# ON ASYMPTOTICALLY ABSOLUTE CONVERGENCE 

## Tamotsu Tsuchikura

(Received February 6, 1951)
Let us consider the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \tag{1}
\end{equation*}
$$

of real numbers $a_{n j}$. We shall say that the series (1) is asymptotically absolutely convergent if there exists an increasing sequence of positive integers $\left\{n_{k}\right\}$ such that $k / n_{k} \rightarrow 1$ as $k \rightarrow \infty$ and the subseries

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{n_{k}} \tag{2}
\end{equation*}
$$

converges absolutely.
We shall establish, in this note, a ineorem of Tauberian type and some results for trigonometrical series.

1. Tauberian theorem.

Theorem 1. Suppose that the series (1) is asymptotically absolutely convergent, and one of the following three conditions is satisfied:
(i) $\left\{\left|a_{n}\right|\right\}$ is a monotone sequence;
(ii) $\left|a_{n+1}\right|<(1+C / n)\left|a_{n}\right|\left(n \geqq n_{0}\right)$, where $C$ and $n_{0}$ are positive constants independent of $n$;
(iii) for some $B$ which is independent of $N=1,2, \cdots$,

$$
\begin{equation*}
\sum_{n=1}^{N-1} n\left|a_{n}\right|-\left|a_{n+1}\right||+N| a_{N}\left|\leqq B \sum_{n=1}^{N}\right| a_{n} \mid \tag{3}
\end{equation*}
$$

Then the series (1) converges absolutely.
Proof. If (i) is satisfied, then the absolute convergence of the series of type (2) implies the decreaseness of $\left|a_{n}\right|$; and (i) is included in (ii). On the other hand, (ii) implies the inequality (3). For, Supposing $\boldsymbol{n}_{0}=1$,

$$
\begin{aligned}
& \sum_{n=1}^{N-1} n| | a_{n}\left|-\left|a_{n+1}\right|+N\right| a_{N} \mid \\
& \quad \leqq \sum_{n=1}^{N-1} n \frac{C}{n}\left|a_{n}\right|+\sum_{n=1}^{N}\left(1+\frac{C}{N-1}\right)\left(1+\frac{C}{N-2}\right) \cdot\left(1+\frac{C}{n}\right) \cdot\left|a_{n}\right| \\
& \quad \leqq C \sum_{n=1}^{N-1}\left|a_{n}\right|+e^{C} \sum_{n=1}^{N}\left|a_{n}\right| \leqq\left(C+e^{c}\right) \sum_{n=1}^{N}\left|a_{n}\right| .
\end{aligned}
$$

Hence it is sufficient to prove the absolute convergence of (1) under the condition (iii). Suppose that (2) converges absolutely and $k / n_{k} \rightarrow 1$ as $k \rightarrow \infty$. Let $\varepsilon_{n}=1$ if $n=n_{k}, k=1,2, \cdots$, and $\varepsilon_{k}=0$ otherwise. Then, as we see easily,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varepsilon_{n}\left|a_{n}\right|<\infty \quad \text { and } \quad s_{n} \equiv \frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k} \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty . \tag{4}
\end{equation*}
$$

Now, by the Abel transformation

$$
\sum_{n=1}^{N} \varepsilon_{n}\left|a_{n}\right|=\sum_{n=1}^{N-1} n\left(\left|a_{n}\right|-\left|a_{n+1}\right|\right) s_{n}-N s_{N}\left|a_{N}\right|
$$

and if the series (1) does not converge absolutely, we see by (3) that the Toeplitz condition is satisfied for the transform of $\left\{s_{n}\right\}$ :

$$
\left(\sum_{n=}^{N} \varepsilon_{n}\left|a_{n}\right|\right) /\left(\sum_{n=1}^{N}\left|a_{n}\right|\right)
$$

hence from the second relation of (4) we must have $\sum_{n=1}^{\infty} \varepsilon_{n}\left|a_{n}\right|=\infty$, which contradicts our assumption.
2. Asymptotically absolute convergence of trigonometrical series.

Theorem 2. If one of the series

$$
\sum_{n=1}^{\infty} a_{n} \sin n x, \quad \sum_{n=1}^{\infty} a_{n} \cos n x
$$

converges absolutely at a point incommensurable with $\pi$, then the series (1) is asymptotically absolutely convergent.

Proof. Let us consider only the sine series (the consine case may be treated similarly, , and suppose that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|a_{n} \sin n \pi x_{0}\right| \equiv M<\infty \quad\left(x_{0}\right. \text { irrational) } \tag{5}
\end{equation*}
$$

Let $\left\{\delta_{m}\right\}$ be a positive decreasing null sequence. For every integer $i$, let (6)

$$
n_{1}^{(i)}, n_{2}^{(i)}, n_{3}^{(i)}, \cdots
$$

be the $n$ 's for which $\left|\sin n \pi x_{0}\right|>\delta_{i}$, then by the uniform distribution of $\left\{n x_{0}\right\}$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k / n_{k}^{(i)}=1-\frac{\arcsin \delta_{i}}{\pi} . \tag{7}
\end{equation*}
$$

We put $\varepsilon_{i}=\left(\arcsin \delta_{i}\right) / \pi$, then $\varepsilon_{i} \rightarrow 0$ as $i \rightarrow \infty$. By (5) and the definition of (6) ( $i=1$ ) there exists an integer $N_{1}$ such that

$$
\sum_{i=N_{1}}^{\infty}\left|a_{i j_{j}^{(1)}}\right|<M / 1^{2}
$$

and by (7) there is an integer $M_{1}>N_{1}$ such that

$$
\frac{\left(n_{N 1}^{(1)}-1\right)+\left(N-N_{1}+1\right)}{n_{N}^{(1)}}>1-2 \varepsilon_{1} \quad \text { for all } N>M_{1}
$$

Next, by the similar reason there exist two positive integers $N_{2}$ and $M_{2}>N_{2}$ such that

$$
\sum_{j=N_{2}}^{\infty}\left|a_{n}(2)\right|<M / 2^{2}
$$

$$
\frac{\left(n_{N 1}^{(1)}-1\right)+\left(L_{1}-N_{1}\right)+\left(N-N_{2}+1\right)}{n_{N}^{(T)}}>1-2 \varepsilon_{2} \text { for all } N>M_{2},
$$

where $L_{1}$ is the maximum of $N$ for which $n_{N_{2}}^{(1)}>n_{N}^{(1)}$ (hence $L_{1} \geqq M_{1}$ ).
Proceeding in this way we obtain an increasing sequence of integers

$$
\begin{align*}
& 1,2, \cdots \cdot n_{N_{1}}^{(1)}-1 ; n_{N_{1}}^{(1)}, n_{N_{1}+1}^{(1)}, \cdots, n_{N_{1}}^{(1)}, \cdots, \quad n_{L_{1}}^{(1)} ;  \tag{8}\\
& n_{N_{2}}^{(2)}, \cdots, n_{M_{2}}^{(2)}, \cdots, n_{L_{2}}^{(2)}: n_{N_{3}}^{(3)},
\end{align*}
$$

which we denote newly by $\left\{m_{i}\right\}$. For any integer $i$ the following relations are fulfilled:

$$
\begin{gather*}
\sum_{j=N_{i}}^{\infty}\left|a_{n_{j}^{(i)}}\right|<M / i^{2}  \tag{9}\\
\frac{\left(n_{N 1}^{(1)}-1\right)+\left(L_{1}-N_{1}\right)+\cdots+\left(L_{i-1}-N_{i-1}\right)+\left(N-N_{i}+1\right)}{n_{N}^{(i)}}>1-2 \varepsilon_{i}
\end{gather*}
$$

for all $N>M_{i}$.
For any integer $k$, if $m_{x}>n_{N i}^{(i)}$, we see by (9) that

$$
\sum_{j=k}^{\infty}\left|a_{m_{j}}\right| \leqq \frac{M}{i^{2}}+\frac{M}{(i+1)^{2}}+\cdots \leqq \begin{gathered}
M \\
\text {; }
\end{gathered}
$$

hence we have

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|a_{m_{j}}\right|<\infty . \tag{11}
\end{equation*}
$$

On the other hand, for any $k$, if $n_{M_{i}}^{(i)} \leqq m_{k} \leqq n_{L_{i}}^{(i)}$, then by (10) we have

$$
k / m_{k}>1-2 \varepsilon_{i} ;
$$

and if $n_{N_{i}}^{(i)} \leqq m_{k} \leqq n_{J_{i} \text { i }}^{(i)}$, then putting $m_{k}=n_{K}^{(i)}$ we have

$$
\begin{align*}
\frac{k}{m_{k}} & =\left(n_{N_{1}}^{(1)}-1\right)+\left(L_{1}-N_{1}\right)+\cdots+\left(L_{i-1}-N_{i-1}\right)+\left(K-N_{i}-1\right)  \tag{12}\\
n_{K}^{(i)} & \frac{\left(n_{N_{1}}^{(1)}-1\right)+\left(L_{1}-N_{1}\right)+\cdots+\left(L_{i-1}-N_{i-1}\right)+\left(H-L_{i-1}+1\right)}{n_{H+1}^{(i-1)}}
\end{align*}
$$

where $H$ is the integer such that $n_{H}^{(i-1)} \leqq n_{K}^{(i)}<n_{l \mid+1}^{(i-1)}$.
By (10) the last-hand side of (12) is

$$
=\frac{\left(n_{N 1}^{(1)}-1\right)+\cdots+\left(L_{i-2}-N_{i-2}\right)+\left(H+1-N_{i-1}\right)}{n_{I I+1}^{(i-1)}}>1-2 \varepsilon_{i-1}-\frac{1}{n_{H+1}^{(i-1)}},
$$

from which we see immediately that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k / m_{x b}=1 . \tag{13}
\end{equation*}
$$

From (11) and (13) the theorem is proved.
Corollary 1. If the series $\Sigma \rho_{n} \cos \left(n x+\alpha_{n}\right)\left(\rho_{n} \geqq 0\right)$ converges absolutely at two points $x_{0}, x_{1}$ and if $x_{0}-x_{1}$ is incommensurable with $\pi$, then the series $\Sigma \rho_{n}$ is asymptotically absolutely conver gent.

From the assumption and Salem's theorem [2] we have

$$
\sum \rho_{n}\left|\sin n\left(x_{0}-x_{1}\right)\right|<\infty ;
$$

and by Theorem 2 we get the required.

Corollary 2. If the series $\Sigma a_{n} \cos n x$ or $\Sigma a_{n} \sin n x$ converges absolutely at a point incommensurable with $\pi$, and if $a_{n}=O(1)$ as $n \rightarrow \infty$, then we have $\left(\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|\right) / n \rightarrow 0$ as $n \rightarrow \infty$.

Proof. By theorem 2, there is a sequence $\left\{m_{k}\right\}$ such that $\Sigma\left|a_{m_{k}}\right|<\infty$, and $m_{k} / k \rightarrow 1$ as $k \rightarrow \infty$. Let $\left\{n_{k}\right\}$ be its complementary sequence, then clearly $k / n_{k} \rightarrow 0$ as $k \rightarrow \infty$. Hence

$$
\begin{aligned}
\frac{1}{N} \sum_{k=1}^{N}\left|a_{k}\right| & =\frac{1}{N}\left\{\sum_{m_{k} \leqq N}\left|a_{m_{k}}\right|+\sum_{n_{k} \leqq N}\left|a_{k_{k}}\right|\right\} \\
& \leqq \frac{1}{N} O(1)+\frac{1}{N} O(1)\left\{\text { number of } n_{k} \text { not greater than } N\right\}
\end{aligned}
$$

Let $n_{j} \leqq N<n_{j+1}$, then the last hand side is $\leqq O(1 / N)+O(1) j / n_{j}=o(1)$.
Corollary 3. If the series $\Sigma a_{n} \cos n x$ or $\Sigma a_{n} \sin n x$ is a Fourier series of a function of bounded variation, and if its derived series converges absolutely at a point incommensurable with $\pi$, then the function is continuous everywhere.

Proof. From the assumption, we have $a_{n}=O(1 / n)$ or $n a=O(1)$. Hence consider the derived series $\Sigma n a_{n} \sin n x$ or $\sum n a_{n} \cos n x$. and apply Corollary 2. We have $\left(\left|a_{1}\right|+2\left|a_{2}\right|+\cdots \cdots+n\left|a_{n}\right|\right) / n \rightarrow 0$ as $n \rightarrow \infty$, and Wiener's theorem ([3], p. 221) yields the conclusion.

Corollary 4. If $\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} \rho_{i n} \cos (n x+\alpha$,$) is a Fourier series of a$ function of bounded variation, and if its derived series converges absolutely at two points $x_{0}$ and $x_{1}$ where $x_{0}-x_{1}$ is incommensurable with $\pi$, then the function is continuous everywhere.

Proof. An easy combination of the corollaries 1 and 3.
Remarks (i). In Theorem 2, $\sin n x$ or $\cos n x$ may be replaced by any function $f(n x)$, where $f(x) \equiv 0$ is of period $\pi$ and integrable in the Riemann sense. In fact, the set ( $x ;|f(x)|>\delta$ ) being Jordan measurable for any $\delta>0$. the sequence $\left\{n_{i}\right\}$ of $n$ 's for which $\left|f\left(n x_{0}\right)\right|>\delta$, has the property: $i / n_{i}$ tends to the measure of the set as $i \rightarrow \infty$, in virtue of the uniform distribution of $\left\{n x_{0}\right\}$. And clearly the Jordan measure of the sets $(x ;|f(x)|$ $>\delta$ ) tends to $\pi$ as $\delta \rightarrow 0$. Hence the same argument as Theorem 2 leads us to the conclusion.

Again, to assert the above remark, it is enough to suppose that there exists a sequence $\left\{\delta_{i}\right\}$ such that $\delta_{i} \downarrow 0$ as $i \rightarrow \infty$, and the sets ( $x ;|f(x)|>\delta_{i}$ ) are Jordan measurable. For an example we shall construct a function with this property but not integrable in the Riemann sense. Let $E_{1}$ be a non dense perfect set of Jordan measure $\frac{1}{3}$ in ( 0,1 ); and in each of the contiguous intervals of $E_{1}$ we construct a non-dense perfect set of relative Jordan measure $\frac{1}{3^{2}} /\left(1-\frac{1}{3}\right)$, let the sum of them be $E_{2} ;$ and consider
the contiguous intervals of $E_{2}$, and so on; we get the sequence of Jordan measurable set $E_{1}, E_{2}, \cdots$, of measure $\frac{1}{3},\left(\frac{1}{3}\right)^{2}, \cdots$ respectively. Let $f(x)=1 / j$ if $x=E_{j}(j=1,2, \cdots)$ and $f(x)=0$ elsewhere. Then $f(x)$ is not Riemann integrable, for the set $E_{1} \cup E_{2} \cup \cdots \cdots$ is everywhere dense in $(0,1)$ and of Lebesgue measure $\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\cdots=\frac{1}{2}<1$; and for every $j>0$ the set $E_{j}=(x ;|f(x)|<1 / j)$ is Jordan measurable.
(ii) By the above remark and Theorem 1 we get easily a theorem of Szàsz ( $[1]$ Theorem 6):

If $f(x) \neq 0$ is a Riemann integrable function of period 1 , if one of the conditions of Theorem 1 holds, and if $\Sigma\left|a_{n} f(n x)\right|<\infty$ for some irrational $x$, then $\Sigma\left|a_{n}\right|<\infty$.

## References

1. O. Szàsz, On the absolute convergence of trigonometric series, Ann. Math., 47(1946) pp. 213-220.
2. R. Salem, The absolute convergence of trigonometrical series, Duke Math. Journ., 8 (1941) pp. 317-334.
3. A. Zygmund, Trigonometrical series, Warszawa, 1935.
