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Let flbea positive integer > 2, and put

/CO = * - M - "2 ,
where [Γ] denotes the largest integer <; t. We shall consider the expres-
sion

JV

If a = 2, A. Khintchine [2] proved that

( 1) lim sup f2/(2^))/('iVlog logiV)1/2 = I/Λ/2"

for almost all ί. On the other hand J. F. Koksma [3] proved that for a
positive integer a ^ 2

and

lim inf (^f(€ft))lcNl'2ylrCN)> = 0

for almost all ί, where ^(w) is any given positive non-decreasing function
of integer n^n0 > 0 such that

Σ < TO

K being a conveniently chosen positive constant, and ψ(w) denotes any
given positive function of the integer n >̂ n0 such that ψ(n) -> 0 as ^ -> oo.

The purpose of this note is to furnish more precise results than these
estimations of Koksma, and a related theorem.

1. THEOREM 1. If a is a positive integer >̂ 2, then for almost all t, we
have

(2)

( 3 ) lim inf

PROOF. If we consider the decimal representation of a real number
t, in the scale of a, then every digit can be regarded as a function of t.
Hence we put
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Cl II

Every £k(t) has its value region 0, 1, 2, , a — I; and clearly {
forms an indepenent system in the sense of M. Kac and H. Steinhaus. If
we put
(' 4 ) δfc(O - Sh(t) -(a- 1)12 (k - 1,2, .. - . )
then {Sk(t)} is also an independent system and has the following properties
( 5 ) IδftCOl S <* - l.)/2 for all £ and A?,

C 6 ί Sb(t)dt = 0 for all &,

0
1

f
1

C 7 ) f 8l(t)dt - (άΔ - 1)/12 for all k.

In fact, by (' 4 .), [SfcCOI S (<* ~ D - (a ~ D/% = (a- l)/2

f δfc(t)dt - f1 eh{t)dt - -α-~ ί = -i- 2 * -

and
1 1

Γ δ,:(ί.)Λ = f (
OO

11 1

= Γ €l(t)dt - (a -l)ί SK(t)dt
l» 0

By the law of the iterated logarithm of Khintchine and Kolmogoroίΐ
], we see immediately from the above properties that

(8) lim sup ( 2 δ*Cθ) /(Wlog 6

for almost all /.
Now we have

and obviously Sjc+ι(t) = S^att) for every positive integer & and /, we have

then
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_ 'V X 1 &•+ '

aN

or we may write

say. Clearly we have

a- 1
1_

2<β -
for all t,

and by (5)

(10,) |Q«COI S α - 1 2

for all t. Hence from (9)
N N

o( υ.
Combining C8) and (11) we have the relation (2) for almost all t.
On the other hand as we see easily (or see e.g. \ΊΓ\)

JV+l

lim inf = 0

for almost all t; and then we get by (9) and (10)

lim inf
iV JV+1

2Ka ιt) S - ^ - {lim inf 2 δ/O + l^ί.)l + 4-

for almost all ty and (3) is proved.
2. We shall add a category theorem.

THEOREM 2. Z,#ί X (N) be a function defined for every positive integer
N such that X (N) -> 0 as iV->oo. T/zgw for every ί, except perhaps for
a set of the first category, we have

(12) lim sup I (^Σf<aιt))/(NX(N))

PROOF. In virtue of the relation (11) we may replace f (aιt) in
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δ/(O, for we may suppose that NX(N) -> oo as Λ^->oo. Put

= ( 2 8,a))/(NX(N)), (N = 1,2, • J».

We may find easily a sequence of positive integers {Nt} such that
Nτ<N2< ....->oo and 2i < NXl - XllXNh)) Ci = 1,2, ••..), that is,
(133 MXCM) < CM - 2i)X1'*(N0 (i = 1,2, O.

Denote by 4̂ the set of all £ € (0,1J) which are not of the form w/tf*
(m, & being integers). For p =1,2, , let ^ be the set of all t ζ A
for which IσjvCOl S ί for all N; and let E be that of all t e A for which
O-Λ<Ό is bounded in iV. Then clearly E - [) EP. If E is of the second

P

category, so is the set EPo for some p0. And EPo is closed in A in virtue
of the continuity of 8}:(t), t € A. Hence EPo contains an interval 7 of the
space A. Let t0 € Abe the point whose NΓth digit in the decimal representa-
tion in the scale of α, is 0 (i — 1,2, . ) and other digits are all α — 1. Then
by (4) δaOW = - C* - l)/2 Ofe - iVi, Â 2, ) and δfcCf0)•= (α - lJ)/2 (^ .Φ iV« i
= 1, 2, . O and we get by (13)

= ^ T ^ W : - 20/CW - -20X^(Nt)) as i -> oo

Since there is a point tΊ ζ I such that the difference £0 — ίι is <z-adically
rational, we see easily that

lim Iσ\Λτ4(7i)l = lim I σ-,v-Cί0) I = °°5

which contradicts the fact tΎ € / cz Ep0. Hence the set E is of the first
category, q. e. d.
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