SOME REMARKS ON AN OPEN RIEMANN SURFACE WITH NULL BOUNDARY

TADASHI KURODA

(Received May 1, 1951)

1. In this paper we shall consider an open abstract Riemann surface with null boundary in the sense of Nevanlinna [4]. Recently Sario [8] has introduced the notion of the removable boundary of a Riemann surface. Sario and Pfluger [7] have obtained many interesting results concerning the removable boundary. We shall state some remarks on the null boundary and the removable boundary of a Riemann surface.

2. Let F be an open abstract Riemann surface, Γ be its ideal boundary and F_n $(n = 0, 1, \dots)$ be the subdomains of F satisfying the following four conditions:

i) $F_n(n = 0, 1, \dots)$ is open and relatively compact with respect to F_n

ii)
$$\overline{F}_n \subset F_{n+1}$$
 $(n = 0, 1, \cdots),$

$$\bigcup_{n=0} F_n = F,$$

iv) the relative boundary Γ_n of F_n consists of a finite number of closed analytic curves.

Further let u be the harmonic function in $F_n - \overline{F_0}$ such that

$$u = \begin{cases} 0 & \text{on } \Gamma_0 \\ \log \mu_n & \text{on } \Gamma_n \end{cases}$$

and

$$\int_{\Gamma_n} dv = 2\pi,$$

where v is the conjugate harmonic function of u and the integral is taken in the positive sense of Γ_n with respect to the domain $F_n - \bar{F}_0$. We call μ_n the modulus of the domain $F_n - \bar{F}_0$.

Similarly we can define the modulus σ_n of the open set $F_{n+1} - F_n$. Now we shall state a theorem without proof (Kuroda [1]).

THEOREM 1. A Riemann surface F has a null boundary, if and only if the modulus μ_n of the subdomain $F_n - \overline{F}_0$ satisfies the condition $\lim \mu_n = \infty$.

3. Applying Theorem 1, we shall give another necessary and sufficient condition in order that a Riemann surface has a null boundary.

The following theorem which completes a theorem of Sario [9] is due to Professor K. Noshiro [6]. Here we shall give an alternative proof.

THEOREM 2. If there exists a sequence of domains $F_n(n = 0, 1, \dots)$ satisfying the conditions i), ii), iii) and iv), such that the infinite product

of the moduli of the open sets $F_{n+1} - \overline{F_n}$ $(n = 0, 1, \dots)$ is divergent, the Riemann surface F has a null boundary and conversely.

PROOF. As the sufficiency was proved by Sario [9], we shall give a proof for the necessity only.

Suppose that F has a null boundary. First we fix the relatively compact subdomain F_0 of F arbitrarily. Then, by Theorem 1, we can take the compact domain F_1 which satisfies the conditions i), ii), iv) and such that the modulus σ_0 of the domain $F_1 - F_0$ is greater than e. Next by taking F_1 instead of F_0 , we can take a relatively compact domain F_2 such that F_2 satisfies the conditions i), ii), iv) and the modulus σ_1 of the domain $F_2 - F_1$ is greater than e. Repeating the same process as above, we can take a relatively compact domain F_{n+1} such that F_{n+1} satisfies the conditions i), ii), iv) and further the modulus σ_n of the open set $F_{n+1} - F_n$ is greater than e. Thus we get

$$\sigma_n > e \qquad (n = 0, 1, \cdots).$$

Moreover, we can easily take the sequence of the domains $F_n(n=0, 1, ...)$ such that the condition iii) is satisfied.

Therefore, the infinite product $\prod_{n=0}^{\infty} \sigma_n$ is divergent. (q. e. d.)

Next we shall give a simple proof for a theorem due to Nevanlinna [3] and Sario [10].

THEOREM 3. A Riemann surface F has a null boundary, if and only if there does not exist the Green function on F.

PROOF¹⁾. Denote by u the harmonic function in the domain $F_n - F_0$ which defines the modulus μ_n of this domain, by v the conjugate harmonic function of u and by g_n the Green function of F_n which has its logarithmic pole in F_0 and vanishes on the relative boundary Γ_n of F_n . By Green's formula, we have

(1)
$$\int_{\Gamma_0} g_n \frac{\partial u}{\partial \nu} ds = \int_{\Gamma_n} u \frac{\partial g_n}{\partial \nu} ds = 2\pi \log \mu_n,$$

where the integrals are taken in the positive sense on Γ_0 and Γ_n with respect to the domain F_0 and F_n , $\frac{\partial}{\partial \nu}$ represents the outer normal derivative on Γ_0 and Γ_n with respect to F_0 and F_n respectively and ds is the line-

¹⁾ Recently the author learned that Virtanen [11] gave a similar proof as the author's.

element. It is clear that

$$\frac{\partial u}{\partial v} \geq 0$$

on Γ_0 and

$$\int_{\Gamma_0} \frac{\partial u}{\partial \nu} ds = \int_{\Gamma_0} dv = 2\pi.$$

Hence, from (1), there exists at least one point P_n on Γ_0 such that $g_n(P_n) = \log \mu_n$.

Since these points P_n (n = 0, 1, ...) have at least one limiting point P on Γ_0 , we obtain

$$\lim_{n\to\infty}g_n(P)=\infty$$

if and only if

$$\lim \mu_n = \infty.$$

It is well-known that the Green function g_n of F_n is uniformly convergent in the wide sense on F. Therefore, by Theorem 1, we get our theorem.

4. Now we shall consider the removability of the ideal boundary Γ of a Riemann surface F.

If every uniform bounded harmonic function on F is a constant, we say that Γ is (u, M)-removable. And if every uniform harmonic function on F with a finite Dirichlet integral is a constant, we say that Γ is (u, D)-removable.

We shall prove

THEOREM 4. If F has a null boundary, then Γ is (u, M)-removable.

PROOF. We construct the sequence of subdomains F_n $(n = 0, 1, \dots)$ of F satisfying the condition i), ii), iii) and iv). Denote by u the harmonic function which defines the modulus μ_n of $F_n - \overline{F_0}$ and by v conjugate harmonic function of u. We describe the niveau curve $\Gamma_{\lambda}: u = \lambda$ $(0 < \lambda \leq \log \mu_n)$.

Suppose that there exists a uniform bounded harmonic function U on $F(|U| \leq M)$ and consider the Dirichlet integral

$$D(\lambda) = \int_{\Gamma_{\lambda}} U \, dV = \int_{\Gamma_{\lambda}} U \frac{\partial U}{\partial u} \, dv$$

of the function U in the domain bounded by Γ_{λ} and containing F_0 , where V is the conjugate harmonic function of U. By Schwarz's inequality we get

$$egin{aligned} D^2(\lambda) &\leq M^2 \int\limits_{\Gamma_\lambda} dv \int\limits_{\Gamma_\lambda} \left(rac{\partial U}{\partial u}
ight)^2 \, dv \ &\leq 2\pi M^2 \, rac{dD(\lambda)}{d\lambda} \, , \end{aligned}$$

whence follows

$$\log \mu_n = \int_0^{\log a_n} d\lambda \leq 2\pi M^2 \left(\frac{1}{D_0} - \frac{1}{D_n} \right),$$

where $D_{\cdot i}$ is the Dirichlet integral of U in F_{n} .

Since, by assumption, $\log \mu_n$ is divergent, we obtain $D_0 = 0$ and hence the function U must be a constant. (q. e. d.)

REMARK. This result was stated without proof by Nevanlinna [5]. The proof can be given by using Myrberg's theorem [2]. A. Sagawa has also given the same proof independently.

Now we shall state another proof of

THEOREM 5 Nevanlinna [4]). If F has a null boundary, Γ is (u, D)-removable.

PROOF. Construct a sequence F_n $(n = 0, 1, \dots)$ satisfying the conditions i). ii), iii), iv) and denote by u the harmonic function which defines the modulus μ_n of the domain $F_n - \overline{F_0}$, by v its conjugate function and Γ_{λ} the niveau curve $u = \lambda$ $(0 < \lambda \leq \log \mu_n)$.

Let U be a uniform, harmonic and non-constant function on F and V be its conjugate harmonic function. Without loss of generality we may suppose that U is not identically equal to zero on Γ_0 .

If we put

$$D(\lambda) = \int_{\Gamma_{\lambda}} U dV = \int_{\Gamma_{\lambda}} U \frac{\partial U}{\partial u} dv,$$

then, using Schwarz's inequality,

(2)
$$D^{2}(\lambda) \leq \int_{\Gamma_{\lambda}} U^{2} dv \int_{\Gamma_{\lambda}} \left(\frac{\partial U}{\partial u}\right)^{2} dv.$$

On the other hand if we put

3)
$$m(\lambda) = \int_{\Gamma_{\lambda}} U^2 dv,$$

then

$$\frac{dm(\lambda)}{d\lambda} = m'(\lambda) = 2 \int_{\Gamma_{\lambda}} U \frac{\partial U}{\partial u} \, dv = 2D(\lambda) \, (>0)$$

11/2 1

and

$$\frac{d^2 \boldsymbol{m}(\lambda)}{d\lambda} = \boldsymbol{m}'(\lambda) = 2\frac{dD(\lambda)}{d\lambda}$$

Hence, from (2),

$$\frac{m(\lambda)}{m(\lambda)} \leq 2 \frac{m(\lambda)}{m'(\lambda)} .$$

By integrating from $\lambda = 0$ to λ , we have
(4) $m(\lambda) \leq k(m'(\lambda))^2 \leq 4kD^2(\lambda), \ k = \frac{m(0)}{4D_0^2}$

where D_0 is the Dirichlet integral of U with respect to F_0 . Since U is not identically equal to zero on Γ_0 ,

$$m(0) = \int_{\Gamma_0} U^2 dv > 0$$

and so k is positive. From (2), (3) and (4) it follows that

$$D^2(\lambda) \leq 4k D^2(\lambda) \frac{dD(\lambda)}{d\lambda}$$
, or $d\lambda \leq 4k dD(\lambda)$.

Integrating from $\lambda = 0$ to $\lambda = \log \mu_n$, we obtain

$$\log \mu_n \leq 4k(D_n - D_0),$$

where D_n is the Dirichlet integral of U with respect to F_n . Since the modulus μ_n of $F_n - \overline{F}_0$ is divergent by the assumption and Theorem 1, we get

$$\lim D_n = \infty$$

Thus our assertion is proved. (q. e. d.)

REFERENCES

- [1] T. KURODA, On the type of an open Riemann surface, Proc. Jap. Acad. 27(1950).
- [2] P.J. MYRBERG. Über die Existenz der Greenschen Funktionen auf einer gegebenen Riemannschen Fläche, Acta Math., 61(1933).
- [3] R. NEVANLINNA, Über die Lösbarkeit des Dirichletschen Problems für eine Riemannsche Fläche, Nachr. Geselschaft der Wissenschaften Gött. Fachgruppe I. Bd, 1 (1939).
- [4] R. NEVANLINNA, Quadratische integrierbare Differentiale auf einer Riemannschen Mannigfaltigkeit, Ann. Acad. Sci. Fenn. A. I. 1(1941).
- [5] R. NEVANLINNA, Sur l'existence de certaines classes de différentielles analytiques, C. R. 228 (1949).
- [6] K. Noshiro, An open₁Riemann surface with null boundary, Nagoya Math. Journal 3(1951).
- [7] A. PFLUGER, Über das Anwachsen eindeutiger analytischen Funktionen auf offene Riemannschen Fläche, Ann. Acad. Sci. Fenn. A. I. 64 (1949).
- [8] L.SARIO, Über Riemannschen Fläche mit hebbarem Rand, Ann. Acad. Sci. Fenn. A. I. 50 (1948).
- [9] L.SARIO, Question d'existence au voisinage de la frontière d'une surface de Riemann, C. R. 230 (1950).
- [10] L.SARIO, Quelques propriétés à la frontière se rattachant à la classification des surfaces de Riemann, C. R. 230 (1950).
- [11] K. I. VIRTANEN, Über die Existenz von beschränkten harmonischen Funktionen auf offene Riemannschen Fläche, Ann. Acad. Sci. Fenn. A. I. 75 (1950).

MATHEMATICAL INSTITUTE, TÔHORU UNIVERSITY, SENDAI.