A DEFORMATION THEOREM ON CONFORMAL MAPPING

Masatsugu Tsuji

(Received January 30, 1950)

1. Let D be a simply connected domain on z-plane, which contains $z=0$ and $z=\infty$ belongs to its boundary. The boundary Γ of D consists of at most a countable number of curves C, which extend to infinity in the both directions. Let $z_{0}\left(\left|z_{0}\right|=\boldsymbol{r}_{0}\right)$ be the point on Γ, which lies nearest to $z=0$, then a circle $|z|=r\left(>\boldsymbol{r}_{0}\right)$ meets D in a number of cross cuts. We consider only such cross cuts, which separate $z=0$ from $z=\infty$ in D and denote them by $\theta_{r}^{(i)}(i=1,2, \cdots, n=n(r))$.

We assume that $n(r)$ is finite, but may tend to infinity for $r \rightarrow \infty$. We
 put $\theta_{r}=\sum_{i=1}^{n} \theta^{i}$ and $r \theta(r)$ be the total length of θr. θr divides D into $n+1$ simply connected domains. Let D_{r}. be the simply connected one, which contains $z=0$, then D_{r} is bounded by θ_{r} and a part of Γ.

We will prove the following theorem, which is a generalization of Ahlfors' deformation theorem.

THEOREM 1. If we map D conformally on $|w|<1$ by $w=f(z)(f(0)=0)$, then the image of θ_{r} in $|w|<1$ can be enclosed in a finite number of circles $K_{r}^{(i)}$ $(i=1,2, \cdots, \nu(r) \leqq n(r))$, which cut $|w|=1$ orthogonally, such that the sum of radii is less than

$$
\text { const. } \exp \left(-\pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right), \quad(0<k<1)
$$

where k is any positive number less than 1
When D is bounded by only one curve, then by Ahlfors' deformation theorem, we can prove easily that we can take $k=1$. Hence our theorem is worse than Ahlfors' deformation theorem, but is more general, since D may be bounded by a countable number of curves.

PROOF. First we map D conformally on $\mathfrak{\Im} \zeta>0$ by $\zeta=\varphi(z)$ $\left(\varphi\left(z_{0}\right)=\infty, \varphi(0)=i\right)$, then $z=\infty$ is mapped on a bounded closed set E of masure zero on $\mathfrak{j} \zeta=0$. Let $\lambda_{r}^{(i)}$ be the image of $\theta_{r}^{(i)}$ then $\lambda_{r}^{(i)}$ is a Jordan arc, whose both end points lie on $\mathfrak{j} \zeta=0$. Let $\Delta_{r}^{(i)}$ be the finite domain,
which is bounded by $\lambda_{r}^{(i)}$ and $\mathcal{J} \zeta=0$. \vdots we invert $\Delta_{r}^{(i)}$ and $\lambda_{r}^{(i)}$ with respect to $\mathfrak{J} \zeta=0$, then we obtain $\bar{\Delta}^{(i)}$, $\bar{\lambda}^{(i)}$, which lie in $\mathfrak{J} \zeta<0$ and are symmetric to $\Delta_{r}^{(i)}, \lambda_{r}^{(i)}$. We det.ute the area of $\Delta_{r}^{(i)}$ by $\left|\Delta^{(i)}\right|$ and the length of $\lambda^{(i)}$ by $\left|\lambda_{r}^{(i)}\right|$, then

$$
\left|\Delta^{(i)}\right|=\left|\Delta_{r}^{(i)}\right|, \quad\left|\bar{\lambda}_{r}^{(i)}\right|=\left|\lambda_{r}^{(i)}\right| .
$$

We put $D_{r}^{(i)}=\Delta_{r}^{(i)}+\Delta_{r}^{(i)}, \quad l_{r}^{(i)}=\lambda_{r}^{(i)}+\bar{\lambda}_{r}^{(i)}$, then
(1) $\quad\left|D_{r}^{(i)}\right|=2\left|\Delta_{r}^{(i)}\right|, \quad\left|\eta_{r}^{(i)}\right|=2\left|\lambda_{r}^{(i)}\right|$.

By the isometric inequality,

$$
4 \pi\left|D_{r}^{(i)}\right| \leqq\left|l_{r}^{(i)}\right|^{2},
$$

so that by (1),

$$
2 \pi\left|\Delta_{r}^{(i)}\right| \leqq\left|\lambda_{r}^{(i)}\right|^{2} .
$$

Let $L(\boldsymbol{r})$ be the total length of $\lambda_{r}=\sum_{i=1}^{n} \lambda_{r}^{(i)}$:

$$
\begin{equation*}
L(r)=\sum_{i=1}^{n}\left|\lambda_{r}^{(i)}\right|, \tag{3}
\end{equation*}
$$

then

$$
L(r)=\int_{\theta_{r}}\left|\varphi^{\prime}\left(\boldsymbol{r} e^{i \theta}\right)\right| r d \theta
$$

so that

$$
L(r)^{2} \leqq r \theta(r) \int_{\theta_{r}}\left|\varphi^{\prime}\left(r e^{i \theta}\right)\right|^{2} r d \theta,
$$

hence

$$
\begin{equation*}
\int_{r}^{\infty} \frac{L(r)^{2}}{r \theta(r)} d r \leqq \int_{r}^{\infty} \int_{\theta_{r}}\left|\varphi^{\prime}\left(r e^{i \theta}\right)\right|^{2} r d r d \theta \tag{4}
\end{equation*}
$$

We see easily that the right hand side of (4) is at most $\sum_{i=1}^{n}\left|\Delta_{r}^{(i)}\right|$, so that by (2),

$$
\int_{r}^{\infty} \frac{L(r)^{2}}{r \theta(r)} d r \leqq \sum_{i=1}^{n}\left|\Delta_{r}^{(i)}\right| \leqq \frac{1}{2 \pi} \sum_{i=1}^{n}\left|\lambda_{r}^{(i)}\right|^{2} \leqq \frac{1}{2 \pi}\left(\sum_{i=1}^{n}\left|\lambda_{r}^{(i)}\right|\right)^{2}=\frac{1}{2 \pi} L(r)^{2}
$$

or

$$
\begin{equation*}
2 \pi \int_{r}^{\infty} \frac{L(r)^{2}}{r \theta(r)} d r \leqq L(r)^{2} \tag{5}
\end{equation*}
$$

We put

$$
\begin{equation*}
\lambda(r)=\int_{r}^{\infty} \frac{L(r)^{2}}{r \theta(r)} d r \tag{6}
\end{equation*}
$$

then

$$
L(r)^{2}=-r \theta(r) \frac{d \lambda}{d r}
$$

so that from (5)

$$
2 \pi \frac{d r}{r \theta(r)} \leqq-\frac{d \lambda}{\lambda}
$$

hence integrating between r_{0}, r, we have

$$
2 \pi \int_{r_{0}}^{\int_{0}} \frac{d r}{r \theta(r)} \leqq \log \frac{\lambda\left(\boldsymbol{r}_{n}\right)}{\lambda(r)}
$$

or

$$
\begin{equation*}
\lambda(r)=\int_{r}^{\infty} \frac{L(r)^{2}}{r \theta(r)} d r \leqq \text { const. } \exp \left(-2 \pi \int_{r_{0}}^{r} \frac{d r}{r \theta(r)}\right) \tag{7}
\end{equation*}
$$

Since $\lambda_{r}^{(i)}$ can be enclosed in a circle of radius $\left|\lambda_{r}^{(i)}\right|^{(}$, which has its center on $\mathfrak{J} \zeta=0$, if we denote $\Lambda(r)$ the lower limit of the sum of radii of a finite number of circles, which contain $\left\{\lambda_{r}^{(i)}\right\}$ and each of which has its center on $\mathfrak{J} \zeta=0$, then
(8) $\quad \Lambda(r) \leqq 2 L(r)$.
Evidently there exists a finite number of circles $\Lambda_{r}^{(i)}(i=1,2, \cdots, \nu \leqq n)$ which contain $\left\{\lambda_{r}^{(i)}\right\}$ and each of which has its center on $\Im \zeta=0$ and the sum of radii is $\Lambda(r)$.

From (7), (8), we have

$$
\begin{equation*}
\int_{r}^{\infty} \frac{\Lambda(r)^{2}}{r \theta(r)} d r \leqq \mathrm{const} . \exp \left(-2 \pi \int_{r_{0}}^{r} \frac{d r}{r \theta(r)}\right) \tag{9}
\end{equation*}
$$

Since by the definition of $\Lambda(r), \Lambda(r)$ decreases, when r increases, we have for any $0<k<1$,

$$
\begin{equation*}
\Lambda(r)^{2} \int_{k r}^{r} \frac{d r}{r \theta(r)} \leqq \int_{k r}^{r} \Lambda(r)^{2} d r \leqq \text { const. } \exp \left(-2 \pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right) \tag{10}
\end{equation*}
$$

Since $\theta(r) \leqq 2 \pi$, we have

$$
\begin{equation*}
\Lambda(r) \leqq \text { const. } \exp \left(-\pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right), \quad(0<k<1) \tag{11}
\end{equation*}
$$

By $w=\frac{\zeta-i}{\zeta+i}$, we map $\Im \zeta>0$ on $|w|<1$ and put $w=\frac{\varphi(z)-i}{\varphi(z)+i}=f(z)$, then $f(0)=0$ and $w=f(z)$ maps D conformally on $|w|<1$. Let $\Lambda_{r}^{(i)}$ be mapped on a circle $K_{r}^{(i)}$, then $K_{r}^{(i)}{ }_{r c}$ cuts $|w|=1$ orthogonally and the image of θr in $|w|<1$ by $w=f(z)$ is contained in $\left\{K_{r}^{(i)}\right\}$. The sum of radii of $K_{r}^{(i)}$ is less than const. $\Lambda(r)$, so that by (11), is less than

$$
\text { const. } \exp \left(-\pi \int_{0}^{k r} \frac{d r}{r \theta(r)}\right), \quad(0<k<1)
$$

which proves the theorem.
2. With the same notation as $\S 1$, let $u_{r}(z)$ be a harmonic function in D_{r}, such that $u_{r}(z)=1$ on θ_{r} and $u_{r}(z)=0$ on the remaining part of the boundary of D_{r}, i. e. $u_{r}(z)$ is the harmonic measure of θ_{r} with respect to
D_{r}. We will prove:
THEOREM 2. For any point z in D, such that $|z| \leqq \rho$,

$$
u_{r}(z) \leqq C(\rho) \exp \left(-\pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right), \quad(0<k<1)
$$

where $C(\rho)$ depends on ρ only.
PRoof. We map D conformally on $|w|<1$ by $w=f(z)(f(0)=0)$, then by Theorem 1, the image of θ_{r} in $|w|<1$ is contained in a finite number of orthogonal circles $K_{r}^{(i)}(i=1,2, \cdots, n=n(r))$, such that the sum of radii is less than

$$
\begin{equation*}
\text { const. } \exp \left(-\pi \int_{r_{0}}^{k \cdot} \frac{d r}{r \theta(r)}\right), \quad(0<k<1) \tag{1}
\end{equation*}
$$

Let $K_{r}^{(i)}$ meet $|w|=1$ at α_{i}, β_{i} and put

$$
\begin{equation*}
\psi_{i}=\arg \left(\beta_{i} / \alpha_{i}\right)>0 \tag{2}
\end{equation*}
$$

then by (1),

$$
\begin{equation*}
\sum_{i=1}^{n} \psi_{i} \leqq \text { const. } \exp \left(-\pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right) \tag{3}
\end{equation*}
$$

Now $K_{r}^{(i)}$ drivides $|w|<1$ into two parts and let $\Delta_{r}^{(i)}$ be that part, which contains $z=0 . \Delta_{r}^{(i)}$ is bounded by a part of $K_{r}^{(i)}$ in $|w|<1$ and an $\operatorname{arc} \overparen{\beta_{i} \alpha_{i}}$ on $|w|=1$.
Consider

$$
\begin{equation*}
v_{i}(w)=\arg \frac{w-\beta_{i}}{w-\alpha_{i}} \tag{4}
\end{equation*}
$$

then it is easily seen that

$$
\begin{aligned}
v_{i}(w) & =\pi / 2+\psi_{i} / 2 & & \text { on the part of } K_{i}^{(i)} \text { in }|w|<1 \\
& =\psi_{i} / 2 & & \text { on the arc } \widehat{\beta_{i} \alpha_{i}} \text { on }|w|=1
\end{aligned}
$$

Hence if we put

$$
\begin{equation*}
U_{i}(w)=\frac{2}{\pi}\left(v_{i}(w)-\psi_{i} / 2\right) \tag{5}
\end{equation*}
$$

then
(6)

$$
\begin{aligned}
U_{i}(w) & =1 \quad \text { on the part of } K_{r}^{(i)} \text { in }|w|<1, \\
& =0 \quad \text { on the arc } \overparen{\beta_{i} \alpha_{i}} \text { on }|w|=1 .
\end{aligned}
$$

We put

$$
\begin{equation*}
U(w)=\sum_{i=1}^{n} U_{i}(w), \quad \Delta_{r}=\prod_{i=!}^{n} \Delta_{i}^{(i)} \tag{7}
\end{equation*}
$$

then $U(w)$ is harmonic in Δ_{r} and from (6),
(8) $\quad U(w) \geqq 1$ on the boundary of Δ_{r} in $|w|<1$, $=0$ on the boundary of Δ_{r} on $|w|=1$.
Let by $w=f(z), u_{r}(z)$ become $U_{r}(w)$ in $|u|<1$, then $U_{r}(w)$ is harmonic in Δ_{r} and since the image of θ_{r} is contained in $\left\{K_{r}^{(i)}\right\}$, we have from (8), $U_{r}(w) \leqq U(w)$ on the boundary of Δ_{r}, so that

$$
U_{r}(w) \leqq U(w) \text { in } \Delta_{r} .
$$

Let $D^{(\rho)}$ be the part of D contained in $|z| \leqq \rho$ and $\Delta^{(\rho)}$ be its image in $|w|<1$. If w lies in $\Delta^{(\rho)}$, then since $U_{i}(0)=\frac{\psi}{\pi}$,

$$
U_{i}(w) \leqq \text { const. } \psi_{i},
$$

where const. depends on ρ only. Hence by (3),

$$
u_{r}(z)=U_{r}(w) \leqq U(w) \leqq \text { const. } \sum_{i=1}^{n} \psi_{i} \leqq \text { const. } \exp \left(-\pi \int_{r_{0}}^{k} \frac{d r}{r \theta(r)}\right)
$$

where const. depends on ρ only, which proves the thorem.
3. Let Δ be a connected domain on z-plane, which contains $z=0$ and $z=\infty$ belongs to its boundary. The boundary of Δ consists of at most a countable number of curves $\{C\}$. We divide $\{C\}$ into two classes $\{C\}$ $=\left\{C^{\prime}\right\}+\left\{C^{\prime \prime}\right\}$, where C^{\prime} are closed curves and $C^{\prime \prime}$ are open curves, which extend to infinity in the both directions.

We add the insides of C^{\prime} to Δ and D be the resulting domain. D is simply connected and is bounded by $\left\{C^{\prime \prime}\right\}$. We call D the associated domain of Δ. We define $\theta_{r}, r \theta(r)$ for the associated domain D of Δ as in § 1.

THEOREM 3. Let $w=f(z)$ be regular in Δ and $|f(z)| \leqq \lambda$ on its boundary and $M(r)$ be the maximum of $|f(z)|$ on the part of $|z|=r$ contained in Δ. If there exists a point z_{0} in Δ, such that $\left|f\left(z_{0}\right)\right|>\lambda$, then

$$
\log \log \frac{M(r)}{\lambda} \geqq \pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(\bar{r})}-\text { const. , } \quad(0<k<1)
$$

Proof. $\log ^{+}|f(z) / \lambda|$ is subharmonic in Δ and vanishes on its boundary. We extend the definition of $\log ^{+}|f(z) / \lambda|$ in D by putting $\log ^{+}|f(z) / \lambda|$ $=0$ insides of C^{\prime}, then $\log ^{+}|f(z) / \lambda|$ is subharmonic in D.

We define $u_{r}(z)$ as Theorem 2, then $\log ^{+}|f(z) / \lambda| \leqq \log (M(r) / \lambda) \cdot u_{r}(z)$ on the boundary of D_{r}. Since $\log ^{+}|f(z) / \lambda|$ is subharmonic in D_{r}, we have $\log ^{+}|f(z) / \lambda| \leqq \log (M(r) / \lambda) \cdot u_{r}(z) \quad$ in D_{r},
especially at z_{0},

$$
0<\log ^{+}\left|f\left(z_{0}\right) / \lambda\right| \leqq \log (M(r) / \lambda) \cdot u_{r}\left(z_{0}\right)
$$

Since by Theorem 2,

$$
u_{r}\left(z_{0}\right) \leqq \text { const. } \exp \left(-\pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right), \quad(0<k<1)
$$

we have

$$
\log \log \frac{M(r)}{\lambda} \geqq \pi \int_{i_{0}}^{k r} \frac{d r}{r \theta(r)} \text { - const. }
$$

which proves the theorem.
From Theorem 3, we can deduce easily Ahlfors' theorem ${ }^{1)}$ on the num-

[^0]ber of asymptotic values of an integtal function of finite order. An analogous theorem as Theorem 3 was proved by H. Milloux ${ }^{2)}$ and A. Dinghas ${ }^{3)}$, but they assume that the boundary of Δ consists of only one curve.

From Theorem 3, we have:
THEOREM 4. Let $f(z)$ be regalar in a domain Δ, which contains $z=0$ and $z=\infty$ belongs to its boundary and $|f(z)| \leqq \lambda$ on its boundary. If

$$
\varlimsup_{r \rightarrow \infty}\left(\pi \int_{r_{0}}^{k i r} \frac{d r}{r \theta(r)}-\log \log \frac{M(r)}{\lambda}\right)=\infty, \quad(0<k<1)
$$

then $|f(z)| \leqq \lambda$ in Δ, where $r \theta(r)$ is defined for the associated domain D of Δ.

As a special case, we have the following theorem, which is an extension of the classiacl theorem of Lindelöf and Phragmén:

COROLLARY. Let $f(z)$ be regular in a domain Δ and $|f(z)| \leqq \lambda$ on its boundary and let $\theta(r) \leqq \theta$ for $r \geqq r_{1}$.
If

$$
\lim _{r \rightarrow \infty} \frac{\log M(r)}{r^{\pi i \theta}}=0,
$$

then $|f(z)| \leqq \lambda$ in Δ.
Mathematical Institute, Tokyo University.

[^1]
[^0]: 1) L. Ahlfors : Über die asymptotischen Werte der meromorphen Funktionen endlicher Ordnung. Acta Acad. Aboensis. Math. et Phys. 6 Nr. 9 (1932).
[^1]: 2) H. Milloux : Sar les dumaines de détermination infinie des fonctions entières. Acta Math. 61 (1933).
 3) A. Dinghas: Bemerkung zu einer Differentialgleichung von Carleman. Math. Zeits. 41 (1936).
