ON THE FUNCTION $t-[t]-\frac{1}{2}$

Tamotsu Tsuchikura

(Received January 29, 1951)
Let a be a positive integer $\geqq 2$, and put

$$
f(t)=t-[t]-\frac{1}{2}
$$

where [t] denotes the largest integer $\leqq t$. We shall consider the expression

$$
\sum_{l=0}^{N} f\left(a^{\prime} t\right) \quad(N=1,2 \cdots)
$$

If $a=2$, A. Khintchine [2] proved that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sup \left(\sum_{l=0}^{N} f\left(2^{l} t\right)\right) /(N \log \log N)^{1 / 2}=1 / \sqrt{2} \tag{1}
\end{equation*}
$$

for almost all t. On the other hand J. F. Koksma [3] proved that for a positive integer $a \geqq 2$

$$
\left(\sum_{l=0}^{N} f\left(a^{l} t\right)\right) /\left(N^{3 / 2}(\varphi(N))^{1 / 3}\right)=o(1)
$$

and

$$
\liminf _{N \rightarrow \infty}\left(\sum_{l=0}^{N} f\left(a^{\prime} t\right)\right) /\left(N^{1 / 2} \psi(N)\right)=0
$$

for almost all t, where $\varphi(n)$ is any given positive non-decreasing function of integer $n \geqq n_{0}>0$ such that

$$
\sum \frac{1}{n \varphi(n)}<\infty \quad \text { and } \quad \varphi(n+1) \leqq(1+K / n) \varphi(n) \quad\left(n \geqq n_{0}\right)
$$

K being a conveniently chosen positive constant, and $\psi(n)$ denotes any given positive function of the integer $n \geqq n_{0}$ such that $\psi(n) \rightarrow 0$ as $n \rightarrow \infty$.

The purpose of this note is to furnish more precise results than these estimations of Koksma, and a related theorem.

1. Theorem 1. If a is a positive integer $\geqq 2$, then for almost all t, we have

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \sup \left(\sum_{l=0}^{N} f\left(a^{l} t\right)\right) /(N \log \log N)^{1 / 2}=\left(\frac{a+1}{6(a-1)}\right)^{1 / 2}, \tag{2}\\
& \liminf _{N \rightarrow \infty}\left|\sum_{l=9}^{N} f\left(a^{l} t\right)\right| \leqq \frac{1}{a-1}\left(|f(t)|+\frac{1}{2}\right) . \tag{3}
\end{align*}
$$

Proof. If we consider the decimal representation of a real number t, in the scale of a, then every digit can be regarded as a function of t. Hence we put

$$
t=[t]+\frac{\varepsilon_{1}(t)}{a}+\frac{\varepsilon_{2}(t)}{a^{2}}+\cdots \cdot
$$

Every $\varepsilon_{k}(t)$ has its value region $0,1,2, \cdots, a-1$; and clearly $\left\{\varepsilon_{k}(t)\right\}$ forms an indepenent system in the sense of M. Kac and H. Steinhaus. If we put
(4)
$\delta_{k}(t)=\varepsilon_{k}(t)-(a-1) / 2$
$(k=1,2, \cdots)$,
then $\left\{\delta_{k}(t)\right\}$ is also an independent system and has the following properties:

$$
\begin{equation*}
\left|\delta_{k}(t)\right| \leqq(a-1) / 2 \tag{5}
\end{equation*}
$$ for all t and k,

(6)

$$
\int_{0}^{1} \delta_{k}(t) d t=0 \quad \text { for all } k
$$

$$
\begin{equation*}
\int_{0}^{1} \delta_{k}^{2}(t) d t=\left(a^{2}-1\right) / 12 \quad \text { for all } k \tag{7}
\end{equation*}
$$

In fact, by (4), $\left|\delta_{k}(t)\right| \leqq(a-1)-(a-1) / 2=(a-1) / 2$;

$$
\int_{1}^{1} \delta_{k}(t) d t=\int_{0}^{1} \varepsilon_{k}(t) d t-\frac{a-1}{2}=\frac{1}{a} \sum_{k=1}^{a-1} k-\frac{a-1}{2}=0 ;
$$

and

$$
\begin{aligned}
\int_{k}^{1} \delta_{k}^{2}(t) d t & =\int_{0}^{1}\left(\varepsilon_{k}(t)-\frac{a-1}{2}\right)^{2} d t \\
& =\int_{v}^{1} \varepsilon_{k}^{2}(t) d t-(a-1) \int_{0}^{1} \varepsilon_{k}(t) d t+(a-1)^{2} \\
& =\frac{1}{a} \sum_{k=1}^{n-1} k^{2}-\frac{a-1}{a} \sum_{k=1}^{a-1} k+\frac{(a-1)^{2}}{4}=\frac{a^{2}-1}{12} .
\end{aligned}
$$

By the law of the iterated logarithm of Khintchine and Kolmogoroff [4], we see immediately from the above properties that

$$
\begin{equation*}
\limsup _{N \rightarrow \infty}\left(\sum_{k=1}^{N} \delta_{k}(t)\right) /(N \log \log N)^{1 / 2}=\left(\frac{a^{2}-1}{6}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

for almost all t.
Now we have

$$
\begin{aligned}
f(t) & =t-[t]-\frac{1}{2}=\sum_{k=1}^{\infty} \frac{\varepsilon_{k}(t)}{\boldsymbol{a}^{k}}-\frac{1}{2} \\
& =\sum_{k=1}^{\infty} \frac{\delta_{k}(t)}{\boldsymbol{a}^{k}}+\frac{a-1}{2} \sum_{k=1}^{\infty} \frac{1}{\boldsymbol{a}^{k}}-\frac{1}{2} \\
& =\sum_{k=1}^{\infty} \frac{\delta_{k}(t)}{\boldsymbol{a}^{k}}
\end{aligned}
$$

and obviously $\delta_{k+l}(t)=\delta_{k}\left(a^{l} t\right)$ for every positive integer k and l, we have then

$$
\begin{aligned}
\sum_{l=1}^{N} f\left(a^{l} t\right) & =\sum_{l=1}^{N} \sum_{k=1}^{\infty} \frac{\delta_{k}\left(a^{l} t\right)}{a_{k}}=\sum_{l=1}^{N} \sum_{k=1}^{\infty} \frac{\delta_{k++}(t)}{a^{k}} \\
& =\sum_{l=1}^{N} \sum_{k=l}^{\infty} \frac{\delta_{k+1}(t)}{a^{k-l+1}}=\left(\sum_{k=1}^{N=} \sum_{l=1}^{k}+\sum_{k=N+1}^{\infty} \sum_{l=1}^{N}\right) \frac{\delta_{k+1}(t)}{a^{k+1}} a^{l} \\
& =\frac{1}{a-1} \sum_{k=1}^{N} \delta_{k+1}(t)-\frac{a}{a-1} \sum_{k=1}^{\infty} \frac{\delta_{k+1}(t)}{a^{k+1}}+\frac{a^{N+1}}{a-1} \sum_{k=N+1}^{\infty} \frac{\delta_{k+1}(t)}{a^{k+1}} \\
& =\frac{1}{a-1} \sum_{k=1}^{N+1} \delta_{k}(t)-\frac{a}{a-1} f(t)+\frac{a^{N+1}}{a-1} \sum_{k=N+2}^{\infty} \frac{\delta_{k}(t)}{a^{k}},
\end{aligned}
$$

or we may write

$$
\begin{align*}
\sum_{l=0}^{N} f\left(a^{\prime} t\right) & =\frac{1}{a-1} \sum_{k=1}^{N+1} \delta_{k}(t)-\frac{1}{a-1} f(t)+\frac{a^{N+1}}{a-1} \sum_{k=N+2}^{\infty} \frac{\delta_{k}(t)}{a^{k}} \tag{9}\\
& =P_{N}(t)-\frac{1}{a-1} f(t)+Q_{n}(t)
\end{align*}
$$

say. Clearly we have

$$
\left|\frac{1}{a-1} f(t)\right| \leqq \frac{1}{2(a-1)} \quad \text { for all } t
$$

and by (5)

$$
\begin{equation*}
\left|Q_{n}(t)\right| \leqq \frac{a^{N+1}}{a-1} \frac{a-1}{2} \sum_{k=N+2}^{\infty} \frac{1}{a^{6}}=\frac{1}{2(a-1)} \tag{10}
\end{equation*}
$$

for all t. Hence from (9)

$$
\begin{equation*}
\sum_{l=0}^{N} f\left(a^{l} t\right)=\frac{1}{a-1} \sum_{k=1}^{N+1} \delta_{k}(t)+O(1) \tag{11}
\end{equation*}
$$

Combining (8) and (11) we have the relation (2) for almost all t.
On the other hand as we see easily (or see e.g. [1])

$$
\liminf _{N \rightarrow \infty}\left|\sum_{k=1}^{N+1} \delta_{k}(t)\right|=0
$$

for almost all t; and then we get by (9) and (10)

$$
\begin{aligned}
\liminf _{N \rightarrow \infty}\left|\sum_{l=0}^{N} f\left(a^{l} t\right)\right| \leqq & \frac{1}{a-1}\left\{\liminf _{N \rightarrow \infty} \sum_{k=1}^{N+1} \delta_{k}(t)+|f(t)|+\frac{1}{2}\right\} \\
& =\frac{1}{a-1}\left(|f(t)|+\frac{1}{2}\right)
\end{aligned}
$$

for almost all t, and (3) is proved.
2. We shall add a category theorem.

Theorem 2. Let $\chi(N)$ be a function defined for every positive integer N such that $\chi(N) \rightarrow 0$ as $N \rightarrow \infty$. Then for every t, except perhaps for a set of the first category, we have

$$
\begin{equation*}
\limsup _{N \rightarrow \infty}\left|\left(\sum_{l=0}^{N} f\left(a^{l} t\right)\right) /(N X(N))\right|=+\infty . \tag{12}
\end{equation*}
$$

Proof. In virtue of the relation (11) we may replace $f\left(a^{l} t\right)$ in (12)
by $\delta_{l}(t)$, for we may suppose that $N X(N) \rightarrow \infty$ as $N \rightarrow \infty$. Put

$$
\sigma_{N}(t)=\left(\sum_{l=0}^{N} \delta_{l}(t)\right) /(N X(N)), \quad(N=1,2, \cdots)
$$

We may find easily a sequence of positive integers $\left\{N_{i}\right\}$ such that $N_{1}<N_{2}<\cdots \rightarrow \infty$ and $2 i<N_{i}\left(1-\chi^{1 / 2}\left(N_{i}\right)\right)(i=1,2, \cdots)$, that is, (13) $\quad N_{i} \chi\left(N_{i}\right)<\left(N_{i}-2 i\right) \chi^{1 / 2}\left(N_{i}\right) \quad(i=1,2, \cdots)$.

Denote by A the set of all $t \in(0,1)$ which are not of the form m / a^{k} (m, k being integers). For $p=1,2, \cdots$, let E_{p} be the set of all $t \in A$ for which $\left|\sigma_{N}(t)\right| \leqq p$ for all N; and let E be that of all $t \in A$ for which $\sigma_{N}(t)$ is bounded in N. Then clearly $E=\bigcup_{p} E_{p}$. If E is of the second category, so is the set $E_{p_{0}}$ for some p_{0}. And $E_{p_{0}}$ is closed in A in virtue of the continuity of $\delta_{k}(t), t \in A$. Hence $E_{p_{0}}$ contains an interval I of the space A. Let $t_{0} \in A$ be the point whose N_{i}-th digit in the decimal representation in the scale of a, is $0(i=1,2, \ldots)$ and other digits are all $a-1$. Then by (4) $\delta_{k}\left(t_{0}\right)=-(a-1) / 2\left(k=N_{1}, N_{2}, \cdots\right)$ and $\delta_{k i}\left(t_{0}\right)=(a-1) / 2\left(k \neq N_{i} ; i\right.$ $=1,2, \cdots$) ; and we get by (13)

$$
\begin{aligned}
\left|\sigma_{N_{i}}\left(t_{0}\right)\right| & =\left|\sum_{l=0}^{N_{i}} \delta\left(t_{0}\right)\right| /\left(N_{i} \chi\left(N_{i}\right)\right) \\
& \geqq \frac{a-1}{2}\left(N_{i}-2 i\right) /\left(\left(N_{i}-2 i\right) \chi^{1 / 2}\left(N_{i}\right)\right) \quad \text { as } i \rightarrow \infty .
\end{aligned}
$$

Since there is a point $t_{1} \in I$ such that the difference $t_{0}-t_{1}$ is a-adically rational, we see easily that

$$
\lim _{i \rightarrow \infty}\left|\sigma_{N_{i}}\left(t_{1}\right)\right|=\lim _{i \rightarrow \infty}\left|\sigma_{N_{i}}\left(t_{0}\right)\right|=\infty,
$$

which contradicts the fact $t_{1} \in I \subset E_{p_{0}}$. Hence the set E is of the first category,
q. e.d.

References

1. K. I. Chung and P. Erdös, On the lower limit of sum of independent random variables, Ann. of Math., 48 (1947), pp. 1003-1013.
2. A. Khintchine, Über einen Satz der Wahrscheinlichkeitsrechnung, Fund. Math., 6 (1924) pp. 9-20.
3. J. F. Koksma, On decimals, Nieuw Archief voor Wiskunde, 21(1943) pp. 242-267.
4. A. Kolmogoroff, Über das Gesetz des iterierten Logarithmus, Math. Ann., 101 (1929) pp. 126-135.

Mathematical Institute, Tôhoku University.

