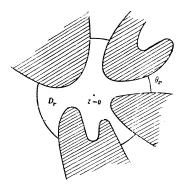
A DEFORMATION THEOREM ON CONFORMAL MAPPING

MASATSUGU TSUJI

(Received January 30, 1950)

1. Let *D* be a simply connected domain on *z*-plane, which contains z = 0and $z = \infty$ belongs to its boundary. The boundary Γ of *D* consists of at most a countable number of curves *C*, which extend to infinity in the both directions. Let $z_0(|z_0| = r_0)$ be the point on Γ , which lies nearest to z = 0, then a circle $|z| = r(>r_0)$ meets *D* in a number of cross cuts. We consider only such cross cuts, which separate z = 0 from $z = \infty$ in *D* and denote them by $\theta_r^{(1)}(i = 1, 2, \dots, n = n(r))$.

We assume that n(r) is finite, but may tend to infinity for $r \rightarrow \infty$. We



put $\theta_r = \sum_{i=1}^n \theta^{(i)}$ and $r\theta(r)$ be the total length of θ_r . θ_r divides D into n+1 simply con-

nected domains. Let D_r be the simply connected one, which contains z = 0, then D_r is bounded by θ_r and a part of Γ .

We will prove the following theorem, which is a generalization of Ahlfors' deformation theorem.

THEOREM 1. If we map D conformally on |w| < 1 by w = f(z) (f(0) = 0), then the

image of θ_r in |w| < 1 can be enclosed in a finite number of circles $K_r^{(1)}$ $(i = 1, 2, \dots, \nu(r) \leq n(r))$, which cut |w| = 1 orthogonally, such that the sum of radii is less than

const.
$$\exp\left(-\pi \int_{r_0}^{kr} \frac{dr}{r\theta(r)}\right),$$
 $(0 < k < 1),$

where k is any positive number less than 1

When D is bounded by only one curve, then by Ahlfors' deformation theorem, we can prove easily that we can take k = 1. Hence our theorem is worse than Ahlfors' deformation theorem, but is more general, since D may be bounded by a countable number of curves.

PROOF. First we map D conformally on $\Im \zeta > 0$ by $\zeta = \varphi(z)$ $(\varphi(z_0) = \infty, \varphi(0) = i)$, then $z = \infty$ is mapped on a bounded closed set E of masure zero on $\Im \zeta = 0$. Let $\lambda_r^{(i)}$ be the image of $\theta_{r_i}^{(i)}$ then $\lambda_r^{(i)}$ is a Jordan arc, whose both end points lie on $\Im \zeta = 0$. Let $\Delta_r^{(i)}$ be the finite domain, which is bounded by $\lambda_r^{(i)}$ and $\Im \zeta = 0$. We invert $\Delta_r^{(i)}$ and $\lambda_r^{(i)}$ with respect to $\Im \zeta = 0$, then we obtain $\overline{\Delta}^{(i)}$, $\overline{\lambda}^{(i)}$, which lie in $\Im \zeta < 0$ and are symmetric to $\Delta_r^{(i)}$, $\lambda_r^{(i)}$. We denote the area of $\Delta_r^{(i)}$ by $|\Delta_r^{(i)}|$ and the length of $\lambda_r^{(i)}$ by $|\lambda_r^{(i)}|$, then

$$\begin{split} |\Delta_{r}^{(i)}| &= |\Delta_{r}^{(i)}|, \quad |\overline{\lambda}_{r}^{(i)}| = |\lambda_{r}^{(i)}|.\\ \text{We put } D_{r}^{(i)} &= \Delta_{r}^{(i)} + \Delta_{r}^{(i)}, \quad l_{r}^{(i)} = \lambda_{r}^{(i)} + \overline{\lambda}_{r}^{(i)}, \text{ then}\\ (1) & |D_{r}^{(i)}| = 2|\Delta_{r}^{(i)}|, \quad |l_{r}^{(i)}| = 2|\lambda_{r}^{(i)}|.\\ \text{By the isometric inequality,} \\ & 4\pi |D_{r}^{(i)}| \leq |l_{r}^{(i)}|^{2}, \end{split}$$

so that by (1), (2)

Let L(r) be the total length of $\lambda_r = \sum_{i=1}^n \lambda_r^{(i)}$:

(3)
$$L(r) = \sum_{i=1}^{n} |\lambda_{r}^{(i)}|,$$

then

$$L(\mathbf{r}) = \int_{\theta_r} | \mathscr{P}'(\mathbf{r} e^{i\theta}) | \mathbf{r} d\theta,$$

 $2\pi |\Delta_r^{(i)}| \leq |\lambda_r^{(i)}|^2$.

so that

$$L(r)^{2} \leq r\theta(r) \int_{\theta_{r}} |\mathcal{P}'(re^{i\theta})|^{2} r d\theta,$$

hence

(4)
$$\int_{r}^{\infty} \frac{L(r)^{2}}{r\theta(r)} dr \leq \int_{r}^{\infty} \int_{\theta_{r}} |\varphi'(re^{i\theta})|^{2} r dr d\theta.$$

We see easily that the right hand side of (4) is at most $\sum_{i=1}^{\infty} |\Delta_r^{(i)}|$, so that by (2),

$$\int_{r}^{\infty} \frac{L(r)^{2}}{r\theta(r)} dr \leq \sum_{i=1}^{n} |\Delta_{r}^{(i)}| \leq \frac{1}{2\pi} \sum_{i=1}^{n} |\lambda_{r}^{(i)}|^{2} \leq \frac{1}{2\pi} \left(\sum_{i=1}^{n} |\lambda_{r}^{(i)}| \right)^{2} = \frac{1}{2\pi} L(r)^{2},$$

(5)
$$2\pi \int_{r}^{\infty} \frac{L(r)^2}{r\theta(r)} dr \leq L(r)^2.$$

We put

(6)
$$\lambda(r) = \int_{r}^{\infty} \frac{L(r)^{2}}{r\theta(r)} dr,$$

then

$$L(r)^2 = -r\theta(r)\frac{d\lambda}{dr},$$

so that from (5)

$$2\pi \frac{dr}{r\theta(r)} \leq -\frac{d\lambda}{\lambda},$$

hence integrating between r_0 , r, we have

$$2\pi\int_{r_0}\frac{dr}{r\theta(r)}\leq \log\frac{\lambda(r_0)}{\lambda(r)},$$

or

(7)
$$\lambda(r) = \int_{r}^{\infty} \frac{L(r)^{2}}{r\theta(r)} dr \leq \text{const.} \exp\left(-2\pi \int_{r_{0}}^{r} \frac{dr}{r\theta(r)}\right).$$

Since $\lambda_r^{(j)}$ can be enclosed in a circle of radius $|\lambda_r^{(j)}|$, which has its center on $\Im \zeta = 0$, if we denote $\Lambda(r)$ the lower limit of the sum of radii of a finite number of circles, which contain $\{\lambda_r^{(j)}\}$ and each of which has its center on $\Im \zeta = 0$, then

(8)
$$A(r) \leq 2L(r)$$
.
Evidently there exists a finite number of circles $A_r^{(i)}$ $(i = 1, 2, \dots, \nu \leq n)$ which contain $\{\lambda_r^{(i)}\}$ and each of which has its center on $\Im \zeta = 0$ and the sum of radii is $A(r)$.

From (7), (8), we have

(9)
$$\int_{r}^{\infty} \frac{A(r)^{2}}{r\theta(r)} dr \leq \text{const.} \exp\left(-2\pi \int_{r_{0}}^{r} \frac{dr}{r\theta(r)}\right).$$

Since by the definition of $\Lambda(r)$, $\Lambda(r)$ decreases, when r increases, we have for any 0 < k < 1,

(10)
$$A(r)^{2} \int_{kr}^{r} \frac{dr}{r\theta(r)} \leq \int_{kr}^{r} \frac{\Lambda(r)^{2}}{r\theta(r)} dr \leq \text{const.} \exp\left(-2\pi \int_{r_{0}}^{kr} \frac{dr}{r\theta(r)}\right).$$

Since $\theta(r) \leq 2\pi$, we have

(11)
$$A(r) \leq \text{const.} \exp\left(-\pi \int_{r_0}^{kr} \frac{dr}{r\theta(r)}\right), \qquad (0 < k < 1).$$

By $w = \frac{\zeta - i}{\zeta + i}$, we map $\Im \zeta > 0$ on |w| < 1 and put $w = \frac{\varphi(z) - i}{\varphi(z) + i} = f(z)$, then f(0) = 0 and w = f(z) maps D conformally on |w| < 1. Let $\Lambda_r^{(i)}$ be mapped on a circle $K_r^{(i)}$, then $K_r^{(i)}$ cuts |w| = 1 orthogonally and the image of θ_r in |w| < 1 by w = f(z) is contained in $\{K_r^{(i)}\}$. The sum of radii of $K_r^{(i)}$ is less than const. $\Lambda(r)$, so that by (11), is less than

const.
$$\exp\left(-\pi \int_{0}^{kr} \frac{dr}{r\theta(r)}\right),$$
 $(0 < k < 1),$

which proves the theorem.

2. With the same notation as §1, let $u_r(z)$ be a harmonic function in D_r , such that $u_r(z) = 1$ on θ_r and $u_r(z) = 0$ on the remaining part of the boundary of D_r , i. e. $u_r(z)$ is the harmonic measure of θ_r with respect to

 D_r . We will prove:

THEOREM 2. For any point z in D, such that $|z| \leq \rho$,

$$u_r(z) \leq C(\rho) \exp\left(-\pi \int_{r_0}^{kr} \frac{dr}{r\theta(r)}\right), \qquad (0 < k < 1).$$

where $C(\rho)$ depends on ρ only.

PROOF. We map D conformally on |w| < 1 by w = f(z) (f(0) = 0), then by Theorem 1, the image of θ_r in |w| < 1 is contained in a finite number of orthogonal circles $K_r^{(i)}$ $(i = 1, 2, \dots, n = n(r))$, such that the sum of radii is less than

(1) const.
$$\exp\left(-\pi \int_{r_0}^{kr} \frac{dr}{r\theta(r)}\right),$$
 $(0 < k < 1).$

Let $K_{\gamma}^{(i)}$ meet |w| = 1 at α_i , β_i and put (2) $\psi_i = \arg(\beta_i/\alpha_i) > 0$, then by (1),

(3)
$$\sum_{i=1}^{n} \psi_{i} \leq \text{const.} \exp\left(-\pi \int_{r_{0}}^{kr} \frac{dr}{r\theta(r)}\right).$$

Now $K_r^{(i)}$ drivides |w| < 1 into two parts and let $\Delta_r^{(i)}$ be that part, which contains z = 0. $\Delta_r^{(i)}$ is bounded by a part of $K_r^{(i)}$ in |w| < 1 and an arc $\widehat{\beta_i \alpha_i}$ on |w| = 1.

Consider

(4)
$$v_i(w) = \arg \frac{w - \beta_i}{w - \alpha_i},$$

then it is easily seen that

 $v_i(w) = \pi/2 + \psi_i/2$ on the part of $K_r^{(i)}$ in |w| < 1, = $\psi_i/2$ on the arc $\widehat{\beta_i \alpha_i}$ on |w| = 1.

Hence if we put

(5)
$$U_i(w) = \frac{2}{\pi} (v_i(w) - \psi_i/2),$$

then

(8)

(6) $U_i(w) = 1$ on the part of $K_r^{(i)}$ in |w| < 1, = 0 on the arc $\widehat{\beta_i \alpha_i}$ on |w| = 1.

We put

(7)
$$U(w) = \sum_{i=1}^{n} U_i(w), \quad \Delta_r = \prod_{i=1}^{n} \Delta_r^{(i)},$$

then U(w) is harmonic in Δ_r and from (6),

 $U(w) \ge 1$ on the boundary of Δ_r in |w| < 1,

= 0 on the boundary of Δ_r on |w| = 1.

Let by w = f(z), $u_r(z)$ become $U_r(w)$ in |w| < 1, then $U_r(w)$ is harmonic in Δ_r and since the image of θ_r is contained in $\{K_r^{(i)}\}$, we have from (8), $U_r(w) \leq U(w)$ on the boundary of Δ_r , so that

$$U_r(w) \leq U(w)$$
 in Δ_r .

Let $D^{(p)}$ be the part of D contained in $|z| \leq \rho$ and $\Delta^{(p)}$ be its image in |w| < 1. If w lies in $\Delta^{(p)}$, then since $U_i(0) = \frac{\psi}{\pi}$,

 $U_i(w) \leq \text{const.} \psi_i$

where const. depends on ρ only. Hence by (3),

$$u_r(z) = U_r(w) \leq U(w) \leq ext{ const. } \sum_{i=1}^n \psi_i \leq ext{ const. } \exp \left(-\pi \int_{r_0}^{\kappa} \frac{dr}{r \theta(r)} \right),$$

where const. depends on ρ only, which proves the thorem.

3. Let Δ be a connected domain on z-plane, which contains z = 0 and $z = \infty$ belongs to its boundary. The boundary of Δ consists of at most a countable number of curves $\{C\}$. We divide $\{C\}$ into two classes $\{C\} = \{C'\} + \{C''\}$, where C' are closed curves and C'' are open curves, which extend to infinity in the both directions.

We add the insides of C' to Δ and D be the resulting domain. D is simply connected and is bounded by $\{C''\}$. We call D the associated domain of Δ . We define θ_r , $r\theta(r)$ for the associated domain D of Δ as in §1.

THEOREM 3. Let w = f(z) be regular in Δ and $|f(z)| \leq \lambda$ on its boundary and M(r) be the maximum of |f(z)| on the part of |z| = r contained in Δ . If there exists a point z_0 in Δ , such that $|f(z_0)| > \lambda$, then

$$\log \log \frac{M(r)}{\lambda} \ge \pi \int_{r_0}^{kr} \frac{dr}{r\theta(r)} - ext{const.}, \qquad (0 < k < 1).$$

PROOF. $\log^+|f(z)/\lambda|$ is subharmonic in Δ and vanishes on its boundary. We extend the definition of $\log^+|f(z)/\lambda|$ in D by putting $\log^+|f(z)/\lambda| = 0$ insides of C', then $\log^+|f(z)/\lambda|$ is subharmonic in D.

We define $u_r(z)$ as Theorem 2, then $\log^+|f(z)/\lambda| \leq \log(M(r)/\lambda) \cdot u_r(z)$ on the boundary of D_r . Since $\log^+|f(z)/\lambda|$ is subharmonic in D_r , we have $\log^+|f(z)/\lambda| \leq \log(M(r)/\lambda) \cdot u_r(z)$ in D_r , especially at z_{v} ,

 $0 < \log^+ |f(z_0)/\lambda| \le \log (M(r)/\lambda) \cdot u_r(z_0).$ Since by Theorem 2,

$$u_r(z_0) \leq \text{const.} \exp\left(-\pi \int_{r_0}^{k'} \frac{dr}{r\theta(r)}\right), \qquad (0 < k < 1),$$

we have

$$\log \log \frac{M(r)}{\lambda} \ge \pi \int_{r_0}^{kr} \frac{dr}{r\theta(r)} - ext{const.}$$

which proves the theorem.

From Theorem 3, we can deduce easily Ahlfors' theorem¹) on the num-

¹⁾ L. Ahlfors: Über die asymptotischen Werte der meromorphen Funktionen endlicher Ordnung. Acta Acad. Aboensis. Math. et Phys. 6 Nr. 9 (1932).

ber of asymptotic values of an integral function of finite order. An analogous theorem as Theorem 3 was proved by H. Milloux²⁾ and A. Dinghas³⁾, but they assume that the boundary of Δ consists of only one curve.

From Theorem 3, we have:

THEOREM 4. Let f(z) be regular in a domain Δ , which contains z = 0and $z = \infty$ belongs to its boundary and $|f(z)| \leq \lambda$ on its boundary. If

$$\overline{\lim_{r \to \infty}} \left(\pi \int_{t_0}^{kr} \frac{dr}{r\theta(r)} - \log \log \frac{M(r)}{\lambda} \right) = \infty, \qquad (0 < k < 1),$$

then $|f(z)| \leq \lambda$ in Δ , where $r\theta(r)$ is defined for the associated domain D of Δ .

As a special case, we have the following theorem, which is an extension of the classiacl theorem of Lindelöf and Phragmén:

COROLLARY. Let f(z) be regular in a domain Δ and $|f(z)| \leq \lambda$ on its boundary and let $\theta(r) \leq \theta$ for $r \geq r_1$. If

$$\lim_{r\to\infty}\frac{\log M(r)}{r^{\pi/\theta}}=0,$$

then $|f(z)| \leq \lambda$ in Δ .

MATHEMATICAL INSTITUTE, TOKYO UNIVERSITY.

²⁾ H. Milloux: Sur les domaines de détermination infinie des fonctions entières. Acta Math. 61 (1933).

³⁾ A. Dinghas: Bemerkung zu einer Differentialgleichung von Carleman. Math. Zeits. 41 (1936).