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1. In this paper we shall consider an open abstract Riemann surface
with null boundary in the sense of Nevanlinna [41. Recently Sario [8]
has introduced the notion of the removable boundary of a Riemann surface.
Sario and Pfluger [7Ί have obtained many interesting results concerning
the removable boundary. We shall state some remarks on the null boun-
dary and the removable boundary of a Riemann surface.

2. Let F be an open abstract Riemann surface, Γ be its ideal boundary

and F i (n-0,1, .) be the subdomains of F satisfying the following
four conditions :

i) Fn(n = 0,1, O is open and relatively compact with respect to F,

ϋ) ~F1tciFn+1 (n = 0,1, O,

i ϋ ) U F B - F,
» = o

iv.) t h e re la t ive b o u n d a r y Γn of Fn, consis ts of a finite number of closed

analytic curves.
Further let u be the harmonic function in Fn — Fo such that

on Γ()

g on Γn

and

= ί 0
u ~~ (log μn

dv = 2τr,

where v is the conjugate harmonic function of u and the integral is taken

in the positive sense of Yn with respect to the domain Fn — Fo. We call

μu the modulus of the domain Fu — FQ.

Similarly we can define the modulus σn of the open set Fn+ι — Flb.

Now we shall state a theorem without proof (Kuroda [IT).

THEOREM 1. A Riemann surface F has a null boundary, if and only if

the modulus μu of the subdomain Fn — Fo satisfies the condition
lim μn = oo.

3. Applying Theorem 1, we shall give another necessary and sufficient
condition in order that a Riemann surface has a null boundary.

The following theorem which completes a theorem of Sario H9J is due
to Professor K. Noshiro |Ί3I|. Here we shall give an alternative proof.
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THEOREM 2. If there exists a sequence of domains Fn(n = 0, 1, )
satisfying the conditions i), ii), lii) and iv), such that the infinite product

of the moduli of the open sets Fn+\ — Fn O = 0, 1, ) is divergent, the
Riemann surface F has a null boundary and conversely.

PROOF. AS the sufficiency was proved by Sario [9], we shall give a
proof for the necessity only.

Suppose that F has a null boundary. First we fix the relatively compact
subdomain Fo of F arbitrarily. Then, by Theorem 1, we can take the
compact domain Fx which satisfies the conditions i), ii), iv) and such
that the modulus <τu of the domain Fv — Fo is greater than e. Next by
taking F, instead of Fΰ} we can take a relatively compact domain FΔ such
that F'2 satisfies the conditions ij, ii), iv) and the modulus <τι of the domain
FA — F-ί is greater than e. Repeating the same process as above, we can
take a relatively compact domain F w + 1 such that F,?,+ 1 satisfies the condi-
tions i), ii), iv) and further the modulus σn of the open set Fn+\ ~ Fίt.
is greater than e. Thus we get

σn >e C» = 0,1, ••••)•
Moreover, we can easily take the sequence of the domains F>ι(n~Q, 1, •)

such that the condition iii) is satisfied.

Therefore, the infinite product Π σn is divergent. Cq. e. d. )
n = 0

Next we shall give a simple proof for a theorem due to Nevanlinna
[31 and Sario [10].

THEOREM 3. A Riemann surface F has a null boundary\ if and only
if there does not exist the Green function on F.

PROOF1 \ Denote by u the harmonic function in the domain Fn — Fo

which defines the modulus μn of this domarh, by v the conjugate harmonic
function of u and by gn the Green function of Fn which has its logarithmic
pole in Fπ and vanishes on the relative boundary Tn of FΛ By Green's
formula, we have

f gn ^~ds= fu^ ds =

Γo Vn

= 2π

where the integrals are taken in the positive sense on Γυ and Tn with

respect to the domain Fo and Fn, —— represents the outer normal deriva-

tive on Γo and Tn with respect to Fo ând Fn respectively and ds is the line-

\) Recently the author learned that Virtanen [11] gave a similar proof as the
author's.
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element. It is clear that

ψ- ^ 0
on Γo and

Γ 0 Γ 0

Hence, from (1), there exists at least one point Pn on Γc such that
gn(Pn) = lθgμn .

Since these points Pn (n = 0,1, ) have at least one limiting point P on
Γo, we obtain

lim gn(P) = oo,

if and only if
limμ.,1 — oo.

It is well-known that the Green function gn of Fn is uniformly con-
vergent in the wide sense on F. Therefore, by Theorem 1, we get our
theorem.

4. Now we shall consider the removability of the ideal boundary Γ of
a Riemann surface F.

If every uniform bounded harmonic function on F is a constant, we
say that Γ is (z/, M)-removable. And if every uniform harmonic function
on F with a finite Dirichlet integral is a constant, we say that Γ is (u,D)-
removable.

We shall prove

THEOREM 4. If F has a null boundary, then Γ is (u, M)~removable.

PROOF. We construct the sequence of subdomains Fn (n = 0,1, - ) of
F satisfying the condition i), ii), iii) and iv). Denote by u the harmonic
function which defines the modulus μn of Fn — Fo and by υ conjugate harmo-
nic function of u. We describe the niveau curve Γλ : u = λ CO < λ g logμn).

Suppose that there exists a uniform bounded harmonic function U on
F(\U\ <SM) and consider the Dirichlet integral

= ίudV= ίu
du ""

of the function U in the domain bounded by Γλ and containing Fo, where
V is the conjugate harmonic function of U. By Schwarz's inequality we get

dυ

whence follows
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0

where D,4 is the Dirichlet integral of U in Fn.
Since, by assumption, log μ,n is divergent, we obtain Do = 0 and hence

the function U must be a constant. Cq. e. d. )
REMARK. This result was stated without proof by Nevanlinna [5].

The proof can be given by using Myrberg's theorem [2]. A. Sagawa has
also given the same proof independently.

Now we shall state another proof of

THEOREM 5 Nevanlinna (31). If F has a null boundary, Γ is Cu, D)~
removable.

PROOF. Construct a s e q u e n c e ^ fn = 0,l, ••••) satisfying the condi-
tions i). ii), iii), iv) and denote by u the harmonic function which defines
the modulus μn of the domain Fn — FOj by υ its conjugate function and Γ λ

the niveau curve u = λ (Ό < λ ^ log μn).
Let U be a uniform, harmonic and non-constant function on F and V

be its conjugate harmonic function. Without loss of generality we may
suppose that U is not identically equal to zero on Γo.

If we put

then, using Schwarz's inequality,

C2) DKX)sJuVvJ(^)'dv.

On the other hand If we put

3) m(\) = ]U2dv,

then

dm(X)

and

- ^ „ ,,v v / v , _ Λ f ty^^y- dυ = 2£)(λ) C > '

Hence, from (2),
w'Cλ.)
m(X) — m'(X)

By integrating from λ. = 0 to λ, we have

C 4 ) m(X) ^ Km\X)f s 4A?/)afλ), ^ -
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where Do is the Dirichlet integral of U with respect to Ft.. Since U is not
identically equal to zero on Γo,

m(0) == fu*dv > 0

and so k is positive. From (2), (3) and (4) it follows that

D2(λ.)

Integrating from λ = 0 to λ = log μn, we obtain
log μn ^ Ak(Dn - Do),

where Dn is the Dirichlet integral of U with respect to Fn. Since the
modulus μn of Fn — Fo is divergent by the assumption and Theorem 1, we
get

lim Dn = oo.

Thus our assertion is proved, (q. e. d, )
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