ON THE FUNCTION $t - \lfloor t \rfloor - \frac{1}{2}$

TAMOTSU TSUCHIKURA

(Received January 29, 1951)

Let a be a positive integer ≥ 2 , and put

$$f(t) = t - [t] - \frac{1}{2},$$

where [t] denotes the largest integer $\leq t$. We shall consider the expression

$$\sum_{l=0}^{N} f(a^{l}t) \qquad (N=1,2\cdots).$$

If a = 2, A. Khintchine [2] proved that

(1)
$$\lim_{N\to\infty} \sup_{N\to\infty} \left(\sum_{t=0}^{N} f(2^t t)\right) / (N\log\log N)^{1/2} = 1/\sqrt{2}$$

for almost all t. On the other hand J. F. Koksma [3] proved that for a positive integer $a \ge 2$

$$\left(\sum_{l=0}^{N} f(a^{l}t)\right) / (N^{3} I^{2} (\varphi(N))^{1/3}) = 0(1)$$

and

$$\liminf_{N\to\infty} \left(\sum_{l=0}^{N} f(a^{l}t) \right) / \left(N^{1/2} \psi(N) \right) = 0$$

for almost all t, where $\varphi(n)$ is any given positive non-decreasing function of integer $n \ge n_0 > 0$ such that

$$\sum \frac{1}{n\varphi(n)} < \infty$$
 and $\varphi(n+1) \le (1+K/n)\varphi(n)$ $(n \ge n_0)$

K being a conveniently chosen positive constant, and $\psi(n)$ denotes any given positive function of the integer $n \ge n_0$ such that $\psi(n) \to 0$ as $n \to \infty$.

The purpose of this note is to furnish more precise results than these estimations of Koksma, and a related theorem.

1. Theorem 1. If a is a positive integer ≥ 2 , then for almost all t, we have

(2)
$$\lim_{N\to\infty} \sup \left(\sum_{l=0}^{N} f(a^{l}t) \right) / (N \log \log N)^{1/2} = \left(\frac{a+1}{6(a-1)} \right)^{1/2},$$

(3)
$$\liminf_{N\to\infty} \left| \sum_{l=0}^{N} f(a^l t) \right| \leq \frac{1}{a-1} \left(|f(t)| + \frac{1}{2} \right).$$

PROOF. If we consider the decimal representation of a real number t, in the scale of a, then every digit can be regarded as a function of t. Hence we put

$$t = [t] + \frac{\varepsilon_1(t)}{a} + \frac{\varepsilon_2(t)}{a^2} + \cdots$$

Every $\varepsilon_k(t)$ has its value region 0, 1, 2, ..., a-1; and clearly $\{\varepsilon_k(t)\}$ forms an indepenent system in the sense of M. Kac and H. Steinhaus. If we put

(4)
$$\delta_k(t) = \mathcal{E}_k(t) - (a-1)/2$$
 $(k = 1, 2, \dots),$

then $\{\delta_k(t)\}\$ is also an independent system and has the following properties: $|\delta_k(t)| \leq (a-1)/2$ (5)for all t and k,

(6)
$$\int_{0}^{1} \delta_{k}(t)dt = 0 \qquad \text{for all } k,$$
(7)
$$\int_{0}^{1} \delta_{k}^{2}(t)dt = (a^{2} - 1)/12 \quad \text{for all } k.$$

(7)
$$\int_{0}^{1} \delta_{k}^{2}(t)dt = (a^{2} - 1)/12 \quad \text{for all } k$$

In fact, by (4),
$$|\delta_k(t)| \le (a-1) - (a-1)/2 = (a-1)/2$$
;

$$\int_0^1 \delta_k(t) dt = \int_0^1 \varepsilon_k(t) dt - \frac{a-1}{2} = \frac{1}{a} \sum_{k=1}^{a-1} k - \frac{a-1}{2} = 0$$
;

and

$$\begin{split} \int_{0}^{1} \delta_{k}^{2}(t)dt &= \int_{0}^{1} \left(\mathcal{E}_{k}(t) - \frac{a-1}{2} \right)^{2} dt \\ &= \int_{0}^{1} \mathcal{E}_{k}^{2}(t)dt - (a-1) \int_{0}^{1} \mathcal{E}_{k}(t)dt + \frac{(a-1)^{2}}{4} \\ &= \frac{1}{a} \sum_{k=1}^{a-1} k^{2} - \frac{a-1}{a} \sum_{k=1}^{a-1} k + \frac{(a-1)^{2}}{4} = \frac{a^{2}-1}{12} \end{split}.$$

By the law of the iterated logarithm of Khintchine and Kolmogoroff [4], we see immediately from the above properties that

(8)
$$\limsup_{N\to\infty} \left(\sum_{k=1}^N \delta_k(t)\right) / (N\log\log N)^{1/2} = \left(\frac{a^2-1}{6}\right)^{1/2}$$

for almost all t.

Now we have

$$\begin{split} f(t) &= t - [t] - \frac{1}{2} = \sum_{k=1}^{\infty} \frac{\mathcal{E}_k(t)}{a^k} - \frac{1}{2} \\ &= \sum_{k=1}^{\infty} \frac{\delta_k(t)}{a^k} + \frac{a-1}{2} \sum_{k=1}^{\infty} \frac{1}{a^k} - \frac{1}{2} \\ &= \sum_{k=1}^{\infty} \frac{\delta_k(t)}{a^k} \,, \end{split}$$

and obviously $\delta_{k+l}(t) = \delta_k(a^l t)$ for every positive integer k and l, we have then

$$\begin{split} \sum_{l=1}^{N} f(a^{l}t) &= \sum_{l=1}^{N} \sum_{k=1}^{\infty} \frac{\delta_{k}(a^{l}t)}{a_{k}} = \sum_{l=1}^{N} \sum_{k=1}^{\infty} \frac{\delta_{k+1}(t)}{a^{k}} \\ &= \sum_{l=1}^{N} \sum_{k=1}^{\infty} \frac{\delta_{k+1}(t)}{a^{k-l+1}} = \left(\sum_{k=1}^{N} \sum_{l=1}^{k} + \sum_{k=N+1}^{\infty} \sum_{l=1}^{N}\right) \frac{\delta_{k+1}(t)}{a^{k+1}} a^{l} \\ &= \frac{1}{a-1} \sum_{k=1}^{N} \delta_{k+1}(t) - \frac{a}{a-1} \sum_{k=1}^{\infty} \frac{\delta_{k+1}(t)}{a^{k+1}} + \frac{a^{N+1}}{a-1} \sum_{k=N+1}^{\infty} \frac{\delta_{k+1}(t)}{a^{k+1}} \\ &= \frac{1}{a-1} \sum_{k=1}^{N+1} \delta_{k}(t) - \frac{a}{a-1} f(t) + \frac{a^{N+1}}{a-1} \sum_{k=N+2}^{\infty} \frac{\delta_{k}(t)}{a^{k}} , \end{split}$$

or we may write

(9)
$$\sum_{k=0}^{N} f(a't) = \frac{1}{a-1} \sum_{k=1}^{N+1} \delta_k(t) - \frac{1}{a-1} f(t) + \frac{a^{N+1}}{a-1} \sum_{k=N+2}^{\infty} \frac{\delta_k(t)}{a^k}$$
$$= P_N(t) - \frac{1}{a-1} f(t) + Q_n(t)$$

say. Clearly we have

$$\left|\frac{1}{a-1}f(t)\right| \le \frac{1}{2(a-1)} \qquad \text{for all } t,$$

and by (5)

(10)
$$|Q_n(t)| \le \frac{a^{N+1}}{a-1} \cdot \frac{a-1}{2} \sum_{k=N+a}^{\infty} \frac{1}{a^k} = \frac{1}{2(a-1)}$$

for all t. Hence from (9)

(11)
$$\sum_{k=0}^{N} f(a^{k}t) = \frac{1}{a-1} \sum_{k=1}^{N+1} \delta_{k}(t) + O(1).$$

Combining (8) and (11) we have the relation (2) for almost all t. On the other hand as we see easily (or see e.g. [1])

$$\liminf_{N\to\infty}\left|\sum_{k=1}^{N+1}\delta_k(t)\right|=0$$

for almost all t; and then we get by (9) and (10)

$$\lim_{N\to\infty}\inf\left|\sum_{l=0}^N f(a^lt)\right| \leq \frac{1}{a-1}\left\{\liminf_{N\to\infty}\sum_{k=1}^{N+1} \delta_{k'}(t) + |f(t)| + \frac{1}{2}\right\}$$
$$= \frac{1}{a-1}\left(|f(t)| + \frac{1}{2}\right)$$

for almost all t, and (3) is proved.

2. We shall add a category theorem.

THEOREM 2. Let X(N) be a function defined for every positive integer N such that $X(N) \to 0$ as $N \to \infty$. Then for every t, except perhaps for a set of the first category, we have

(12)
$$\limsup_{N\to\infty} \left| \left(\sum_{l=0}^{N} f(a^{l}t) \right) / (N\chi(N)) \right| = +\infty.$$

PROOF. In virtue of the relation (11) we may replace $f(a^{t}t)$ in (12)

by $\delta_l(t)$, for we may suppose that $N\chi(N) \to \infty$ as $N \to \infty$. Put

$$\sigma_N(t) = \Big(\sum_{l=0}^N \delta_l(t)\Big) \Big/ (N\chi(N)), \qquad (N=1,2,\cdots).$$

We may find easily a sequence of positive integers $\{N_i\}$ such that $N_1 < N_2 < \cdots \rightarrow \infty$ and $2i < N_i(1 - \chi^{1/2}(N_i))$ $(i = 1, 2, \cdots)$, that is, (13) $N_i \chi(N_i) < (N_i - 2i) \chi^{1/2}(N_i)$ $(i = 1, 2, \dots).$

Denote by A the set of all $t \in (0,1)$ which are not of the form m/a^k (m, k being integers). For $p = 1, 2, \dots$, let E_p be the set of all $t \in A$ for which $|\sigma_N(t)| \leq p$ for all N; and let E be that of all $t \in A$ for which $\sigma_N(t)$ is bounded in N. Then clearly $E = \bigcup E_p$. If E is of the second category, so is the set E_{p_0} for some p_0 . And E_{p_0} is closed in A in virtue of the continuity of $\delta_k(t)$, $t \in A$. Hence E_{p_0} contains an interval I of the space A. Let $t_0 \in A$ be the point whose N_i -th digit in the decimal representation in the scale of a, is 0 ($i = 1, 2, \dots$) and other digits are all a - 1. Then by (4) $\delta_k(t_0) = -(a-1)/2$ $(k = N_1, N_2, \dots)$ and $\delta_k(t_0) = (a-1)/2$ $(k \neq N_i; i)$ $= 1, 2, \dots$); and we get by (13)

$$|\sigma_{N_i}(t_0)| = \left|\sum_{l=0}^{N_i} \delta_i(t_0)\right| / (N_i \mathcal{X}(N_i))$$

$$\geq \frac{a-1}{2} (N_i - 2i) / ((N_i - 2i) \mathcal{X}^{1/2}(N_i)) \quad \text{as } i \to \infty.$$

Since there is a point $t_1 \in I$ such that the difference $t_0 - t_1$ is a-adically rational, we see easily that

$$\lim_{i o\infty}|\sigma_{N_{m i}}(t_1)|=\lim_{i o\infty}|\sigma_{N_{m i}}(t_0)|=\infty,$$

 $\lim_{i\to\infty}|\sigma_{N_i}\!(t_1)|=\lim_{i\to\infty}|\sigma_{N_i}\!(t_0)|=\infty,$ which contradicts the fact $t_1\in I\subset E_{p_0}$. Hence the set E is of the first category, q. e. d.

REFERENCES

- K. L. Chung and P. Erdös, On the lower limit of sum of independent random variables, Ann. of Math., 48 (1947), pp. 1003-1013.
- A. KHINTCHINE, Über einen Satz der Wahrscheinlichkeitsrechnung, Fund. Math., 6 (1924) pp. 9-20.
- J. F. Korsma, On decimals, Nieuw Archief voor Wiskunde, 21(1943) pp. 242-267.
- A. Kolmogoroff, Über das Gesetz des iterierten Logarithmus, Math. Ann., 101 (1929) pp. 126-135.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.